Серия iV5

2.2 - 37 KBT [200 B]

2.2 - 500 κBτ [400 B]

ЧАСТОТНЫЕ ПРЕОБРАЗОВАТЕЛИ

Категорически запрещается подключать нейтраль 3-х фазной сети на клемму "N" частотного преобразователя.

Это приводит к выходу прибора из строя.

Инструкция по технике безопасности

Для того чтобы избежать травм и повреждения оборудования, следуйте нижеописанным инструкциям. Неправильные действия, вызванные игнорированием требований и рекомендаций, могут привести к травмам и порче оборудования.

Важность требований обозначена следующими знаками:

3	Знак	Значение
	Внимание	Этот знак предупреждает о риске получения смертельной травмы или серьезного увечья.
	Преду- прежде- ние	Этот знак предупреждает о вероятности получить травму или повредить оборудование.

Примечание

Несмотря на то, что действия обозначенные знаком «Предупреждение» менее опасны, следует соблюдать осторожность при их выполнении, т.к. в крайних случаях несоблюдение требований техники безопасности может привести к крайне негативным последствиям.

Следующие предупредительные знаки означают:

Знак	Значение
<u></u>	Это знак предупреждения об опасности. Прочитайте следующие рекомендации внимательно, для того чтобы избежать опасных ситуаций.
Á	Данный знак предупреждает о наличии «опасного напряжения» внутри частотного преобразователя и о риске поражения электрическим током.

После прочтения данной инструкции держите ее в непосредственной близости от используемого оборудования.

Данная инструкция должна быть передана конечному пользователю преобразователя или техническому персоналу, осуществляющему обслуживание оборудования.

ВНИМАНИЕ

- Не снимайте переднюю панель при включенном питании и при работе преобразователя.
- Не включайте преобразователь со снятой передней панелью.
- Не снимайте переднюю панель за исключением случаев проведения профилактических и монтажных работ.
- Перед проведением монтажных и профилактических работ подождите не менее 10 минут после отключения преобразователя (приблизительное время разряда конденсаторов). С помощью мультиметра убедитесь, что величина напряжения в звене постоянного тока менее 30 В.
- Не прикасайтесь к частотному преобразователю мокрыми руками. Это может привести к поражению электрическим током.
- Не используйте кабели с поврежденной изоляцией.
- Не подвергайте силовые кабели воздействию острых и тяжелых предметов, способных повредить их изоляцию. Не скручивайте и не растягивайте кабели. Это может вызвать повреждение изоляции и привести к поражению электрическим током.
- Используйте защитное заземление.

№ ПРЕДУПРЕЖДЕНИЕ

- Устанавливайте преобразователь только на негорючих поверхностях.
 Не устанавливайте преобразователь вблизи легко-воспламеняемых объектов.
- При возникновении аварии немедленно обесточьте преобразователь.
- Во время работы преобразователь нагревается. После выключения питания он остается горячим еще несколько минут. Не касайтесь нагретых частей во избежание ожогов.
- Не подавайте питание на поврежденный преобразователь и на преобразователь с отсутствующими запчастями. Это может привести к поражению электрическим током.
- Избегайте попадания инородных предметов (ткань, бумага, пыль, металлическая и деревянная стружка) внутрь преобразователя.
 Это может привести к повреждению оборудования.

Меры предосторожности

Транспортировка и установка

- Небрежное обращение может привести к повреждению преобразователя.
- При установке преобразователей друг на друга соблюдайте осторожность.
 Чрезмерный вес может повредить нижний преобразователь.
- Производите установку преобразователя в соответствии с данным руководством.
- Не подавайте питание на неисправный преобразователь.
- Не открывайте переднюю панель при транспортировке.
- Не кладите тяжелые предметы на преобразователь.
- Проверьте правильность ориентации преобразователя при установке.
- Убедитесь, что в преобразователе не осталось отверток, крепежа, жидкостей или воспламеняющихся материалов после окончания монтажа.
- Не бросайте преобразователь и не подвергайте его сильным ударам.
- Не допускайте попадания внутрь преобразователя снега, капель дождя или пыли.
- Не перекрывайте вентиляционных отверстий преобразователя. Это может привести к перегреву преобразователя и выходу его из строя.
- Перед началом монтажных работ убедитесь, что преобразователь обесточен.
- Чтобы избежать пожара или удара электрическим током, следите за состоянием подключенных кабелей. Используйте кабели соответствующего сечения и длины.
- Убедитесь, что преобразователь надежно заземлен (сопротивление заземления менее 100 Ом).
- Убедитесь, что условия эксплуатации соответствуют следующим:

Окружающая среда	Описание							
Температура	- 10 – + 40°C (без оледенения)							
	(При температуре + 50°C рекомендуется нагружать преобразователь менее чем на 80%)							
Относительная влажность	Менее 90% относительной влажности (без конденсата)							
Температура хранения	-20 - + 65°C							
Состояние помещения	Не допускается наличие агрессивных или легковоспламеняющихся газов, нефтепродуктов, грязи и т.д.							
Высота над уровнем моря	Менее 1000 м над уровнем моря							
Виброустойчивость	Ниже 5.9 м/c² (=0.6 g)							
Атмосферное давление	70 – 106 кПа							

■ Монтаж

Л ПРЕДУПРЕЖДЕНИЕ

- Монтажные и пусконаладочные работы должны производиться специалистами с соответствующей квалификацией.
- Подключение следует производить после установки преобразователя.
- Не подключайте фазосдвигающие конденсаторы, ограничители импульсных помех, шумоподавляющие фильтры к выходу преобразователя.
- Выходные клеммы (клеммы U, V, W) должны быть подключены в правильной последовательности.
- После монтажа проверьте на наличие короткозамкнутых клемм, неправильно подключенных кабелей.
- Для подключения кабелей управления используйте экранированный кабель.
 Рекомендуется использовать экранированный кабель типа витая пара. Для снижения уровня помех экран кабеля рекомендуется заземлять.

ВНИМАНИЕ

Перед проведением монтажных работ убедитесь, что частотный преобразователь обесточен.

■ Настройки перед пробным пуском

- Подаваемое напряжение на каждую клемму не должно превышать значений, установленных в инструкции. В противном случае, это может привести к повреждению преобразователя.
- При работе на низких скоростях во время тестирования могут происходить броски тока. В основном это происходит с частотными преобразователя мощностью более 110 кВт без подключенной нагрузки на валу двигателя. Броски тока должны прекратиться при подключении нагрузки. Если броски тока значительные, то не рекомендуется дальнейшее тестирование без нагрузки.
- Перед первым запуском проверьте правильность настройки параметров преобразователя.

Рекомендации

- Не приближайтесь к вращающимся частям оборудования при включенной функции «повторный запуск». Вращение может начаться неожиданно.
- На пульте управления должна быть установлена кнопка «аварийный стоп».
 Также рекомендуется предусмотреть дополнительные цепи, обесточивающие оборудование в случае возникновения аварии.
- При сбросе аварии, если сигнал на клеммы FX/RX подан, произойдет повторный запуск. Перед сбросом убедитесь, что команда FX/RX не подается.
- Не вносите изменений в конструкцию преобразователя.
- При использовании магнитного контактора на входе преобразователя не используйте его для включения и выключения двигателя. Это может привести к повреждению преобразователя.
- Для минимизации электромагнитных помех рекомендуется использовать шумоподавляющий фильтр. Электронное оборудование вблизи частотного пре-

- образователя должно быть защищено от помех, которые могут вызвать сбой в работе.
- Для сглаживания скачков тока рекомендуется устанавливать дроссель переменного тока во входной цепи преобразователя.
- Для работы с частотным преобразователем рекомендуется использовать двигатели с усиленной изоляцией обмоток или использовать средства для подавления высокочастотной составляющей напряжения, формируемого преобразователем. В противном случае может произойти пробой изоляции обмоток и повреждение двигателя.
- При сбросе параметров их значения возвращаются к заводским установкам.
 После сброса, необходимо заново ввести необходимые значения параметров.
- Функция динамического торможения не может обеспечить удержание вала двигателя на нулевой скорости (аналогично сервоприводам). Для удержания положения вала двигателя на нулевой скорости требуется дополнительное оборудование.
- При возникновении ошибки или при аварийной остановке светодиод на панели управления мигает с интервалом 0,5 сек при подключенном пульте и с интервалом 1 сек при отключенном пульте.
- Не производите монтажные работы, не отключайте кабели и опциональные платы во время работы преобразователя.
- Не отключайте двигатель во время работы преобразователя (при наличии напряжения на выходе преобразователя). Это может вывести его из строя.
- Убедитесь, что частотный преобразователь эксплуатируется согласно стандартам ESD (Electric Static Discharge). Неправильная эксплуатация может привести к повреждениям плат преобразователя статическим электричеством.

■ Предотвращения аварийных ситуаций

■ При выходе преобразователя из строя управляемый им двигатель может начать вращение с неконтролируемой скоростью. Это может привести к повреждению оборудования и гибели людей. Во избежание подобных ситуаций необходимо предусмотреть возможность установки дополнительных защитных средств (например, систему аварийного торможения).

■ Обслуживание, осмотр и замена запасных частей

- Не проверяйте с помощью мегомметра сопротивление кабелей, подключенных к платам управления. Это может вывести их из строя.
- Более подробно вопрос замены комплектующих частей описан в Главе 8.

■ Утилизация.

- Преобразователь подлежит утилизации как производственные отходы.
- Преобразователь содержит материалы, которые могут быть использованы для вторичной переработки (в целях экономии электроэнергии и ресурсов). Упаковочный материал и металлические части пригодны для переработки. Пластиковые детали также могут быть подвергнуты переработке (в зависимости от законов страны, в которой эксплуатируется оборудование, на переработку пластиковых деталей может быть наложено ограничение).

■ Общие требования

- Многие рисунки руководства изображают частотный преобразователь без автоматического выключателя, внешней крышки или в частично разобранном состоянии. Перед началом эксплуатации они должны быть установлены на свои места.
- Отключайте преобразователь от сети, если он не используется длительное время.

■ Чистка

- Содержите преобразователь в чистоте.
- Перед началом обслуживания убедитесь, что преобразователь отключен от сети. Начинайте чистку только после того, как все кабели отключены от преобразователя.
- При чистке нельзя использовать воду и мокрые тряпки. Для удаления пятен используйте ткань, пропитанную спиртом или нейтральным моющим средством.
- Не используйте при чистке преобразователя растворители, такие как ацетон, бензин.

■ Хранение

При длительном хранении оборудования должны выполняться следующие условия:

- Убедитесь, что соблюдены условия хранения (см. стр ііі.)
- При длительном хранении (более 3 месяцев) температура должна находиться в диапазоне -10 +30 °C для предотвращения разрушения электролитических конденсаторов преобразователя.
- Частотный преобразователь должен храниться в соответствующей упаковке, препятствующей образованию конденсата. Используйте силикагель (влагопоглотитель) для уменьшения относительной влажности до 70% и ниже.

М ПРЕДУПРЕЖДЕНИЕ

 Для того чтобы избежать старения электролитических конденсаторов при длительном хранении, рекомендуется подключать преобразователь к сети без нагрузки на 30 – 60 минут один раз в год. Во время включения не подключайте двигатель и не подавайте команды на вращение.

і лава т	в едение	
	1.1 Основные характеристики	1-1
	1.2 Номер модели частотного преобразователя	1-2
Глава 2	Технические характеристики	
	2.1 Основные параметры	2-1
	2.2 Общие параметры	2-4
Глава 3	Установка и подключение	
	3.1 Рекомендации по установке	3-2
	3.2 Рекомендации по подключению	3-4
	3.3 Клеммы питания	3-11
	3.4 Плата управления	3-17
	3.4.1 Описание джамперов платы управления	3-17
	3.4.2 Расположение клемм на плате ввода/вывода	3-19
	3.4.3 Описание клемм на плате ввода/вывода	3-20
	3.4.4 Подключение кабелей управления	3-24
	3.4.5 Рекомендации по подключению энкодера	
	3.4.6 Подключение энкодера и настройка переключателей	
	3.4.7 Подключение энкодера и настройка переключателей (+5B Line Drive)	3-24
	3.4.8 Настройка джамперов аналоговых входов (Вход по напряжению/токовый вход/	
	термодатчик NTC/PTC) и выбор типа цифровых входов (PNC/NPN)	3-26
	3.5 Клеммы дополнительного питания	
F 4	The firm of the same	
Глава 4	Пробный пуск 4.1 Пульт управления	4 1
	4.1 Пульт управления	
	4.3 Установка значений параметров	
	4.4 Группы параметров	
	4.5 Автотюнинг	
	4.5.1 Параметры двигателя и энкодера для проведения автотюнинга	
	4.5.2 Автотюнинг с вращением	
	4.5.3 Автотюнинг без вращения	
	4.6 Проверка инкрементального энкодера	
	4.7 Управление с клавиатуры	
	4.8 Управление с помощью многофункциональных клемм	4-12
Глава 5	Список параметров	
	5.1 Группа мониторинга (DIS_[][])	5-1
	5.2 Группа цифровых входов/выходов DIO Group (DIO_[][])	5-2
	5.3 Группа «Параметры» (PAR_[][])	5-4
	5.4 Группа «Функции» (FUN_[][])	5-6
	5.5 Группа управления (CON_[][])	
	5.6 Группа пользователя (USR_[][])	
	5.7 Группа второго двигателя (2 nd _[][])	
	5.8 Группа аналоговых входов/выходов (AIO_[][])	
F==== 6		
Глава 6	Описание функций	<i>c</i> 1
	6.1 Группа мониторинга (DIS_[][])	6-1

6.1.1 DIS_00 (Мониторинг режима управления)	
6.1.2 DIS_01 ~ 03 (User display 1, 2, 3)	-
6.1.3 DIS_04 (Состояние ПИД регулятора)	-
6.1.4 DIS_05 (Экран ошибки)	-
6.1.5 DIS_06 (Отображение группы пользователя)	
6.2 Группа цифровых входов/выходов (DIO_[][])	
6.2.1 Переход к требуемому параметру (DIO_00)	
6.2.2 Многофункциональные входные клеммы	
1) DIO_01 ~ DIO_07 (Определение многофункциональных клемм Р1 ~ Р7)	
2) DIO_08 (Инвертирование входных клемм)	
3) DIO_09 (Постоянная времени многофункциональных входов)	
6.2.3 Многофункциональные цифровые входные клеммы	
1) DIO_10 (Инвертирование многофункциональных цифровых выходов)	
2) DIO_41~43 (Назначение выходных реле и выхода типа открытый коллектор)	
3) DIO_46 (Реле аварии Н.О. и Н.З. контакты)	
4) DIO_59~61 (Ошибка перегрузка. Разрешение, уровень, время)	
5) DIO_97 (Действия при потере команды)	
6.3 Группа «Параметры» (РАК_[][])	
6.3.1 Переход к требуемому параметру (PAR_00)	
6.3.2 Функции параметров группы	
1) PAR_01 (Инициализация параметров)	
2) PAR _02~03 (Чтение/запись параметров)	
3) PAR_04 (Блокировка параметров)	
4) PAR_05 (Пароль)	
6.3.3 Ввод параметров двигателя	
1) PAR_07 (Мощность двигателя)	
2) PAR_08 (Мощность двигателя. Значение пользователя)	
3) PAR_09 (Способ охлаждения двигателя)	
4) Параметры энкодера (PAR_10~13)	
6.3.4 Программное определение ошибки энкодера (PAR_14~15)	
6.3.5 Автотюнинг	
1) Параметры двигателя и энкодера, необходимые для проведения автотюнинга	
2) Автотюнинг с вращением	
3) Автотюнинг без вращения	_
4) Параметры двигателя	
5) Ошибки при автотюнинге	
6.4 Функциональная группа (FUN_[][])	
6.4.1 Переход к требуемому параметру (FUN_00)	
6.4.2 Выбор способа управления	_
1) FUN_01 (Источник команд Пуск/Стоп)	
2) FUN_02 (Источник задания скорости)	
3) FUN_03 (Способ торможения)	
6.4.3 Задание максимальной скорости (FUN_04)	
6.4.4 Задание многошаговой скорости и «скорости задержки»	
1) FUN_12~19 (Многошаговая скорость 0~7)	
2) FUN_20 (Скорость JOG)	
3) FUN_21 (Скорость задержки), FUN_22 (Время задержки)	
6.4.5 Кривые Разгона/Торможения и задание времени	
1) FUN_33 (Опорная скорость разгона/торможения)	
2) FUN_40~47 (Время разгона/торможения 1~4)	
, — · \ r · r · · · · · · · · · · · · · · ·	

3) FUN_36~39 (S-образная кривая разгона/торможения 1~2)	6- 4
4) FUN_48 (Выбор установки времени торможения до нулевой скорости)	6-4
5) FUN_49 (Время торможения до нулевой скорости)	
6) FUN_51 (Торможение при подаче сигнала BX)	6-4
7) FUN_52 (Начальное намагничивание)	6-4
8) FUN_53 (Время удержания)	6-4
6.4.6 Токо- временная защита двигателя	6-4
6.4.7 Выбор частоты ШИМ	6-4
1) FUN_57 (Выбор частоты ШИМ выходного сигнала преобразователя)	6-4
2) Диапазон установки	6-4
6.4.8 Запуск при появлении напряжения питания (FUN_58)	6-4
6.4.9 Повторный запуск после сброса ошибки (FUN_59)	
6.4.10 Повторный запуск после сброса ошибки	
1) FUN_60 (Количество попыток запуска)	
2) FUN_61 (Задержка перед повторным запуском)	6-4
6.4.11 Задержка перед пуском после останова	6-4
6.4.12 Определение ошибки «Превышение скорости»	
6.4.13 Настройка открытия и закрытия тормоза	6-5
6.4.14 Скорость при работе от батарей и настройка входного напряжения	
6.5 Группа Control group (CON_[][])	6-5
6.5.1 Переход к требуемому параметру (CON_00)	
6.5.2 Задание способа управления (CON_01)	6-5
6.5.3 Сфера применения (CON_02)	6-5
6.5.4 Автоматический регулятор скорости (ASR)	6-5
1) CON_05 (Постоянная времени низкочастотного фильтра ASR 1)	6-5
2) CON_08 (Постоянная времени низкочастотного фильтра ASR 2)	
3) CON_03~04 (Коэффициенты PI1 ASR)	6-5
4) CON_06~07 (Коэффициенты PI2 ASR)	6-5
5) CON_09 (Время переключения коэффициентов ASR)	6-5
6) CON_10 (Скорость двигателя во время переключения ASR)	
6.5.5 ПИД регулирование	
6.5.6 Контроль натяжения	
6.5.7 Контроль «ослабления»	6-5
6.5.8 Управление моментом	
1) CON_26 (Источник задания момента)	6-6
2) CON_27 (Опорный момент (клавиатура))	
3) CON_32 (Источник отклонения момента)	
4) CON_33 (Величина отклонения момента)	6-6
5) CON_35 (Баланс момента)	
6) Отклонение момента разрешено/запрещено	6-6
7) CON_34 (Компенсация момента)	
8) CON_28~31 (Выбор источника ограничения момента)	
9) Уставка тока момента	
6.5.9 Поиск скорости	
6.6 Группа пользователя (USR_[][])	
6.6.1 Переход к требуемому параметру (USR_00)	6-6
6.6.2 Макрос	6-6
1) USR_01 (Инициализация макроса)	6-6
2) USR 02 (Запись)	6-6

	3) USR_03 (Вызов)						
	6.6.3 Параметры пользователя (USR_04~67)						
	6.7 Группа 2-го двигателя (2 nd _[][])						
	6.7.1 Переход к требуемому параметру (2 nd _00)						
	6.7.2 Выбор режима управления 2-го двигателя (2 nd _01)						
	6.7.3 Задание скорости 2-го двигателя						
	1) 2 nd _02: Макс. скорость 2-го двигателя						
	2) 2 nd _04: Задание скорости вращения 2-го двигателя						
	6.7.4 Параметры разгона и торможения 2-го двигателя						
	6.7.5 Параметры энкодера 2-го двигателя						
	6.7.6 Параметры 2-го двигателя						
	6.7.7 Дополнительные параметры 2-го двигателя						
	6.8 Группа аналоговых входов/выходов (AIO_[][])						
	6.8.1 Переход к требуемому параметру (АІО_[][])						
	6.8.2 Многофункциональный аналоговый вход						
	6.8.3 Аналоговый выход						
Глава 7	WEB управление						
	7.1 Переключение на режим WEB						
	7.1.1 Переключение на режим WEB						
	7.2 Главный экран в режиме WEB						
	7.2.1 Главный экран						
	7.3 Изменение групп параметров						
	7.4 Установка параметров, требуемых для WEB управления						
	7.4.1 Установка режима управления WEB (Обязательно)						
	7.4.2 Задание команды Линейной скорости (Опционально)						
	7.4.3 Функция удержания диаметра (Опционально)						
	7.4.4 Функция перехода в исходное положение (Обязательно)						
	7.4.5 Функция «Отмена натяжения» (Обязательно)						
	7.4.6 Функция максимальной скорости двигателя						
	7.4.7. Задание минимальной эффективной скорости двигателя (Обязательно)						
	7.4.8 Задание минимального диаметра (Обязательно)						
	7.4.9 Источник вычисления диаметра (Обязательно)						
	7.4.10 Выбор функции (намотка/размотка (Обязательно))						
	7.4.11 Подача сверху/Подача снизу (Обязательно)						
	7.4.12 Задание входа уставки натяжения (Обязательно)						
	7.4.13 Источник датчика обратной связи ПИД регулятора (Обязательно)						
	7.5 Группа мониторинга (DIS_[][])						
	7.5.1 DIS_01~03 (Параметры пользователя 1, 2 и 3)						
	7.5.2 Группа цифровых входов/выходов (DIO_[][])						
	1) DIO_01~ DIO_07 (Назначение многофункциональных входов P1~7)						
	2) Назначение многофункциональных входов (пар. DIO_41~I/O_43)						
	7.5.3 Группа аналоговых входов/выходов (АІО_[][])						
	7.5.4 Функциональная группа (FUN_[][])						
	7.5.5 Группа управления (CON_[][])						
	7.6 Список параметров группы WEB (WEB_[][])						
	7.7 Группа параметров WEB						
	7.7.1 Переход к требуемому параметру (WEB_00)						
	7.7.2 Отображение диаметра						
	1) Параметр WEB 01: Отображение диаметра						

2) Параметр WEB_02: Отооражение текущего диаметра	
7.7.3 Инициализация параметров	
1) Параметр WEB_03: Выбор способа инициализации диаметра	
2) Параметр WEB_04 (Начальное значение 1-го диаметра)	- 7
3) Параметр WEB_05 (Начальное значение 2-го диаметра)	
4) Параметр WEB_06 (Начальное значение 3-го диаметра)	- 7
5) Параметр WEB_07 (Начальное значение 4-го диаметра)	
7.7.4 Задание скорости при WEB управлении	- 7
1) WEB_08: Максимальная скорость вращения при минимальном диаметре	7
2) WEB_09: Минимальная линейная скорость	- 7
3) WEB_10: Минимальный диаметр	- 7
4) WEB_11: Задание времени разгона/торможения для WEB режима	7
5) WEB_12: Задание времени разгона WEB режима	- 7
6) WEB_13: Задание времени торможения WEB режима	
7.7.5 Вычисление диаметра	- 7
1) WEB_14: Выбор источника расчета диаметра	
2) WEB_15: Постоянная времени расчета диаметра	
3) WEB_16: Задание величины ложного диаметра	
7.7.6. Задание параметров намотки/размотки	
1) WEB_17: Режим намотка/размотка	
2) WEB_18: Подача материала сверху/снизу	
7.7.7 Задание параметров натяжения	
1) WEB_19: Задание опорного натяжения	
2) WEB_20: Задание типа «Ослабление натяжения»	
3) WEB_21: Величина «Ослабления натяжения»	
4) WEB_22: Тип «Усиления натяжения»	
5) WEB_23: Величина «Усиления натяжения»	
6) WEB_24: Тип «Уменьшение натяжения»	- 7
7) WEB_25: Величина «Уменьшение натяжения»	
8) WEB_26: Время плавного набора номинального натяжения	
9) WEB_27: Задание контроля натяжения	
7.7.8 ПИД регулирование	
1) WEB_28: Источник уставки ПИД	
2) WEB_29: Задание положения натяжного ролика	
3) WEB_30: ПИД. Задание коэффициента Р1	
4) WEB_31: ПИД. Задание коэффициента Р2	
5) WEB_32: ПИД. Задание коэффициента I1	
6) WEB_33: ПИД. Задание коэффициента I2	
7) WEB_34: Время переключения между коэффициентами	
8) WEB_35: ПИД. Тип кривой коэффициента Р	
9) WEB_36: ПИД. Усиление кривой коэффициента Р	
10) WEB_37: ПИД. Коэффициент D	
11) WEB_38: Постоянная времени коэффициента D	
12) WEB_39: Положительный предел ПИД	
13) WEB_40: Отрицательный предел ПИД	
14) WEB_41: Постоянная времени выхода ПИД	
15) WEB_42: Усиление выхода ПИД при намотке	
16) WEB_43: Усиление выхода при размотке	
17) WFB 44: Тип ПИЛ регулятора	

	18) WEB_45: Минимальная величина выхода ПИД	7-35
	19) WEB_46: Время поддержания выхода ПИД после удержания	
	20) WEB_47: Источник обратной связи	- 7-35
	7.7.9 Определение обрыва полотна	
	1) WEB_48: Функция определения обрыва полотна	
	2) WEB_49: Задержка функции определения обрыва при старте	
	3) WEB_50: Время определения обрыва	
	4) WEB_51: Уровень определения обрыва	
	7.7.10 Отклонение линейной скорости	
	1) WEB_52: Определение отклонения линейной скорости	
	1) WEB_52: Определение отклонения линейной скорости	
	\cdot = \cdot	
	7.7.11 Задание времени «Быстрого останова»	
	7.7.12 Скорость ЈОБ для WEB режима	
	1) WEB_55: Задание скорости Jog	
	2) WEB_56: Время разгона/торможения скорости Jog	
	3) WEB_57: Задание времени разгона Jog	
	4) WEB_58: Задание времени торможения Jog	7-40
	7.7.13 Задание скорости склейки	- 7-40
Глава 8	Проверка и устранение неисправностей	
	8.1 Меры предосторожности	8-1
	8.2 Ключевые точки	
	8.3 Порядок проверки	
	8.4 Периодическая поверка (один раз в год)	
	8.5 Периодическая проверка (один раз в тоду	
	8.6 Изменение сопротивления мегомметром	
	8.7 Периоды замены и обслуживания частей преобразователя	
	8.8 Проверка Диодного модуля и модуля IGBT	
	8.8 проверка диодного модуля и модуля 1Gb1	8-8
Глава 9	Устранение неисправностей и обслуживание	
	9.1 Экран ошибок	
	9.2 Мониторинг состояния	
	9.3 Сброс ошибки	
	9.4 Устранение неисправностей	9-3
Глава 10	Опциональные платы	
	10.1 Опциональная плата «Делитель импульсов энкодера»	10-1
	10.1.1 Установка и подключение платы «Делитель импульсов энкодера»	
	10.1.2 Рекомендации по подключению платы «Делитель импульсов энкодера»	
	10.1.3 Выход делителя энкодера	
F==== 44	Augustion	
Глава 11	Akceccyapы	44.4
	11.1 Входной автомат (LS), магнитный контактор (LS)	
	11.2 Входной предохранитель, дроссель переменного тока, дроссель постоянного тока	
	11.3 Выбор тормозного резистора и блока динамического торможения	11-3
Глава 12	Габаритные размеры	12-1
Гпэрэ 12	Фунуниональные суемы	13_1

Глава 1 - Введение

В данной инструкции описывается работа частотного преобразователя с векторным управлением серии iV5. Частотный преобразователь использует сигнал обратной связи от импульсного энкодера, установленного на валу трехфазного асинхронного двигателя, что позволяет достичь высоких характеристик поддержания скорости и момента вращения.


1.1 Основные характеристики:

- Частотный преобразователь работает в векторном режиме с обратной связью. В качестве силовых преобразовательных элементов используются IGBT –транзисторы.
- Контроль момента, контроль натяжения и другие типы управления.
- Пи регулятор скорости, контроль натяжения, синхронизация, режим Перемотки и т.д.
- Автотюнинг параметров двигателя (с вращением/без вращения) для поддержания скорости/момента.
- Функция определения ошибки энкодера.
- Функция резервного питания и управления при аварии от резервного источника питания.
- Возможность применения различных опциональных плат (Profibus, плата синхронизации и др.)
- Области применение преобразователя:

Применение	Оборудование	Функции
	• Прокатный станок	Управление натяжением.
	• Перемоточный станок	Управление скоростью в
Попоможно	• Прядильный станок	широком диапазоне.
Перемотка	• Стрейч станок	
	• Покрасочный станок	
	• Промышленный принтер	
	• Лифт	Перемещение с высокой
		скоростью.
-	Парковочная машина	Позиционирование.
Подъем груза	• Мостовой кран	Большой пусковой момент
	• Башенный кран	Управление скоростью в
	• Лебедка	широком диапазоне.
	• Металлорежущий станок	Перемещение с высокой скоростью.
Металлообработка	• Протяжка проволоки	Большой пусковой момент.
	• Экструдер	Позиционирование.
Пругоо	• Конвейер	Перемещение с высокой скоростью.
Другое	 Промышленная посудомоечная машина 	Позиционирование.

1.2 Номер модели частотного преобразователя.

1.2.1 Пример шильды преобразователя

MD: Пластиковый корпус (2.2~22кВт)

DC: Постоянное входное напряжение

(Технические хар-ки инверторов MD типа (5,5~22кВт) аналогичны

стандартным инверторам, за исключением внешнего вида и размера)

Входное напряжение

380В: 380В Входное напряжение - 30~220кВт(400В)

Пусто: Ниже 22кВт (200В/400В) $-280\sim500$ кВт(400В)

- Тип энкодера -
 - Пусто : 5В (выход Line Drive), 15В (выход открытый коллектор)
 - 24B ENC : 24B (выход Line Drive)/ (выход открытый коллектор)

Глава 2 – Технические характеристики

2.1 Основные параметры

2.1.1 Класс 200В (Переменное входное напряжение)

SV[][][]iV5-2(DB)			022	037	055	075	110	150	185	220	300	370
Максимальная мощность двигателя (Прим.1)		[кВт]	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37
	Ном. характеристики двигателя [кВА] ^(Прим.2)		4.5	6.1	9.1	12.2	17.5	22.5	28.2	33.1	46	55
Выход	Номинальный ток [А]		12	16	24	32	46	59	74	88	122	146
Вы	Скорость		0 – 3600 (об/мин)									
	Напряжение		0 – 200 В (230 В) ^(Прим.3)									
D	Напряжение		3 Фазы, 200 – 230 В (-10% – +10%)									
Вход	Час	50 — 60Гц (±5%)										
Вес, [кг]		6 6 14 14 27.5 27.5 28 28 42 4						42				

2.1.2 Класс 400В (Переменное входное напряжение)

SV[][][][]iV5-(DB)			022	037	055	075	110	150	185	220	300	370	450
Максимальная мощность двигателя (Прим.1)		[кВт]	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37	45
	Ном. характеристики двигателя [кВА] ^(Прим.2)		4.5	6.1	9.1	12.2	18.3	22.9	29.7	34.3	46	57	70
Выход	Номинальный ток [А]		6	8	12	16	24	30	39	45	61	75	91
8	Скорость		0 – 3600 (об/мин)										
	Напряжение		0 — 380 В (480 В) ^(Прим.3)										
Dvo.=	Напряжение		3 фазы, 380 – 480 B (-10% – +10%) ^(Прим.4)										
Вход	Частота		50 – 60 Гц (±5%)										
Вес, [кг]			6	6	14	14	27	28	28	28	42	42	63

	SV[][][][]iV5-4(DB)			750	900	1100	1320	1600	2200	2800	3150	3750	5000
Максимальная мощность двигателя (Прим.1) [кВт]		55	75	90	110	132	160	220	280	315	375	500	
		стеристики [кВА] ^(Прим2)	85	116	140	170	200	250	329	416	468	557	732
Выход	Номинальн	ный ток [А]	110	152	183	223	264	325	432	5 4 6	614	731	960
Вы	Скор	ость	0 — 3600 (об/мин)										
	Напря	жение	380 — 480 В ^(Прим.3)										
Duran	Напряжение		3 фазы, 380 — 480 B (-10% — +10%) ^(Прим.4)										
вход	Вход <u>Частота</u>			50 — 60 Гц (±5%)									
	Вес, [кг]			68	98	98	122	122	175	243	380	380	476

Параметры преобразователей типа MD (мощность 2.2 – 22кВт) такие же, как у представленных выше.

SV[][][]iV5-2/4DB(MD)	055	075	110	150	185	220
Вес, [кг]	7.7	7.7	13.7	13.7	20.3	20.3

2.1.3 Класс 400В (Постоянное входное напряжение)

	SV[][][]iV5-4DC			075	110	150	185	220	300	370	450	550
Максимальная мощность двигателя [кВт]		5.5	7.5	11	15	18.5	22	30	37	45	55	
	Ном. характеристики двигателя [кВА] ^(Прим2)		9.1	12.2	18.3	22.9	29.7	34.3	46	57	70	85
Выход	Номинальный ток [А]		12	16	24	30	39	45	61	75	91	110
BB	Скор	0 — 3600 (об/мин)										
	Напряжение		0 — 380В (480В) (Прим.3)									
Входное напряжение			= DC 540 - 680B (+10%) ^(Прим.5)									
Вес, [кг]			12	12	24	24.5	25	25	38.5	38.5	50	50

S	SV[][][]iV5-4DC		750	900	1100	1320	1600	2200	2800	3150	3750	5000
Максимальная мощность двигателя ^(Прим.1)		75	90	110	132	160	220	280	315	375	500	
	Ном. характеристики двигателя [кВА] ^(Прим2)		116	140	170	200	250	329	416	468	557	732
Выход	Номинальн	ный ток	152	183	223	264	325	432	546	614	731	960
	Скоро	СТЬ	0 — 3600 (об/мин)									
	Напряжение		0 — 380B (480B) ^(Прим.3)									
Вход	Входное напряжение					DC 54	10 – 680E	3 (+10%)	(Прим.5)			
	Вес, [кг]		55	79	79	98.5	98.5	154.5	206	343	343	466

Примечание:

- 1. Указывает на максимальную мощность при использовании 4-полюсного двигателя.
- 2. Номинальная мощность вычисляется по формуле ($\sqrt{3}$ *V*I), где за V берется 220 для 200В класса и 440 для 400В класса.
- 3. Максимальное выходное напряжение не может превышать входное напряжение.
- 4. Номинальный ток уменьшается на 10%, если входное напряжение выше 480В.
- 5. Номинальный выходной ток уменьшится на 10%, если входное постоянное напряжение выше 680В.

2.2 Общие параметры

	Параме	етр	Характеристики					
	Тип преобраз	ователя	Частотный преобразователь на основе IGBT модулей.					
	Способ у	правления	• Векторное управление с обратной связью (датчик скорости)					
	Точность поддержания скорости		 Аналоговое задание: ± 0.01% (25 ± 10°C) от макс. скорости (1,800 об/мин) Цифровое задание: ± 0.01% (0 ~ 40°C) от макс. скорости (1,800 об/мин) 					
Тип управления	Точность задания скорости		 Аналоговое задание: ± 0.1% от макс. скорости Цифровое задание: 0.1 об/мин 					
управ.	Предельная	частота ASR	50 Гц					
L	Точность управления моментом		3%					
	Перегрузочна	я способность	150% в течение одной минуты					
	D/	Время	Диапазон задания: 0.00 ~ 6000.0 сек.					
	Разгон/ торможение	Комбинации	4 комбинации времени для разгона/торможения					
		Тип кривой	Линейная, кривая S-типа					
эние	Способ то	рможения	Динамическое торможение с применением внешнего резистора					
Торможение	Тормозной момент		150%					
Top	Тормозной	й резистор	Внешний тормозной резистор					
	Задание	скорости	 Цифровое задание через клавиатуру Многошаговая скорость через входные многофункциональные клеммы Аналоговый вход (-10~10В или 4~20мА) Удаленное управление через плату интерфейса 					
Вход			 З канала (AI1, AI2, AI3*, (AI4, AI5: Внешняя плата ввода/вывода)) -10→10В, 10→10В, 0→10В, 10→0В,0→20мА, 20→0мА, AI3 (AI5: внешняя плата): Выбор типа (NTC/PTC) термодатчика двигателя Выбор одной из 15 функций AI3, AI5 (Термодатчик двигателя NTC типа): только для двигателей LG-OTIS 					
	Клеммы уі	правления	FX, RX, BX, RST, P1 ~ P7Выбор одной из 42 функций					
Ф	Аналоговый выход		 2 канала (AO1, AO2) -10B → 10B, 10 → -10B, 0 → 10B, 10 → 0В выход Выбор одной из 41 функций 					
Выход	Релейнь	ій выход	2 канала (1A-1B, 2A-2B)Реле индикации аварии: 1 канал (30A-30C, 30B-30C)					
	Открытый	коллектор	1 канал (OC1/EG)					

2. Технические характеристики

	Параметр	Характеристики				
	Защиты и блокировки	Перегрузка по току; перегрузка по напряжению; пониженное напряжение; перегрев преобразователя; неисправность термодатчика преобразователя; перегрев двигателя; неисправность термодатчика двигателя; превышение скорости; мгновенное отключение (ВХ); обрыв предохранителя; внешняя ошибка; ошибка энкодера; электронная температурная защита двигателя; перегрузка преобразователя; пробой изоляции двигателя; короткое замыкание IGBT; ошибка коммуникационного интерфейса; неисправность вентилятора.				
	Установка	Внутри помещений, не содержащих агрессивных газов (степень загрязнения 2).				
среда	Окружающая температура	-10 — 40°C (без оледенения)				
	Влажность	Менее 90% относительной влажности (без конденсата)				
Karo	Способ охлаждения	Принудительное воздушное охлаждение				
Окружающая	Пыле- и влагозащищенность	IP00: 2.2 – 22 кВт (MD), 30 – 500 кВт IP20: 5.5 – 22 кВт (Press)				
	Высота над уровнем моря, виброустойчивость	Ниже 1000 м над уровнем моря, менее 5.9 м/с² (=0.6g)				

Для заметок

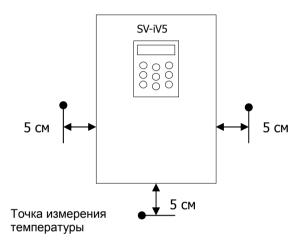
Глава 3 – Установка и подключение

В этой главе приводятся рекомендации по установке и подключению преобразователя, описываются функции силовых клемм и клемм управления.

Перед первым запуском проверьте соблюдение нижеописанных условий.

Контрольный список

- Проверка правильности установки
 - Убедитесь, что условия окружающей среды соответствуют требуемым.
 - Проверьте, чтобы вокруг преобразователя было достаточно свободного пространства.
 - Убедитесь, что ничего не мешает теплообмену.
 - Проверьте готовность двигателя и частотного преобразователя к запуску.
- Проверка подключения
 - Убедитесь, что преобразователь надежно заземлен.
 - Проверьте, соответствует ли величина входного напряжения паспортным данным.
 - Убедитесь, что входной кабель подключен к клеммам R, S, T. Проверьте надежность подключения.
 - Проверьте правильность установки и подключения входных предохранителей и входного автомата.
 - Убедитесь, что кабель, идущий на двигатель, расположен отдельно от других кабелей.
 - Убедитесь в правильности подключения управляющих кабелей.

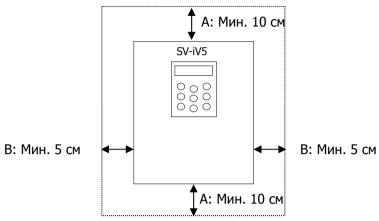

3.1 Рекомендации по установке

3.1.1 Не рекомендуется подвергать частотный преобразователь сильной вибрации.

Примите дополнительные меры по защите оборудования при установке преобразователя на подвижное оборудование и оборудование, подвергающееся воздействую сильной вибрации.

3.1.2 Окружающая температура.

Температура окружающей среды сильно влияет на надежность и длительность безотказной работы преобразователя. Необходимо, чтобы температура в месте эксплуатации преобразователя находилась в диапазоне от -10 до 40° C.


3.1.3 Устанавливайте преобразователь на негорючую поверхность. При работе преобразователь сильно нагревается.

3.1.4 Избегайте воздействия влаги и высокой температуры.

3.1.5 Не рекомендуется устанавливать преобразователь в помещениях, где он может подвергаться воздействию масла и пыли.

Для защиты преобразователя от вредных воздействий используйте герметичный шкаф. Окружающий воздух не должен содержать агрессивных газов и токопроводящей пыли.

3.1.6 Проверьте, чтобы вокруг преобразователя оставалось достаточно свободного места для циркуляции воздуха.

При установке преобразователя мощностью от 30 кВт в шкафу должен оставаться зазор не менее 30 см сверху и снизу, 20 см справа и слева между преобразователем и стенкой шкафа.

3.1.7 При установке в шкафу должны приниматься дополнительные меры по обеспечению охлаждения.

При установке более двух преобразователей и при установке охлаждающих вентиляторов убедитесь в их правильной установке. Неправильная установка может привести к перегреву и выходу преобразователей из строя. Убедитесь, что температура преобразователя соответствует заявленным паспортным значениям.

3.1.8 Используйте винты или болты соответствующего размера для надежного крепления преобразователя частоты.

3.2 Рекомендации по подключению

После проведения монтажных работ проверьте правильность подключения, согласно следующему списку:

Контрольный список

Проверка соответствия преобразователя заказанному.

- Проверьте соответствие номиналов внешних устройств (тормозного резистора, дросселя постоянного тока, шумоподавляющего фильтра и т.д.)
- Убедитесь, что тип опциональной платы соответствует заказанной.

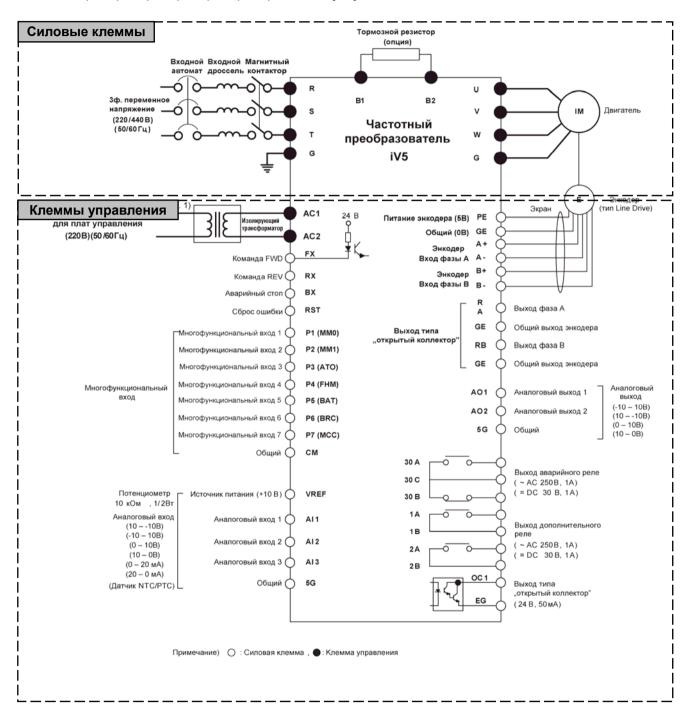
Место установки преобразователя

• Проверьте, правильно ли установлен преобразователь.

Напряжение питания

- Проверьте, соответствует ли входное напряжение, указанному в спецификации.
- Проверьте, соответствует ли выходное напряжение, указанному в спецификации.
- Убедитесь, что мощность преобразователя соответствует заказанной.

Подключение силовой части

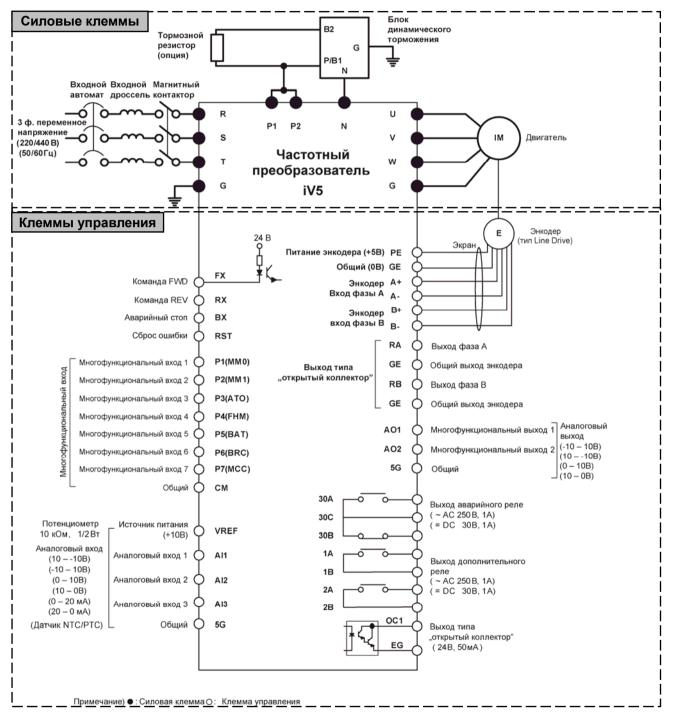

- Проверьте, установлен ли входной автомат.
- Убедитесь, что номинал входного автомата соответствует требуемому.
- Убедитесь, что входное напряжение подается на клеммы (R, S, T). Если питающее напряжение подано на клеммы (U, V, W), преобразователь может выйти из строя.
- Проверьте правильность чередования фаз двигателя, подключенного к выходу преобразователя. При неправильном чередовании фаз двигатель будет вращаться в противоположную сторону.
- Убедитесь, что для силовой части используется кабель с соответствующим классом изоляции.
- Убедитесь, что сечение кабелей соответствует указанному в документации.
- Проверьте надежность подключения заземления.
- Проверьте надежность крепления силовых клемм.
- При управлении несколькими двигателями с помощью одного преобразователя убедитесь, что все двигатели имеют схемы защиты от перегрузки.
- Проверьте, чтобы не были подключены фазосдвигающие конденсаторы, фильтры перенапряжений, шумоподавляющий фильтр к выходу частотного преобразователя.

Подключение управляющих сигналов

- Убедитесь, что используется экранированная витая пара для подключения сигналов управления.
- Убедитесь, что экран кабелей управления заземлен.
- При использовании трехпроводного управления убедитесь, что назначение клемм управления (FX, RX, 3-wire) выбрано правильно.
- Убедитесь, что опциональные платы правильно подключены.
- Есть ли какие-то неподключенные провода?
- Надежно ли затянуты винты силовых клемм?
- Проверьте, не остались ли остатки проводов или отвертки?
- Проверьте, не осталось ли неподключенных проводов?
- Убедитесь, что кабели управления проложены отдельно от силовых кабелей.
- Проверьте, не превышает ли длина кабелей 300 м? Для частотных преобразователей менее 3,7 кВт длина кабелей не должна превышать 100 м.
- Убедитесь, что длина кабеля блокировок и аварийных кнопок не превышает 30 м.

Преобразователи с переменным напряжением питания:

SV022, 037, 055, 075, 110, 150, 185, 220iV5-2(DB) SV022, 037, 055, 075, 110, 150, 185, 220iV5-4(DB)


^{* 5}G: Общая клемма энкодера для SV022/037iV5

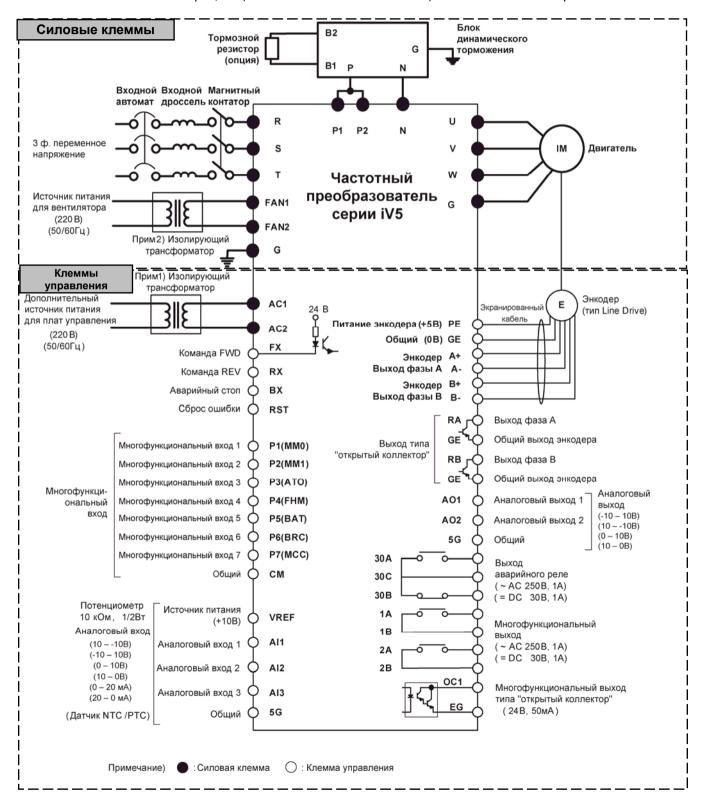
Прим 1) Используется, когда плата управления питается от внешнего источника питания (~220В) отдельно от основного питания. Используйте трансформатор для обеспечения гальванической развязки. (рекомендуемая мощность трансформатора 100 ВА и выше).

Преобразователи с переменным напряжением питания:

SV300, 370iV5-2

SV300, 370, 450, 550, 750, 900, 1100, 1320, 1600, 2200, 2800, 3150, 3750iV5-4

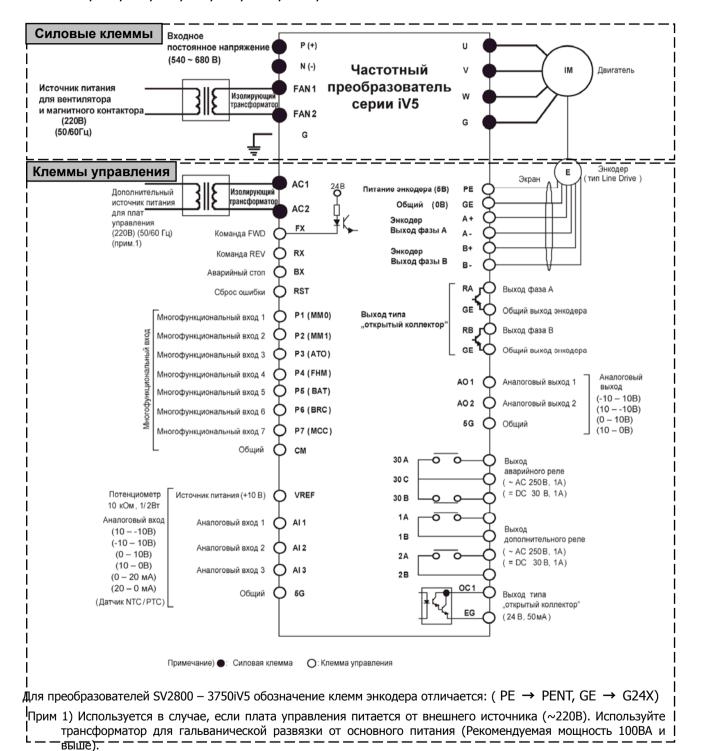
Для преобразователей SV2800 − 3750iV5 обозначение клемм энкодера отличается: (PE \rightarrow PENT, GE \rightarrow G24X)


Прим 1.) Используется, когда плата управления питается от внешнего источника питания (~ 220В) отдельно от основного питания. Используйте трансформатор для обеспечения гальванической развязки (рекомендуемая мощность трансформатора 100ВА и выше).

Преобразователь с переменным напряжением питания: SV5000iV5-4

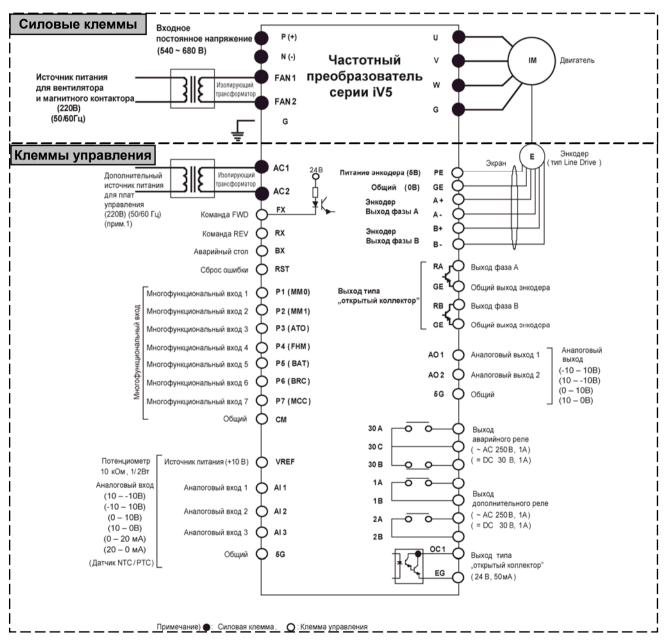
Прим.: На клеммы FAN1 и FAN2 должно подаваться ~220В (50/60 Гц) для питания вентиляторов. Если не подать это питание, работа преобразователя невозможна из-за ошибки `FUN PWR'. Порядок подачи питания:

Включение: Подача питания на вентилятор, основное питание, включение вращения.


Выключение: Остановка вращения, выключение основного питания, отключение вентилятора.

- **Прим 1)** Используется в случае, если плата управления питается от внешнего источника (~220В). Используйте трансформатор для гальванической развязки от основного питания. (Рекомендуемая мощность: 100ВА и выше).
- **Прим 2)** Питание ~ 220В должно быть подано для питания охлаждающего вентилятора. Используйте трансформатор для гальванической развязки от основного питания (Рекомендуемая мощность: 500ВА и выше).

■ Преобразователь с постоянным напряжением питания:


SV055, 075, 110, 150, 185, 220, 2800, 3150, 3700iV5-4DC

Преобразователи с переменным напряжением питания:

SV300, 370, 450, 550, 750, 900, 1100, 1320, 1600, 2200, 5000iV5-4DC

№ Внимание: На клеммы FAN1 и FAN2 должно подаваться напряжение ~220В для питания вентилятора охлаждения и магнитного контактора. Если не подать это напряжение, преобразователь не сможет работать из-за ошибки (30~160кВт: "FAN/MC PWR", 220кВт: "FAN PWR"). Ошибка исчезнет после подачи питания. Порядок подачи питания: Включение: напряжение на вентилятор, основное постоянное напряжение, команда на вращение. Выключение: остановка, основное постоянное напряжение на вентилятор.

- Прим 1) Используется в случае, если плата управления питается от внешнего источника (~220В). Используйте трансформатор для гальванической развязки от основного питания. (Рекомендуемая мощность 100ВА и выше).
- Прим 2) Питание ~220В должно быть подано для питания охлаждающего вентилятора и магнитного контактора (30 − 160 кВт питание вентилятора и контактора, 220/500 кВт для питания вентилятора). Используйте трансформатор для гальванической развязки от основного питания.

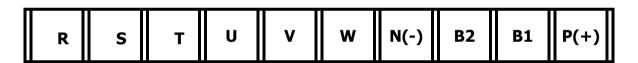
(Рекомендуемая мощность: 30 – 75 кВт: 100 ВА; 90 – 160 кВт: 150 ВА; 220/500 кВт: 500 ВА).

3.3 Клеммы питания

3.3.1 Расположение клемм питания

(1) Преобразователи с переменным напряжением питания

ПРЕДУПРЕЖДЕНИЕ


Клемма "N" — это не нейтраль и не заземление! Это клемма DCN (-) звена постоянного тока. Не подключайте к ней заземляющий провод. Это может вывести преобразователь из строя.

SV022, 037, 055, 075, 110, 150, 185, 220iV5-2(DB)
 SV022, 037, 055, 075, 110, 150, 185, 220iV5-4(DB)

■ SV110, 150, 185, 220iV5-2(DB)(MD) SV110, 150, 185, 220iV5-4(DB)(MD)

*(MD) : Литой корпус

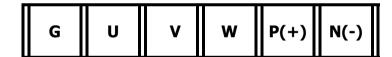
G

■ SV300, 370iV5-2 SV300, 370, 450, 550, 750iV5-4

P1(+) P2(+) N(-)

■ SV900, 1100, 1320, 1600, 2200iV5-4

R	S	т	G	U	v	w	P1(+)	P2(+)	N(-)	
---	---	---	---	---	---	---	-------	-------	------	--


■ SV2800, 3150, 3750, 5000iV5-4

R(L1) S(L2) T(L3) P1(+) P2(+) N(-) G U V
--


- (2) Преобразователи с постоянным напряжением питания
- SV055, 075iV5-4DC

■ SV110, 150, 185, 220iV5-4DC

■ SV300, 370,450,550,750,900,1100,1320,1600,2200iV5-4DC

■ SV2800, 3150, 3750, 5000iV5-4DC

P(+) N(-	U	N(-)	v	w	G
----------	---	------	---	---	---

3.3.2 Описание силовых клемм

(1) Преобразователи с переменным напряжением питания.

Клемма	Функция	Описание			
R, S, T	Трехфазное входное напряжение	Подключение трехфазного входного напряжения			
U, V, W	Выход преобразователя	Подключение трехфазного асинхронного двигателя			
G	Заземление	Используется для заземления преобразователя			
B1, B2	Тормозной резистор	Подключение тормозного резистора			
P1(+), P2(+)	DC дроссель и блок DB	Используется для подключения дросселя постоянного тока, блока динамического торможения и подключения к звену постоянного тока.			
P(+)	Клемма «+» звена постоянного тока	Подключение к звену постоянного тока.			
N(-)	Блок DB; клемма «-» звена постоянного тока	Используется для блока динамического торможения и подключения к звену постоянного тока.			

(2) Преобразователи с постоянным напряжением питания.

(=)							
Клемма	Функция	Описание					
		Подключение входного постоянного напряжения.					
P(+), N(-)	Входное постоянное напряжение	Подключается к источнику постоянного напряжения.					
		Длина кабеля не более 30 м.					
U, V, W	Выход преобразователя	Подключение трехфазного асинхронного двигателя.					
G	Заземление	Используется для заземления преобразователя.					
FAN1,	Охлаждающий вентилятор	5 2200					
FAN2	и магнитный пускатель	Подключение однофазного напряжения ~220В.					

3.3.3 Меры предосторожности при подключении силовых кабелей

① Подключите входной кабель к клеммам (R, S и T). Не подключайте входное напряжение к клеммам (U, V и W). Это может вывести преобразователь из строя.

② Никогда не подключайте фазосдвигающий конденсатор к выходу частотного преобразователя. Это может вывести преобразователь из строя.

③ Длина кабеля, соединяющего преобразователь и двигатель, не должна превышать 30 м. Если длина кабеля превышает 30 метров, то в кабеле может наводиться высокочастотное импульсное напряжение, которое может повредить изоляцию двигателя. Желательно использовать двигатели с усиленной изоляцией, предназначенные для работы с частотными преобразователями.

Расстояние между преобразователем и двигателем	До 50 м	До 100 м	Более 100 м
Допустимая несущая частота	Ниже 10 кГц	Ниже 5 кГц	Ниже 2,5 кГц

(Для частотных преобразователей мощностью менее 3,7 кВт, используйте кабель длиной не более 100 м.

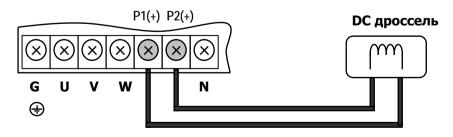
- 4 Для силовых кабелей используйте обжимные наконечники с изоляцией.
- ⑤ После окончания монтажных работ проверьте, чтобы внутри частотного преобразователя не осталось остатков проводов и других посторонних предметов.
- ⑥ Для подключения сигналов управления используйте экранированный кабель типа витая пара. Прокладывайте управляющие кабели отдельно от силовых кабелей.
- ⑦ После отключения питания преобразователя подождите, пока погаснет дисплей и индикатор заряда конденсаторов. Конденсаторы звена постоянного тока длительное время сохраняют электрический заряд, который может вызвать поражение электрическим током.
- ® В частотных преобразователях мощностью менее 22 кВт к клеммам В1 и В2 не должно подключатся ничего кроме тормозного резистора.

3.3.4 Сечение силовых проводов и заземления

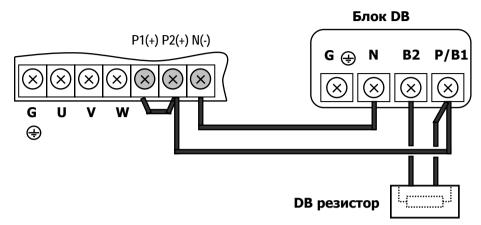
① Сечение силовых проводов.

Использование несоответствующих кабелей может стать причиной выхода преобразователя из строя и привести к смертельным травмам оператора оборудования. Убедитесь, что используются медные провода с характеристиками 75°C 600B.

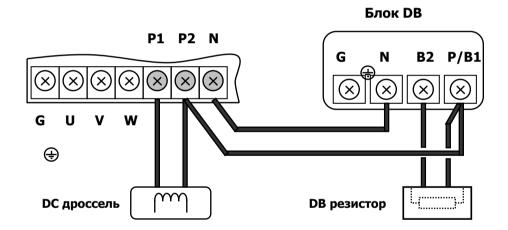
Мощность преобразователя		Сечение кабеля (Стандарт IEC 60227-3 или UL508C)			
		MM ²		AWG	
		R, S, T	U, V, W	R, S, T	U, V, W
200B	2.2 кВт	2.5	2.5	12	12
	3.7 кВт	4	4	10	10
	5.5 кВт	6	6	8	8
	7.5 кВт	10	10	6	6
	11 кВт	16	16	4	4
	15 кВт	25	25	3	3
	18.5 кВт	35	35	2	2
	22 кВт	35	35	2	2
	30 кВт	50	50	1/0	1/0
	37 кВт	70	70	2/0	2/0
	2.2/3.7 кВт	2.5	2.5	12	12
	5.5 кВт	4	4	10	10
	7.5 кВт	4	4	10	10
	11 кВт	6	6	8	8
	15 кВт	10	10	6	6
	18.5 кВт	16	16	4	4
	22 кВт	16	16	4	4
	30 кВт	35	25	3	3
	37 кВт	25	25	2	2
400B	45 кВт	50	35	2	2
	55 кВт	50	50	1	1
	75 кВт	70	70	2/0	2/0
	90 кВт	120	120	4/0	4/0
	110 кВт	150	150	300	300
	132 кВт	185	185	350	350
	160 кВт	240	240	500	500
	220 кВт	400	400	800	800
	280 кВт	2 X 240	2 X 240	2 X 500	2 X 500
	315 кВт	2 X 240	2 X 240	2 X 500	2 X 500
	375 кВт	2 X 300	2 X 300	2 X 600	2 X 600
	500 кВт	2 x 400	2 x 400	2 x 800	2 x 800


Винты клемм должны затягиваться с умеренным усилием. Недостаточное усилие при затягивании клемм может привести к короткому замыканию и повреждению преобразователя. Чрезмерное усилие может повредить клеммы.

2 Сечение заземляющего провода


- Во избежание повреждения электрическим током, частотный преобразователь должен быть надежно заземлен (комплексное сопротивление заземления 10 Ом).
- Заземляющий провод должен быть присоединен только к клемме заземления.
 Запрещается крепить заземляющий провод к корпусу преобразователя и к крепежным отверстиям.
- Рекомендуется использовать провод заземления максимального сечения и минимальной длины.

Мощность	Сечение провода(мм²)		
преобразователя	Класс 200В	Класс 400В	
2.2 – 3.7 кВт	4	2.5	
5.5 – 7.5 кВт	6	4	
11 – 15 кВт	16	10	
18.5 – 22 кВт	25	16	
30 – 37 кВт	25	16	
45 – 75 кВт	-	25	
90 – 132 кВт	-	35	
160 – 220 кВт	-	95	
280 – 315 кВт	-	185	
375 – 500 кВт	-	240	


3.3.5 Подключение дросселя постоянного тока (опционально) (Переменное напряжение питания, мощность 30 кВт и выше)

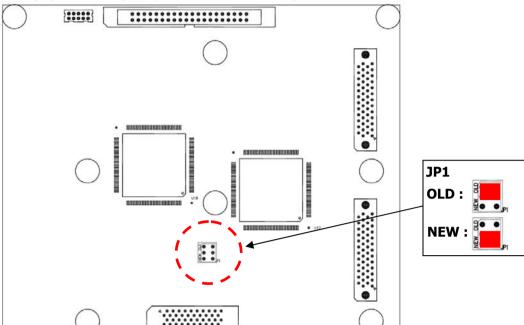
3.3.6 Подключение блока динамического торможения (опционально) (Переменное напряжение питания, мощность 30 кВт и выше)

3.3.7 Подключение дросселя постоянного тока и блока динамического торможения (опционально) (Переменное напряжение питания, мощность 30 кВт и выше).

3.4 Плата управления

3.4.1 Описание джамперов платы управления

• Настройка версии программного обеспечения

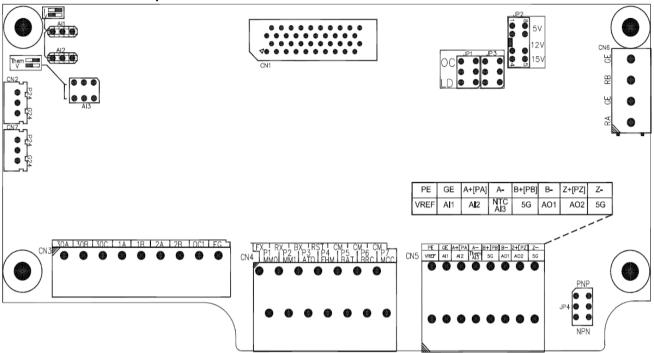

Установите джампер согласно следующим рекомендациям. Неправильная установка джампера может привести к ошибке преобразователя.

Версию программного обеспечения преобразователя можно посмотреть в группе параметров «Мониторинг» (DIS).

- 1) Версия ранее V2.00 (V1.XX \sim V1.93) Установите джампер в положение **OLD** на плате управления.
- 2) Версия позже V2.00 (V2.00 и выше)

Установите джампер JP1 в положение **NEW** на плате управления (положение по умолчанию).

Примечание: В частотных преобразователях, выпущенных после 2007 года, джампер должен быть установлен в положение **NEW**


iV5 Плата управления (Мощность 5.5 – 375 кВт)

Платы преобразователей мощностью 2.2/3.7 кВт настраиваются также, как описано выше.

(Отличие этих плат в том, что они меньшего размера и имеют только один разъем для подключения опциональных плат).

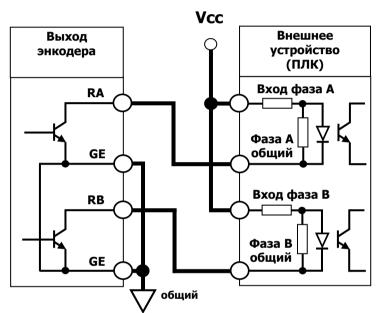
3.4.2 Расположение клемм на плате ввода/вывода

■ SV022 ~ 2200/5000iV5

■ SV2800 ~ 3750iV5

3.4.3 Описание клемм на плате ввода/вывода

Тип	Назва- ние	Функция	Описание	
	FX	Пуск/стоп в прямом направлении	● Начало вращения в прямом/обратном направлении при замыкании клеммы RX/FX на клемму CM (NPN режим клемм).	
	RX	Пуск/стоп в обратном направлении	• Остановка вращения при размыкании клеммы FX/RX и при одновременном замыкании клемм FX и RX.	
	ВХ	Аварийный стоп	 При замыкании на клемму СМ происходит останов на выбеге или останов торможением (в зависимости от установленных параметров). Сигнал ошибки не формируется. 	
	RST	Сброс ошибки	Сброс возникшей ошибки (после ее устранения).	
	P1(MM0)		• Для каждой клеммы может быть выбрана одна из 42	
ДЫ	P2(MM1)		функций: (Многошаговая скорость 1/2/3, Jog скорость, МОР	
ВХС	P3(AT0)		Вверх/Вниз/Запись/Сброс, Удержание аналогового сигнала,	
Bble	P4(FHM)		Главный преобразователь, 2-й двигатель, выбор времени разгона/торможения, 3-проводное управление, Внешняя авария	
Дифровые входы	P5(BAT)	Многофункциональ- ные входные	(Н.З.), Блокировка ошибки «Пониженное напряжение»,	
Ę	P6(BRC)	клеммы	Блокировка вращения назад, Блокировка ПИД регулирования, Вход таймера, Отмена плавного пуска, Переключение	
	P7(MCC)		параметров ASR, Выбор П/ПИ регулирования ASR, Источник уставки потока, Начальное намагничивание, Контроль скорости/момента, Ограничение момента вкл/выкл, Отклонение момента вкл/выкл., Работа от батарей вкл/выкл, Блокировка ошибки «Пониженное напряжение»	
	СМ	Общий	 В NPN режиме сигнал появляется при замыкании клеммы на клемму СМ. В PNP режиме сигнал появляется, когда клемма замыкается на вход 24 В. 	
	VREF	Опорное напряжение	 ● Опорное напряжение +10 В для потенциометра 10 кОм. 	
	AI1	Входной аналоговый сигнал (U, I)	 Можно выбрать тип входного сигнала: Входное напряжение (-10~+10В, +10~-10В, 0~10В, 10~0В) Входной ток (0-20мА, 20-0мА), Термодатчик NTC/РТС: Входное напряжение: ※ Значение по умолчанию. 	
е входы	AI2		→ AI1, AI2: джампер установлен в левое положение, АI3: переключатель установлен в левое положение ("V") Входной ток:	
Аналоговые входы	AI3/Them	Входной аналоговый сигнал (U, NTC/PTC)	 → AI1, AI2: джампер установлен в правое положение ◆ Сигнал от термодатчика (типа датчика выбирается программно) (AI3: переключатель установлен в правое положение ("Them"). ◆ Можно выбрать 15 различных функций аналогового входа: (Задание скорости, уставка ПИД, сигнал обратной связи ПИД, натяжение, момент, магнитный поток, отклонение момента, ограничение момента, термодатчик двигателя и т.д. 	
	5G	Общий	• Общая клемма для аналогового входа	
	PE	Питание для	Питание +5B (Line Drive)	
Входы энкодера	GE	энкодера (Line drive) Прим.1.)	0 B	
	A+	Энкодер фаза А	 Фазы А, В энкодера типа Line Drive. Установите переключатель JP2 в положение "Р5" и 	
H 3	A-		● Установите переключатель JP2 в положение "P5" и переключатель JP4 в положение "LD" при подключении	
уход	B+	Энкодер фаза В	энкодера с выходом типа Line Drive.	
	B-	эпкодер фаза в	※ Значение по умолчанию	


Тип	Назва- ние	Функция	Описание	
	PE	Питание для	Питание +15В (Открытый коллектор)	
	GE	энкодера (Открытый коллектор) ^{Прим.1)}	0 B	
	PA	Энкодер фаза А	 Фаза А, В энкодера типа открытый коллектор или комплементарная пара. 	
	РВ	Энкодер фаза В	• Установите переключатель JP2 в положение "P15" и переключатель JP4 в положение "ОС" при подключении энкодера с выходом типа открытый коллектор.	
	Z+(PZ)		Внимание! Использование Z фазы в данной версии не реализовано. Оно будет доступно в новых версиях преобразователя. Использование Z фазы энкодера:	
	Z-	Энкодер фаза Z	 Для энкодера с выходом типа Line drive используйте клеммы Z+ и Z- и установите переключатель JP5 в положение "LD". Для энкодера с выходом типа открытый коллектор используйте клемму PZ и установите переключатель JP5 в положение "ОС". 	
- œ	RA	Выход энкодера: фаза А		
Выходы	GE	Общий (выход)	Выход энкодера фазы А, В (тип выхода открытый коллектор)	
Выходы энкодера	RB	Выход энкодера: фаза В	выход втиодера фазытту в (тип выхода отпрытым компектор)	
	GE	Общий (выход)		
	AO1	Аналоговый выход 1	 Выход -10В → +10В, +10В → -10В, 0 → +10В, +10В → 0В Выбор одной из 41 функций: 	
Аналоговый выход	AO2	Аналоговый выход 2	(Аналоговое входное значение, уставка ASR, Скорость вращения двигателя, Отклонение скорости, Выход ASR, Отклонение момента, Ограничение момента регенерации, Уставка момента, Магнитный поток, Опорное значение магнитного потока, Выход ACR оси Q, Выход ACR оси D, Опорное напряжение оси D, Опорное напряжение оси Q, Выходной ток, Выходное напряжение, Выходная, Напряжение звена постоянного тока, уставка ПИ регулирования, Обратная связь ПИ регулирования, Выход ПИ регулирования, Температура двигателя, Температура преобразователя, Квадратичный ток,	
	5G	Общий	 Клемма СОММОN или аналоговый выход 	
	1A	Многофункциональ-	● Выбор одной из 21 функций:	
	1B	ное выходное реле 1 (Контакт A – H.O)	(Готовность преобразователя, Нулевая скорость, Заданная	
	2A	Многофункциональ-	скорость, Заданная скорость (абсолютное значение), Достижение	
d)	2B	ное выходное реле 2 (Контакт A – H.O.)	заданной скорости, Выход таймера, Ошибка «пониженное напряжение», Пуск, Регенерация, Предупреждение «перегрев	
Выходы реле	OC1	Выход типа открытый	двигателя», Предупреждение «перегрев преобразователя», Достижение заданного момента, Достижение предела момента,	
иходь	EG	коллектор	Предупреждение «Перегрузка», Останов, Вращение с постоянной скоростью, Выход тормоза, Тормоз WEB)	
B	30A	Аварийное реле контакт A (H.O.)	Переключение при возникновении ошибки.	
	30B	Аварийное реле контакт В (Н.З.)	 ■ Переключение при замыкании клеммы ВХ. 	
	30C	Аварийное реле. Общая клемма.	• Общая клемма для контактов А, В аварийного реле.	
z Ω	JP1	Тип выхода энкодера	LD (Line Drive) / ОС (Открытый коллектор или комплементарная пара)	
Переклю- чатели	ЈР2 ^{Прим.3)}	Напряжение питания энкодера	Напряжение +5B / +12B / +15B	
all a	ЈР4 ^{Прим.4)}	Тип входа PNP/NPN	Выбор типа цифровых входов (PNP/NPN)	

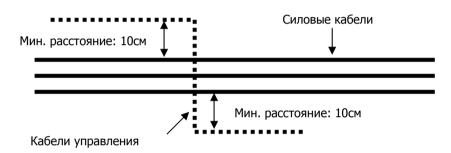
Примечание 1) Питание энкодера подается на следующие клеммы платы ввода/вывода:

Мощность 2,2 – 220 кВт: РЕ: "+", GE: "—" Мощность 280 – 375 кВт: PENT: "+", G24X: "—"

Примечание 2) Для платы входов/выходов частотных преобразователей мощностью 280 – 375 кВт питание энкодера бывает двух типов 24В и 5В/12В/15В. Напряжение энкодера переключается перемычками: (AI4(24V), AI5(5V), AI6(12V), AI7(15V))

Примечание 3) Для платы входов/выходов частотных преобразователей мощностью 280 — 375 кВт переключение типа входов NPN/PNP не доступно.

ПРЕДУПРЕЖДЕНИЕ

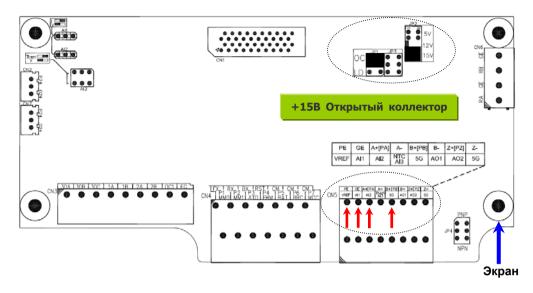

Тип входа внешнего устройства должен соответствовать выходу энкодера (открытый коллектор). На рисунке показано подключение преобразователя к быстрому счетчику ПЛК LSIS.

Дополнительные функции опциональной платы «Расширенная плата ввода/вывода» (EXTN _
 I/O)

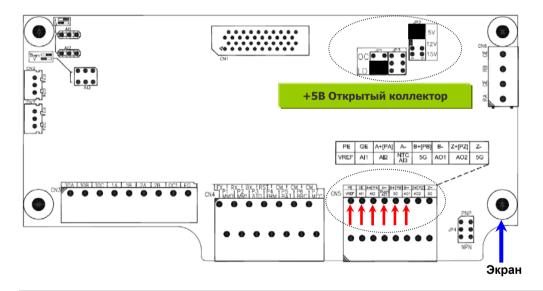
Тип	Название	Функция	Описание	
	AI1		● В расширенной плате ввода вывода(EXTN_I/O) доступны	
	AI2	Вход по напряжению	два дополнительных аналогового входа <u>AI4, AI5.</u>	
вход	AI3	Токовый вход	• Тип входного сигнала:	
	AI4		- Вход по напряжению : AI1, AI2,AI3, AI4, AI5	
Аналоговый	AI5/Them	Вход по напряжению Вход NTC/PTC	- Токовый вход : AI1, AI2, AI3, AI4 - Термодатчик NTC/PTC типа : AI5 Примечание) Настройка джамперов и назначение входов представлены в описании платы входов/выходов.	
	5G	Общий	Общая клемма для аналоговых входов	

3.4.4 Подключение кабелей управления

- 1. Для подключения рекомендуется использовать экранированные кабели с изоляцией из ПВХ.
- 2. При больших расстояниях желательно использовать кабель типа витая пара.
- 3. Рекомендуется использовать провода сечением $0.2 \sim 0.8 \text{ мм}^2$ ($18 \sim 26 \text{ AWG}$). При затягивании винтов клемм усилие не должно превышать 5.2 lb.
- 4. Нагрузка релейных контактов 1, 2 и 3 не должна превышать \sim AC 250B/1A, =DC 30B/1A.
- 5. Нагрузка аварийного реле не должна превышать ~AC 250B/1A, -DC 30B/1A.
- 6. Нагрузка выходов 1, 2, 3 (тип открытый коллектор) и выхода энкодера не должна превышать 24В/100мА.
- 7. Кабели управления должны быть проложены отдельно от силовых кабелей. Пересечение силовых кабелей должно проходить под прямым углом (90().


3.4.5 Рекомендации по подключению энкодера

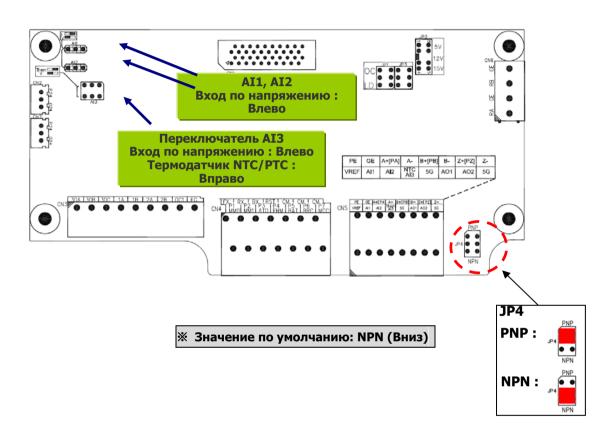
- 1) Присоединение энкодера
- ① Убедитесь, что энкодер установлен так, что скорость его вращения совпадает со скоростью вращения двигателя. (Например, на другой стороне вала соединенного с двигателем).
- ② При проскальзывании вала энкодера относительно вала двигателя могут возникать механические вибрации, или двигатель может не запустится.
- ③ Некачественное соединение энкодера с валом двигателя может привести к скачкам момента и механической вибрации двигателя.

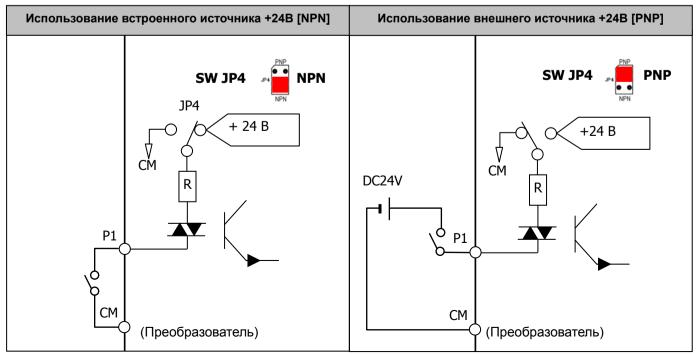

2) Подключение энкодера

- ① Убедитесь, что используется экранированный кабель типа витая пара. Экран должен быть заземлен.
- (2) Кабель к энкодеру должен быть проложен отдельно от силовых кабелей, чтобы уменьшить вероятность возникновения помех. Воздействие помех может привести к ошибкам в работе энкодера.

3.4.6 Подключение энкодера и настройка переключателей (+15В Комплементарная пара / Открытый коллектор)

3.4.7 Подключение энкодера и настройка переключателей (+5В Line Drive) ※ Значение по умолчанию



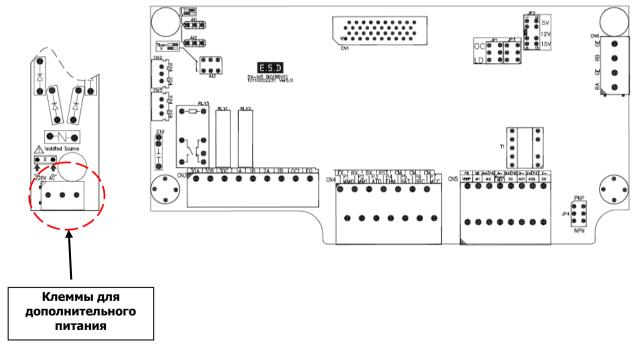

ПРЕДУПРЕЖДЕНИЕ

Никогда не трогайте переключатели «Тип энкодера» и «Питание энкодера» во время работы преобразователя. Это может вызвать ошибку преобразователя или выход его из строя. Производите настройку оборудования только при выключенном преобразователе.

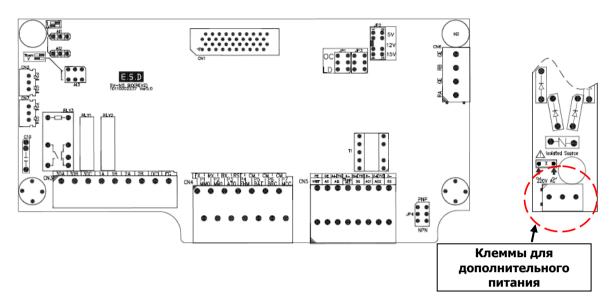
3.4.8 Настройка джамперов аналоговых входов (Вход по напряжению/токовый вход/термодатчик типа NTC/PTC) и выбор типа цифровых входов (PNP/NPN)

※ Значение по умолчанию : Вход по напряжению (влево)

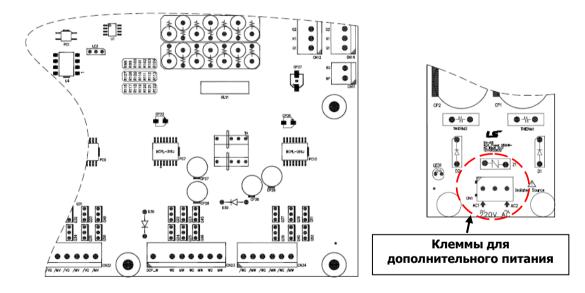
 Логические уровни PNP сигнала: (Внешний источник +24В): Включение (+19~25.2 В)/ выключение (менее +7В)


ПРЕДУПРЕЖДЕНИЕ

- Никогда не трогайте джамперы во время работы преобразователя. Это может вызвать ошибку преобразователя или выход его из строя.
- Режим «термодатчик NTC» для аналогового входа (AI3) рекомендуется использовать только с двигателями LG OTIS.
 При использовании двигателя с температурным датчиком NTC(PTC) с характеристиками, отличными от приведенных в данном руководстве, работа функции контроля температуры может быть неверной, что может привести к перегреву и повреждению двигателя.
- Не изменяйте положение переключателя JP4 (вход PNP/NPN) во время работы преобразователя. Установите его в необходимое положение до начала работы преобразователя.


3.5 Клеммы дополнительного напряжения питания

3.5.1 Расположение клемм


■ SV055 ~ 220iV5 (Преобразователи с переменным и постоянным напряжением питания)

■ SV900 ~ 2200iV5 (Преобразователи с переменным и постоянным напряжением питания)

■ SV2800 ~ 5000iV5 (Преобразователи с переменным и постоянным напряжением питания)

3.5.2 Назначение клемм дополнительного питания

Обозначение	Название	Описание	Напряжение
AC1. AC2	Дополнительный	Однофазный источник	220B (-10 ~ +10%), 50/60Гц
7.01,7.02	вход питания	переменного напряжения	2205 (10 1070), 007001 ц

3. Установка и подключение

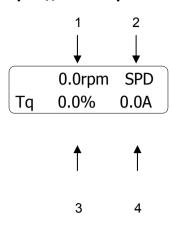
3	3.5.3 Рекомендации по подключению дополнительного источника питания
	□ Рекомендуется подключать дополнительный источник питания через разделительный трансформатор
отд	дельно от основного питания.
	□ Используйте кабели с изоляцией из ПВХ для кабеля вторичного питания.
	З Используйте кабель сечением более 0.5мм² (20 AWG).

Для заметок

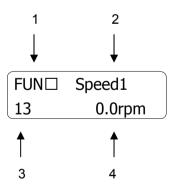
Глава 4 – Пробный пуск

4.1 Пульт управления

Пульт управления может отображать до 32 буквенно-цифровых символов, различные параметры могут напрямую считываться с дисплея. Ниже показан пульт управления с изображением кнопок и индикаторов дисплея.


<Внешний вид пульта управления>

Тип	Название	Функция	Описание	
	MODE Режим		Перемещение между группами.	
	TIODE		Переход к первому параметру в группе.	
	РROG Программиро- вание		Изменение значения параметра.	
	ENT	Ввод	Запись измененного значения параметра.	
			Перемещение между группами (в обратном направлении).	
Z	▲ (Up)	Вверх	Переход к следующему параметру или увеличение значения параметра.	
Кнопки	▼(Down)	Вниз 😗	Переход к следующему параметру или уменьшение значения параметра.	
	SHIFT/ESC	Сдвиг/Отмена	В режиме ввода работает как кнопка сдвига. В остальных режимах как кнопка ОТМЕНА.	
	REV	Вращение назад	Запуск вращения в обратном направлении.	
	STOP/RESET CTOП/Cброс		Работает как клавиша СТОП во время вращения. Работает как клавиша СБРОС для сброса ошибки при ее возникновении.	
	FWD	Вращение вперед	Запуск вращения в прямом направлении.	
ды	(REV) Вращение назад		Горит при вращении в обратном направлении. Мигает во время разгона/торможения. Горит во время вращения с постоянной скоростью.	
тодис			Горит, если нет вращения двигателя. Мигает, при возникновении ошибки.	
		Вращение вперед	Горит при вращении в прямом направлении. Мигает во время разгона/торможения. Горит во время вращения с постоянной скоростью.	


4.2 Экран пульта

4.2.1 Экран дисплея при включении

Νō	Функция	Описание	
1	Скорость двигателя	Скорость вращения двигателя (об/мин)	
2		SPD: Режим контроля скорости	
		TRQ: Режим контроля момента	
	Режим управления	WEB: WEB режим	
		ВХ: Аварийный останов	
		ВАТ : Управление от батарей	
3	Момент вращения	Отображается в % от номинального тока двигателя	
4	Выходной ток	Выходной ток (среднеквадратичное значение)	

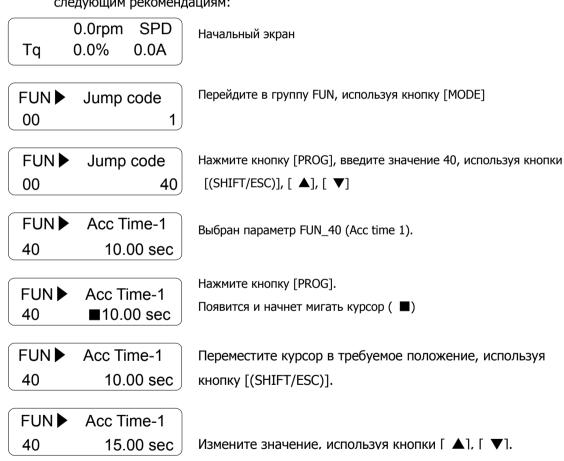
4.2.2 Отображение групп параметров

Nō	Функция	Описание
1	Группа параметров	Отображает название текущей группы параметров (DIS, DIO, PAR, FUN, CON, AIO, USR и 2^{nd}).
2	Название параметра	Отображает название параметра.
3	Номер параметра	Отображает номер параметра.
4	Значение параметра	Отображает значение параметра.

4.3 Установка значений параметров

- Для настройки частотного преобразователя необходимо задать значения некоторых параметров в зависимости от режима работы. Более полная информация о значении параметров представлена в главе 6.
- Для изменения значения параметра перейдите к необходимой группе параметров, нажимая кнопку [MODE]. Нажимая кнопки [▲] и [▼], перейдите к требуемому параметру. Нажмите кнопку [PROG]. Курсор начнет моргать. Измените значение параметра, используя кнопки [SHIFT/ESC], [▲] и [▼]. Для записи измененного значения нажмите кнопку [ENT].

Прим.: В некоторых случаях значение не может быть изменено:


FUN

40

Acc Time-1

15.00 sec

Пример. Для изменения значения параметра «время разгона 1» 10(сек) на 15(сек), следуйте следующим рекомендациям:

Курсор исчезнет.

Сохраните значение параметра, нажав кнопку [ENT].

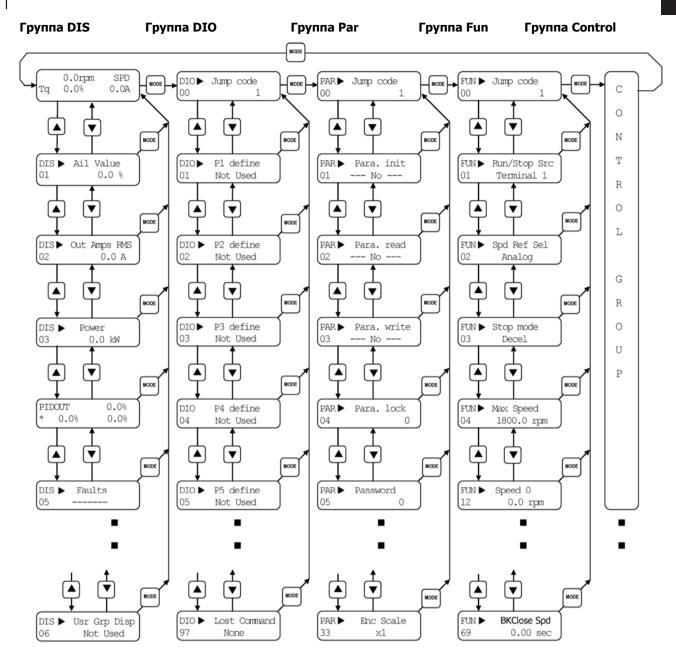
^{*} Некоторые параметры не могут быть изменены во время вращения.

^{*} Параметры не могут быть изменены, если включена функция блокировки параметров (РАК_04).

4.4 Группы параметров

Параметры преобразователя разделены на 12 функциональных групп в зависимости от их назначения.

Название	Отображение на дисплее	Описание		
Группа мониторинга	D12	Отображение параметров: скорость двигателя, способ управления, создаваемый момент, выходной ток, параметрь пользователя, ПИД выход/уставка/обратная связь, ошибка преобразователя и т.д.		
Группа цифровых входов/выходов	DIO	Параметры цифровых входов/выходов.		
Группа параметры	PAR	Инициализация параметров, чтение/запись параметров, блокировка параметров, автотюнинг и т.д.		
Функциональная группа	FUN	Задание параметров: источник задания частоты/команды на вращение, тип торможения, время и характеристика разгона/торможения, несущая частота, электронная защита двигателя и т.д.		
Группа управления	CON	Режим работы, ПИ регулятор автоматического регулятора скорости (ASR), ПИД регулирование, параметры режима Draw, параметры режима Droop, параметры управления моментом, Параметры V/F управления и т.д.		
Группа внешних устройств	EXT ¹⁾	Группа доступна при использовании опциональной интерфейсной платы. Параметры интерфейса и т.д.		
Группа аналоговых входов/выходов	AIO	Параметры аналоговых входов/выходов.		
Группа пользователя	USR	Макро-функции пользователя, запись/вызов макро-функций.		
Группа 2-го двигателя	2nd	Параметры второго двигателя, характеристики разгона/торможения и т.д.		
Группа «Лифт»	E/L ¹⁾	Группа доступна при использовании опциональной платы EL_I/O («Лифт»). Настройка параметров режима «Лифт».		
Группа «Синхронизация»	SYNC ¹⁾	Группа доступна при использовании платы SYNC_I/O («Синхронизация»). Настройка параметров режима «Синхронизация».		
Группа WEB управления	WEB	Контроль «диаметра» и «натяжения». Параметры для работы WEB режима.		


Базовые группы выделены в рамку: Группа

1) Группа отображается при установке опциональной платы. Для более подробной информации обратитесь к руководству пользователя для опциональной платы.

Более подробное описание параметров представлено в Главе 6. Подробная информация по группе WEB представлена в Главе 7.

Перемещение между группами в меню пульта.

Для переключения между группами используется кнопка [MODE]. Для перемещения внутри группы используются кнопки [\blacktriangle] и [\blacktriangledown] .

На рисунке не отображены следующие группы: группа пользователя (User), группа 2-го двигателя (2-th), группа аналоговых входов/выходов (AIO) и группа WEB.

4.5 Автотюнинг

Параметры двигателя, такие как: сопротивление статора (Rs), индуктивность утечки статора (sL), ток потока (IF), постоянная времени ротора (τ r) индуктивность статора (Ls), необходимы для обеспечения точного управления в векторном режиме. Эти параметры автоматически измеряются во время автотюнинга.

- □ В частотных преобразователях серии SV-iV5 используются два типа автотюнинга:
- 1) Автотюнинг с вращением
- 2) Автотюнинг без вращения

4.5.1 Параметры двигателя и энкодера, устанавливаемые для проведения автотюнинга.

Перед проведением автотюнинга необходимо установить следующие параметры двигателя: мощность двигателя, номинальную скорость, номинальное напряжение, количество полюсов, КПД, номинальное скольжение, номинальный ток. Эти параметры указаны на шильде двигателя. Также необходимо задать разрядность энкодера (импульс/оборот).

Значение на дисплее	Описание	
PAR Motor select 07 kW	 Выберите мощность двигателя. Если значение мощности отличается от стандартного, то его можно ввести в параметре PAR_08 (предварительно выбрав "User Define" в параметре PAR_07). 	
PAR ► UserMotorSel 08 kW	● Введите мощность двигателя в параметре PAR_08 (если PAR_07 выбрано значение "User Define")	
PAR ▶ Enc Pulse 10 [][][]	 Задайте разрядность энкодера (количество импульсов на оборот энкодера), прикрепленного к валу двигателя.ыберите мощность двигателя. 	
PAR Base Speed 17 rpm	• Задайте базовую скорость двигателя. Примечание: Базовая скорость вычисляется по формуле: Базовая скорость = 120 X Номинальная частота / Количество полюсов.	
PAR Nated Volt 18 V	 Задайте номинальное напряжение двигателя (значение напряжения на шильде двигателя). 	
PAR Pole number 19 []	• Задайте количество полюсов двигателя.	
PAR ► Efficiency 20 %	 Задайте КПД двигателя. Если на шильде нет значения КПД, оставьте этот параметр без изменения. 	
PAR ▶ Rated-Slip 21 rpm	 Задайте Номинальную скорость скольжения двигателя. (Номинальное скольжение = Синхронная скорость – Номинальная скорость). 	
PAR ▶ Rated-Curr 22 A	• Задайте номинальный ток двигателя.	

4.5.2 Автотюнинг с вращением

Процесс автотюнинга с вращением

Значение на дисплее	Описание	Время
PAR ► AutoTuneType 23 Rotational	Установите значение параметра PAR_23 как " Rotational ".	-
PAR Auto tuning 24 ALL1	Автотюнинг начнется после установки параметра как " ALL1 ".	-
PAR Auto tuning 24 Enc Testing	Проверка правильности подключения и работоспособности энкодера. Производится при вращении двигателя со скоростью 1500 об/мин в прямом направлении.	30 – 35 сек.
PAR ▶ Auto tuning 24 Rs Tuning	Сопротивление статора (Rs) изменяется без вращения двигателя.	10 – 20 сек.
PAR ▶ Auto tuning 24 sL Tuning	Индуктивность рассеяния двигателя (sL) измеряется без вращения двигателя.	5 – 20 сек.
PAR ► Auto tuning 24 IF Tuning	Ток возбуждения (IF) измеряется при вращении со скоростью 1500 об/мин.	30 – 60 сек.
PAR ▶ Auto tuning 24 Ls Tuning	Индуктивность статора (Ls) изменяется при вращении двигателя со скоростью 1500 об/мин.	50 – 60 сек.
PAR ▶ Auto tuning 24 Tr Tuning	Разгон/торможение выполняется несколько раз для определения постоянной времени двигателя (Tr). Желательно использовать тормозной резистор для предотвращения появления ошибки "Over Voltage" в процессе автотюнинга.	20 – 60 сек.
PAR ► Auto tuning 24 None PAR ► Auto tuning 24 [][] Error	После успешного завершения автотюнинга на дисплее отображается "None". Если в процессе автотюнинга возникла ошибка, то на дисплее отображается "[][] Error". В этом случае проверьте правильность параметров двигателя и подключение энкодера. После этого повторите процедуру Автотюнинга. Если ошибка будет появляться снова, обратитесь к дистрибьютору LS.	Общее время не более 3 – 5 минут

ПРЕДУПРЕЖДЕНИЕ

Перед началом проведения автотюнинга убедитесь, что нагрузка отключена от вала двигателя. Если этого не сделать, есть риск повреждения двигателя и получения травмы. Рекомендуется использовать тормозной резистор, т.к. в процессе автотюнинга несколько раз производится процедура резкого разгона/торможения для определения постоянной времени (Tr).

- Во время выполнения автотюнинга на дисплее мигают индикаторы FWD/REV.
- Если установить параметр PAR_24 в значение "ALL2", то в процессе автотюнинга будут выполнены все процедуры кроме процедуры тестирования энкодера, которая будет пропущена.
- Отдельные параметры двигателя могут быть независимо определены (Encoder Test, Rs Tuning, Lsigma, Flux Curr, Ls Tuning, Tr Tuning).
- Если фазировка энкодера выполнена неправильно (перепутаны фазы A и B), то во время автотюнинга на дисплее отобразится сообщение " Enc AB Chgd". Для устранения неполадки измените значение параметра PAR_11 (Enc Dir Set) с " A Phase Lead" на значение " B Phase Lead" (или наоборот) или поменяйте местами провода A и B фаз энкодера.

4.5.3 Автотюнинг без вращения

ПРЕДУПРЕЖДЕНИЕ

Перед началом проведения автотюнинга убедитесь, что вал двигателя надежно заблокирован (например, с помощью электромагнитного тормоза).

Процесс автотюнинга без вращения.

оцесс автотюнинга оез вращения.		
Значение на дисплее	Описание	Время
PAR AutoTuneType 23 Standstill	Выберите тип автотюнинга "Standstill".	-
PAR Auto tuning ALL1	Автотюнинг начнется после установки значения ALL1 .	-
PAR Auto tuning 24 Rs Tuning	Сопротивление статора (R_s) измеряется без вращения двигателя.	20-30 сек.
PAR Auto tuning 24 sL Tuning	Индуктивность рассеяния (sL) измеряется без вращения двигателя.	90-150 сек.
PAR Auto tuning 24 If/Tr/Ls Tuning	Flux current (IF), Постоянная времени двигателя (T _r) и Индуктивность статора (Ls) измеряются одновременно без вращения двигателя.	40-70 сек.
PAR Auto tuning None	После успешного завершения автотюнинга на дисплее отображается "None". Если в процессе автотюнинга возникла ошибка, то на дисплее отображается "[][] Error". В этом случае проверьте правильность	Общее время не более 3-5
PAR Auto tuning 24 [][] Error	параметров двигателя и подключение энкодера. После этого повторите процедуру Автотюнинга. Если ошибка будет появляться снова, обратитесь с дистрибьютору LS.	минут.

- Во время выполнения автотюнинга на дисплее мигают индикаторы FWD/REV.
- Отдельные параметры двигателя могут быть независимо установлены и протестированы (Rs Tuning, Lsigma, Flux Curr, Ls Tuning, Tr Tuning).

4.6 Проверка инкрементального энкодера

4.6.1 Определение прямого вращения

Вращение в прямом направлении считается вращением против частовой стрелки (если смотреть со стороны вала двигателя).

Двигатель

4.6.2 Проверка вращения в прямом направлении

Убедитесь, что на дисплее отображается положительное значение (+) при подаче сигнала на вращение в прямом направлении.

4.6.3 Проверка вращения в обратном направлении

Убедитесь, что на дисплее отображается отрицательное значение (-) при подаче сигнала на вращение в обратном направлении.

- Если значение, отображаемое на дисплее, равно 0.0 грm, противоположное или не соответствует заданному, проверьте правильность подключения энкодера.
- В случае, если вал двигателя нельзя провернуть вручную, перейдите к следующей главе.

4.7 Управление с клавиатуры

4.7.1 Настройка параметров

① Команды RUN/STOP задаются с клавиатуры.

② Скорость вращения задается с клавиатуры.

3 Задание скорости вращения.

4.7.2 Вращение в прямом/обратном направлении (FWD / REV)

- ① Работа на низкой скорости.
 - Убедитесь, что на дисплее отображается «+100 rpm» после нажатия кнопки [FWD].

• Убедитесь, что на дисплее отображается «–100 rpm» после нажатия кнопки [REV].

• В таблице приводятся возможные варианты при нарушении фазировки энкодера и двигателя.

Команда	Направ- ление вращения	Отображаемая скорость	Отображаемый момент	Состояние подключени	
FX	Прямое	+100.0(rpm)	Ниже +10%	Нормальное	
RX	Обратное	-100.0(rpm)	Ниже -10%	Пормальное	
FX	Прямое	-10 ~ -40(rpm)	150%(Torque Limit)	Неправильная	
RX	Обратное	10 ~ 40(rpm)	-150%(Torque Limit)	фазировка энкодера	oe
FX	Обратное	-10 ~ -40(rpm)	150%(Torque Limit)	Неправильная фазировка	нормальное
RX	Прямое	10 ~ 40(rpm)	-150%(Torque Limit)	фазировка двигателя	эрме
FX	Обратное	+100.0(rpm)	Ниже +10%	Неправильная	Не н
RX	RX Прямое -100.0(rpm)		Ниже -10%	фазировка двигателя и энкодера	_

• При неправильной фазировке энкодера поменяйте местами фазы А и В. Направление

вращения энкодера можно изменить программно в параметре PAR_11 (Направление вращения энкодера) с «A phase lead» на «В phase lead» (и наоборот). При неправильной фазировке двигателя поменяйте местами провода к клеммам V и W.

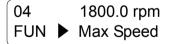
- Значение отображаемого момента в таблице приведено при тестировании без нагрузки.
- 2 Работа на высокой скорости.

Измените значение параметра FUN_12 на 1000.0 (об/мин), и запустите вращение в прямом [FWS], а затем в обратном [REV] направлении.

• При нажатии кнопки [FWD] убедитесь, что на дисплее отображается «+1000 rpm»:

• При нажатии кнопки [REV] убедитесь, что на дисплее отображается «-1000 rpm»:

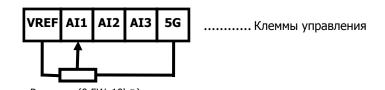
4.8 Управление с помощью многофункциональных клемм


4.8.1 Настройка параметров

① Команды RUN/STOP задаются через клеммы.

2 Скорость вращения задается через аналоговый сигнал.

3 Задается максимальная скорость двигателя.


4 Настройка режима аналогового порта Ai1.

⑤ Выбор типа сигнала для аналогового порта Ai1.(-10->10B, 10->-10B, 0->10B, 10->0B, 0->20мA, 20->0мA)

4.8.2 Пример подключения потенциометра для задания скорости вращения

Подключите выводы потенциометра к клеммам VREF, AI1 и 5G как показано на рисунке:

4.8.3 Настройка коэффициента усиления и смещения аналогового входа Аі1

- ① Out Y2 (Коэффициент усиления). Настройка аналогового сигнала.
 - Подайте напряжение 10В или ток 20мА между клеммами AI1 \sim 5G (При использовании потенциометра поверните его в положение «Мин.»).
 - Настройка других аналоговых входов аналогична приведенной ниже.

Клавиши	Дисплей	Описание		
	AIO Ai1 Out Y2 06 100.00 %	Перейдите к параметру AI1 Out Y2		
PROG	AIO Ai1 98.00 % 06 Gain 100.00 %	Нажмите кнопку [PROG]. В верхней части будет отображено текущее значение аналогового входа (в процентах от максимального значения). В нижней части - величина усиления.		
	AIO Ai1 100.00 % 06 Gain 102.00 %	Для изменения значения коэффициента усиления используются кнопки [▲] и [▼]. Увеличьте значение коэффициента так, чтобы верхнее значение стало равно 100.00%.		
ENT	AIO Ai1 Out Y2 06 102.00 %	После настройки коэффициента усиления, нажмите кнопку [ENT] для сохранения значения.		

- ② Out Y1(Смещение) Настройка аналогового сигнала.
 - Подайте напряжение 0 В или ток 0 мА между клеммами AI1 ~ 5 G (При использовании потенциометра поверните его в положение «Макс.»).
 - Настройку других аналоговых входов см. ниже.

Клавиши	Дисплей	Описание
	AIO ► Ai1 Out Y1 04 0.00 %	Перейдите к параметру AI1 Out Y1.
PROG	AIO Ai1 0.18 % 04 Bias 0.00 %	Нажмите кнопку [PROG]. В верхней части отображено текущее значение аналогового входа (в процентах). В нижней части – величина смещения.
•	AIO Ai1 0.00 % 04 Bias 0.18 %	Нажимая кнопки [▲] и [▼] увеличьте смещение так, чтобы в верхней части установилось значение 0.00%.
ENT	AIO Ai1 Out Y1 04 0.18 %	После настройки смещения нажмите кнопку [ENT] для сохранения значения.

4.8.4 Вращение в прямом/обратном направлении

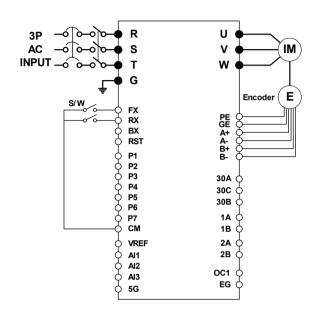
1) Вращение вперед (команда FX)

- ① Подайте 0В между клеммами AI1 и 5G (При использовании потенциометра поверните его в положение «Мин.»).
- ② Замкните клеммы FX и СМ. Убедитесь, что на дисплее отображается значение "+0.0rpm".
- ③ Постепенно увеличивайте напряжение на входе AI1. Частота вращения двигателя должна постепенно увеличиваться (При использовании потенциометра медленно поворачивайте его от минимального к максимальному значению).
- 4 Для остановки двигателя разомкните клеммы FX и CM.

2) Вращение назад (команда RX)

- ① Подайте 0В между клеммами AI1 и 5G (При использовании потенциометра поверните его в положение «Мин.»).
- ② Замкните клеммы RX и CM. Убедитесь, что на дисплее отображается значение "-0.0rpm". Постепенно увеличивайте напряжение на входе AI1. Частота двигателя должна постепенно увеличиваться (При использовании потенциометра медленно поворачивайте его от минимального к максимальному значению).
- 3 Для остановки двигателя разомкните клеммы RX и CM.
- В таблице приводятся возможные варианты при нарушении фазировки энкодера и двигателя.

Команда	Направ- ление вращения	Отображаемая скорость	Отображаемый момент	Состояние подключения	
FX	Прямое	+100.0(rpm)	Ниже +10%	Нормальное	
RX	Обратное	-100.0(rpm)	Ниже -10%	Пормальное	•
FX	Прямое	-10 – -40(rpm)	150% (Torque Limit)	Неправильная	
RX	Обратное	10 - 40(rpm)	-150% (Torque Limit)	фазировка энкодера	oe
FX	Обратное	-1040(rpm)	150% (Torque Limit)	Неправильная фазировка	нормальное
RX	Прямое	10 – 40(rpm)	-150% (Torque Limit)	фазировка двигателя	эрме
FX	Обратное	+100.0(rpm)	Ниже +10%	Неправильная фазировка	F H
RX	Прямое	-100.0(rpm)	Ниже -10%	двигателя и энкодера	

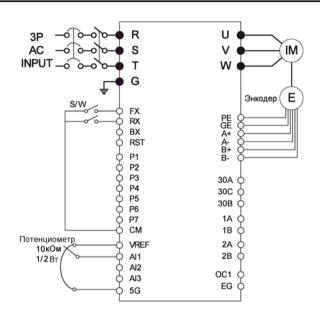

- При неправильной фазировке энкодера поменяйте местами фазы А и В.
- Если нарушена фазировка двигателя, поменяйте местами провода к клеммам V и W.
- Также направление вращения энкодера можно изменить программно в параметре PAR_11 (Направление вращения энкодера) с «A phase lead» на «В phase lead» (и наоборот).
- Значение отображаемого момента в таблице приведено при тестировании без нагрузки.

[Параметры работы]

- -. Способ управления: Контроль скорости
- -. Заданная частота: 1500[об/мин] установлена через клавиатуру
- -. Время разгона/торможения: Разгон 10[сек], Торможение 20[сек]
- -. Источник команд Пуск/Стоп: Клеммы FX/RX, Тип входа: NPN

[Подключение]

[Настраиваемые параметры]


Шаг	Настройка параметров	Код	Описание
1	Источник команд Пуск/Стоп	FUN_01	Установите в 0 ("Terminal 1")
2	Способ задания скорости	FUN_02	Установите в 1 ("Keypad1")
3	Задание значения скорости	FUN_12	Задание скорости 1500 [об/мин] через клавиатуру.
4	Время разгона/торможения	FUN_40 FUN_41	Задайте время разгона в 10 [сек] в параметре FUN_40. Задайте время торможения в 10 [сек] в параметре FUN_41.
5	Клемма FX	-	Преобразователь разгоняет двигатель в прямом направлении до скорости 1500 [об/мин] за время 10 [сек.], при появлении сигнала на клемме FX. При пропадании этого сигнала преобразователь замедляет вращение двигателя до полной остановки в течение 20 [сек.]
6	Клеммаl RX	-	Преобразователь разгоняет двигатель в обратном направлении до скорости 1500[об/мин] за время 10 [сек.], когда появляется сигнал на клемме RX. При пропадании этого сигнала преобразователь замедляет вращение двигателя до полной остановки в течение 20 [сек.]

Пример (2) Скорость задается через аналоговый вход AI1. Команды Пуск/Стоп задаются через клеммы FX/RX

[Параметры работы]

- -. Способ управления: Контроль скорости
- -. Частота вращения: 1500[об/мин] подается на аналоговый вход АІ1(Потенциометр)
- -. Время разгона/торможения: Время разгона 10[сек.], Время торможения 20[сек.]
- -. Источник команд Пуск/Стоп: Клеммы FX/RX, Тип входа: NPN

[Подключение]

[Настраиваемые параметры]

Шаг	Выбор параметра	Код	Описание
1	Источник команд Пуск/Стоп	FUN_01	Установите в 0 ("Terminal 1").
2	Способ задания скорости	FUN_02	Установите в 0 ("Analog").
3	Режим аналогового входа	AIO_01	Установите в 1 ("Speed Ref").
4	Тип сигнала аналогового входа	AIO_02	Установите в 2 ("0 \rightarrow 10V").
5	Задание частоты вращения	DIS_01	Задайте скорость вращения 1500[об/мин] через аналоговый вход AI1(Потенциометр) в параметре DIS_01 (PreRamp Ref.)
6	Время разгона/торможения	FUN_40 FUN_41	Задайте время разгона в 10 [сек.] в параметре FUN_40. Задайте время торможения в 10 [сек.] в параметре FUN_41.
7	Клемма FX	-	Преобразователь разгоняет двигатель в прямом направлении до скорости 1500[об/мин] за время 10 [сек.], когда появляется сигнал на клемме FX. При пропадании этого сигнала преобразователь замедляет вращение двигателя до полной остановки в течении 20 [сек.]
8	Клемма RX	_	Преобразователь разгоняет двигатель в обратном направлении до скорости 1500[об/мин] за время 10 [сек.], когда появляется сигнал на клемме RX. При пропадании этого сигнала преобразователь замедляет вращение двигателя до полной остановки в течении 20 [сек.]

Глава 5 — Список параметров

- * Знак " " означает, что параметр не доступен через интерфейс.
- * Изменение во время работы (Да: возможно, Нет: невозможно)

5.1. Группа мониторинга (DIS_[][])

	Адрес	Имя параметра	Индикация	Индикация Значение пара			Изм. во время	
Nō	команды		на дисплее	Диапазон	Ед.	По	работы ¹⁾	Стр.
		Скорость двигателя/	0.0rpm		изм.	умолчанию_		
DIS_00		Способ управления/	SPD		_			
013_00	_	Выходной момент/	Tq 0.0%	-	_	-	-	
		Выходной ток	0.0A	-1	%			
			Ai1 Value Ai2 Value		%			
			Ai2 Va		%			
			Ai4 Va		%			
			Ai5 Va		%	1		
			PreRam		об/мин			
			PostRam	np Ref	об/мин			
			ASR In		об/мин			
			Output		об/мин			
			Motor S		об/мин			
			Speed		об/мин			
			ASR (% %			
			PosTrq		%			
			NegTrq		%	1		
			RegTrq		%			
			Torque		%			
			IqeR		Α			
			Iqe		Α			
			Flux		%	4		
			Ide Ref Ide ACR_Q Out ACR_D Out VdeRef VgeRef		A			Í
					A B			
DIS_01	_	Параметр			В	PreRamp Ref	Да	6-1
515_01		пользователя 1			В	Trending Nei	ди	
					В	7		
			Out Amp	s RMS	Α			
			Out Volt		В			
			Pow		кВт			
			DC Bus		В			
			Proc P		%			
			Proc Pi Proc Pi		% %			
			MotTem		% °C	-		
			MotTem		°C			
			Inv Te		°C	1		
			Inv i	•	%			
			MP Ou		%]		
			Ctrl M		-			
			S/W Ve		-			
			Run T		-			
			Termin Termina		-			
			Run St		-			
			Diamet	ter ²⁾	%			
			Line SPD		%			
	<u> </u>		Reel SI	PD ²⁾	%	1		
DIS_02	-	Параметр пользователя 2	Refer to I		-	DC Bus Volt	Да	
DIS_03	-	Параметр пользователя 3	Refer to I	DIS_01	-	Terminal In	Да	
DIS_04	-	Выход ПИД/ Уставка ПИД / Обратная связь ПИД	PIDOut 0.0% *xx.x% 0.0%	-	-	-	-	

DIS_05	-	Текущая ошибка	Faults	-	-	-		
DIS_06	7106	Отображение группы пользователя	Usr Grp Disp	0 (Not Used) 1 (Dis+User Grp) 2 (Display ALL)	-	0 (Не исп.)	Да	6-4

¹⁾Параметр отображается при использовании опциональной платы Extended I/O (EXTN_I/O).

5.2 Группа цифровых входов/выходов (DIO_[][])

			Значение	Значение параметра			Изм. во	
Nō	Адрес команды	Имя параметра	на дисплее	Диапазон	Ед. изм.	По умол- чанию	время работы	Стр.
DIO_00	-	Переход к требуемому параметру	Jump Code	1 – 97	-	-	Да	6-5
DIO_01	7201	Назначение многофункционального входа Р1	P1 define	0 (Not Used) 1 (Speed-L) 2 (Speed-M) 3 (Speed-H) 4 (Jog Speed) 5 (MOP Up) 6 (MOP Down) 7 (MOP Clear) 8 (MOP Save) 9 (Analog Hold) 10 (Main Drive) 11 (2nd Func) 12 (Xcel-L) 13 (Xcel-H) 14 (3-Wire) 15 (Ext Trip-B) 16 (Prohibit FWD) 17 (Prohibit REV) 18 (Proc PID Dis) 19 (Timer Input) 20 (SoftStrtCncl) 21 (ASR Gain Sel) 22 (ASR P/PI Sel) 23 (Flux Ref Sel) 24 (PreExcite) 25 (Spd/Trq Sel) 26 (Use Max Trq) 27 (Use Trq Bias) 30 (Battery Run) Note 1) 44 (CoreSize-L) Note 1) 45 (CoreSize-H) Note 1) 46 (TensionDisable) Note 1) 47 (PI Gain Sel) Note 1) 48 (PID ITerm Clr) Note 1) 49 (Taper Disable) Note 1) 50 (Stall Enable) Note 1) 51 (Boost Enable) Note 1) 52 (Quick Stop) Note 1) 53 (Jog Web) Note 1) 54 (Under Wind) Note 1) 55 (Unwinder) Note 1)	-	0 (не исп.)	Нет	
DIO_02	7202	Назначение многофункционального входа Р2	P2 define	Так же, как DIO_1	-	0 (не исп.)	Нет	
DIO_03	7203	Назначение многофункционального входа РЗ	P3 define		-	0 (не исп.)	Нет	
DIO_04	7204	Назначение многофункционального входа Р4	P4 define		-	0 (не исп.)	Нет	

²⁾Параметр отображается при работе в режиме WEB.

DIO_05	7205	Назначение многофункционального входа Р5	P5 define		-	0 (не исп.)	Нет	
DIO_06	7206	Назначение многофункционального входа Р6	P6 define		-	0 (не исп.)	Нет	
DIO_07	7207	Назначение многофункционального входа Р7	P7 define		ı	0 (не исп.)	Нет	
DIO_08	-	Инвертирование входных клемм	Neg Func. In	0000000 - 1111111	бит	000000	Нет	
DIO_09	7209	Постоянная времени многофункциональных входов	Terminal LPF	0 – 2000	ı	5	Да	6-17
DIO_10	-	Инвертирование многофункциональных выходов	Neg Func. Out	00000 – 11111	бит	00000	Нет	6-17

- 1) Параметр отображается при работе в режиме WEB. 2) Только для частотных преобразователей мощностью 5.5 22кВт

	Адрес		Индикация	Значени	е параме	тра	Изм. во	
Nō	команды	Имя параметра	на дисплее	Диапазон	Ед. изм.	По умолчанию	время работы	Стр.
DIO_41	7229	Назначение многофункциональ- ного дополнительного выхода (AX1)	AX1 Define	0 (Not Used) 1 (INV Ready) 2 (Zero Spd Det) 3 (Spd Det.) 4 (Spd Det(ABS)) 5 (Spd Arrival) 6 (Timer Out) 7 (LV Warn) 8 (Run) 9 (Regenerating) 10 (Mot OH Warn) 11 (Inv OH Warn) 12 (Spd Agree) 13 (Trq Det.) 14 (Trq Lmt Det.) 15 (OverLoad) 16 (Stop) 17 (MC on/off) 18 (Steady) 19 (Brake Output) 23 (WEB Break) 10 (INV Ready) 24 (Up To Spd) 11 (False Core) 11 (False Core) 12 (False Core)	-	0 (не исп.)	Да	6-17
DIO_42	722A	Назначение многофункциональног о выхода (AX2)	AX2 Define	Так же, как DIO_41	-	0 (не исп.)	Да	
DIO_43	722B	Назначение многофункциональног о выхода (ОС1)	OC1 Define	Так же, как DIO_41	-	0 (не исп.)	Да	
DIO_46	722E	Выбор режима аварийного реле	Relay Mode	000 – 111	бит	011	Да	6-24
DIO_47	722F	Величина нулевой скорости	ZSD Level	0.0 - 480.0	об/мин	10.0	Да	6-18
DIO_48	7230	Гистерезис нулевой скорости	ZSD Band	0.1 - 10.0	%	0.5	Да	0 10
DIO_49	7231	Уровень определения скорости	SD Level	-3600 – 3600	об/мин	0	Да	6-18
DIO_50	7232	Гистерезис определения скорости	SD Band	0.1 – 10.0	%	0.5	Да	0 10
DIO_51	7233	Гистерезис достижения заданной скорости	SA Band	0.1 – 10.0	%	0.5	Да	6-19
DIO_52	7234	Гистерезис отклонения заданной скорости	SEQ Band	0.1 - 10.0	%	0.5	Да	
DIO_53	7235	Уровень определения момента	TD Level	0.0 – 250.0	%	0.0	Да	6-21
DIO_54	7236	Гистерезис определения момента	TD Band	0.1 – 10.0	%	0.5	Да	0-21
DIO_55	7237	Задержка при включении таймера	TimerOn Dly	0.1 – 3600.0	сек	0.1	Да	6-19
DIO_56	7238	Задержка при выключении таймера	TimerOff Dly	0.1 – 3600.0	сек	0.1	Да	6-19

DIO_57	7239	Уровень перегрузки по току	OL Level	30 – 250	%	150	Да	6-21	
DIO_58	723A	Время перегрузки по току	OL Time	0 – 30	сек	10	Да	0-21	
DIO_59	723B	Разрешение ошибки «перегрузка»	OLT Select	0 (No) 1 (Yes)		1 (Yes)	Да		
DIO_60	723C	Уровень ошибки «перегрузка»	OLT Level	30 – 250	%	180	Да	6-24	
DIO_61	723D	Время ошибки «перегрузка»	OLT Time	0 – 60	сек	60	Да		
DIO_62	723E	Температура перегрева преобразователя	IH Warn Temp	50 – 85	°C	75	Да		
DIO_63	723F	Гистерезис температуры перегрева преобразователя	IH Warn Band	0 – 10	oC.	5	Да	6-20	
DIO_64	7240	Температура перегрева двигателя	MH Warn Temp	75 – 130	°C	120	Да		
DIO_65	7241	Гистерезис температуры перегрева двигателя	MH Warn Band	0 – 10	°C	5	Да	6-20	
DIO_66	7242	Задержка при включении контактора	MC Timer On	100 – 50000	мсек	1000	Да		
DIO_67	7243	Задержка при выключении контактора	MC Timer Off	100 – 50000	мсек	1000	Да	6-22	
DIO_97	7261	Действия при потере команды	Lost Command	0 (None) 1 (FreeRun) 2 (Stop)	-	0 (None)	Да	6-24	

¹⁾ Параметр отображается при работе в режиме WEB.

5.3 Группа «Параметры» (PAR_[][])

Nº	Адрес команды	Имя параметра	Индикация на дисплее	Значение параметра			Изм. во	C-11	
				Диапазон	Ед. изм.	По умолчанию	время работы	Стр.	
PAR_00	-	Переход к требуемому параметру	Jump Code	1 – 33	1	-	Да		
PAR_01	7301	Сброс параметров к заводским настройкам	Para. init	0 (No) 1 (All 0 (No) 2 (DIS) 3 (DIO) 4 (PAR) 3 (DIO) 6 (CON) 7 (EXT) 8 (AIO) 9 (USR) 10(2ND) 11 (E/L) 12 (SYN) 13 (WEB)		0 (No)	Нет	6-25	
PAR_02	-	Чтение параметров	Para. read	No / Yes		No	Нет		
PAR_03	-	Запись параметров	Para. write	No / Yes		No	Нет		
PAR_04	-	Блокировка параметров	Para. lock	0 – 255		0	Да		
PAR_05	-	Пароль	Password	0 – 9999		0	Да	6-26	
PAR_07	7307	Выбор мощности двигателя	Motor select	0 (2.2) 1 (3.7) 2 (5.5) 3 (7.5) 4 (11.0) 5 (15.0) 6 (18.5) 7 (22.0) 8 (30.0) 9 (37.0) 10(45.0) 11 (55.0) 12(75.0) 13 (90.0) 14(110.0) 15 (132.0) 16(160.0) 17 (220.0) 18(280.0) 19 (315.0) 20 (375.0) 21 (500.0) 22 (800.0) 23 (User Define) 1)	кВт	-	Нет	6-27	

					,	1	1		
PAR_08	7308	Мощность двигателя (пользовательская настройка)	UserMotorSe I	1.5 – 800.0	кВт	5.5	Нет		
PAR_09	7309	Способ охлаждения	Cooling Mtd	0 (Self-cool) 1 (Forced-cool)	-	1 (Forced- cool)	Да	6-27	
PAR_10	730A	Количество импульсов энкодера	Enc Pulse	360 – 4096	-	1024	Нет	6-28	
PAR_11	730B	Направление вращения энкодера	Enc Dir Set	0 (A Phase Lead) 1 (B Phase Lead)	-	0 (A Phase Lead)	Нет	6-28	
PAR_12	730C	Ошибка энкодера	Enc Err Chk	0 (No) 1 (Yes)	-	1 (Yes)	Нет	6-29	
PAR_13	730D	Постоянная времени фильтра энкодера	Enc LPF	0 – 100	мсек	1	Да		
PAR_14	730E	Время определения ошибки энкодера	EncFaultTime	0.00 - 10.00	сек	0.00	Нет		
PAR_15	730F	Расчетная скорость ошибки энкодера	EncFaultPerc	0.0 - 50.0	%	25.0	Нет		
PAR_17	7311	Номинальная скорость двигателя	Base Speed	100.0 – 3600.0	об/мин	1800.0	Нет		
PAR_18	7312	Номинальное напряжение двигателя	Rated Volt	120 – 560	В		Нет		
PAR_19	7313	Количество полюсов	Pole number	2 – 12		4	Да	6-30	
PAR_20	7314	КПД двигателя	Efficiency	70.0 – 100.0	%		Да		
PAR_21	7315	Номинальное скольжение	Rated-Slip	10 – 2000.0	об/мин		Да	1	
PAR_22	7316	Номинальный ток двигателя	Rated-Curr	1.0 – 750.0	Α		Да	6-30	
PAR_23	7317	Выбор типа автотюнинга	AutoTuneType	0 (Rotational) 1 (Standstill)		0 (Rotational)	Нет	6-31,33	
PAR_24	ı	Режим автотюнинга ²⁾	Auto Tuning	None ALL1/ALL2 Encoder Test Rs Tuning Lsigma Flux Curr Ls Tuning Tr Tuning	-	None	Нет	6-31, 6-33	
PAR_25	7319	Момент при автотюнинге	Tune Torque	10.0 - 100.0	%	70	Да		
PAR_26	731A	Ток возбуждения двигателя	Flux-Curr	70 % до 0.0 – PAR_22	Α		Да		
PAR_27	731B	Постоянная времени ротора	Tr	30 – 3000	мсек		Да		
PAR_28	731C	Индуктивность рассеяния	Ls	0.00 - 500.00	мГн		Да	6-34	
PAR_29	731D	Индуктивность статора	Lsigma	0.00 - 100.00	мГн		Да		
PAR_30	731E	Сопротивление статора	Rs	0.000 - 5.000	Ом		Да		
PAR_33	7321	Коэффициент энкодера ³⁾	Enc Scale	x1 / x16 / x32 / x64	-	x 1	Нет	-	

- 1) Когда параметр PAR_07 (Выбор мощности двигателя) установлен в значение "User Define", параметр PAR_08 (Мощность двигателя пользовательская настройка) становится доступным.
- 2) Если параметр PAR_23 (Тип автотюнинга) установлен в значение "Standstill", порядок опций в параметре PAR_24 (Автотюнинг) будет следующим: None→ ALL1→ Rs Tuning→ Lsigma→ If/Tr/Ls Tune.
- 3) ВНИМАНИЕ! Параметр PAR_33 (Коэффициент энкодера) необходим только в случае использования опциональной платы «SIN/COS Encoder». Не изменяйте этот параметр (по умолчанию X1), если не используете эту опциональную плату.

5.4. Группа «Функции» (FUN_[][])

	Адрес		Индикация	Значен	ие параме	тра	Изм. во	.
Nō	команды	Имя параметра	на дисплее	Диапазон	Ед. изм	По умолчанию	время работы	Стр.
FUN_00	-	Переход к требуемому параметру	Jump code	1 – 69	-	-	Да	
FUN_01	7401	Источник команд Пуск/Стоп	Run/Stop Src	0 (Terminal 1) 1 (Terminal 2) 2 (Keypad) 3 (Option)	-	0 (Terminal 1)	Нет	6-36
FUN_02	7402	Источник задания скорости	Spd Ref Sel	0 (Analog) 1 (Keypad1) 2 (Keypad2) 3 (Option) 6 (Line SPD Ref) ¹⁾ 7 (Line SPD Opt) ¹⁾	-	1 (Keypad1)	Нет	6-37
FUN_03	7403	Выбор способа	Stop mode	0 (Decel) 1 (Free-run)	-	0 (Decel)	Нет	
FUN_04	7404	торможения Макс. скорость двигателя	Max Speed	400.0 – 3600.0	об/мин	1800.0	Нет	1
FUN_12	740C	Многошаговая скорость 0	Speed 0	0.0 – Max Speed	об/мин	0.0	Да	
FUN_13	740D	Многошаговая скорость 1	Speed 1	0.0 – Max Speed	об/мин	0.0	Да	
FUN_14	740E	Многошаговая скорость	Speed 2	0.0 – Max Speed	об/мин	0.0	Да	
FUN_15	740F	2 Многошаговая скорость 3	Speed 3	0.0 – Max Speed	об/мин	0.0	Да	_
FUN_16	7410	Многошаговая скорость 4	Speed 4	0.0 – Max Speed	об/мин	0.0	Да	6-38
FUN_17	7411	Многошаговая скорость 5	Speed 5	0.0 – Max Speed	об/мин	0.0	Да	1
FUN_18	7412	Многошаговая скорость 6	Speed 6	0.0 – Max Speed	об/мин	0.0	Да	1
FUN_19	7413	Многошаговая скорость 7	Speed 7	0.0 – Max Speed	об/мин	0.0	Да	1
FUN_20	7414	Скорость JOG	Jog Speed	0.0 – Max Speed	об/мин	100.0	Да	
FUN_21	7415	Скорость задержки	Dwell Speed	0.0 – Max Speed	об/мин	100.0	Нет	
FUN_22	7416	Время задержки	Dwell Time	0.00 - 100.00	сек	0.00	Нет	6-38
FUN_33	7421	Опорная скорость разгона/торможения	Acc/Dec Ref	0 (Max Speed) 1 (Ref Speed)	-	0 (Max Speed)	Нет	6-39
FUN_36	7424	Наклон S кривой в начале разгона	Acc S Start	0.0 - 50.0	%	0.0	Нет	
FUN_37	7425	Наклон S кривой в конце разгона	Acc S End	0.0 - 50.0	%	0.0	Нет	6.41
FUN_38	7426	Наклон S кривой в начале торможения	Dec S Start	0.0 - 50.0	%	0.0	Нет	6-41
FUN_39	7427	Наклон S кривой в конце торможения	Dec S End	0.0 - 50.0	%	0.0	Нет	1
FUN_40	7428	Время разгона 1	Acc Time-1	0.00 - 6000.0	сек	2.00 ^{Пр. 2)}	Да	
FUN_41	7429	Время торможения 1	Dec Time-1	0.00 - 6000.0	сек	2.00 ^{Пр. 2)}	Да	
FUN_42	742A	Время разгона 2	Acc Time-2	0.00 - 6000.0	сек	3.00 ^{Пр. 2)}	Да	
FUN 43	742B	Время торможения 2	Dec Time-2	0.00 - 6000.0	сек	3.00 ^{Пр. 2)}	Да	
FUN_44	742C	Время разгона 3	Acc Time-3	0.00 - 6000.0	сек	4.00 ^{Пр. 2)}	Да	6-40
FUN_45	742D	Время торможения 3	Dec Time-3	0.00 - 6000.0	сек	4.00 ^{Пр. 2)}	Да	
FUN_46	742E	Время разгона 4	Acc Time-4	0.00 - 6000.0	сек	5.00 ^{Пр. 2)}	Да	
FUN_47	742F	Время торможения 4	Dec Time-4	0.00 - 6000.0	сек	5.00 ^{Пр. 2)}	Да	
FUN_48	7430	Выбор установки времени торможения	Use 0 Dec T	0 (No) 1 (Yes)		0 (No)	Да	6-43
FUN_49	7431	до нулевой скорости Время торможения до нулевой скорости	0 Dec Time	0.00 - 6000.0	сек	0.00	Да	_ 0-73
FUN_51	7433	нулевой скорости Время аварийного торможения	BX Time	0.0 - 6000.0	сек	0.0	Да	6-43
FUN_52	7434	Время начального намагничивания	PreExct Time	0 - 10000	мсек	0	Нет	6-44
FUN_53	7435	Время удержания двигателя	Hold Time	100 – 10000	мсек	1000	Нет	6-44
FUN_54	7436	Выбор электронной термозащиты	ETH Select	0 (No) 1 (Yes)	-	0 (No)	Да	6-44

2) Значение по умолчанию времени разгона и торможения зависит от мощности преобразователя.

	Адрес		Индикация на	Знач	нение пара	аметра	Изм. во	
Nō	команды	Имя параметра	дисплее	Диапазон	Ед. изм.	По умолчанию	время работы	Стр.
FUN_55	7437	Уровень термозащиты в течении 1 минуты	ETH 1 min	FUN_56 - 200	%	150	Да	6-44
FUN_56	7438	Уровень термозащиты при длительной работе	ETH Cont	50 – FUN_55 (выше150%)	%	100	Да	0-44
FUN_57	7439	Выбор частоты ШИМ	PWM Freq	2.5 – 10.0	кГц	Различаются в зависимости от мощности инвертора	Нет	6-46
FUN_58	743A	Запуск при появлении напряжения питания	Power-on Run	0 (No) 1 (Yes)	-	0 (No)	Да	6-47
FUN_59	743B	Повторный запуск после сброса ошибки	RST Restart	0 (No) 1 (Yes)	-	0 (No)	Да	6-47
FUN_60	743C	Количество попыток повторного запуска	Retry Number	0 – 10	-	0	Да	6-48
FUN_61	743D	Задержка перед повторным запуском	Retry Delay	0.0 - 60.0	сек	1.0	Да	0-40
FUN_62	743E	Задержка перед запуском после останова	Restart Time	0.00 - 10.00	сек	0.00	Нет	
FUN_63	743F	Величина превышения скорости	OverSpdLevel	100.0 - 130.0	%	120.0	Нет	6-49
FUN_64	7440	Время превышения скорости	OverSpd Time	0.00 - 2.00	сек	0.00	Нет	
FUN_65	7441	Время отключения тормоза ¹⁾	BKOpen Time	0.00 - 30.00	сек	0.00	Нет	
FUN_66	7442	Скорость отключения тормоза ¹⁾	BKOpen Spd	0.0 - 500.0	об/мин	0.0	Нет	
FUN_67	7443	Ток отключения тормоза	Release Curr	0.0 - 150.0	%	20.0	Нет	6-50
FUN_68	7444	Время включения тормоза ¹⁾	BKClose Time	0.00 - 30.00	сек	0.00	Нет	
FUN_69	7445	Скорость включения тормоза ¹⁾	BKClose Spd	0.0 - 500.0	об/мин	0.0	Нет	
FUN_70	7446	Скорость при управлении от батарей ²⁾	Batt. Speed	2.5 – 200.0	об/мин	50.0	Нет	6-51
FUN_71	7447	Напряжение батареи ²⁾	Batt. Volt	12 - PAR_18	В	48	Нет	

¹⁾ Параметр доступен, если одна из многофункциональных выходных клемм (DIO_41~DIO_43) установлена как "Brake Output".

5.5. Группа управления (СОN_[][])

	Адрес		Индикация на	Значе	ние парам	етра	Изм.	
Nō	команды	Имя параметра	дисплее	Диапазон	Ед. изм.	По умолчанию	во время работы	Стр.
CON_00	-	Переход к требуемому параметру	Jump Code	1 – 49	-	-	Да	
CON_01	7501	Задание способа управления	Control Mode	1 (Speed) 2 (Torque)	-	1 (Speed)	Нет	
CON_02	-	Сфера применения	Application	General Vect Elevator ¹⁾ Synchro ²⁾ WEB Control	-	General Vect	Нет	6-53
CON_03	7503	Коэффициент P1 ASR	ASR P Gain1	0.1 - 200.0	%	50.0	Да	6-54
CON_04	7504	Коэффициент I1 ASR	ASR I Gain1	0 - 50000	мсек	300	Да	
CON_05	7505	Постоянная времени 1 ASR	ASR LPF1	0 – 20000	мсек	0	Да	
CON_06	7506	Коэффициент P2 ASR	ASR P Gain2	0.1 - 200.0	%	5.0	Да	
CON_07	7507	Коэффициент I2 ASR	ASR I Gain2	0 - 50000	мсек	3000	Да	
CON_08	7508	Постоянная времени 2 ASR	ASR LPF2	0 – 20000	мсек	0	Да	

²⁾ Параметр доступен только для преобразователей мощностью 5.5 – 22 кВт, в случае, если одна из многофункциональных клемм (P1 – P7) установлена как «Battery Run», и на нее подается управляющий сигнал.

CON_09	7509	Время переключения коэффициентов ASR	ASR RAMP	10 – 10000	мсек	1000	Да	
CON_10	750A	Заданная скорость после переключения коэффициентов ASR	ASR TarSpd	0.0 – 3600.0	об/мин	0.0	Нет	6-55
CON_11	750B	Уставка ПИД (клавиатура)	Proc PID Ref	-100.0 - 100.0	%	0.0	Да	6-56
CON_13	750D	Р коэффициент ПИД	Proc PID Kp	0.0 - 999.9	%	0.0	Да	
CON_14	750E	I коэффициент ПИД	Proc PID Ki	0.0 - 100.0	%	0.0	Да	
CON_15	750F	D коэффициент ПИД	PROC PID Kd	0.0 - 100.0	%	0.0	Да	1
CON_16	7510	Положительный предел ПИД регулятора	Proc Pos Lmt	-100.0 – 100.0	%	100	Да	6-57
CON_17	7511	Отрицательный предел ПИД регулятора	Proc Neg Lmt	-100.0 - 100.0	%	100	Да	
CON_18	7512	Постоянная времени ПИД регулятора	Proc Out LPF	0 – 500	мсек	0	Да	
CON_19	7513	Коэффициент усиления выхода ПИД	Proc OutGain	-250.0 – 250.0	%	0.0	Да	
CON_20	7514	Разрешение выхода ПИД	Proc PID Enb	0 (Disable) 1 (Enable) 2 (Terminal)	-	0 (Disable)	Нет	-
CON_21	7515	Задержка ПИД	PIDHoldTime	0 – 10000	мсек	5000	Нет	6-57
CON_22	7516	Величина натяжения	Draw %	-100.0 - 100.0	%	0.0	Да	6-59
CON_23	7517	Величина ослабления	Droop %	0.0 - 100.0	%	0.0	Да	
CON_24	7518	Нижний предел скорости контроля ослабления	Droop MinSpd	0.0 – 3600.0	об/мин	0.0	Да	6-59
CON_25	7519	Стартовый момент контроля ослабления %	Droop MinTrq	0.0 - 100.0	%	0.0	Да	
CON_26	751A	Выбор источника опорного момента	Trq Ref Src	0 (None) 1 (Analog) 2 (Keypad) 3 (Option)	-	0 (None)	Нет	6-61
CON_27	751B	Опорный момент (клавиатура)	Torque Ref	-180.0 - 180.0	%	0.0	Да	
CON_28	751C	Источник ограничения момента	Trq Lmt Src	0 (Kpd Kpd Kpd) 1 (Kpd Kpd Ax) 2 (Kpd Ax Kpd) 3 (Kpd Ax Ax) 4 (Ax Kpd Kpd) 5 (Ax Kpd Ax) 6 (Ax Ax Kpd) 7 (Ax Ax Ax) 8 (Opt Opt Opt)	-	0 (Kpd Kpd Kpd)	Нет	6-63
CON_29	751D	Предел момента при вращении вперед	Pos Trq Lmt	0.0 – 250.0	%	150.0	Да	
CON_30	751E	Предел момента при вращении назад	Neg Trq Lmt	0.0 – 250.0	%	150.0	Да	6-63
CON_31	751F	Предел момента при генерации	Reg Trq Lmt	0.0 – 250.0	%	150.0	Да	
CON_32	7520	Выбор источника отклонения момента	Trq Bias Src	0 (None) 1 (Analog) 2 (Keypad) 3 (Option)		0 (None)	Нет	6-61
CON_33	7521	Величина отклонения момента	Trq Bias	-150.0 – 150.0	%	0.0	Да	
CON_34	7522	Компенсация момента	Trq Bias FF	-150.0 – 150.0	%	0.0	Да	
CON_35	7523	Величина баланса момента	Trq Balance	0.0 - 100.0	%	50.0	Да	6-62
CON_49	7531	Параметры поиска скорости	Speed Search	0000 - 1111 (bit setting)	-	0100	Нет	6-64

¹⁾ Отображается при использовании опциональной платы E/L_IO.

²⁾ Отображается при использовании опциональной платы SYNC_IO.

5.6. Группа пользователя (USR_[][])

	Адрес		Индикация	Значени	е параме	тра	Изм. во	
Nō	команды	Имя параметра	на дисплее	Диапазон	Ед. изм.	По умолчанию	время работы	Стр.
USR_00	-	Переход к требуемому параметру	Jump Code	1 – 67	-	-	Да	
USR_01	-	Инициализация значений в зависимости от применения	Macro Init	User Define E/L	-	User Define	Нет	
USR_02	-	Сохранение значения пользователя	User Save	No / Yes	-	No	Нет	6-66
USR_03	-	Повторный вызов сохраненных данных пользователя	User Recall	No / Yes	-	No	Нет	
USR_04	-	Данные группы пользователя	User Grp	-	-	-	Нет	

5.7. Группа второго двигателя (2nd_[][])

	Адрес		Индикация	Значені	ие парамо	етра	Изм. во	
Nō	команды	Имя параметра	на дисплее	Диапазон	Ед. изм.	По умолчанию	время работы	Стр.
2nd_00	-	Переход к требуемому параметру	Jump Code	1 – 33	-	-	Да	
2nd_01	7801	Способ управления 2-го двигателя	2nd Ctl Mode	1 (Speed) 2 (Torque)	-	1 (Speed)	Нет	6-68
2nd_02	7802	Максимальная скорость 2-го двигателя	2nd Max Spd	400.0 – 3600.0	об/мин	1800.0	Нет	0-08
2nd_04	7804	Многошаговая скорость 0 2-го двигателя	2nd Spd 0	0.0 - 2nd_02	об/мин	0.0	Да	
2nd_05	7805	Наклон S кривой в начале разгона для 2-го двигателя	2nd Acc S St	0.0 - 50.0	%	0.0	Нет	6-69
2nd_06	7806	Наклон S кривой в конце разгона для 2-го двигателя	2nd Acc S Ed	0.0 - 50.0	%	0.0	Нет	
2nd_07	7807	Наклон S кривой в начале торможения для 2-го двигателя	2nd Dec S St	0.0 - 50.0	%	0.0	Нет	
2nd_08	7808	Наклон S кривой в конце торможения для 2-го двигателя	2nd Dec S Ed	0.0 - 50.0	%	0.0	Нет	
2nd_09	7809	Время разгона 2-го двигателя	2nd Acc time	0.00 - 6000.0	сек	10.00	Да	
2nd_10	780A	Время торможения 2-го двигателя	2nd Dec time	0.00 - 6000.0	сек	10.00	Да	1
2nd_11	780B	Способ охлаждения 2-го двигателя	2nd Cool Mtd	0 (Self-cool) 1 (Forced-cool)	-	0 (Self-cool)	Да	
2nd_12	780C	Количество импульсов энкодера второго двигателя	2nd Enc #	360 – 4096	=	1024	Нет	
2nd_13	780D	Направление вращения энкодера 2-го двигателя	2nd Enc Dir	0 (A Phase Lead) 1 (B Phase Lead)	-	0 (A Phase Lead)	Нет]
2nd_14	780E	Ошибка энкодера 2-го двигателя	2nd Enc chk	0 (No) 1 (Yes)	-	1 (Yes)	Нет	
2nd_15	780F	Постоянная времени энкодера 2-го двигателя	2nd Enc LPF	0 – 100	мсек	1	Да	
2nd_17	7811	Номинальная скорость 2-го двигателя	2nd BaseSpd	300.0 – 3600.0	об/мин	1800.0	Нет	1
2nd_18	7812	Номинальное напряжение 2-го двигателя	2nd R-Volt	120 – 560	В	-	Нет	
2nd_19	7813	Количество полюсов второго двигателя	2nd Pole #	2 – 12	-	4	Нет	
2nd_20	7814	КПД второго двигателя	2nd Mot Eff.	70 – 100	%	-	Да	
2nd_21	7815	Номинальное скольжение второго двигателя	2nd R-Slip	10 – 250	об/мин	-	Да	
2nd_22	7816	Номинальный ток второго двигателя	2nd R-Curr	1.0 – 450.0	Α	-	Да	_
2nd_23	7817	Ток возбуждения 2-го двигателя	2nd Flx Cur	0.0 – 70% of 2nd_22	Α	-	Да	

2nd_24	7818	Постоянная времени ротора 2-го двигателя	2nd Mot Tr	30 – 3000	мсек	=	Да	
2nd_25	7819	Индуктивность рассеяния 2-го двигателя	2nd Mot Ls	0.00 - 500.00	мГн	-	Да	
2nd_26	781A	Коэффициент рассеяния 2-го двигателя	2nd Mot sLs	0.00 - 100.00	мГн	-	Да	
2nd_27	781B	Сопротивление статора 2-го двигателя	2nd Mot Rs	0.000 - 5.000	Ом	-	Да	
2nd_32	7820	Электронная термозащита в течение 1 минуты 2-го двигателя	2nd ETH 1min	100 – 150	%	150	Да	
2nd_33	7821	Длительная электронная термозащита 2-го двигателя	2nd ETH cont	50 – 150	%	100	Да	

5.8. Группа аналоговых входов/выходов (AIO_[][])

1	Адрес		Индикация	Значени	е параме	етра	Изм. во	
Nō	команды	Имя параметра	на дисплее	Диапазон	Ед. изм.	По умолчанию	время работы	Стр.
AIO_00	-	Переход к требуемому параметру	Jump Code	1 – 83	-	-	Да	6-71
AIO_01	7701	Назначение многофункционального аналогового входа Ai1	Ai1 Define	0 (Not Used) 1 (Speed Ref) 2 (Proc PID Ref) 3 (Proc PID F/B) 4 (Draw Ref) 5 (Torque Ref) 6 (Flux Ref) 7 (Torque Bias) 8 (Torque Limit) 9 (Line SPD Ref) 10 (Tension Ref) 11 (Dancer Ref) 12 (Taper Ref) 13 (Tension F/B) 14 (Diameter) 15 (Diam Preset) 1	-	0 (Not Used)	Нет	
AIO_02	7702	Тип сигнала многофункционального аналогового входа Ai1	Ai1 Source	0 (-10 → 10V) 1 (10 → -10V) 2 (0 → 10V) 3 (10 → 0V) 4 (0 → 20mA) 5 (20 → 0mA)	-	0 (-10 → 10V)	Нет	
AIO_03	7703	Минимальное напряжение аналогового входа Ai1	Ai1 In X1	0.00 – Ai1 In X2	%	0.00	Да	
AIO_04	7704	Смещение минимального напряжения аналогового входа Ai1	Ai1 Out Y1	-10.00 – Ai1 Out Y2	%	0.00	Да	
AIO_05	7705	Максимальное напряжение аналогового входа Ai1	Ai1 In X2	0.00 - 100.00	%	100.00	Да	
AIO_06	7706	Усиление максимального напряжения аналогового входа AI1	Ai1 Out Y2	0.00 - 250.00	%	100.00	Да	
AIO_07	7707	Минимальное отрицательное напряжение аналогового входа Ai1	Ai1 -In X1	Ai1 -In X2 – 0.00	%	0.00	Да	
AIO_08	7708	Смещение минимального отрицательного напряжения аналогового входа Ai1	Ai1 -Out Y1	Ai1 -Out Y2 – 10.00	%	10.00	Да	
AIO_09	7709	Максимальное отрицательное напряжение аналогового входа Ai1	Ai1 -In X2	-100.00 - 0.00	%	-100.00	Да	
AIO_10	770A	Усиление отрицательного напряжения аналогового входа Ai1	Ai1 -Out Y2	-250.00 – 0.00	%	-100.00	Да	

5. Список параметров

AIO_11	770B	Постоянная времени входа Ai1	Ai1 LPF	0 – 2000	мсек	-	-	
AIO_12	770C	Критерий потери сигнала аналогового входа Ai1	Ai1 Wbroken	0 (None) 1 (Half of x1) 2 (Below x1)	-	0 (None)	Нет	6-74

1) Параметр отображается при работе в режиме WEB.

	Адрес		Индика-	Значение і	параметра		Изм.		
Nº	команды	Имя параметра	ция на дисплее	Диапазон	Ед. изм. ум	По юлчанию	врем рабо ⁻		Стр.
AIO_13	770D	Назначение многофункционального аналогового входа Ai2	Ai2 Define						6-72
AIO_14	770E	Тип сигнала многофункционального аналогового входа Ai2	Ai2 Source						
AIO_15	770F	Минимальное напряжение аналогового входа Ai2	Ai2 In X1						
AIO_16	7710	Смещение минимального напряжения аналогового входа Ai2	Ai2 Out Y1						
AIO_17	7711	Максимальное напряжение аналогового входа Ai2	Ai2 In X2						
AIO_18	7712	Усиление максимального напряжения аналогового входа AI2	Ai2 Out Y2						
AIO_19	7713	Минимальное отрицательное напряжение аналогового входа Ai2	Ai2 -In X1	Так же,	как для пар. <i>І</i>	AIO_01~12			
AIO_20	7714	Смещение минимального отрицательного напряжения аналогового входа Ai2	Ai2 -Out Y1						
AIO_21	7715	Максимальное отрицательное напряжение аналогового входа Ai2	Ai2 -In X2						
AIO_22	7716	Усиление отрицательного напряжения аналогового входа Ai2	Ai2 -Out Y2						
AIO_23	7717	Постоянная времени входа Ai2	Ai2 LPF						
AIO_24	7718	Критерий потери сигнала аналогового входа Ai2	Ai2 Wbroken						
AIO_25	7719	Назначение многофункционального аналогового входа Ai3	Ai3 Define	Так же как для пар ƒ Можно выбрать датч 16 (Use Mot N 17 (Use Mot P	ик NTC/PTC TC)	0 (Not l	Used)	Нет	
AIO_26	771A	Тип сигнала многофункционального аналогового входа Ai3	Ai3 Source	$0 (-10 \rightarrow 10V)$ $1 (10 \rightarrow -10V)$ $2 (0 \rightarrow 10V)$ $3 (10 \rightarrow 0V)$	-	0 (-10 ->	→ 10V)	Нет	
AIO_27	771B	Минимальное напряжение аналогового входа Ai3	Ai3 In X1	Так же,	как для пар. А	AIO_03~12			
AIO_28	771C	Смещение минимального напряжения аналогового входа Ai3	Ai3 Out Y1						
AIO_29	771D	Максимальное напряжение аналогового входа Ai3	Ai3 In X2						
AIO_30	771E	Усиление максимального напряжения аналогового входа AI3	Ai3 Out Y2						
AIO_31	771F	Минимальное отрицательное напряжение аналогового входа Ai3	Ai3 -In X1						

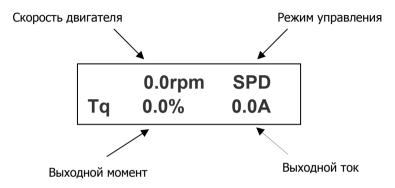
AIO_32	7720	Смещение минимального отрицательного напряжения аналогового входа Ai3	Ai3 -Out Y1
AIO_33	7721	Максимальное отрицательное напряжение аналогового входа Ai3	Ai3 -In X2

NO.	Адрес		Индикация	Значени	е параме	гра	Изм. во	C
Nº	команды	Имя параметра	на дисплее	Диапазон	Ед.	По	время работы	Стр.
AIO_34	7722	Усиление отрицательного напряжения аналогового входа Ai3	Ai3 -Out Y2		изм	умолчанию _		
AIO_35	7723	Постоянная времени входа Ai3	Ai3 LPF					
AIO_36	7724	Критерий потери сигнала аналогового входа Ai3	Ai3 Wbroken					
AIO_37	7725	Назначение многофункционального аналогового входа Ai4 ¹⁾	Ai4 Define					
AIO_38	7726	Тип сигнала многофункционального аналогового входа Ai4 1)	Ai4 Source					
AIO_39	7727	Минимальное напряжение аналогового входа Ai4 1)	Ai4 In X1					
AIO_40	7728	Смещение минимального напряжения аналогового входа Ai4 1)	Ai4 Out Y1					
AIO_41	7729	Максимальное напряжение аналогового входа Ai4 ¹⁾	Ai4 In X2	Так же как дл	OIA nan AIO	01 _~ 12		
AIO_42	772A	Усиление максимального напряжения аналогового входа AI4 1)	Ai4 Out Y2	Tak жe kak дл	и пар. А10	_01.412		
AIO_43	772B	Минимальное отрицательное напряжение аналогового входа Ai4 ¹⁾	Ai4 -In X1					
AIO_44	772C	Смещение минимального отрицательного напряжения аналогового входа Ai4 ¹⁾	Ai4 -Out Y1					
AIO_45	772D	Максимальное отрицательное напряжение аналогового входа Ai4 ¹⁾	Ai4 -In X2					
AIO_46	772E	Усиление отрицательного напряжения аналогового входа Ai4 ¹⁾	Ai4 -Out Y2					
AIO_47	772F	Постоянная времени входа Ai4 ¹⁾	Ai4 LPF					
AIO_48	7730	Критерий потери сигнала аналогового входа Ai4 ¹⁾	Ai4 Wbroken					
AIO_49	7731	Назначение многофункционального аналогового входа Ai5 ¹⁾	Ai5 Define	Так же как для пар. / При использовании EXTN_I/O Функции «датчик NTI доступны для А 16 (Use Mot NTC 17 (Use Mot PTC	платы С/РТС» i5 С)	0 (Not Used)	Нет	
AIO_50	7732	Тип сигнала многофункционального аналогового входа Ai5 ¹⁾	Ai5 Source	0 (-10 → 10V) 1 (10 → -10V) 2 (0 → 10V) 3 (10 → 0V)	-	0 (-10 → 10V)	Нет	

NO	Адрес	M	Индикация	Значени	е парамет	гра	Изм. во	C-11
Nº	команды	Имя параметра	на дисплее	Диапазон	Ед. изм.	По умолчанию	время работы	Стр.
AIO_51	7733	Минимальное напряжение аналогового входа Ai5 1)	Ai5 In X1					
AIO_52	7734	Смещение минимального напряжения аналогового входа Ai5 1)	Ai5 Out Y1					
AIO_53	7735	Максимальное напряжение аналогового входа Ai5 1)	Ai5 In X2					
AIO_54	7736	Усиление максимального напряжения аналогового входа AI5 1)	Ai5 Out Y2					
AIO_55	7737	Минимальное отрицательное напряжение аналогового входа Ai5 ¹⁾	Ai5 -In X1					
AIO_56	7738	Смещение минимального отрицательного напряжения аналогового входа Ai5 ¹⁾	Ai5 -Out Y1	Ta	ак же как и	1 AIO_03~12		-
AIO_57	7739	Максимальное отрицательное напряжение аналогового входа Ai5 ¹⁾	Ai5 -In X2					
AIO_58	773A	Усиление отрицательного напряжения аналогового входа Ai5 ¹⁾	Ai5 -Out Y2					
AIO_59	773B	Постоянная времени входа Ai5 ¹⁾	Ai5 LPF					
AIO_60	773C	Критерий потери сигнала аналогового входа Ai5 ¹⁾	Ai5 Wbroken					
AIO_73	7749	Время потери аналогового сигнала	Time out	0.1 ~ 120.0	сек	1.0	Нет	
AIO_74	774A	Назначение многофункционального аналогового выхода АО1	AO1 Define	0 (Not Used) 1 (Ai1 Value) 2 (Ai2 Value) 3 (Ai3 Value) 4 (Ai4 Value) 5 (Ai5 Value) 1 (PreRamp Ref) 8 (PostRamp Ref) 9 (ASR Inp Ref) 11 (Motor Speed) 12 (Speed Dev) 13 (ASR Out) 14 Torque Bias 15 (PosTrq Limit) 16 (NegTrq Limit) 17 (RegTrq Limit) 18 (Torque Ref) 19 (IqeRef) 20 (Iqe) 21 (Flux Ref) 22 (IdeRef) 23 (Ide) 24 (ACR_Q Out) 25 (ACR_D Out) 26 (VdeRef) 27 (VqeRef) 28 (Out Volt RMS) 30 (Power) 31 (DC Bus Volt) 32 (Proc PI Ref)	-	0 (Not Used)	Нет	6-75

¹⁾ Только при использовании EXTN_I/O.

	Адрес		Индикация	Значени	е парамет	гра	Изм. во	Стп
Nō	команды	индикация анды Имя параметра на дисплее Диапазон Ед. изм.			По умолчанию	время работы	Стр.	
AIO_74	774A	Назначение многофункционального аналогового выхода АО1	AO1 Define	33 (PROC PI F/B) 34 (Proc PI Out) 35 (Line Speed) ¹⁾ 36 (Tension Out) ¹⁾ 37 (Diameter) ¹⁾ 38 (MotNTC Temp) 39 (MotPTC Temp) 40 (Inv Temp) 41 (Inv i2t)	-	0 (Not Used)	Нет	
AIO_75	774B	Тип многофункционального аналогового выхода AO1	AO1 Source	0 (-10 → 10V) 1 (10 → -10V) 2 (0 → 10V) 3 (10 → 0V)	-	0 (-10 → 10V)	Нет	
AIO_76	774C	Смещение многофункционального аналогового выхода AO1	AO1 Bias	-100.0 – AIO_77	%	0.0	Нет	
AIO_77	774D	Усиление многофункционального аналогового выхода AO1	AO1 Gain	0.0 – 500.0	%	100.0	Нет	6-75
AIO_78	774E	Использование абсолютного значения аналогового выхода AO1	AO1 ABS	0 (No) 1 (Yes)	-	0 (No)	Нет	0 / 3
AIO_79	774F	Назначение многофункционального аналогового выхода AO2	AO2 Define					
AIO_80	7750	Тип многофункционального аналогового входа AO2	AO2 Source					
AIO_81	7751	Смещение многофункционального аналогового выхода AO2	AO2 Bias	Так ж	е, как для	пар. АІО_74~78		
AIO_82	7752	Усиление многофункционального аналогового выхода	AO2 Gain					
AIO_83	7753	Использование абсолютного значения аналогового выхода AO2	AO2 ABS					


¹⁾ Параметр отображается при работе в режиме WEB.

Глава 6 - Описание функций

6.1 Группа мониторинга (DIS_[][])

6.1.1 DIS_00 (Мониторинг режима управления)

Отображается при подаче питания на преобразователь.

Код	Имя параметра	Ед. изм.	Описание					
	Скорость двигателя	об/мин	Действительная скорость вращения двигателя в об/мин.					
			SPD : Режим контроля скорости					
			TRQ : Режим контроля момента					
DTC 00	Режим контроля двигателя		WEB : Режим WEB					
DIS_00			ВХ : Аварийный останов					
			ВАТ : Режим работы от батарей					
	Выходной момент		100% = Номинальный момент двигателя					
	Выходной ток преобразователя	А Отображение выходного тока преобразователя.						

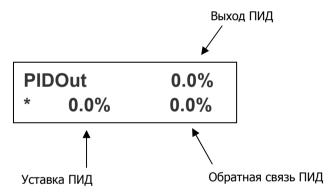
6.1.2 DIS_01 ~ 03 (User display 1, 2, 3)

Выберите один из следующих параметров, которые будут отображаться в DIS_01, 02 и 03.

Значение по умолчанию: DIS_01= "PreRamp Ref", DIS_02= "DC Bus Volt", DIS_03=

" Terminal In "

Код	Имя параметра	Дисплей	Ед. изм.	Описание		
	Значение Ai1 ~ Значение Ai3 ^{*1)}	Ai1 Value ~ Ai3 Value	%	Отображает значение многофункционального входа в процентах: (10B / 100%, 20мА / 100%)		
	Опорная скорость (заданная)	PreRamp Ref	об/мин	Заданная опорная скорость вращения		
DIS 01	Опорная скорость (текущая)	PostRamp Ref	об/мин	Текущая опорная скорость вращения		
DIS_03	Bход ASR	ASR Inp Ref	об/мин	Отображение значения скорости для входа ASR (Автоматический регулятор скорости), включая режим Draw и Droop		
	Скорость вращения	Motor Speed	об/мин	Действительная скорость двигателя		
	Отклонение скорости	Speed Dev	об/мин	Отклонение действительной скорости от заданной		
	Выход ASR	ASR Out	%	Выход ASR (в процентах от номинального момента)		


Код	Имя параметра	Дисплей	Ед. изм.	Описание			
	Отклонение момента	Torque Bias	%	Отклонение момента от номинального значения			
	Положительный предел момента	Pos Trq Limit	%	Положительный предел момента (в % от номинального момента)			
	Отрицательный предел момента	Neg Trq Limit	%	Отрицательный предел момента (в % от номинального момента)			
	Предел момента для регенерации	Reg Trq Limit	%	Предел момента для регенерации (в % от номинального момента)			
	Заданный момент	Torque Ref	%	Заданный момент (в процентах к номинальному моменту)			
	Уставка тока момента	IqeRef	%	Уставка тока момента (в процентах от номинального тока)			
	Ток момента	Iqe	%	Действительный ток момента (в процентах от номинального тока)			
	Уставка потока	Flux Ref	%	Уставка потока (в % к номинальному потоку)			
	Уставка тока возбуждения	IdeRef	%	Уставка тока возбуждения (в % от номинального тока возбуждения)			
	Ток возбуждения	Ide	%	Действительный ток возбуждения (в % от номинального тока возбуждения)			
	Выход ACR оси Q	ACR_Q Out	В	Значение выхода ACR оси Q			
	Выход ACR оси D	ACR_D Out	В	Значение выхода ACR оси D			
	Уставка напряжения оси D	VdeRef	В	Значение опорного напряжения оси D			
	Уставка напряжения оси Q	VqeRef	В	Значение опорного напряжения оси Q			
	Выходной ток	Out Amps RMS	Α	Выходной ток (среднеквадратичный)			
	Выходное напряжение	Out Volt RMS	В	Выходное напряжение (среднеквадратичное)			
	Выходная мощность	Power	кВт	Выходная мощность двигателя			
	Напряжение звена постоянного тока	DC Bus Volt	В	Напряжение звена постоянного тока			
	Уставка ПИД	Proc PI Ref	%	Значение уставки ПИД регулятора			
	Обр. связь ПИД	Proc PI F/B	%	Значение обратной связи ПИД регулятора			
	Выход ПИД	Proc PI Out	%	Выходное значение ПИД регулятора			
	Температура двигателя (NTC)	Mot Temp NTC	°C	Отображает температуру двигателя (при использовании датчика NTC типа). Если датчик не подключен, отображается 25°C			
	Температура двигателя (РТС)	Mot Temp PTC	°C	Отображает температуру двигателя (при использовании датчика РТС типа). Если датчик не подключен, отображается 25°С			
	Температура преобразователя	Inv Temp	°C	Отображает температуру радиатора преобразователя			
	Токовременная защита	Inv i ² t	%	Отображает способность перегрузки преобразователя. Если перегрузочная способность установлена как 150%, значение i²t становится 100%, когда 150% номинального тока течет в двигателе в течение 1 мин Отображает значение скорости, установленное командами «МОР вверх» и «МОР вниз»			
	МОР выход	MP Output	%				
	Режим управления	Ctrl Mode		Отображает выбранный способ управления			
	Версия ПО	S/W Version		Отображает версию программного обеспечения			
	Время работы	Run Time		Отображает время работы преобразователя после подачи питания			
	Состояние входных клемм	Terminal In		Отображает состояние входных клемм (0: Выкл., 1: Вкл.)			

Код	Имя параметра	Дисплей	Ед. изм.					Ог	іисаі	ние				
				0: вы кл 1: вк л.	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
	Состояние выходных	Terminal		Отображает состояние выходов (выход типа открытый коллектор, аварийное реле, вых. реле). (0: Выкл, 1: Вкл)										
	клемм	Out				XX1	AX	2	OC1	N	IC	NC		30A 30B)
				0: выкл 1: вкл	'	0/1	0/1		0/1	(0	0		0/1
	Статус работы	Run Status		Ото	брах	кение	е ста	туса	рабо	ты				

^{*1)}При использовании опциональной платы EXTN_I/O, количество аналоговых входов увеличится до Ai5.

6.1.3 DIS_04 (Состояние ПИД регулятора)

В этом параметре отображается информация о выходе / уставке / сигнале обратной связи ПИД регулятора.

6.1.4 DIS 05 (Экран ошибки)

В параметре DIS_05 можно просмотреть информацию о сбое: текущая ошибка, предыдущие две ошибки, количество случившихся ошибок и сброс. Переход между состояниями осуществляется с помощью клавиши [SHIFT/ESC].

Код	Индикация на дисплее	Имя параметра	Описание		
	Faults	Текущая ошибка	При отсутствии ошибки отображается "". При возникновении ошибки отображается код ошибки.		
	Last Fault1 2-я ошибка		Подробнее в Главе 9. Устранение неисправностей.		
DIS_05	Last Fault2 1-я ошибка				
	Fault Count Общее количество ошибок		Отображается количество ошибок, случившихся с момента последнего сброса по текущий момент.		
	Fault Clear	Reset	Сброс памяти ошибок.		

Дополнительная информация такая как: текущая скорость в момент возникновения ошибки, значение датчика обратной связи, выходная частота / ток / напряжение, текущее и заданное значение момента, напряжение звена постоянного тока, состояние входных клемм, состояние выходных клемм, рабочее состояние и время работы, может быть просмотрена, используя кнопки [PROG], [▲] / [▼]. При нажатии кнопки [ENT] произойдет возврат в основное меню. Для сохранения ошибки в памяти как [Last Fault 1] нажмите кнопку [RESET]. Для более подробной информации обратитесь к Главе 9. Устранение неисправностей.

Νō	Информации об ошибке	Индикация на дисплее	Νō	Информация об ошибке	Индикация на дисплее
1	Перегрузка по току фаза U	OC-U	15	Перегрузка	Over Load
2	Перегрузка по току фаза V	OC-V	16	Внешняя ошибка (Н.З.)	Ext-B Trip
3	Перегрузка по току фаза W	OC-W	17	Ошибка коммуникации	COM Error
4	Обрыв предохранителя	Fuse Open	18	Перегрузка преобразователя	Inv OLT
5	Повышенное напряжение	Over Voltage	19	Перегрев двигателя	MotOver Heat
6	K3 IGBT фаза U	Arm Short-U	20	Обрыв термодатчика преобразователя	InvThem OP
7	K3 IGBT фаза V	Arm Short–V	21	Ошибка термодатчика двигателя	MotThem Err
8	K3 IGBT фаза W	Arm Short-W	22	Превышение скорости двигателя	Over Speed
9	K3 IGBT в блоке DB *1)	Arm Short-DB	23	Аппаратная ошибка	HW-Diag
10	Ошибка энкодера	Encoder Err	24	Перегрев преобразователя *2)	OHD Open
11	Пониженное напряжение	Low Voltage	25	Ошибка вентилятора *2)	FAN LOCK
12	Ошибка заземления	Ground Fault	26	Нарушение питания энкодера *2)	Enc Power
13	Перегрев преобразователя	InvOver Heat	27	Нарушение питания вентилятора охлаждения и магнитного контактора *3)	FAN/MC PWR
14	Электронная термозащита	E-Thermal	28	Нарушение питания вентилятора ^{*4)}	FAN PWR

Ж Примечание :

При одновременном появлении нескольких ошибок, на дисплее будет отображена наиболее критичная ошибка. Остальные можно просмотреть, используя кнопки [PROG], [▲] / [▼] .

- *1) Только для преобразователей SV110~220iV5.
- *2) Только для преобразователей SV2800~5000iV5.
- *3) Только для преобразователей SV300~1600iV5-4DC.
- *4) Только для преобразователей SV2200iV5-4DC, SV5000iV5-4 and SV5000iV5-4DC.

6.1.5 DIS_06 (Отображение группы пользователя)

Пользователь может определить «группу пользователя», сгруппировав в ней часто используемые параметры. В параметре DIS_06 пользователь может задать режим отображения этой группы.

Код	Значение на дисплее	Имя параметра	Описание			
			Not used	Группа пользователя не отображается		
DIS_06	Usr Grp Disp	Отображение группы пользователя	Dis+Usr Grp	Отображается группа «Мониторинг» и «Группа пользователя». Остальные группы не отображаются. Для отображения других групп, перейдите к другой группе в коде перехода.		
			Display ALL	Отображение всех групп, включая «Группу пользователя». Группа «2-й двигатель» отображается при использовании второго двигателя. Группа EXT отображается при установке опциональной карты.		

6.2 Группа цифровых входов/выходов (DIO_[][])

6.2.1 Переход к требуемому параметру (DIO_00)

Для перехода к требуемому параметру введите в параметре I/O 00 код требуемого параметра.

(Пример) Переход к параметру I/O 05

Нажмите кнопку [PROG] и установите значение 5, используя кнопки [SHIFT/ESC] / [▲] / [▼]. Нажмите [ENT]. Произойдет переход к параметру I/O_05. Если код с таким номером не существует или недоступен, произойдет переход к ближайшему параметру.

Для перемещения к другим параметрам используйте кнопки [\blacktriangle] / [\blacktriangledown].

6.2.2 Многофункциональные входные клеммы

1) DIO_01 \sim DIO_07 (Определение многофункциональных входных клемм P1 \sim P7)

В преобразователях SV-iV5 используется 7 многофункциональных входных клемм. Для каждой из них можно выбрать одну из ниже описанных функций. Однако двум клеммам не могут быть назначены одинаковые функции. При попытке назначить функцию, которая уже используется, значение функции установится в «Not Used». Значение функций нельзя изменить во время вращения.

Νº	Значение	Описание	Νº	Значение	Описание
1	Speed-L	Многошаговая скорость младший бит	16	Prohibit FWD	Запрет вращения вперед
2	Speed-M	Многошаговая скорость средний бит	17	Prohibit REV	Запрет вращения назад
3	Speed-H	Многошаговая скорость старший бит	18	Proc PID Dis	Блокировка ПИД режима
4	Jog Speed	Скорость Jog	19	Timer Input	Вход таймера
5	MOP Up	МОР вверх	20	SoftStrtCncl	Отмена плавного пуска
6	MOP Down	МОР вниз	21	ASR Gain Sel	Переключение усиления ASR
7	MOP Clear	МОР сброс	22	ASR P/PI Sel	Переключение P/PI регулирования ASR
8	MOP Save	МОР запись	23	Flux Ref Sel	Переключение источника задания потока
9	Analog Hold	Удержание аналогового сигнала	24	PreExcite	Первоначальное намагничивание
10	Main Drive	Переключение между преобразователем и опцией	25	Spd/Trq Sel	Поддержание скорости/момента
11	2nd Func	2-й двигатель	26	Use Max Trq	Ограничение момента Вкл/Выкл
12	Xcel-L	Разгон/Торможение – младший бит	27	Use Trq Bias	Отклонение момента Вкл/Выкл
13	Xcel-H	Разгон/торможение – старший бит	28	Battery Run	Управление от батарей
14	3-Wire	Трехпроводное управление	29	LVT Diable	Блокировка ошибки Low voltage (Пониженное напряжение)
15	Ext Trip-B	Внешняя ошибка (Н.З.)			

- 1.1) Многошаговая скорость младший бит (Speed-L)
- 1.2) Многошаговая скорость средний бит (Speed-M)
- 1.3) Многошаговая скорость старший бит (Speed-H)
- 1.4) Скорость JOG (Jog Speed)

Если клеммы P1 \sim P4 определены как "Speed-L", "Speed-M", "Speed-H" и "Jog Speed", значение заданной скорости определяется параметрами FUN12 \sim FUN20 (многошаговая скорость 0 \sim 7 и Jog скорость).

(Пример) Определение значения многофункциональных входов Р1, Р2, Р3 как Speed-L, Speed-M, Speed-H и входа Р4 как Jog Speed;

Код	Дисплей	Описание	Диапазон	Ед. изм.	Значение
DIO_01	P1 define	Функция цифрового входа P1			Speed-L
DIO_02	P2 define	Функция цифрового входа P2			Speed-M
DIO_03	P3 define	Функция цифрового входа РЗ			Speed-H
DIO _04	P4 define	Функция цифрового входа P4			Jog Speed

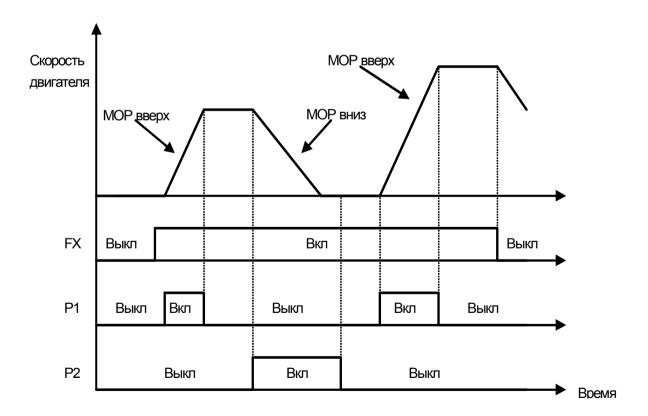
Когда входы P1, P2, P3 неактивны, заданная скорость определяется согласно значению параметра FUN_02 (аналоговый вход, клавиатура, интерфейс). Если активна скорость JOG, частота вращения определяется параметром FUN_20, независимо от состояния P1, P2, P3.

P1	P2	Р3	P4	Значение
OFF	OFF	OFF	OFF	FUN_02: клавиатура → FUN_12 (Скорость 0)
ON	OFF	OFF	OFF	FUN_13 (Скорость 1)
OFF	ON	OFF	OFF	FUN_14 (Скорость 2)
ON	ON	OFF	OFF	FUN_15 (Скорость 3)
OFF	OFF	ON	OFF	FUN_16 (Скорость 4)
ON	OFF	ON	OFF	FUN_17 (Скорость 5)
OFF	ON	ON	OFF	FUN_18 (Скорость 6)
ON	ON	ON	OFF	FUN_19 (Скорость 7)
X	Χ	X	ON	FUN_20 (Скорость Jog)

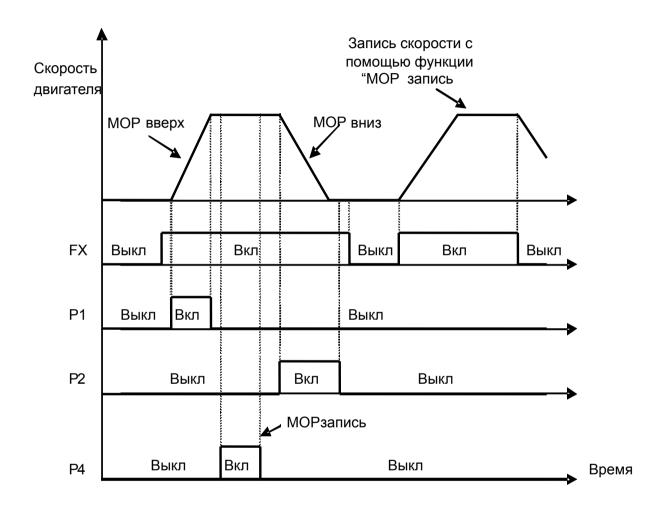
1.5) МОР (Виртуальный потенциометр) Вверх

- 1.6) МОР Вниз
- 1.7) МОР Сброс
- 1.8) МОР Запись

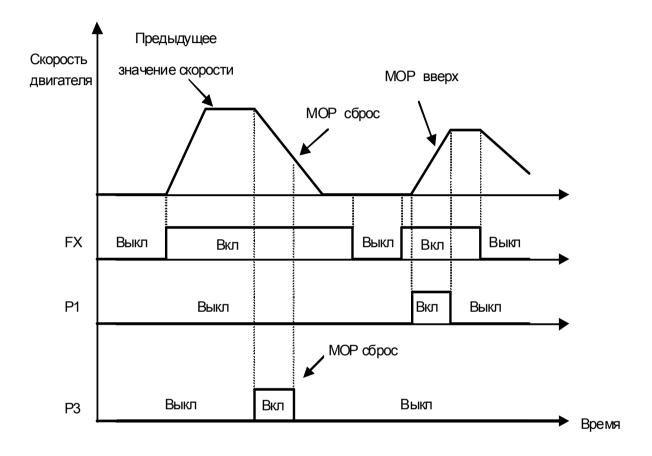
Когда многофункциональные входы P1 ~ P7 установлены в значения "MOP Up", "MOP Down", преобразователь осуществляет изменение скорости согласно состоянию этих клемм. В основном MOP функция используется для изменения скорости вращения с помощью цифровых входов. При активации клемм, назначенных как «МОР Вверх» и «МОР Вниз», преобразователь игнорирует источник задания частоты (заданный в параметре FUN_02) и осуществляет MOP управление. Для отключения MOP режима измените назначение использованных клемм на


«Not used». Если функция используется совместно с функцией "Main Drive", задание частоты определяется МОР функцией, а остальные с помощью функции "Main Drive". Максимальная скорость ограничена параметром FUN_04 (Максимальная скорость).

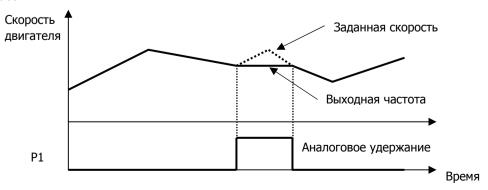
При подаче сигнала "MOP Save" текущее значение скорости сохраняется как "MOP Data". После окончания MOP операции, это значение используется как заданная скорость. Функция "MOP Clear" сбрасывает значение MOP Data в "0". Эта функция используется для сброса сохраненного значения.


Пример задания многофункциональных входов для МОР режима:

Код	Дисплей	Описание	Диапазон	Ед. изм.	Значение
DIO_01	P1 define	Функция цифрового входа Р1			MOP Up
DIO_02	P2 define	Функция цифрового входа Р2			MOP Down
DIO_03	P3 define	Функция цифрового входа РЗ			MOP Clear
DIO_04	P4 define	Функция цифрового входа Р4			MOP Save


Пример 1: Управления в режиме МОР (использование цифровых входов для изменения скорости вращения):

Пример 2: При появлении сигнала «МОР запись» скорость вращения запоминается. После остановки работа возобновляется на сохраненной скорости.



(**Пример 3**) Очистка сохраненного значения скорости с помощью функции «МОР сброс». Если обнуление скорости произошло при вращении двигателя, преобразователь замедляет скорость вращения до нуля. Если функция «МОР сброс» активирована при остановленном двигателе, значение заданной скорости обнуляется.

1.9) Аналоговое удержание (Analog hold)

Когда используется аналоговое задание скорости (FUN_02 = analog) и одна из многофункциональных клемм установлена в режим "Analog Hold", то при появлении сигнала ВКЛ на этом входе значение выходной скорости фиксируется и не изменяется (независимо от задающего аналогового сигнала) до тех пор, пока сигнал не будет отключен. Функция используется, когда нужно избежать случайных отклонений скорости на определенном этапе работы.

1.10) Главный преобразователь (Main Drive)

Каждый преобразователь, подключенный к сети, может управляться индивидуально. Когда на клемму «Главный преобразователь» подан сигнал, изменение таких параметров как: заданная скорость, способ управления, ограничение момента — можно задавать только через клавиатуру. Параметры, настроенные пользователем, не изменяются.

При подаче сигнала «Главный преобразователь» изменения вступают в силу сразу, если преобразователь остановлен. Если сигнал подан во время вращения, то режим «Главный преобразователь» включится после остановки.

Такие параметры как: FUN_01 (Источник команд пуск/стоп), FUN_02 (Источник задания скорости), CON_28 (Источник ограничения момента), связанные с заданием скорости, или способом управления, либо ограничением момента, нельзя изменить при появлении сигнала «Главный преобразователь» даже в том случае, если эти параметры изменяются с пульта или через интерфейс. Их можно изменить, только когда сигнал «Главный преобразователь» выключен (при остановленном преобразователе или после остановки).

Значение параметров FUN 01, FUN 02, CON 28, Con 01 при использовании функции:						
	2	ELINI O1	ELINI OO	CON 20 C	01	
	значение папаметоов		FUIN UZ	ווטוא אל וווטו	тт при использовании функции	1.

Код	«Главн. преобр.» ВКЛ	«Главн. преобр.» Выкл.	Изменение
Источник команд пуск/стоп	Keypad mode	Значение параметра FUN_01	
Источник задания скорости	Keypad1 mode	Значение параметра FUN_02 I	После остановки преобразователя
Источник ограничения момента	Kpd Kpd Kpd mode	Значение параметра CON_28	преобразователя
Способ управления	Speed mode	Значение параметра CON_01	

1.11) «2-й двигатель» (2nd Func)

Частотные преобразователи серии iV5 способны независимо управлять двумя двигателями. Второй двигатель становится активным при появлении сигнала «2-й двигатель» на входной клемме. Группа параметров «2-й двигатель» неактивна, если ни одной клемме не назначена эта функция, или если сигнал на клемме «2-й двигатель» отсутствует.

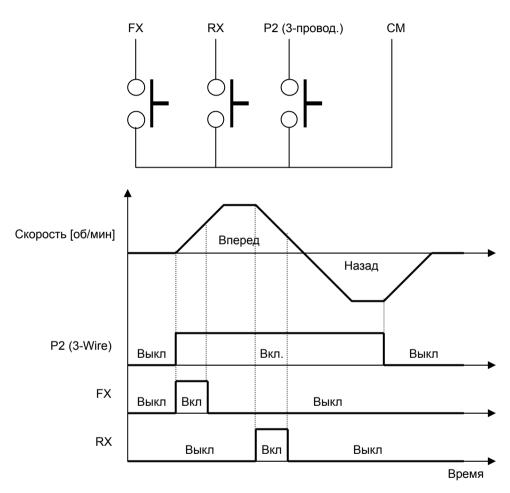
※ Аналогичные функции первого и второго двигателя:

Параметр	2-й двигатель		1-й двигатель		
Время разгона			FUN_40	Acc. Time 1	
Время торможения			FUN_41	Dec. time 1	
Параметры энкодера	2nd_12 ~ 2nd_14		PAR_11 ~ PAR_15		
Параметры двигателя	2nd_15 ~ 2nd_26		PAR_16 ~ PAR 30		
Электронная термо- защита (1 минута)	2nd_32	2nd ETH 1min	FUN_55	ETH 1min	
Электронная термо- защита (длительная)	2nd_33	2nd ETH Cont	FUN_56	ETH Cont	

Ж Примечание: Переключение между первым и вторым двигателем должно производится при остановленном двигателе. Если переключение выполнено во время вращения, функция будет активирована после остановки.

1.12) XCEL-L

1.13) XCEL-H


Подробнее работа функций в описании параметров FUN_40 \sim 47 (Время разгона/торможения 1, 2, 3, 4). (Заводские значения в различных моделях отличаются в зависимости от мощности преобразователя.)

	Индикания				Заводское значени		
Код	Индикация на дисплее	Описание	Ед.	2.2∼37 кВт	45∼75 кВт	90∼220 кВт	280∼500 κΒτ
FUN_40	Acc Time-1	Время разгона 1	сек.	2.00	10.00	20.00	30.00
FUN_41	Dec Time-1	Время торможения 1	сек.	2.00	10.00	20.00	30.00
FUN_42	Acc Time-2	Время разгона 2	сек.	3.00	12.00	24.00	35.00
FUN_43	Dec Time-2	Время торможения 2	сек.	3.00	12.00	24.00	35.00
FUN_44	Acc Time-3	Время разгона 3	сек.	4.00	14.00	28.00	40.00
FUN_45	Dec Time-3	Время торможения 3	сек.	4.00	14.00	28.00	40.00
FUN_46	Acc Time-4	Время разгона 4	сек.	5.00	16.00	32.00	45.00
FUN_47	Dec Time-4	Время торможения 4	сек.	5.00	16.00	32.00	45.00

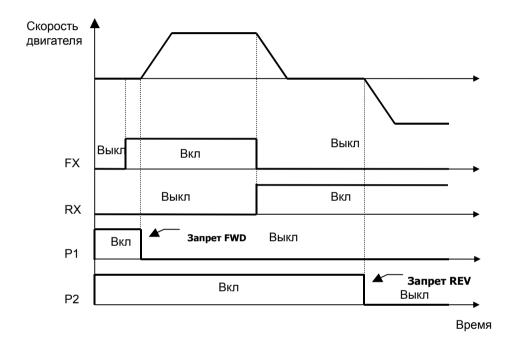
1.14) Трехпроводное управление (3-Wire)

При появлении сигнала на клемме FX или RX после снятия сигнала вращение не прекращается. Двигатель останавливается при пропадании сигнала на клемме, определенной как «Трехпроводное управление».

Схема подключения (Клемма 32 определена как «Трехпроводное управление»):

[Трехпроводное управление]

1.15) Внешняя ошибка Н.З. (Тгір-В)


Если появляется сигнал на клемме, назначенной как «внешняя ошибка Н.З.», преобразователь отключает выход IGBT и двигатель останавливается на выбеге. На дисплее отображается ошибка "External Trip Signal B contact", и индикатор STOP на пульте управления начинает мигать. Сигнал может быть использован для отключения преобразователя в случае внешней аварии.

1.16) Запрет вращения вперед (Prohibit FWD)

1.17) Запрет вращения назад (Prohibit REV)

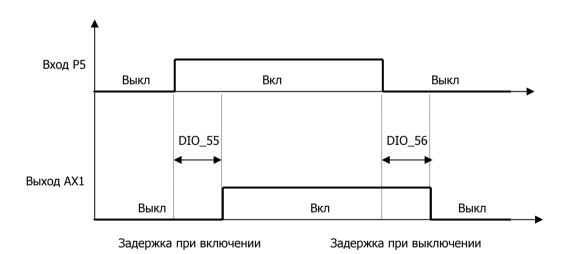
При появлении сигнала на клемме, назначенной как «Запрет вращения вперед» или «Запрет вращения назад», происходит запрет вращения в прямом или обратном направлении соответственно. Например, при вращении вперед, при появлении сигнала «Запрет вращения вперед», заданная скорость примет значение 0.

(Пример) Клемма Р1 установлена как «запрет вращения вперед», а клемма Р2 как «запрет вращения назад».

1.18) Отключения ПИД регулирования (Proc PID Dis)

Функция используется для отключения ПИД регулирования. Если используется ПИД регулирование (параметр CON_20 установлен в ON), то при появлении сигнала на клемме, назначенной как «отключение ПИД», ПИД регулирование отключается. При отсутствии этого сигнала частотный преобразователь работает в режиме ПИД регулирования. Значение параметра CON_20 описано в таблице.

Код	Индикация на дисплее	Описание	Диапазон значений	Ед. изм.	По умолчанию
			Disable		
CON_20	Proc PID Enb	ПИД управление Вкл/Выкл	Enable		Disable
			Terminal		


Если параметр CON_20 установлен как 'Disable', ПИД регулирование отключено. Если параметр CON_20 установлен как 'Enable", то ПИД регулирование включено. Если параметр установлен как 'Terminal', то состояние ПИД регулятора (Вкл или Выкл) определяется сигналом на клемме «Отключение ПИД регулирования». Для предотвращения насыщения ПИД контроллера, работа ПИД контроллера возможна, только если многофункциональный вход установлен как 'Proc PID Dis', на вход не подается сигнал, и подан сигнал на вращение. ПИД контроллер не работает, если нет сигнала на вращение, и ни один многофункциональный вход не задан как 'Process PID Disable'.

CON_20	Запрет ПИД регулирования	Команда на вращение		
CON_20	Сигнал на входной клемме	Вкл	Выкл	
Terminal	ON	Запрещено	Запрещено	
Terrilliai	OFF	Разрешено	Запрещено	
	Enable	Разрешено	Запрещено	
	Disable	Запрещено	Запрещено	

1.19) Вход таймера (Timer input)

Функция используется как вход встроенного таймера. Задержка при включении, задержка при выключении задаются в параметрах I/O_55 и I/O_56. В следующем примере показано использование таймера. В качестве выхода используется порт AX1, установленный как «Выход таймера» (параметр DIO 41).

Код	Индикация на дисплее	OHINGALINA	Диапазон	Ед. изм.	Значение
DIO_05	P5 Define	Назначение многофункциональной входной клеммы P5			Timer Input
DIO_41	AX1 Define	Назначение многофункционального выхода AX1			Timer Out
DIO_55	TimerOn Dly	Задержка при включении	0.1 – 3600.0	Сек	
DIO_56	TimerOff Dly	Задержка при выключении	0.1 – 3600.0	Сек	

1.20) Отмена плавного пуска (SoftStrtCncl)

Функция отмена плавного пуска используется в случаях, когда требуется наименьшее время разгона/торможения (меньше, чем используемые параметры разгона/торможения). В этом случае действительное время разгона/торможения зависит от типа нагрузки и настройки регулятора скорости. В таблице показаны варианты времени разгона/торможения при сигналах на клеммах Р1, Р2 и Р3, настроенных как "Xcel-L", "Xcel-H", "SoftStartCncl".

(Пример) Вход РЗ запрограммирован как «Отмена плавного пус	ка»
--	-----

P1 (Xcel-L)	P2 (Xcel-H)	P3 (SoftStartCncl)	Время разгона/торможения
OFF	OFF	OFF	Разгон/торможение 1
ON	OFF	OFF	Разгон/торможение 2
OFF	ON	OFF	Разгон/торможение 3
ON	ON	OFF	Разгон/торможение 4
Х	X	ON	Наименьшее время разгона/торможения

1.21) Переключение параметров ASR (ASR Gain Sel)

Используя функцию «выбор параметров ASR», можно выбрать один из двух коэффициентов **P Gain** или **I Gain** ПИ регулирования для «контроллера регулирования скорости» (ASR).

(Пример) Клемма Р5 запрограммирована как «ASR PI Gain»

Код	Индикация на дисплее	Описание	Диапазон	Ед. изм	Значение
DIO_05	P5 define	Определение много- функционального входа Р5			ASR Gain Sel
CON_03	ASR P Gain1	Коэффициент усиления P1 ASR (Автоматическая регуляция скорости)	0.0 – 200.0	%	Р5 : Выкл
CON_04	ASR I Gain1	Время интегрирования I1 ASR	0 – 50000	мсек	rs i bbiki
CON_05	ASR LPF1	Постоянная времени ASR 1	0 – 20000	мсек	
CON_06	ASR P Gain2	Коэффициент усиления P2 ASR	0.0 - 200.0	мсек	
CON_07	ASR I Gain2	Время интегрирования I2 ASR	0 – 50000	мсек	<u> P5 : Вкл</u>
CON_08	ASR LPF2	Постоянная времени ASR 2	0 – 20000	мсек	

1.22) Выбор P/PI регулирования ASR (ASR P/PI Sel)

Автоматическая регулировка скорости (ASR) может работать как с P, так и PI коэффициентами. Выбор производится в зависимости от состояния клеммы, определенной как «ASR P/PI Sel». Для избегания рывков при переключении коэффициентов усиления ASR коэффициент P может изменяться постепенно в течение времени, задаваемого в параметре CON_09 (Время переключения коэффициентов ASR).

(Пример) Клемма Р6 запрограммирована как «ASR P/PI Sel».

Код	Дисплей	Описание	Диапазон	Ед. изм.	Значение по умолчанию
DIO_05	P5 define	Определение много- функционального входа Р5			ASR P/PI Sel

1.23) Выбор источника потока (Flux Ref Sel)

При появлении сигнала на клемме, установленной как «FluxRefSel», значение потока задается аналоговым сигналом (-10-10B) в процентах от номинального потока.

1.24) Начальное намагничивание (PreExcite)

Эта функция позволяет двигателю создать дополнительный магнитный поток в двигателе перед пуском. Это позволит улучшить регулирование скорости при разгоне двигателя.

1.25) Переключение между контролем скорости и моментом (Spd/Trq Sel)

Эта функция осуществляет переключение между контролем скорости и момента. Сигнал с многофункциональной клеммы обладает большим приоритетом, чем значение, установленное с клавиатуры. Способ управления может быть переключен только при остановленном двигателе. Если переключение осуществлено во время вращения, изменения вступят в силу после остановки двигателя.

1.26) Разрешение максимального момента (Use Max Torque)

При появлении сигнала на этой клемме значение предела момента фиксируется на его максимальной величине. Когда сигнал на этой клемме отсутствует, предельные значения момента определяется параметрами CON_29 ~ CON_31. Эта функция должна использоваться кратковременно.

Если функция используется в течение длительного времени, двигатель и преобразователь могут выйти из строя. Используйте функцию с осторожностью.

1.27) Использование отклонения момента (Use Trq Bias)

Если одна из многофункциональных клемм (P1 ~ P7) назначена как "Use Trq Bias", то при появлении сигнала на этой клемме, величина момента изменяется на заданную величину. Если ни одна из клемм не назначена в режим "Use Trq Bias", и параметр CON_32 установлен как «KeyPAD», отклонение момента задается в пар. CON_33. Если параметр CON_32 установлен как «Analog», то для задания отклонения момента используется аналоговый сигнал. Если значение отклонения момента не используется, параметр CON_32 должен быть установлен в значение "None".

1.28) Управление от батарей (Battery Run)

При отключении основного питания преобразователь может временно работать от аккумуляторных батарей. Данная функция доступна для преобразователей мощностью от 5,5 до 22 кВт. Использование режима «управления от батарей» подробно описано в главе 6.4.14.

1.29) Отключение ошибки при пониженном напряжении питания (LVT Disable)

Аппаратные ошибки (за исключением ошибки "Low voltage") определяются при питании платы управления от дополнительного источника питания до подачи основного питания. При появлении ошибки "Low voltage" контакты аварийного реле не замыкаются. Команда ПУСК не подается до подачи основного питания, даже если нет никакой аппаратной ошибки. Если один из многофункциональных выходов установлен как 'INV Ready', то сигнал на выходе не выдается.

Определение ошибки "FAN fault" (поддерживается в преобразователях мощностью 280 – 375 кВт) возможно только после подачи основного питания. Ошибка не будет определена до подачи основного питания. Ниже описаны состояния выхода "INV Ready", определение ошибки "Fun fault" и определение аппаратной ошибки до и после подачи основного питания при активном сигнале 'LVT Disable'

"LVT Disable"	Главное питание	Выход 'INV Ready'	Ошибка "FAN fault "	Аппаратная ошибка за исключением " Low voltage " и " FAN fault"
Вкл	До подачи	Выкл.	Не определяется	Определяется
	После подачи	Вкл	Определяется	

2) Инвертирование входных клемм (DIO_08)

Обычно управляющие сигналы на входные клеммы подаются через нормально открытые контакты. Но если нужно использовать нормально закрытый контакт (например, кнопку аварийного останова), то можно изменить состояние многофункционального входа, и наличием сигнала будет считаться переход из «1» в «0». Для этого нужно установить соответствующий бит в параметре DIO_08 в значение «1». Порядок клемм в параметре DIO_08 следующий: P1, P2, P3, P4, P5, P6 и P7.

(Р1 ~ Р7: Н.О. контакты)

(Р1, Р6: Н.З. контакты)

DIO ▶Neg Function

DIO ▶ Neg Function

3) Постоянная времени многофункциональных входов (DIO_09)

Величина постоянной времени низкочастотного фильтра входных клемм (FX, RX, BX, P1 ~ P7, RST) задает время реакции на появление сигнала, подавляя импульсные помехи на входах. При увеличении постоянной времени увеличивается время реакции на событие. Оптимальное значение параметра - 2.5 мс.

6.2.3 Многофункциональные цифровые выходные клеммы

1) Инвертирование многофункциональных цифровых выходов (DIO_10) (Релейный выход, выход типа «открытый коллектор»)

По умолчанию контакты выходных реле нормально открытые (H.O.) Для изменения их в нормально закрытые контакты установите значение соответствующего бита параметра DIO_10 в «1». Порядок клемм: AX1, AX2, OC1, NC, NC (NC — не используется).

(AX1 ~ OC1: H.O, контакты)

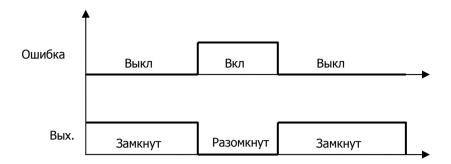
(AX1, OC1:H.3. контакты)

DIO ▶Neg Func.Out

DIO ▶Neg Func.Out

2) Назначение выходных реле AX1 и AX2 и выхода типа открытый коллектор OC1 (параметры DIO_41 \sim 43)

В таблице представлены значения, которые могут принимать многофункциональные выходы. Выход активируется при выполнении условия выбранной функции.

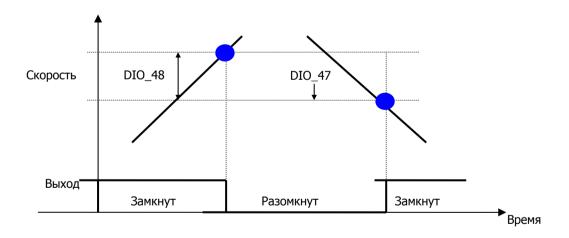

Nº	Значение	Nº	Значение	Nº	Значение
1	Not Used	9	Run	17	Stop
2	INV Ready	10	Regenerating	18	Steady
3	Zero Spd Det	11	Mot OH Warn	19	Brake Output
4	Spd Det.	12	INV OH Warn		
5	Spd Det (ABS)	13	Speed Agree		
6	Spd Arrival	14	Trq Det.		
7	Timer Out	15	Trq Lmt Det.		
8	LV Warn	16	OverLoad		

2.1) Не используется (Not used)

Многофункциональный выход не используется.

2.2) Готовность преобразователя (INV ready)

Выход активируется при готовности преобразователя к работе. При возникновении ошибки сигнал «INV Read» отключается, как показано на рисунке ниже.

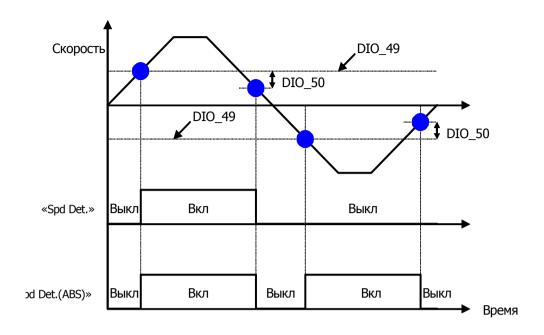


2.3) Определение нулевой скорости (Zero Spd Det)

Определение нулевой скорости двигателя.

Код	Дисплей	Описание	Диапазон	Ед. изм	По умолчанию
DIO_47	ZSD Level	Уровень определения нулевой скорости	0.0 - 480.0	об/мин	10
DIO_48	ZSD Band	Гистерезис нулевой скорости	0.1 - 10.0	%	0.5

• DIO_48 задается в % от FUN_04 (Максимальная скорость двигателя).


2.4) Определенная скорость (Spd Det) - Полярность учитывается

2.5) Определенная скорость (Spd Det.(ABS)) – Полярность не учитывается

Выход активируется при достижении определенной скорости. Полярность (направление вращения) для значения «Spd Det.» учитывается. Для значения «Spd Det.(ABS)» не учитывается.

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
DIO_49	SD Level	Уровень определения скорости	-3600 – 3600	об/мин	0
DIO_50	SD Band	Гистерезис определения скорости	0.1 - 10.0	%	0.5

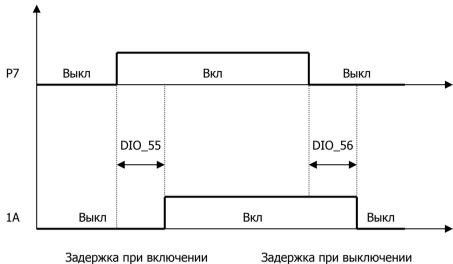
Гистерезис скорости (DIO_49) задается в процентах от максимальной скорости двигателя (FUN_04)

2.6) Достижение заданной скорости (Spd arrival)

Активируется при достижении заданной скорости.

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
DIO _51	SA Band	Гистерезис достижения заданной скорости	0.1 - 10.0	%	0.5

2.7 Отклонение от заданной скорости (Spead deviataion)


Активируется при отклонении от заданной скорости.

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
DIO_52	SEQ Band	Гистерезис отклонения от заданной скорости	0.1 - 10.0	%	0.5

2.8) Выход таймера (Timer OUT)

Если один из многофункциональных входов (P1 \sim P7) установлен в режим «Timer input», то при использовании этой функции выход используется как выход таймера. Временные задержки DIO_55 (Задержка при включении таймера) и DIO_56 (Задержка при выключении таймера) определяют параметры работы таймера.

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
DIO_07	P7 define	Назначение многофункционального входа Р7			Timer Input
DIO_41	AX1 Define	Назначение многофункционального выходного реле			Timer Out
DIO_55	TimerOn Dly	Задержка при включении таймера	0.1 – 3600.0	сек	0.1
DIO_56	TimerOff Dly	Задержка при выключении таймера	0.1 – 3600.0	сек	0.1

Задержка при выключении

2.9) Пониженное напряжение (LV)

Выход активизируется при снижении напряжения в звене постоянного тока ниже установленного значения.

2.10) Работа (Run)

Выход активен при вращении двигателя.

2.11) Регенерация (Regenerating)

Выход активен при регенерации двигателя.

2.12) Предупреждение о перегреве двигателя (Mot OH Warn)

При использовании двигателя со встроенным температурным датчиком NTC или РTC типа, выход активизируется, если температура двигателя выше заданного значения температуры перегрева двигателя.

Это событие не формирует сигнал об ошибке преобразователя.

«При применении опциональной платы ExTTN_I/O это соответствует аналоговому входу Ai5

Параметр AIO 25 (Тип аналогового входа) устанавлен как "Use Mot NTC" или "Use Mot PTC".

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
DIO_64	MH Warn Temp	Температура перегрева двигателя	75 – 130	°C	120
DIO_65	MH Warn Band	Гистерезис температуры перегрева двигателя	0 – 10	°C	5

2.13) Предупреждение о перегреве преобразователя (Inv OH Warn)

Выход активируется, когда температура радиатора преобразователя выше заданного значения.

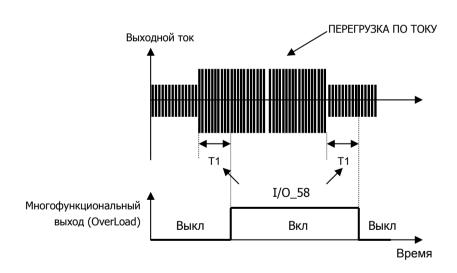
Это событие не формирует сигнал об ошибке преобразователя.

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
DIO_62	IH Warn Temp	Температура перегрева преобразователя	50 – 85	°C	75
DIO_63	IH Warn Band	Гистерезис температуры перегрева преобразователя	0 – 10	°C	5

2.14) Выход Trq Det

Выход Trq Det активен, когда выход ASR достигает заданного уровня момента.

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
DIO_53	TD level	Уровень определения момента	0.0 – 250.0	%	0.0
DIO_54	TD Band	Гистерезис определения момента	0.1 - 10.0	%	0.5


2.15) Trq Lmt Det

Выход Trq Lmt Det активен, когда выход ASR (Опорное значение момента) достигает предельного значения.

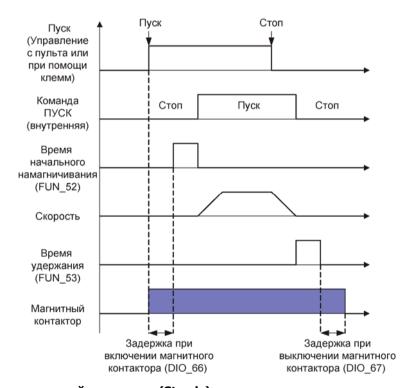
2.16) Перегрузка (OverLoad)

Если выходной ток преобразователя превышает значение, заданное в параметре DIO_57 (уровень перегрузки по току), в течение времени, заданного в параметре DIO_58, формируется предупреждение о перегрузке. Сигнал о перегрузке снимается, если выходной ток преобразователя снижается ниже значения параметра DIO_57 по истечении времени DIO_58.

Выходной сигнал может выдаваться на многофункциональные реле AX1, AX2 и на выходе типа открытый коллектор OC1. Ошибка преобразователя не формируется при возникновании сигнала о перегрузке, и вращение двигателя продолжается.

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
DIO_57	OL level	Уровень перегрузки по току	30 – 250	%	150
DIO_58	OL time	Время перегрузки по току	0 – 30	сек	10

[•] Примечание: Значение перегрузки по току задается в процентах от значения номинального тока двигателя.

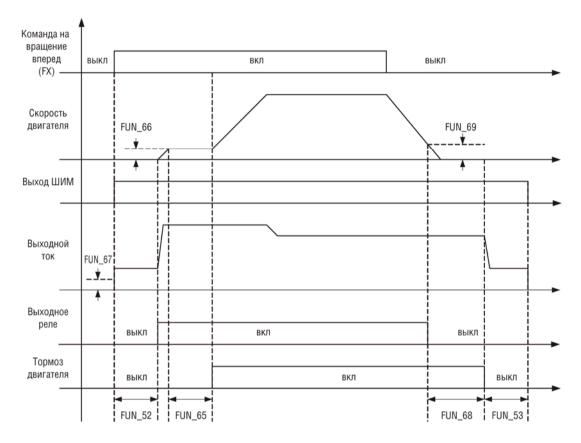

2.17) Останов (Stop)

Выход активизируется, если нет вращения двигателя.

2.18) Функция MC on/Off

Эта функция управляет магнитным контактором, установленным на выходе преобразователя (при использовании для управления лифтом и т.д.). Это функция многофункционального выхода включает/отключает магнитный контактор до того, как ток будет подан на выход преобразователя при запуске. Индикаторы FWD и REV мигают в течение времени включения/выключения магнитного контактора. Для отключения функции установите время включения/отключения контактора в 0.

Параметр	Значение	Описание	Диапазон	Ед. изм.	По умолчанию
DIO_66	MC Timer On	Задержка при включении контактора	100 – 50000	мсек	1000
DIO_67	MC Timer Off	Задержка при выключении контактора	100 – 50000	мсек	1000



2.19) Вращение с постоянной скоростью (Steady)

Выход активируется при вращении двигателя с постоянной скоростью.

2.20) Выход тормоза (Brake output)

Выходной сигнал для отключения или включения тормоза двигателя.

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
FUN_65	BKOpen Time	Время отключения тормоза	0.00 - 30.00	сек	0.00
FUN_66	BKOpen Spd	Скорость отключения тормоза	0.0 - 500.0	Об/мин	0.0
FUN_67	Release Curr	Ток отключения тормоза	0.0 - 150.0	%	20.0
FUN_68	BKClose Time	Время включения тормоза	0.00 - 30.00	сек	0.00
FUN_69	BKClose Spd	Скорость включения тормоза	0.0 - 500.0	Об/мин	0.0

Примечание: Ток отключения тормоза задается в процентах от магнитного тока двигателя.

3) Функция DIO_46 (Реле аварии Н.О. и Н.З. контакты)

Функция используется для выдачи сигнала ошибки преобразователя через релейные контакты. Настройки аварийного реле определяются параметром DIO_46. В зависимости от установленных бит определяется режим работы аварийного реле.

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
DIO_46	Relay mode	Режим реле	000 - 111	-	011

Код	Bit 2 (Кол-во попыток автозапуска)	Bit 1 (Ошибка преобразователя)	Bit 0 (Пониженное напряжение)
DIO_46	0/1	0/1	0/1

Бит	Знач.	Описание
Bit 0	0	Неактивно при ошибке «Пониженное напряжение»
(LV)	1	Замыкается при ошибке «Пониженное напряжение»
Bit 1	0	Неактивно при любой ошибке
(Trip)	1	Замыкается при любой ошибке кроме «Пониженное напряжение»
Bit 2	0	Не активно при попытке повторного запуска
(Retry)	1	Активно при попытке повторного запуска

4) DIO_59 ~ 61 (Ошибка перегрузка. Разрешение, уровень, время)

Если выходной ток преобразователя выше заданного значения (DIO_60) и удерживается на этом уровне в течение времени (DIO_61), преобразователь отключает выход и выдает сообщение об ошибке.

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
DIO_59	OLT select	Разрешение ошибки «перегрузка»	Yes/No	-	Yes
DIO_60	OLT level	Уровень ошибки «перегрузка»	30 – 250	%	180
DIO_61	OLT time	Время ошибки «перегрузка»	0 – 60	сек	60

• Примечание: Параметр DIO_60 задается в процентах от номинального тока двигателя.

5) DIO_97 (Действия при потере команды)

Вы можете выбрать способ управления при пропадании сигнала с аналогового входа. В группе AIO находятся параметры, определяющие критерии потери аналогового сигнала и время потери сигнала.

Код	Индикация на дисплее	Имя функции Диапазон	Ед. изм.	Описание
		None	-	Продолжение вращения при потере команды
DIO_97	Lost Command	Free-run	-	Торможение на выбеге при потере команды
		Stop	-	Снижение скорости до 0 при потере команды

6.3 Группа «Параметры» (PAR_[][])

6.3.1 Переход к требуемому параметру (PAR_00)

Параметр PAR_00 предназначен для быстрого перехода к любому параметру группы «Параметры».

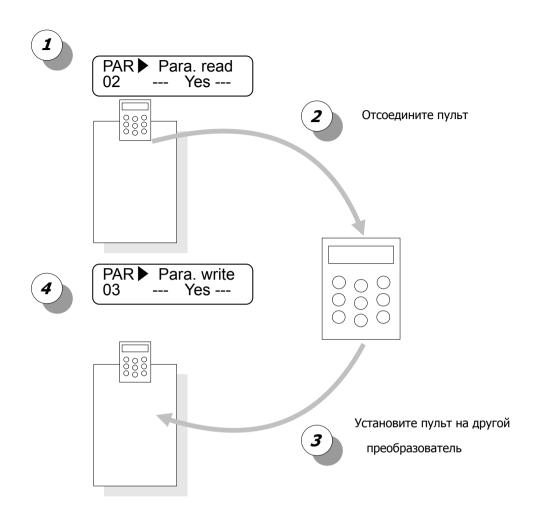
(Пример) Переход к параметру PAR_30

Нажмите [PROG] и установите значение 30, используя кнопки [SHIFT/ESC] / [▲] / [▼]. Нажмите кнопку [ENT]. Произойдет переход к требуемому параметру. Если перейти к заданному параметру нельзя (он отсутствует или недоступен), переход будет осуществлен к ближайшему параметру.

Для перехода к другим параметрам используйте кнопки $[\blacktriangle] / [\blacktriangledown]$.

6.3.2 Функции параметров группы

1) PAR_01 (Инициализация параметров)


Используется для сброса значений параметров к значениям по умолчанию (заводским настройкам). Можно сбросить все параметры или параметры отдельной группы. После сброса в первую очередь правильно выставьте значение параметра **PAR 07 (Мощность двигателя)**.

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
PAR_01	Para. init	Сброс параметров к значениям по умолчанию	No All Groups DIS DIO PAR FUN CON EXT AIO USR 2ND E/L SYN WEB		No

2) PAR 02 ~ 03 (Чтение/запись параметров)

Текущие настройки преобразователя могут быть скопированы в другой преобразователь через пульт. Для этого установите параметр **PAR_02** (Чтение параметров) в значение "Yes". Текущие настройки параметров скопируются в пульт. Отсоедините пульт и подключите его к другому преобразователю. Установите параметр **PAR_03** (Запись параметров) в "Yes". Параметры, сохраненные в пульте, запишутся в преобразователь.

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
PAR_02	Para. Read	Чтение всех параметров	No/Yes		No
PAR_03	Para. Write	Запись всех параметров	No/Yes		No

3) PAR_04 (Блокировка параметров)

Установите значение "12" для блокировки возможности изменения параметров.

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
PAR_04	Para. Lock	Блокировка параметров	0 ~ 255		0

4) PAR_05 (Пароль)

Если ввести в этот параметр четырехзначное значение (кроме 0), то после перезапуска будет доступно только меню «Дисплей» (DIS[][]). Если нажать кнопку [Mode], на экране появится запрос на ввод пароля "Password". Если пароль введен, доступ к другим группам будет разрешен. Для отмены запроса пароля установите в параметре PAR_05 значение 0. Если вы забыли пароль, введите значение «5052» Это системный пароль, он сбросит значение параметра PAR_05 в «0».

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
PAR_05	Password	Пароль	0 – 9999		0

6.3.3 Ввод параметров двигателя

1) PAR_07 (Мощность двигателя)

2) PAR_08 (Мощность двигателя. Значение пользователя)

Выберите мощность двигателя (параметр PAR_07). По умолчанию это значение равно мощности преобразователя. После выбора мощности параметры двигателя автоматически установятся в соответствии с этой мощностью. Эти значения соответствуют параметрам двигателей LG-OTIS. Если вы используете двигатели других производителей, проверьте значения параметров двигателя, и, если необходимо, измените их в соответствии со значениями на шильде двигателя. Если мощность двигателя отличается от стандартных значений параметра PAR_07, то выберите "User Define". После этого станет доступен параметр PAR_08, в котором можно ввести числовое значение мощности. После этого проведите автотюнинг для измерения дополнительных параметров двигателя.

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
PAR_07	Motor select	Выбор мощности двигателя	2.2 — 800.0 Определяется пользователем	кВт	Такое же, как и мощность преобразователя
PAR_08	User Motor Sel	Мощность двигателя (пользовательская настройка)	1.5 – 800.0	кВт	5.5

3) PAR_09 (Способ охлаждения двигателя)

Параметр PAR_09 используется при расчёте токовой нагрузки на двигатель (электронная термозащита двигателя). При естественном охлаждении установите 'Self-Cool', при принудительном охлаждении установите 'Forced-Cool'.

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
PAR_09	Cooling Mtd	Способ охлаждения	Принудительное охлаждение/ самоохлаждение		Принудительное охлаждение

4) Параметры энкодера (PAR_10 ~ 13: количество импульсов на оборот, фазировка, определение ошибки, постоянная фильтра)

Введите количество импульсов на оборот энкодера, закрепленного на валу двигателя, в параметре PAR_10 (Количество импульсов энкодера). Если PAR_12 (Определение ошибки энкодера) установлен в 'Yes', то при возникновении ошибки (например обрыв провода) формируется ошибка преобразователя. Если используется энкодер с выходом типа «открытый коллектор», функция определения ошибки энкодера не работает, и значение параметра PAR_12 должно быть установлено в «О». При изменении подключения (фазы А и В) энкодера или выходных кабелей преобразователя (U, V, W), во время автотюнинга на дисплее будет отображаться 'Enc AB Chgd' (неверное направление вращения энкодера). В этом случае измените значение параметра PAR_11 (Направление вращения энкодера) или поменяйте местами провода фаз А и В. При воздействии сильных электромагнитных помех сигналы энкодера могут искажаться. Для уменьшения влияния

помех, измените значение параметра **PAR_13** (Постоянная времени низкочастотного фильтра энкодера).

I	Код	Дисплей	Описание	Диапазон	По умолчанию
	PAR_11	Enc Dir Set	Выбор направления вращения энкодера	A Phase Lead/B Phase Lead	A Phase Lead

Значение	Описание	Импульсы энкодера (Вращение вперед)
A Phase Lead	При вращении вперед фаза А ведущая. При вращении назад фаза В ведущая.	A
B Phase Lead	При вращении вперед фаза В ведущая. При вращении назад фаза А ведущая.	A

Если вы установите значение параметра PAR_12 в "Yes", то при обрыве провода энкодера или при неправильном подключении будет отображаться ошибка энкодера. При использовании энкодера с выходом типа «открытый коллектор» функция не работает, и значение параметра PAR 12 нужно установить в "No".

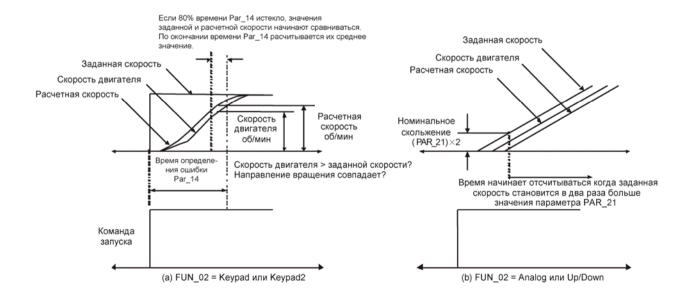
Неправильно настроенные параметры энкодера могут ухудшить точность поддержания скорости и могут привести к ошибкам "overcurrent" и "overvoltage". Более подробно ошибки преобразователя и пути их устранения описаны в Главе 9.

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
PAR_10	Enc Pulse	Кол-во импульсов энкодера	360 – 4096		1024
PAR_12	Enc Err Chk	Ошибка энкодера	Yes No		Yes
PAR_13	Enc LPF	Постоянная времени энкодера	0 ~ 100	мсек	1

6.3.4 Программное определение ошибки энкодера (PAR_14 ~ 15: время определения ошибки, опорная скорость ошибки)

Для обеспечения корректной работы системы определения и поддержания скорости с применением энкодера, подключение энкодера и двигателя должно быть надежным. При обрыве провода энкодера или двигателя во время работы, произойдет резкое увеличение тока двигателя. Это может повредить двигатель, поэтому в преобразователе должны присутствовать функции определения ошибки энкодера (обрыв и неправильное подключение).

Преобразователь серии iV5 может отслеживать аппаратные ошибки энкодера (такие как обрыв фазы энкодера) при установке параметра PAR_12 в значение "Yes". Но эта функция не может определить ошибочное подключение энкодера. Для проверки правильности подключения энкодера нужно провести Автотюнинг с вращением ("Rotational Auto-tuning"). Для этого установите параметр PAR_23 (Тип автотюнинга) в "Rotational" и выполните проверку энкодера. В случае неправильного подключения, в процессе вращения при проверке скорости вращения ошибка будет определена.


В некоторых случаях (например, при управлении грузовым лифтом) проведение теста энкодера затруднительно. Для решения этой проблемы преобразователи серии iV5 имеют функции для программного определения ошибки.

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолч.
PAR_14	EncFaultTime	Время определения ошибки энкодера	0.00 - 10.00	сек	0.00
PAR_15	EncFaultPerc	Опорная скорость ошибки энкодера	0.0 – 50.0	%	25.0
PAR_21	Rated-Slip	Номинальное скольжение двигателя	10 – 250	об/мин	

При неправильном подключении двигателя или энкодера двигатель не может набрать скорость в связи с перегрузкой по току. Программное определение ошибки энкодера применяется для определения ошибок, таких как: неправильное подключение и искажение сигналов во время стандартного режима работы, а не во время автотюнинга. Преобразователь определяет ошибку, если двигатель не набирает заданную скорость за заданное время. По истечению времени EncFaultTime будет выдана ошибка. Также ошибка возникнет, если направление вращения не совпадает с заданным.

Для активации функции программного определения ошибки энкодера установите параметр CON_01 в значение "Speed", и задайте значение параметра Par_14 отличным от «0». Если время удержания команды «ПУСК» меньше времени "EncFaultTime" или разгон сменяется торможением (при изменении заданной скорости), преобразователь не может определить ошибку. Преобразователь определяет аппаратную ошибку энкодера, сравнивая скорость двигателя с заданной скоростью во время разгона.

Функция программного определения ошибки выполняется только один раз после запуска и активизируется, когда заданная скорость становится в два раза больше скорости скольжения двигателя. Например, если заданная скорость 500 об/мин и номинальное скольжение 40 об/мин, то уровень активации будет 80 об/мин.

6.3.5 Автотюнинг

Некоторые параметры двигателя, предназначенные для векторного управления, могут быть определены во время автотюнинга: сопротивление статора, индуктивность статора, индуктивность рассеяния и постоянная времени ротора. Можно использовать Автотюнинг с вращением и Автотюнинг без вращения.

1) Параметры двигателя и энкодера необходимые для проведения автотюнинга.

DTIA FIORINGTON FORMUNI GUTL	VCTQUODROULL COFRACUO QUQUOLUGAN UQ UUARI RO RRUFQTORG
эти параметры должны оыть	установлены согласно значениям на шильде двигателя.

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолч.
PAR_07	Motor Select	Выбор мощности двигателя	2.2 – 800.0 Определяется пользователем		
PAR_08	UserMotorSel	Выбор мощности (пользовательская настройка)	1.5 – 800.0		5.5
PAR_10	Enc Pulse	Количество импульсов энкодера	360 – 4096		1024
PAR_17	Base Speed	Номинальная скорость двигателя	100.0 – 3600.0	об/мин	1800.0
PAR_18	Rated Volt	Номинальное напряжение двигателя	120 – 560	В	220 или 440
PAR_19	Pole Number	Количество полюсов двигателя	2 – 12		4
PAR_20	Efficiency	КПД двигателя	0.0 - 100.0	%	
PAR_21	Rated-Slip	Номинальное скольжение	10 – 250	об/мин	
PAR_22	Rated-Curr	Номинальный ток двигателя	1.0 – 2000.0	Α	

PAR_17 (Номинальная скорость двигателя) определяется частотой выходного напряжения преобразователя. Она не может быть установлена больше чем максимальная скорость двигателя.

Установка скорости двигателя и номинального напряжения согласно номиналам двигателя. При использовании стандартного двигателя, номинальное значение частоты равно 50Гц (1500об/мин. Номинальная

$$rpm = \frac{120 \times \text{Номинальная частота}}{\text{Количество полюсов}}$$

При использовании стандартного двигателя,
$$1500rpm = \frac{120 \times 50 Hz}{4}$$

PAR_18 (Номинальное напряжение двигателя). Для преобразователей класса 220В, значение по умолчанию равно 220В. Для класса 400В номинальное напряжение двигателя равно 440В. Если используется входное напряжение 380В, измените значение этого параметра на «380В». Это значение используется как опорное напряжение регулятора напряжения и предназначено для предотвращения повреждения преобразователя при увеличении входного напряжения. Оно должно быть установлено корректно, т.к. оно связано с значением «тока возбуждения» (Flux current), ипользуемого при автотюнинге.

PAR_20 (КПД двигателя). Используется для автотюнинга без вращения (PAR_23 = StandStill). Не используется для автотюнинга с вращением (PAR_23 = Rotational)

PAR_21 (Номинальное скольжение двигателя). Значение вычисляется из номинальной скорости двигателя

(значения на шильде двигателя). Например, если скорость двигателя равна 1500 об/мин, а значение номинальной скорости на шильде двигателя равно 1440 об/мин. Тогда величина скольжения будет равна 60 об/мин.

2) Автотюнинг с вращением

2.1) Меры предосторожности

Предупреждение

Перед проведением автотюнинга с вращением, убедитесь, что нагрузка отключена от вала двигателя. В противном случае возможно повреждение двигателя или получение травмы. Рекомендуется подключить тормозной резистор, т.к. при определении постоянной двигателя (Tr) производится резкий разгон/торможение двигателя.

2.2) Настройка параметров

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
PAR_23	AutoTuneType	Выбор типа автотюнинга	Rotational StandStill		Rotational
PAR_24	Auto Tuning	Режим автотюнинга	None ALL1 ALL2 Encoder Test Rs Tuning Lsigma Flux Curr Ls Tuning Tr Tuning		None
PAR_25	Tune Torque	Момент при автотюнинге	10.0 - 100.0	%	70

Для автотюнига с вращением можно выбрать 8 различных режимов:

- ALL2: Rs→ Lsigma→ Flux Current→ Ls→ Tr
- ALL1: Encoder test → Perform ALL2

Rs, Lsigma, Flux Current, Ls, Tr: Каждый параметр можно протестировать независимо друг от друга. Определение Tr нужно проводить после определения Rs и Ls. Для уменьшения времени определения Tr значение параметра увеличьте значение параметра PAR_25 (Момент при автотюнинге). Во время автотюнинга мигают индикаторы FWD/REV.

Тип автотюнинга	Описание	
None	Не выполнять никаких действий	
ALL1	Производится тест энкодера. Затем определяются значения Rs, L σ , I Flux, Ls, Tr	
ALL2	Определяются значения Rs, L σ , I Flux, Ls, Tr. Тест энкодера не производится.	
Encoder Test	Производится только тест энкодера и проверка правильности его подключения. Двигатель вращается со скоростью 1500 об/мин в прямом направлении.	
Rs Tuning	Определяется только сопротивление статора (Rs). Измерение производится без вращения двигателя.	
Lsigma	Определяется только индуктивность рассеяния (Lsigma). Измерение производится без вращения двигателя.	
Flux Curr	Определяется только ток возбуждения (Flux current). Двигатель вращается со скоростью 1500 об/мин.	
Ls Tuning Определяется только индуктивность ротора (Ls). Двигатель вращаетс скоростью 1500 об/мин.		
Tr Tuning	Определяется только постоянная времени двигателя (Tr). Двигатель разгоняется и замедляется в течение определенного времени. Для получения точного значения рекомендуется проводить после определения Rs, L $_{ m G}$ и Ls.	

2.3) Процедура автотюнинга с вращением

Индикация на дисплее	Описание	Время
PAR AutoTuneType 23 Rotational	Установите параметр PAR_23 в значение "Rotational".	-
PAR Auto tuning 24 ALL1	Установите параметр PAR_24 в значение " ALL1 ". Начнется Автотюнинг.	-
PAR Auto tuning 24 Enc Testing	Производится проверка правильности подключения и исправность энкодера при вращении в прямом направлении с заданной скоростью.	30-35 (сек)
PAR Auto tuning 24 Rs Tuning	Сопротивление статора (Rs) измеряется без вращения двигателя.	10-20 (сек)
PAR Auto tuning 24 sL Tuning	Индуктивность рассеяния (sL) измеряется без вращения двигателя.	5 – 20 (сек)
PAR Auto tuning 24 IF Tuning	Ток возбуждения (IF) измеряется при вращении двигателя с заданной скоростью.	30-60 (сек)

PAR Auto tuning 24 Ls Tuning	Индуктивность статора (Ls) измеряется при вращении двигателя с заданной скоростью.	50-60 (сек)
PAR Auto tuning 24 Tr Tuning	Во время измерения постоянной двигателя (Tr) производится быстрый разгон/торможение. Перед проведением автотюнинга следует подключить тормозной резистор. В противном случае может возникнуть ошибка "Over Voltage".	20-60 (сек)
PAR Auto tuning None	Если автотюнинг произведен успешно, на дисплее отображается "None". При возникновении ошибки на дисплее отображается "[][] Error". В этом случае проверьте правильность установки параметров двигателя и правильность	Всего: 3 ~ 5 (мин.)
PAR Auto tuning 24 [][] Error	подключения энкодера. После этого повторите Автотюнинг. Если ошибка будет появляться снова, обратитесь к дистрибьютору LS.	(MAIN.)

3) Автотюнинг без вращения

3.1) Меры предосторожности

Убедитесь, что вал двигателя заблокирован (например с помощью электромеханического тормоза).

3.2) Настройка параметров

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
PAR_23	AutoTuneType	Выбор типа автотюнинга	Rotational StandStill		StandStill
PAR_24	Auto Tuning	Режим автотюнинга	None ALL1 Rs Tuning Lsigma If/Tr/Ls Tune		None

Возможны 4 режима автотюнинга без вращения.

ALL1: Rs \rightarrow Lsigma \rightarrow If \rightarrow Ls \rightarrow Tr

Rs Tuning, Lsigma, If/Tr/Ls: Каждый параметр можно тестировать независимо друг от друга.

Тип автотюнинга	Описание			
None	Нет действия			
ALL1 Определяются Rs, L σ , If/Tr/Ls. Тест энкодера не производится.				
Rs Tuning	Определяется только Rs. Сопротивление статора определяется при «автотюниге без вращения»			
Lsigma	Определяется только L _o . Индуктивность рассеяния определяется при «автотюнинге без вращения».			
If/Tr/Ls Tune	Определяются If/Tr/Ls подачей импульсов постоянного тока.			

• Во время автотюнинга индикаторы FWD/REV мигают.

3.3) Процедура автотюнинга без вращения

Значение на дисплее	Описание	Время
PAR ▶ AutoTuneType 23 StandStill	Установите параметр PAR_23 в значение "Standstill".	-
PAR Auto tuning 24 ALL1	Автотюнинг начнется после установки параметра POR_24 в значение ALL1 .	-
PAR Auto tuning 24 Rs Tuning	Сопротивление статора (Rs) измеряется без вращения двигателя.	20-30 сек
PAR Auto tuning 24 sL Tuning	Индуктивность рассеяния (sL) определяется без вращения двигателя.	90-150 сек
PAR ▶ Auto tuning 24 If/Tr/Ls Tuning	Ток потока (IF), постоянная времени двигателя (т r) индуктивность статора (Ls) измеряются одновременно без вращения двигателя.	40-70 сек
PAR Auto tuning None	Если автотюнинг произведен успешно, на дисплее отображается "None". При возникновении ошибки на дисплее отображается "[][] Error". В этом случае проверьте правильность установки параметров двигателя и правильность	Всего: 3-5 минут
PAR Auto tuning 24 [][] Error	подключения энкодера. После этого повторите Автотюнинг. Если ошибка будет появляться снова, обратитесь к дистрибьютору LS.	

4) Параметры двигателя

Следующие параметры определяются во время автотюнинга.

Параметры двигателя, приведенные в таблице, соответствуют параметрам двигателей LG-OTIS.

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
PAR_26	Flux-Curr	Ток возбуждения двигателя	0.0 – 70% от номинального тока двигателя	А	
PAR_27	Tr	Постоянная времени ротора	30 – 3000	мсек	
PAR_28	Ls	Индуктивность рассеяния	0.00 - 500.00	мГн	
PAR_29	Lsigma	Индуктивность статора	0.00 - 100.00	мГн	
PAR_30	Rs	Сопротивление статора	0.000 - 5.000	Ом	

Дополнительные функции:

• Автотюнинг можно прервать, нажав кнопку [STOP].

При возникновении ошибки во время тестирования энкодера преобразователь не переходит к определению Rs и выдает ошибку "Encoder Err". При возникновении ошибки энкодера нажмите [Reset] и повторите тест энкодера.

• Значение при определении Tr может незначительно отличаться при повторном проведении автотюнинга. Выполните автотюнинг Tr несколько раз.

5) Ошибки при автотюнинге

Индикация на дисплее	Описание и устранение
PAR Auto tuning 24 Enc Error	Отображается при потере сигнала от фазы А/В, или если разница между значением заданной скорости и значением полученного от энкодера превышает скорость скольжения. Проверьте правильность подключения питания энкодера (клеммы РЕ и GE) и фаз А/В.
PAR Auto tuning 24 Enc AB Chgd	Отображается при неправильной фазировке энкодера A/B или двигателя U, V, W. Измените порядок фаз U, V, W или измените значение параметра PAR_11 на "B Phase Lead".
PAR Auto tuning 24 Rs Error	Отображается, если значение RS больше 5[Ом] или меньше 0.002[Ом]. Проверьте подключение преобразователя, подключение и исправность двигателя. Также ошибка может возникать, если мощность двигателя значительно меньше мощности преобразователя.
PAR Auto tuning 24 sL Error	Отображается, если sL больше 100[мГн]. Проверьте подключение преобразователя, подключение и исправность двигателя.
PAR Auto tuning 24 IF Error	Отображается, когда скорость двигателя превышает 1650 об/мин (при номинальной скорости двигателя 1800 об/мин) во время определения тока потока, или если ток потока не определяется в течение длительного времени. Проверьте подключение двигателя.
PAR Auto tuning 24 Ls Error	Отображается, когда скорость двигателя превышает 1650 об/мин (при номинальной скорости двигателя 1800 об/мин) во время определения Ls, или индуктивность рассеяния не определяется в течение длительного времени. Проверьте подключение двигателя.
PAR Auto tuning 24 PAR 27 DOWN	Отображается, если значение параметра PAR_27 установлено слишком большим. Установите значение параметра в 30% и повторите автотюнинг.
PAR Auto tuning 24 PAR 27 UP	Отображается, если значение параметра PAR_27 установлено слишком маленьким. Установите значение параметра в 30% и повторите автотюнинг.

6.4 Функциональная группа (FUN_[][])

6.4.1 Переход к требуемому параметру (FUN_00)

Переход к требуемому параметру может быть выполнен с помощью параметра FUN_00.

Нажмите кнопку [PROG] и установите значение 2, используя кнопки [▲], [▼], [SHITF/ESC], и нажмите [ENT] для перехода к параметру FUN_02. Если требуемый параметр не существует или заблокирован, произойдет автоматический переход к ближайшему параметру.

Для перехода к другим параметрам группы FUN используйте кнопки [\blacktriangle], [\blacktriangledown].

6.4.2 Выбор способа управления

1) FUN_01(Источник команд Пуск/Стоп)

Возможны четыре способа задания команд Пуск/Стоп:

- Terminal 1/ Terminal 2: Цифровые входы FX/RX
- Keypad: Кнопки [FWD], [REV], [STOP] пульта управления
- Option: Через интерфейс с использованием опциоанальной карты. (По умолчанию: Terminal 1)

Код	Дисплей	Описание	Диапазон	Ед. изм	По умолчанию
FUN_01	Run/Stop Src	Источник команд пуск/стоп	Terminal 1 Terminal 2 Keypad Option		Terminal 1

Отличие между «Terminal 1» и «Terminal 2»:

Источник команд Пуск/Стоп	Клем	іма Вкл/Выкл	Выбор направления вперед/назад
	FX	Вкл	Команда «Вперед»
Terminal 1	ГА	Выкл	Команда «Стоп»
Terrilliai 1	RX	Вкл	Команда «Назад»
	KX	Выкл	Команда «Стоп»
	ΓV	Вкл	Команда «Пуск»
Terminal 2	FX	Выкл	Команда «Стоп»
	DV	Вкл	Направление вращения «Назад»
	RX	Выкл	Направление вращения «Вперед»

При аналоговом задании скорости положительное напряжение задает направление вращения «Вперед» и отрицательное – вращение «Назад».

Диапазон задания аналогового сигнала	FX / FWD / Option FWD	RX / REV / Option REV
0 - +10 B	Направление «Вперед»	Направление «Назад»
-10 – 0 B	Направление «Назад»	Направление «Вперед»

2) FUN_02 (Источник задания скорости)

Возможны 4 способа задания скорости:

- Keypad 1/Keypad 2: Задание цифрового значения через пульт
- Analog: Задание скорости через аналоговый вход
- Option: Задание скорости через опциональную карту интерфейса

При использовании способа «Кеураd 1» задание скорости производится в параметре FUN_12 (Скорость 0) с использованием кнопок [\blacktriangle], [\blacktriangledown] и кнопки [ENT] для записи значения в память. При использовании способа «Кеураd 2» при изменении значения параметра скорость автоматически изменяется (без нажатия кнопки [ENT]).

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
FUN_02	Spd Ref Src	Способ задания скорости	Analog Keypad 1 Keypad 2 Option		Keypad 1

3) FUN_03 (Способ торможения)

Параметр определяет способ торможения двигателя. Если параметр установлен как 'Decel', то после подачи команды «Стоп» двигатель замедляется до полной остановки в течение времени, установленном в параметре FUN_39 (Время торможения 1). Если двигатель не остановился в течение времени торможения, то он продолжает вращение после окончания времени торможения. Если параметр установлен как 'Free-run', то после подачи команды «Стоп», двигатель останавливается на выбеге.

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
FUN_03	Stop mode	Выбор способа торможения	Decel Free-run		Decel

6.4.3. Задание максимальной скорости

Значение максимальной скорости является верхним пределом скорости вращения двигателя. Заданная скорость, опорная скорость Draw режима, опорная скорость ПИД регулятора и опорная скорость Droop режима не может превышать максимальную скорость.

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
FUN_04	Max Speed	Максимальна скорость двигателя	400.0 – 3600.0	об/мин	1800.0

6.4.4 Задание многошаговой скорости и «скорости задержки»

1) FUN_12 ~ 19 (Многошаговая скорость 0 ~ 7)

2) FUN_20 (Скорость JOG)

Если многофункциональные клеммы выбраны как "Speed-H", "Speed-H", "Speed-L", "Jog speed", значение заданной скорости определяется комбинацией сигналов с этих клемм.

В таблице представлены возможные комбинации входов P1, P2, P3 и P4. При выборе «Многошаговой скорости 0» (P1, P2, P3 Выкл.) заданная скорость определяется значением с пульта, аналоговым сигналом или командой через плату интерфейса. При появлении сигнала на клемме P4 все установки скорости игнорируются и двигатель вращается с JOG скоростью. Значение JOG скорости задается в параметре FUN_20 (Задание Jog скорости).

P1	P2	Р3	P4	Установка скорости	
OFF	OFF	OFF	OFF	Источник скорости задается в FUN_02. (Аналоговый вход, FUN_12 и плата интерфейса)	
ON	OFF	OFF	OFF	FUN_13	
OFF	ON	OFF	OFF	FUN_14	
ON	ON	OFF	OFF	FUN_15	
OFF	OFF	ON	OFF	FUN_16	
ON	OFF	ON	OFF	FUN_17	
OFF	ON	ON	OFF	FUN_18	
ON	ON	ON	OFF	FUN_19	
Х	Х	Χ	ON	FUN_20 (JOG скорость)	

Значения параметров многошаговой скорости:

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
FUN_12	Speed 0	Многошаговая скорость 0	0.0 - FUN_04	об/мин	0.0
FUN_13	Speed 1	Многошаговая скорость 1	0.0 - FUN_04	об/мин	0.0
FUN_14	Speed 2	Многошаговая скорость 2	0.0 - FUN_04	об/мин	0.0
FUN_15	Speed 3	Многошаговая скорость 3	0.0 - FUN_04	об/мин	0.0
FUN_16	Speed 4	Многошаговая скорость 4	0.0 - FUN_04	об/мин	0.0
FUN_17	Speed 5	Многошаговая скорость 5	0.0 - FUN_04	об/мин	0.0
FUN_18	Speed 6	Многошаговая скорость 6	0.0 - FUN_04	об/мин	0.0
FUN_19	Speed 7	Многошаговая скорость 7	0.0 - FUN_04	об/мин	0.0
FUN_20	Jog Speed	Скорость JOG	0.0 - FUN_04	об/мин	100.0

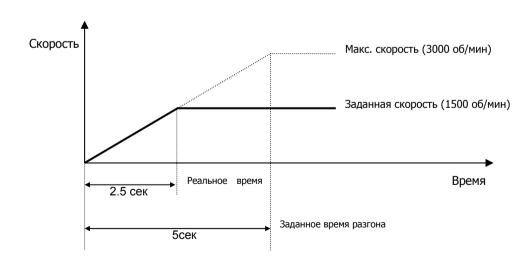

[●] FUN_04: Максимальная скорость двигателя

3) FUN_21 (Скорость задержки), FUN_22 (Время задержки)

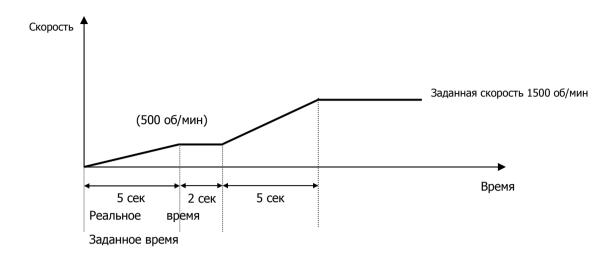
При использовании задержки при разгоне, при достижении скорости задержки (параметр FUN21), разгон прекращается, и в течение времени FUN_22 двигатель вращается с постоянной скоростью. По истечении времени FUN_22 разгон продолжается. Этот режим используется для увеличения величины момента при подъеме тяжелого груза.

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
FUN_21	Dwell Speed	Скорость задержки	0.0 – FUN_04	об/мин	100.0
FUN_22	Dwell Time	Время задержки	0.00 - 100.00	сек	0.00

- FUN_04: Максимальная скорость двигателя
- Невозможно, если значение параметра FUN_22 равно "0".



6.4.5 Кривые Разгона/Торможения и задание времени

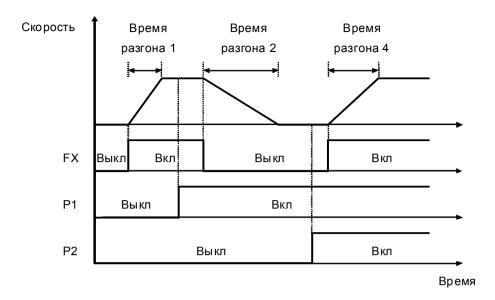

1) FUN_33 (Опорная скорость разгона/торможения)

Время разгона, время торможения и время аварийного торможения (BX) расчитываются на основе параметра **FUN_33(Опорная скорость разгона/торможения)**, который может принимать два значения: 'Max speed' и 'Ref speed'.

Пример 1 Если FUN_33 = "Max Speed", то максимальная скорость двигателя равна 3000 об/мин, рабочая скорость равна 1500 об/мин., время разгона равно 5 сек, время разгона до заданной скорости будет 2,5 сек.

Пример 2 Если параметр FUN_33 установлен как 'Ref Speed', заданная скорость равна 1500 об/мин и время разгона установлено как 5 сек, для разгона до заданной скорости (1500 об/мин) потребуется 5 сек.

2) FUN_40 ~ 47(Время Разгона/Торможения 1 ~ 4)

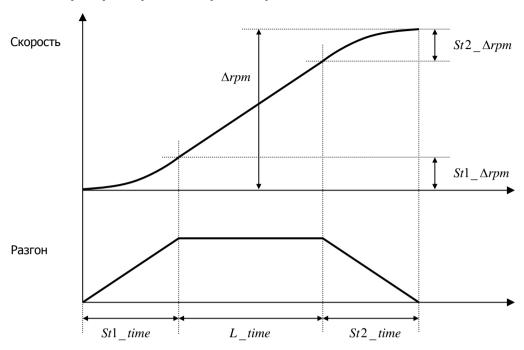

Время Разгона/Торможения задается в параметрах FUN_40 ~ FUN_45.

(Значение по умолчанию отличается в зависимости от мощности частотного преобразователя.)

	Индика-			Знач	ение п	о умолч	анию	
Код	ция на дисплее	Описание	Диапазон	Ед. изм.	2.2~ 37 кВт	45~ 75 кВт	90~ 220 кВт	280~ 500 кВт
FUN_40	Acc Time-1	Время разгона 1	0.00 - 6000.0	сек	2.00	10.00	20.00	30.00
FUN_41	Dec Time-1	Время торможения 1	0.00 - 6000.0	сек	2.00	10.00	20.00	30.00
FUN_42	Acc Time-2	Время разгона 2	0.00 - 6000.0	сек	3.00	12.00	24.00	35.00
FUN_43	Dec Time-2	Время торможения 2	0.00 - 6000.0	сек	3.00	12.00	24.00	35.00
FUN_44	Acc Time-3	Время разгона 3	0.00 - 6000.0	сек	4.00	14.00	28.00	40.00
FUN_45	Dec Time-3	Время торможения 3	0.00 - 6000.0	сек	4.00	14.00	28.00	40.00
FUN_46	Acc Time-4	Время разгона 4	0.00 - 6000.0	сек	5.00	16.00	32.00	45.00
FUN_47	Dec Time-4	Время торможения 4	0.00 - 6000.0	сек	5.00	16.00	32.00	45.00

(Пример) Многофункциональные входы Р1, Р2 установлены как «Хсеl-L» и «Хсеl-Н»

Код	Дисплей	Описание	Диапазон	Ед. изм.	Значение
DIO_01	P1 define	Назначение входа Р1			Xcel – L
DIO_02	P2 define	Назначение входа Р2			Xcel – H


P1 (Xcel-L)	P2 (Xcel-H)	P3 (SoftStartCncl)	Время разгона/ торможения
Выкл	Выкл	Выкл	разгон/торможение 1
Вкл	Выкл	Выкл	разгон/торможение 2
Выкл	Вкл	Выкл	разгон/торможение 3
Вкл	Вкл	Выкл	разгон/торможение 4
Х	Х	Вкл	макс. разгон/торможение

3) FUN_36 \sim 39 (S-образная кривая разгона/торможения 1 \sim 2)

С помощью этих параметров можно настроить линейную или S-образную кривую разгона/торможения. S-образная кривая используется для уменьшения рывков при старте двигателя. Параметры FUN_36 ~ 39 определяют форму S-кривой (как показано на рисунке ниже). Параметры FUN_36, 37 определяют S-кривую разгона, параметры FUN_38, 39 определяют S-кривую торможения.

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
FUN_36	Acc S Start	Наклон S- кривой в начале разгона	0.0 - 50.0	%	0.0
FUN_37	Acc S End	Наклон S- кривой в конце разгона	0.0 - 50.0	%	0.0
FUN_38	Dec S Start	Наклон S- кривой в начале торможения	0.0 - 50.0	%	0.0
FUN_39	Dec S End	Наклон S- кривой в конце торможения	0.0 - 50.0	%	0.0

• Пример настройки S-образной кривой

• Основные уравнения

• Вычисления 1

$$\triangle rpm$$
 St1_ $\triangle rpm + St2_{\triangle}rpm$

∆грт = Разница между текущей и заданной скоростью

$$L_time = (\Delta rpm - St1_\Delta rpm - St2_\Delta rpm) * (AccTime / MaxSpeed)$$

Эффективное время разгона = **St1_time** + **L_time** + **St2_time**

Вычисления 2

$$\Delta rpm < St1_{\Delta}rpm + St2_{\Delta}rpm$$

$$St1'_time = \sqrt{\{[\Delta rpm * AccTime^2 * St1_time^2]/[25 * MaxSpeed * (St1_time + St2_time)]\}}$$

 $St2'_time = \sqrt{\{[\Delta rpm * AccTime^2 * St2_time^2]/[25 * MaxSpeed * (St1_time + St2_time)]\}}$

Эффективное время разгона = St1'_time + St2'_time

∆rpm: Разница скорости

MaxSpeed: Максимальная скорость (FUN_04)

AccTime: Заданное время разгона (FUN_40, 42, 44, 46)

 $St1_\Delta rpm$: Наклон S кривой в начале разгона (FUN_36),

Наклон S кривой в конце торможения (FUN 39),

 $St2_\Delta rpm$: Наклон S кривой в конце разгона (FUN_37),

Наклон S кривой в начале торможения (FUN_38)

St1_time: Время формирования St1_∆rpm.

St2_time: Время формирования St2_∆rpm.

4) FUN_48 (Выбор установки времени торможения до нулевой скорости)

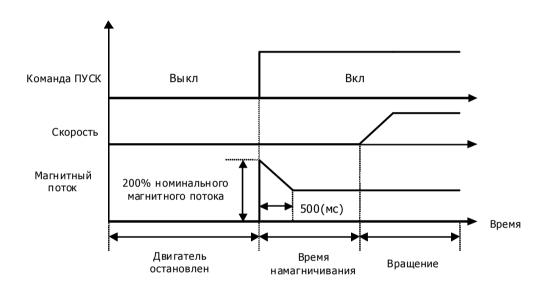
5) FUN_49 (Время торможения до нулевой скорости)

Это время, в течение которого двигатель замедляется с произвольной скорости до 0 об/мин. Функция активна, если параметр FUN_48 установлен в 'Yes'. Если значение параметра установлено в 'No', то используется заданное время торможения.

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
FUN_48	Use 0 Dec T	Выбор установки времени торможения до нулевой скорости	No/Yes		No
FUN_49	0 Dec Time	Время торможения до нулевой скорости	0.00-6000.0	сек	0.00

6) FUN_51 (Торможение при подаче сигнала ВХ)

Для того чтобы быстро остановить двигатель в аварийной ситуации, используется входной сигнал ВХ. При подаче сигнала ВХ на входную клемму двигатель тормозится за время, установленное в параметре FUN_51 (Время аварийного торможения). Если двигатель не успевает остановиться за время торможения, то после истечения времени торможения он останавливается на выбеге. Если двигатель должен быть остановлен мгновенно при подаче сигнала ВХ, параметр FUN_51 должен быть установлен в '0'.


Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
FUN_51	BX Time	Время аварийного торможения	0.0 – 6000.0	сек	0.0

7) FUN_52 (Начальное намагничивание)

Параметр FUN_52 (Начальное намагничивание двигателя) используется для увеличения магнитного потока в двигателе перед стартом для улучшения пусковой характеристики. Во время начального намагничивания индикаторы FWD и REV мигают по очереди.

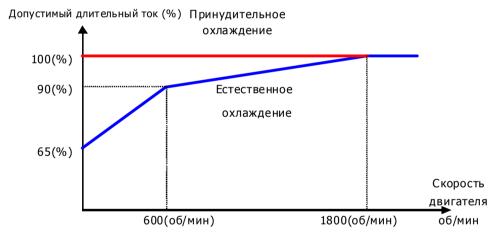
• Параметр FUN_52 активен только если параметр FUN_02 установлен в Keypad1 или Keypad2.

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
FUN_52	PreExct Time	Время начального намагничивания	0 ~ 10000	мсек	0

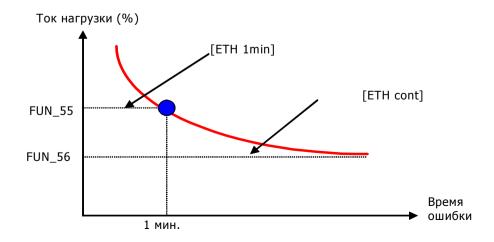
8) FUN_53 (Время удержания)

Двигатель удерживает нулевую скорость после того как двигатель замедлится до «0».

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
FUN_53	Hold Time	Время удержания двигателя	100 – 10000	мсек	1000


6.4.6 Токо-временная защита двигателя (I^2T)

Функция используется, если требуется защита двигателя от перегрева без установки дополнительных тепловых реле на выходе частотного преобразователя. Если функция температурной защиты срабатывает, преобразователь отключает выход и выдает сообщение об ошибке.


Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
FUN_54	ETH Select	Выбор электронной термозащиты	No Yes		No
FUN_55	ETH 1 Min	Уровень термозащиты в течении 1 минуты	FUN_56 ~ 200	%	150
FUN_56	ETH Cont	Уровень термозащиты при 50 ~ FUN_55 длительной работе (up to 150%)		%	100
PAR_09	Cooling Mtd	Способ охлаждения двигателя Self-cool Forced-cool		Forced-cool	

Уровень температурной защиты устанавливается в процентах от номинального тока двигателя (параметр PAR_22). Если ток двигателя превышеает значения параметра FUN_55 более одной минуты, то преобразователь выдает ошибку «Перегрев двигателя». Параметр FUN_56 – это ток двигателя, при котором он может работать в течение длительного времени без перегрева. Параметр FUN_56 задается в % от номинального тока двигателя и должен быть меньше чем FUN_55. Параметр PAR_09 (способ охлаждения) должен быть установлен правильно для обеспечения надежной тепловой защиты.

- **Self-cool**: Это значение должно быть установлено, если охлаждающий вентилятор закреплен на валу двигателя. Охлаждение двигателя ухудшается при работе на низких скоростях. При работе на низкой скорости двигатель перегревается сильнее, даже если ток протекающий через двигатель такой же или меньше, чем при работе на большой скорости. Следовательно, согласно рисунку ниже, при работе на низких сокростях величина FUN_56 уменьшается.
- **Forced-cool**: Это значение должно быть установлено, если используется охлаждающий вентилятор с незивисимым источником питания. Величина тока для длительной работы не изменяется независимо от скорости вращения.

[Характеристика длительного тока для 4-х полюсного двигателя, 60 Гц]

[Токовременная кривая двигателя]

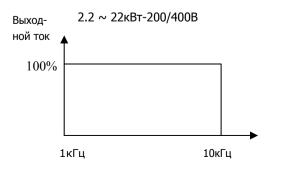
• Величина I^2 t вычисляется и накапливается, что позволяет защитить двигатель даже при изменении нагрузки и частом запуске/останове.

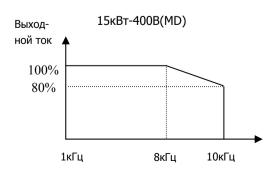
6.4.7 Выбор частоты ШИМ

1) FUN_57 (Выбор частоты ШИМ выходного сигнала преобразователя)

Этот параметр влияет на звук при работе двигателя, уровень помех создаваемый преобразователем, температуру преобразователя и ток утечки. Если преобразователь находится в помещении с повышенной температурой или рядом с преобразователем находится оборудование, чувствительное к помехам в сети, рекомендуется уменьшить значение этого параметра (диапазон установки: $2.5 \sim 10.0$ кГц).

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
FUN_57	PWM Freq	Выбор частоты ШИМ		кГц	


2) Диапазон установки у разных моделей отличается в зависимости от мощности преобразователя


Напряжение	Мощность преобразователя	Диапазон установки	Значение по умолчанию
2008	2.2 – 22 (кВт)	2.5 – 10 (кГц)	10 (кГц)
200B	30/37 (кВт)	2.5 – 7 (кГц)	5 (кГц)
	2.2 – 22 (кВт)	2.5 – 10 (кГц)	8 (кГц)
	30 – 75 (кВт)	2.5 – 7 (кГц)	5 (кГц)
400B	90 – 132 (кВт)	2.5 – 5 (кГц)	4 (кГц)
	160/220 (кВт)	2.5 – 4 (кГц)	4 (кГц)
	280 – 500 (кВт)	2 (кГц)	2 (кГц)

• Ограничение характеристик при длительной работе

Ниже представлены нагрузочные характеристики для преобразователей мощностью 15кВт-400В(MD) и $5.5 \sim 22$ кВт-200/400В.

1 Номинальная нагрузка относительно частоты ШИМ

- ② Приведенные выше характеристики действительны, только если преобразователь эксплуатируется при допустимой температуре. Уделите особое внимание обеспечению вентиляции при установке преобразователя в шкаф управления. Температура внутри шкафа не должна превышать допустимую.
- ③ Приведенные выше характеристики соответствуют работе частотного преобразователя с двигателем такого же номинала как и мощность преобразователя.

6.4.8 Запуск при появлении напряжения питания (FUN_58)

Если параметр установлен как 'No', то при включении преобразователя, даже если на клемму FX или RX подан сигнал, двигатель не запустится, пока сигнал не будет снят и подан снова. Если параметр установлен как 'Yes', то двигатель запустится, если при включении был сигнал на клемме FX. Если запуск происходит на вращающийся двигатель, то вначале производится останов двигателя, а затем производится запуск.

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
FUN_58	Power-on Run	Запуск при появлении напряжения питания	Yes No		No

ПРЕДУПРЕЖДЕНИЕ

Используйте эту функцию с осторожностью, т.к. двигатель может неожиданно начать вращение после подачи питания. Это может привести к травме и порче оборудования.

6.4.9 Повторный запуск после сброса ошибки (FUN 59)

Если параметр установлен в 'No', перезапуск произойдет, если сигнал с клеммы RX или FX снят и подан заноново. Если параметр установлен в 'Yes', преобразователь запустит двигатель, как только ошибка будет сброшена. При возникновении ошибки, преобразовататель отключает выход IGBT и двигатель останавливается на выбеге. Если во время запуска двигатель еще вращается, то вначале производится останов двигателя, а затем запуск. Если 2-й бит параметра CON_49 [Поиск скорости] установлен в «1», после сброса ошибки будет активирована функция «поиска скорости».

I	Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
	FUN_59	RST Restart	Повторный запуск после сброса ошибки	Yes No		No

ПРЕДУПРЕЖДЕНИЕ

Используйте эту функцию с осторожностью. Двигатель может неожиданно начать вращение после сброса ошибки.

6.4.10 Повторный запуск после сброса ошибки

1) FUN_60 (Количество попыток запуска)

2) FUN_61 (Задержка перед повторным запуском)

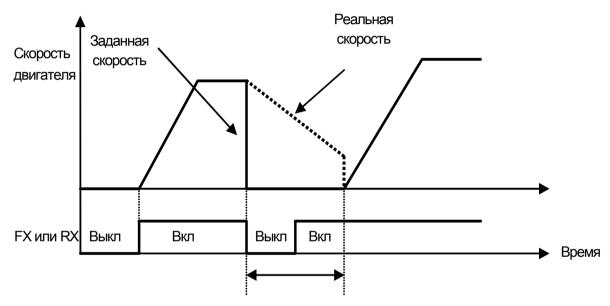
Функция предотвращает полную остановку при возникновении ошибки. Преобразователь автоматически сбрасывает ошибку и осуществляет повторный запуск после возникновения ошибки, если задано количество польток перезапуска и преобразователь готов к работе.

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
FUN_60	Retry Number	Количество попыток повторного запуска	0 – 10		0
FUN_61	Retry Delay	Задержка перед повторным запуском	0.0 - 60.0	сек	1.0

При возникновении ошибки преобразователь может осуществить повторный запуск несколько раз (параметр FUN_60). При возникновениии ошибки преобразователь автоматически сбрасывает ошибку и осуществляет задержку в течение времени FUN_61 (Задержка перед повторным запуском) и осуществляет повторный запуск. Если количество ошибок превысило значение параметра FUN_60, преобразователь отключает выход IGBT и выдает ошибку. Например, если преобразователь осуществил повторный запуск после возникновения ошибки, и ошибка не повторилась, значение «количества повторных запусков» не увеличивается. Если ошибка повторяется, то значение «количества повторных запусков» увеличивается на 1.

- Значение «количество повторных запусков» сохраняется до отключения питания преобразователя.
- Если «количество повторных запусков» превысит значение параметра FUN_60, повторный запуск не будет проводится. Нажатие кнопки [RESET] на пульте управления обнуляет значение «количества повторных запусков».

ПРЕДУПРЕЖДЕНИЕ


- Используйте функцию с осторожностью, т.к. преобразователь автоматически сбрасывает ошибку, и двигатель может неожиданно начать вращение.
- Повторный запуск после возникновения ошибки не осуществляется при возникновении следующих ошибок:
 - ① ВХ (Аварийный стоп)
 - Low Voltage (Пониженное напряжение)
 - З Arm Short-U (V, W, DB) КЗ Выходной фазы
 - 4 Fuse Open (Обрыв предохранителя)
 - **5** Ext Trip-B (Внешняя ошибка Н.З.)
 - 6 InvOver Heat (Перегрев преобразователя)
 - MotOver Heat (Перегрев двигателя)
 - 8 Encoder Err (Ошибка энкодера)
 - 9 Over Load (Перегрузка)
 - © Е-Thermal (Электронная термозащита)
 - ① FAN/MC PWR, FAN PWR (Ошибка вентилятора или магнитного контактора)
- Если ошибка случится через 30 минут после перезапуска, преобразователь увеличит «количество повторных запусков» на 1. При превышении значения параметра FUN_60 выдается ошибка.

6.4.11 Задержка перед пуском после останова

 Функция активна, если параметр FUN_03 (Выбор способа останова) установлен в 'Free-run' и параметр FUN_01 установлен в 'Terminal'.

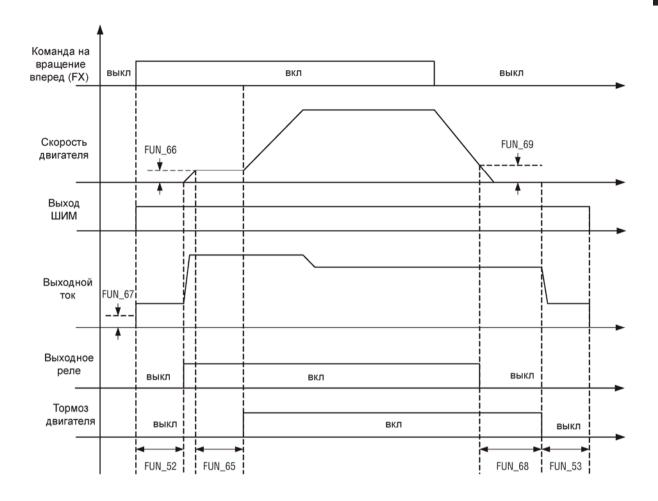
Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
FUN_62	Restart Time	Задержка перед запуском после останова	0.00 - 10.00	сек	0.00
FUN_03	Stop mode	Выбор способа останова	Decel Free-run		Decel

Даже если подана команда на повторный запуск, двигатель не запустится, пока не истекло время, заданное в пар. FUN_62.

FUN 62 (Время задержки перед перезапуском)

6.4.12 Определение ошибки «Превышение скорости»

● Преобразователь выдает ошибку, если скорость двигателя отклоняется на заданную величину. Величина и время отклонения задается в параметрах FUN_63 и FUN_64.

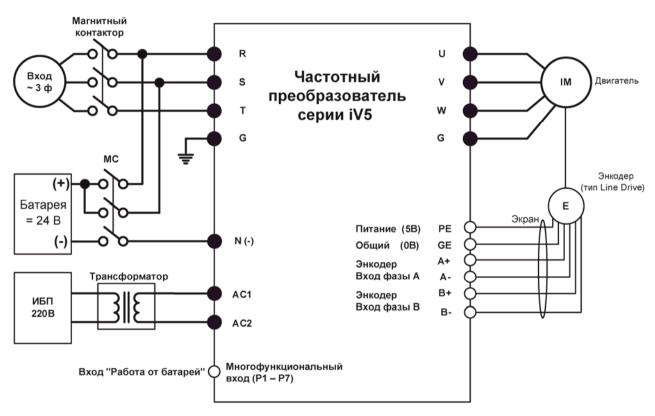

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
FUN_63	OverSpdLevel	Величина превышения скорости	100.0 - 130.0	%	120.0
FUN_64	OverSpd Time	Время превышения скорости	0.00 - 2.00	сек	0.00

- FUN_63 задается в процентах от FUN_04 (Максимальная скорость).
- Когда скорость двигателя превышает уровень, заданный в FUN_63, в течение времени FUN_64, активируется ошибка «Превышение скорости».
- Если параметр FUN_64 установлен как 0.00(сек), и скорость двигателя превышает значение, заданное в FUN_63, ошибка «Превышение скорости» выдается немедленно.

6.4.13 Настройка открытия и закрытия тормоза

- 1) FUN_65 (Время отключения тормоза)
- 2) FUN_66 (Скорость отключения тормоза)
- 3) FUN_67 (Ток отключения тормоза)
- 4) FUN 68 (Время включения тормоза)
- 5) FUN_69 (Скорость включения тормоза)
- Функция используется, если один из многофункциональных выходов (DIO_41 ~ DIO_43) установлен как "Brake Output".
- Тормоз двигателя не отключается во время проведения автотюнинга, поэтому перед провдением автотюнинга с вращением его необходимо отключить принудительно.
- Выход "Break output" активируется после окончания времени первоначального возбуждения двигателя при достижении скорости, заданной в параметре FUN_66. В параметре FUN_65 можно задать задержку перед отключением тормоза.
- Ток отключения тормоза устанваливается в процентах от номинального тока двигателя. Выход "Break output" активируется, если выходной ток превышает значение параметра FUN_67.
- При достижении скорости включения тормоза выход "Brake output" отключается. В параметре FUN 68 можно задать задержку перед включением тормоза.
- Если при остановке двигателя возникает обратное движение (например при подъеме лифта), увеличивайте скорость включения тормоза, до тех пор пока обратное движение не прекратится. Также попробуйте изменить время задержки перед включением тормоза (параметр RUN_69).

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
FUN_65	BKOpen Time	Время отключения тормоза	0.00 - 30.00	сек	0.00
FUN_66	BKOpen Spd	Скорость отключения тормоза	0.0 - 500.0	об/мин	0.0
FUN_67	Release Curr	Ток отключения тормоза	0.0 - 150.0	%	20.0
FUN_68	BKClose Time	Время включения тормоза	0.00 - 30.00	сек	0.00
FUN_69	BKClose Spd	Скорость включения тормоза	0.0 - 500.0	об/мин	0.0


6.4.14 Скорость при работе от батарей и настройки входного напряжения

Функция «Питания от батарей» используется для управления двигателем при отключении основного питания (для преобразователей мощностью $5.5 \sim 22$ кВт).

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
FUN_70	Batt. Speed	Скорость при управлении от батарей	2.5 – 200.0	об/мин	50.0
FUN_71	Batt. Volt	Напряжение батареи	12 – PAR_18	В	48

- Параметры FUN-70, 71 доступны, если один из многофункциональных входов установлен как 'Battery Run'.
- Параметр FUN_70 задает скорость аварийного движения при управлении от батарей.
- Параметр FUN_71 задает напряжение используемой аккумуляторной батареи.
- В аварийной ситуации управление от батарей активируется при подаче сигнала на клемму, заданную как "Battery Run". После активации преобразователь может работать на скорости FUN_70. Уровень возникновения ошибки "Low voltage" снижается до величины FUN_71.
- Возврат к нормальному режиму работы произойдет после пропадания сигнала на клемме, заданной как "Battery Run".

- Для работы в режиме «Управление от батарей» необходимо выполнить следующее:
 - -. Подключите две клеммы подачи входного напряжения R, S, T к положительному полюсу батареи (+) через магнитный контактор.
 - -. Подключите клемму N (-) к отрицательному полюсу батареи (-).
 - -. Подайте дополнительное питание ~220В на клеммы АС1 и АС2.

Прим.) ● : Силовые клеммы О : Клеммы управления

• Особенности работы от батарей:

- -. На дисплее пульта управления отображается режим работы от батарей "ВАТ".
- -.Если многофункциональный выход установлен как 'INV Ready', то при работе от батарей он неактивен.
- -. После подачи напряжения от батарей, преобразователь запустится на 2 секунды позже для отключения ошибки "Low voltage" и накопления напряжения внутри преобразователя (на конденсаторах звена постоянного тока).
- -. Если входное напряжение станет менее 53% от значения параметра FUN_71, будет выдана ошибка "Low voltage".
- -. Для возврата к основному питанию отключите магнитный контактор, соединяющий батарею, и снимите сигнал 'Battery Run'. При этом будет выдана ошибка "Low voltage".
- -. Скорость вращения (FUN_71) должна быть задана соответственно напряжению батареи (FUN_70), номинальной скорости двигателя (PAR_17) и номинальному напряжению двигателя (PAR_18). Рекомендуется работа на пониженной скорости для увеличения времени работы от батарей.

6.5 Группа Control Group (CON_[][])

6.5.1 Переход к требуемому параметру (CON_00)

Переход к требуемому параметру в группе CON может быть осуществлен в параметре CON_00.

Пример Переход к параметру CON_11

Нажмите кнопку [PROG] и установите значение 11, используя кнопки [\blacktriangle], [\blacktriangledown], [SHITF/ESC], затем нажмите кнопку [ENT]. Произойдет переход к параметру CON_11. Если заданный параметр заблокирован или не существует, произойдет переход к ближайшему параметру.

Для перехода к другим параметрам группы используйте кнопки [▲], [▼].

6.5.2 Задание способа управления (CON_01)

В преобразователях серии iV5 используются два способа управления: управление по скорости и управление по моменту. Для работы этих режимов используется векторное управление с датчиком обратной связи (энкодер)

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
CON 01	Control Modo	Задание способа	Speed		Cnood
CON_01	Control Mode	управления	Torque		Speed

6.5.3 Сфера применения (CON 02)

В параметре CON 02 можно выбрать сферу применения (например, Лифт или Синхронное управление)

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
	Application Задан		General Vect		
CON 03		2	Elevator *1)	Consent West	Con aval Va at
CON_02		Задание сферы применения	Synchro*2)		General Vect
			WEB Control		

^{*1)} Отображается при использовании опциональной платы (EL_IO).

6.5.4 Автоматический регулятор скорости (ASR)

1) CON_05 (Постоянная времени низкочастотного фильтра ASR 1)

2) CON 08 (Постоянная времени низкочастотного фильтра ASR 2)

В зависимости от состояния многофункциональных клемм, заданных как 'ASR Gain Selection', можно выбрать коэфициенты PI ASR. При отсутствии сигнала на клемме 'ASR Gain Selection' используется первая пара коэфициентов ASR и постоянная времени 1. При наличии сигнала на клемме используется вторая пара коэфициентов ASR и постоянная времени 2.

^{*2)} Отображается при использовании опциональной платы синхронизации (SYNC_IO).

(Пример) Многофункциональный вход задан как «ASR PI Gain»

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
		Назначение			
DIO_04	P4 define	многофункционального			ASR Gain Sel
		входа Р4			

Для задания времени фильтра низких частот используются следующие параметры:

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
CON_05	ASR LPF1	Постоянная времени 1 ASR	0 – 20000	мсек	0
CON_08	ASR LPF2	Постоянная времени 2 ASR	0 – 20000	мсек	0

3) CON_03 ~ 04 (Коэффициенты PI1 ASR)

4) CON_06 ~ 07 (Коэффициенты PI2 ASR)

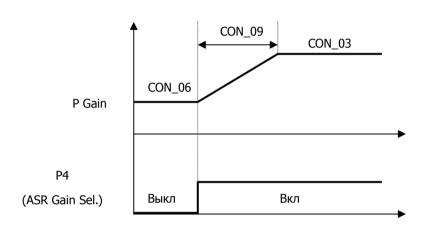
В зависимости от состояния входа, определенного как "ASR Gain Sel", может быть выбрана одна из двух пар коэффициентов PI

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
CON_03	ASR P Gain1	Коэффициент P1 ASR	0.0 – 200.0	%	50.0
CON_04	ASR I Gain1	Коэффициент I1 ASR	0 – 50000	мсек	300
CON_06	ASR P Gain2	Коэффициент P2 ASR	0.0 - 200.0	%	5.0
CON_07	ASR I Gain2	Коэффициент I2 ASR	0 – 50000	мсек	3000

5) CON_09 (Время переключения коэффициентов ASR)

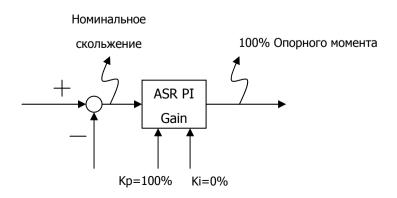
6) CON_10 (Скорость двигателя во время переключения коэффициентов ASR)

В зависимости от состояния многофункционального входа, определенного как '**ASR P/PI transfer**', автоматический регулятор работает РI или P режиме .


Пример Переключение ASR P/PI:

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
		Назначение			
DIO_06	P6 define	многофункционального			ASR P/PI Sel
		входа Р6			

Для избежания рывков при переключении коэффицентов Р и I (при изменении состояния клеммы 'ASR Gain Sel'), переключение происходит плавно за время, заданное в параметре CON_09. Переключение между коэффициентами Р2 и Р1 производится на скорости выше, чем значение параметра CON_10. Это происходит при изменении состояния многофункциональной клеммы, определенной как 'ASR Gain Sel', из состояния «Выкл» во «Вкл».


Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
CON_09	ASR Ramp	Время переключения коэффициентов ASR	10 – 10000	мсек	1000
CON_10	ASR TarSpd	Заданная скорость после переключения коэффициентов ASR	0.0 – 3600.0	об/мин	0.0

Время переключения

• Переключение коэффициентов Р и I ASR (Автоматического регулятора скорости)

Пропорциональный коэффициент Р (%) автоматического регулятора скорости (ASR) становится равным опорному моменту (%), когда разница между заданной скоростью и реальной скоростью равна номинальному скольжению. Интегральный коэффициент I - это время, необходимое для накопления величины момента от 0 до 100%. Таким образом, выход ASR станет равным 100% опорного момента, когда коэффициент Р установлен в 100%, и разница скорости равна номинальному скольжению. Быстродействие регулятора может быть увеличено увеличением коэффициента Р и уменьшением коэффициента I. Но это может привести к нестабильности системы. При уменьшении Р коэффициента и увеличении I коэффициента быстродействие регулятора снижается.

6.5.5 ПИД регулирование

Для ПИД регулирования используется внешний датчик обратной связи. С помощью встроенного ПИД регулятора можно осуществлять управление различными процессами без применения отдельного ПИД регулятора или ПЛК. Использование ПИД регулятора может быть выбрано в параметре CON_20.

(Пример) Включение/отключение ПИД регулятора

Hanawarn CON 20	Команда Пуск/Стоп			
Параметр CON_20	Вкл.	Выкл.		
Disable	Отключен	Отключен		
Enable	Включен	Отключен		
Terminal	В зависимости от состояния	Отключен		
reminal	клеммы	Отключен		

Если параметр CON_20 установлен как 'Terminal', включение/отключение ПИД регулятора управляется сигналом на многофункциональной клемме, заданной как 'Proc PID Dis'. Включение ПИД регулятора возможно, только если подана команда на вращение, и сигнал на многофункциональной клемме, заданной как 'Proc PID Dis', отсутствует.

Многофункциональная клемма определенная как "Proc PID Dis"		Команда Пуск/Стоп		
Входной сигнал		Вкл.	Выкл.	
Опролодома	Вкл	Отключен	Отключен	
Определена	Выкл	Включен	Отключен	
Не определ	ена	Отключен	Отключен	

Уставка ПИД задается с клавиатуры (параметр CON_10), сигнал обратной связи поступает на аналоговый вход, определенный как ('Process PID F/B'). Диапазон задания ПИД регулятора осуществляется в CON_11 от -100 до 100%, диапазон задания аналогового сигнала от -10 до 10В.

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
CON_11	Proc PID Ref	Уставка ПИД (клавиатура)	-100.0 - 100.0	%	0.0

Коэффициенты Р и I влияют на скорость изменения значения выхода ПИД. Если коэффициент Р равен 100%, коффициент I равен 0% и отклонение входной величины ПИД регулятора (CON_11 + Proc PID Ref - Proc PID F/B) равно 100%, то выход ПИД контроллера равен 100%. Если коэффициент I равен 10%, коэффициент Р равен 0 и входное отклонение равно 100%, то ПИД регулятору нужна 1 секунда, чтобы значение выхода ПИД регулятора стало равным 100%. Чем больше становится величина I, тем быстрее становится отклик, и время накопления значения уменьшается. Затем значение выхода ПИД регулятора (%) умножается на максимальную скорость, и полученная величина добавляется к значению заданной скорости.

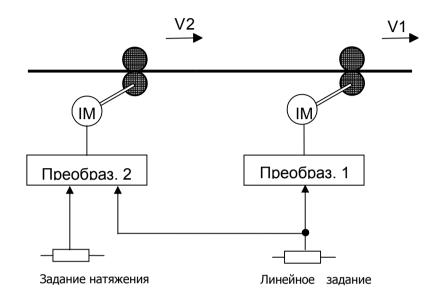
6. Описание функций

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
CON_13	Proc PID Kp	Р коэффициент ПИД	0.0 – 999.9	%	0.0
CON_14	Proc PID Ki	I коэффициент ПИД	0.0 - 100.0	%	0.0
CON_15	Proc PID Kd	D коэффициент ПИД	0.0 - 100.0	%	0.0

Для предотвращения насыщения ПИД регулятора при возникновении ошибки на выходе ПИД контроллера может быть установлен верхний и нижний предел. Это не влияет на основной регулятор скорости.

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
CON_16	Proc Pos Lmt	Положительный предел ПИД регулятора	-100 – 100	%	100
CON_17	Proc Neg Lmt	Отрицательный предел ПИД регулятора	-100 – 100	%	100

На выходе ПИД регулятора может использоваться низкочастотный фильтр. В этом случае выходное значение ПИД фильтруется, умножается на коэффициент усиления и добавляется к значению заданной скорости.

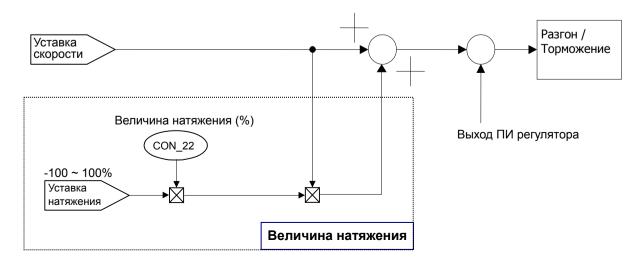

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
CON 18	CON_18 Proc Out LPF	Постоянная времени ПИД	0 – 500	мсек	0
CON_10		регулятора			
CON 10	Due a OutCain	Коэффициент усиления	-250.0 –	0/	0.0
CON_19	Proc OutGain	выхода ПИД	250.0	%	0.0

При наличии рассогласования на выходе ПИД при остановке преобразователь удерживает текущую скорость двигателя в течение времени "PID Hold Time", а затем останавливает двигатель на выбеге. Если на выходе ПИД нет рассогласования, двигатель останавливается независимо от установок времени "PID Hold Time".

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
CON_21	PIDHoldTime	Задержка ПИД	0 - 10000	мсек	5000

6.5.6 Контроль натяжения

Контроль натяжения - это тип контроля натяжения (без обратной связи). Величина натяжения – это соотношение разницы скорости двух катков. Натяжение рассчитывается по следующей формуле:

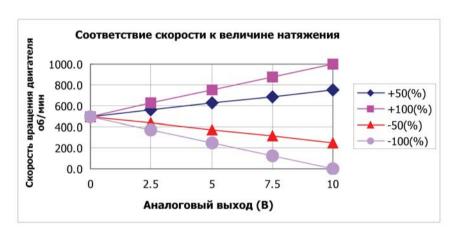

$$D = \frac{V1 - V2}{V2}$$

$$T = E \times S \times D = E \times S \times \frac{V1 - V2}{V2}$$

Где V1, V2: Скорость передачи каждого катка (м/мин)

- Т: Натяжение (кг)
- Е: Коэффициент эластичности обрабатываемого материала (кг/мм²)
- S: Площадь сечения обрабатываемого материала (мм²)

Опорное значение натяжения умножается на величину натяжения (задается в параметре CON_22) и добавляется к команде скорости,а результирующее значение используется как окончательная команда скорости.

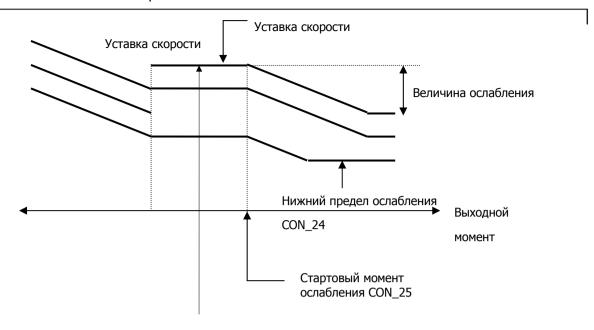


Один из многофункциональных аналоговых входов установите как опорный вход натяжения (диапазон от –100% до 100%), а опорное значение натяжения, умноженное на величину натяжения, добавьте к заданной скорости (Speed Ref) для получения окончательной величины заданной скорости.

Пример Настройка Аі2 как вход опорного значения натяжения.

Код	Дисплей	Описание	Диапазон	Ед.изм.	По умолчанию
AIO_13	Ai2 Define	Назначение аналогового многофункционального входа Ai2			Draw Ref
FUN_02	Spd Ref Sel	Источник задания скорости			Keypad1
FUN_12	Speed 0	Многошаговая скорость 0	0.0 - 3600.0	об/мин	500.0
CON_22	Draw %	Величина натяжения	-100.0 - 100.0	%	

Run speed = Spd Ref value + Spd Ref value $\times \frac{\text{Draw quantity}(\%)}{100(\%)} \times \frac{\text{Anolog input}(V)}{10(V)}$



6.5.7 Контроль «ослабления»

Контроль ослабления используется для изменения опорной скорости в зависимости от опорного момента. Этот способ управления используется для предотвращения насышения регулятора скорости в связи с разницей между заданной и реальной скоростью, в том случае когда преобразователь используется для поддержания нагрузки (например, если преобразователь используется для управления вращением подмоточного валика, дополнительного устройства основного вала). Как показанно на рисунке ниже, опорная скорость изменяется в зависимости от величины момента.

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
CON_23	Droop %	Величина ослабления	0.0 - 100.0	%	0.0
CON_24	Droop MinSpd	Нижний предел скорости контроля ослабления	0.0 – 3600.0	об/мин	0.0
CON_25	Droop MinTrq	Стартовый момент контроля ослабления %	0.0 - 100.0	%	0.0

Если опорный момент (выход регулятора скорости) становится выше, чем значение параметра CON_25, заданная скорость уменьшается, и, таким образом, уменьшается момент двигателя. Ниже представлены формулы для расчета величины ослабления:

Пример расчета величины ослабления

• Когда опорный момент положительный:

Droop Ref speed = (Torque Ref [%] - Droop Starting Torque[%]) * Droop Quantity[%]

Результирующее значение положительное. Следовательно, результирующая величина скорости уменьшается и должна соответствовать:

(Speed Ref – Droop Ref speed) > Droop low limit speed Droop Ref speed < (Speed Ref – Droop low limit speed)

Положительный предел определяется как "Speed Ref - Droop Low Limit Speed".

• Когда опорный момент отрицательный:

Droop Ref speed = -(Torque Ref [%] - Droop Starting Torque[%]) * Droop Quantity [%]

Результирующее значение отрицательное. Следовательно, результирующая величина скорости должна соответствовать:

(Speed Ref – Droop Ref speed) < Max Motor speed

Droop Ref speed > — (Max Motor speed — Speed Ref)

Отрицательный предел определяется как "Max Motor speed — Speed Ref".

6.5.8 Управление моментом

В параметре CON_01 можно выбрать способ управления преобразователем: поддержание скорости или момента. По умолчанию установлено поддержание скорости. Способ управления также может быть задан с помощью многофукнционального входа, определенного как 'Spd/Trq Sel'. Выбор способа управления с помощью входной клеммы обладает большим приорететом, чем значение, установленное в параметре CON_01.

(Пример) Многофункциональный вход Р6 определен как «Torque control».

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
		Определение			
DIO_06	P6 define	многофункционального			Spd/Trq sel
		входа Р6			
CON 01	Control Modo	Задание способа	Speed		Torquo
CON_01	Control Mode	управления	Torque		Torque

1) СОN_26 (Источник задания момента)

2) СОN_27 (Опорный момент (клавиатура))

В режиме поддержания скорости выход ASR используется как опорное значение момента. В режиме поддержания момента опорное значение момента задается с клавиатуры через аналоговый вход, определенный как 'Trq Ref Src', или через опциональную интерфейсную плату. Полярность изменяется при переключении направления вращения (команды скорости). Если для задания опорного момента испольуется аналоговый сигнал, аналоговое значение (от -10B до 10B) преобразуется в проценты от номинального момента ($-100 \sim 100 \%$). Величина опорного момента может задаваться в диапазоне от -250% до 250% настройкой смещения и усиления сигнала.

Параметр CON_27 "Torque Ref" предназначен для ввода значения опорного момента, если параметр CON_26 определен как «Кеураd».

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию	
CON 36	Trq Ref Src	Выбор источника	None/Analog		None	
CON_26		опорного момента	Keypad/Option		None	
CON 27	Torque Ref	Опорный момент	-180.0 – 180.0	-180.0 – 180.0 %	0/	0.0
CON_27		(клавиатура)		70	0.0	

3) CON_32 (Источник отклонения момента)

4) CON 33 (Величина отклонения момента)

Величина отклонения момента - это дополнительное значение, добавляемое к значению опорного момента. Отклонения момента определяется параметром (CON_32) и может задаваться с клавиатуры через аналоговый вход или опциональную плату. Отклонение момента активируется при появлении сигнала на многофункциональном входе, запрограммированном как «UseTrq Bias». Величина на аналоговом входе [-0 - +10B] преобразуется в [-100 - +100%] и может быть расширена до [-250 - +250%] с помощью коэффициента усиления и смещения.

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
			None		
CON_32	Trq Bias Src	Источник отклонения	Analog		None
		момента	Keypad		None
			Option		
CON 33	Tra Rips	Величина отклонения	-150.0 – 150.0	%	0.0
CON_33	Trq Bias	момента	-130.0 – 130.0	70	0.0

5) CON_35 (Баланс момента)

При управлении лифтом может быть настроен баланс момента нагрузки для получения более комфортных ощущений при старте с использованием тензодатчика. Это специализированное устройство определения веса, установленное внизу кабины лифта. Значение параметра CON_35 настроено для отображения 50%, после того как вес кабины лифта станет равным весу противовеса.

Значение, отображаемое при нажатии кнопки [PROG] — это напряжение тензодатчика, подаваемое на преобразователь. С помощью кнопок [\blacktriangle] / [\blacktriangledown] задается значение компенсации нагрузки.

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
CON 3E	Tra Palanca	Величина баланса	0.0 100.0	%	50.0
CON_35	Trq Balance	момента	0.0 - 100.0		

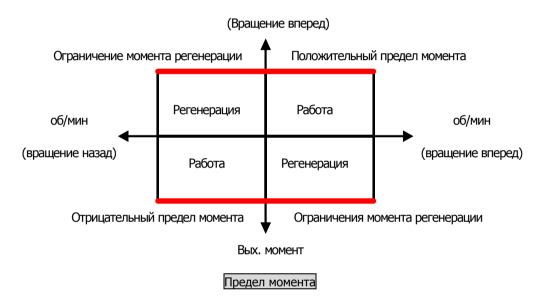
6) Отклонение момента разрешено/запрещено

Разрешение/запрещение задания отклонения момента определяется состоянием многофункциональной клеммы, определенной как 'Torque bias enable'. Если параметр CON_32 установлен как 'Keypad', величина отклонения момента задается в параметре CON_33. Для отключения «отклонения момента» установите параметр CON_32 в значение 'None'.

(Пример) Настройка многофункционального входа P5 как «Use Trg Bias»

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
		Назначение			
DIO_05	P5 define	многофункционального			Use Trq Bias
		входа Р5			

7) CON_34 (Компенсация момента)


Это величина отклонения момента для компенсации потерь, вызванных силой трения, которая изменяется в зависимости от вращения двигателя и добавляется к общей величине отклонения.

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
CON_34	Trq Bias FF	Компенсация момента потерь, вызванных силой трения	-150.0 – 150.0	%	0.0

8) CON_28 ~ 31 (Выбор источника ограничения момента, Ограничение момента при вращении вперед/назад/регенерации)

Ограничение момента может быть установленно независимо для вращения вперед, вращения назад и регенерации. Во всех этих режимах величина ограничения может быть установлена с помощью параметров, многофункционального входа или через опциональную плату.

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
CON 30	Tra I mt Cra	Выбор источника			Vnd Vnd Vnd
CON_28	Trq Lmt Src	ограничения момента			Kpd Kpd Kpd

Величина предела момента определяется с помощью девяти различных комбинаций, задаваемых в параметре CON_28.

Значение	Положительный предел	Отрицательный предел	Предел момента	
CON_28	момента	момента	регенерации	
Kpd Kpd Kpd	CON_29	CON_30	CON_31	
Kpd Kpd Ax	CON_29	CON_30	Vx	
Kpd Ax Kpd	CON_29	Vx	CON_31	
Kpd Ax Ax	CON_29	Vx	Vx	
Ax Kpd Kpd	Vx	CON_30	CON_31	
Ax Kpd Ax	Vx	CON_30	Vx	
Ax Ax Kpd	Vx	Vx	CON_31	
Ax Ax Ax	Vx	Vx	Vx	
Ont Ont Ont	Задается с опциональной	Задается с опциональной	Задается с	
Opt Opt Opt	платы	платы	опциональной платы	

Ух означает, что значение ограничения момента задается аналоговым входным сигналом.

9) Уставка тока момента

Значение момента преобразуется в уставку тока момента. Ток момента формируется из номинального тока и магнитного потока двигателя. При установке мощности двигателя в параметрах PAR_22 и PAR_26 устанавливаются начальные значения номинального тока и магнитного потока.

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
DAD 07	Motor Select	Выбор мощности	2.2 – 800.0	кВт	
PAR_07 Motor Sele	ייוטנטו אפופננ	двигателя	2.2 – 800.0		
DAD 22	Dated Com	Номинальный ток	1.0 2000.0	^	
PAR_22	Rated-Curr	двигателя	1.0 – 2000.0	А	
PAR_26	Flux-Curr	Ток возбуждения	0.0 – 70% of		
		двигателя	PAR_22	А	

6.5.9 Поиск скорости

Используется для повторного запуска двигателя, вращающегося на выбеге, без необходимости останова двигателя. Для включения некоторых режимов поиска скорости может понадобиться включение доп. функций (параметры FUN_58 и FUN_59).

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию	
CON_49	Speed Search	Параметры поиска скорости 1111			0100	
51N 50 D D		Запуск при появлении	Yes		No	
FUN_58	Power-on Run	напряжения питания	No		No	
EUN EO	RST Restart	Повторный запуск после	Yes		No	
FUN_59		сброса ошибки	No		No	

Параметры поиска скорости CON_49 устанавливаются следующим образом:

Vo-	Установка				Origonia	
Код	Bit4	Bit3	Bit2	Bit1	Описание	
				√	Поиск скорости во время разгона	
			V		Поиск скорости при повторном запуске после сброса ошибки	
CON_49		V			Поиск скорости во время запуска после ошибки питания	
	V				Поиск скорости осуществляется, если параметр FUN_58 установлен в значение "Yes"	

- 0: Двигатель разгоняется без функции поиска скорости.
- 1: Функция поиска скорости выполняется во время разгона.

(Включая автоматический повторный запуск и запуск при появлении напряжения)

- (2) бит 2
 - 0: Двигатель разгоняется без функции поиска скорости после возникновении ошибки.
 - 1: Функция поиска скорости выполняется при повторном запуске после возникновения ошибки.

(Включая автоматический повторный запуск и запуск при появлении напряжения)

- (3) бит 3
 - 0: Двигатель останавливается при нарушении основного питания. Для перезапуска необходимо заново подать команду «ПУСК».
 - 1: Функция поиска скорости выполнятся при перезапуске после пропадания основного питания.
- (4) бит 4
 - 0: Двигатель разгоняется, только если параметр FUN_58 установлен в значение "Yes".
 - 1: Функция поиска скорости выполняется при разгоне, когда параметр FUN_58 установлен в значение "Yes".

6.5 Группа Control Group (CON_[][])

6.5.1 Переход к требуемому параметру (CON_00)

Переход к требуемому параметру в группе CON может быть осуществлен в параметре CON_00.

Пример Переход к параметру CON_11

Нажмите кнопку [PROG] и установите значение 11, используя кнопки [\blacktriangle], [\blacktriangledown], [SHITF/ESC], затем нажмите кнопку [ENT]. Произойдет переход к параметру CON_11. Если заданный параметр заблокирован или не существует, произойдет переход к ближайшему параметру.

Для перехода к другим параметрам группы используйте кнопки [▲], [▼].

6.5.2 Задание способа управления (CON_01)

В преобразователях серии iV5 используются два способа управления: управление по скорости и управление по моменту. Для работы этих режимов используется векторное управление с датчиком обратной связи (энкодер)

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
CON 01	CON_01 Control Mode Задание способа управления	Задание способа	Speed		Cnood
CON_01		управления	Torque		Speed

6.5.3 Сфера применения (CON 02)

В параметре CON 02 можно выбрать сферу применения (например, Лифт или Синхронное управление)

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
GON 93	Application	Задание сферы применения	General Vect		General Vect
			Elevator *1)		
CON_02			Synchro*2)		
			WEB Control		

^{*1)} Отображается при использовании опциональной платы (EL_IO).

6.5.4 Автоматический регулятор скорости (ASR)

1) CON_05 (Постоянная времени низкочастотного фильтра ASR 1)

2) CON 08 (Постоянная времени низкочастотного фильтра ASR 2)

В зависимости от состояния многофункциональных клемм, заданных как 'ASR Gain Selection', можно выбрать коэфициенты PI ASR. При отсутствии сигнала на клемме 'ASR Gain Selection' используется первая пара коэфициентов ASR и постоянная времени 1. При наличии сигнала на клемме используется вторая пара коэфициентов ASR и постоянная времени 2.

^{*2)} Отображается при использовании опциональной платы синхронизации (SYNC_IO).

(Пример) Многофункциональный вход задан как «ASR PI Gain»

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
		Назначение			
DIO_04	P4 define	многофункционального			ASR Gain Sel
		входа Р4			

Для задания времени фильтра низких частот используются следующие параметры:

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
CON_05	ASR LPF1	Постоянная времени 1 ASR	0 – 20000	мсек	0
CON_08	ASR LPF2	Постоянная времени 2 ASR	0 – 20000	мсек	0

3) CON_03 ~ 04 (Коэффициенты PI1 ASR)

4) CON_06 ~ 07 (Коэффициенты PI2 ASR)

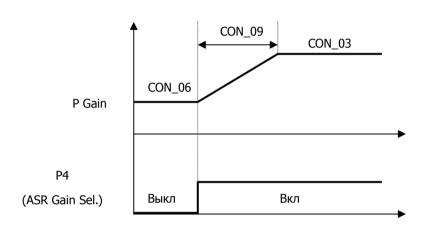
В зависимости от состояния входа, определенного как "ASR Gain Sel", может быть выбрана одна из двух пар коэффициентов PI

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
CON_03	ASR P Gain1	Коэффициент P1 ASR	0.0 – 200.0	%	50.0
CON_04	ASR I Gain1	Коэффициент I1 ASR	0 – 50000	мсек	300
CON_06	ASR P Gain2	Коэффициент P2 ASR	0.0 - 200.0	%	5.0
CON_07	ASR I Gain2	Коэффициент I2 ASR	0 – 50000	мсек	3000

5) CON_09 (Время переключения коэффициентов ASR)

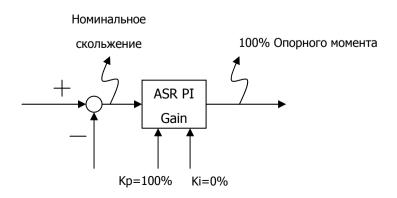
6) CON_10 (Скорость двигателя во время переключения коэффициентов ASR)

В зависимости от состояния многофункционального входа, определенного как 'ASR P/PI transfer', автоматический регулятор работает PI или P режиме .


Пример Переключение ASR P/PI:

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
		Назначение			
DIO_06	P6 define	многофункционального			ASR P/PI Sel
		входа Р6			

Для избежания рывков при переключении коэффицентов Р и I (при изменении состояния клеммы 'ASR Gain Sel'), переключение происходит плавно за время, заданное в параметре CON_09. Переключение между коэффициентами Р2 и Р1 производится на скорости выше, чем значение параметра CON_10. Это происходит при изменении состояния многофункциональной клеммы, определенной как 'ASR Gain Sel', из состояния «Выкл» во «Вкл».


Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
CON_09	ASR Ramp	Время переключения коэффициентов ASR		мсек	1000
CON_10	ASR TarSpd	Заданная скорость после переключения коэффициентов ASR	0.0 – 3600.0	об/мин	0.0

Время переключения

• Переключение коэффициентов Р и I ASR (Автоматического регулятора скорости)

Пропорциональный коэффициент Р (%) автоматического регулятора скорости (ASR) становится равным опорному моменту (%), когда разница между заданной скоростью и реальной скоростью равна номинальному скольжению. Интегральный коэффициент I - это время, необходимое для накопления величины момента от 0 до 100%. Таким образом, выход ASR станет равным 100% опорного момента, когда коэффициент Р установлен в 100%, и разница скорости равна номинальному скольжению. Быстродействие регулятора может быть увеличено увеличением коэффициента Р и уменьшением коэффициента I. Но это может привести к нестабильности системы. При уменьшении Р коэффициента и увеличении I коэффициента быстродействие регулятора снижается.

6.5.5 ПИД регулирование

Для ПИД регулирования используется внешний датчик обратной связи. С помощью встроенного ПИД регулятора можно осуществлять управление различными процессами без применения отдельного ПИД регулятора или ПЛК. Использование ПИД регулятора может быть выбрано в параметре CON_20.

(Пример) Включение/отключение ПИД регулятора

Hanawarn CON 20	Команда Пуск/Стоп			
Параметр CON_20	Вкл.	Выкл.		
Disable	Отключен	Отключен		
Enable	Включен	Отключен		
Terminal	В зависимости от состояния	Отключен		
reminal	клеммы	Отключен		

Если параметр CON_20 установлен как 'Terminal', включение/отключение ПИД регулятора управляется сигналом на многофункциональной клемме, заданной как 'Proc PID Dis'. Включение ПИД регулятора возможно, только если подана команда на вращение, и сигнал на многофункциональной клемме, заданной как 'Proc PID Dis', отсутствует.

Многофункционалі определенная как `		Команда Пуск/Стоп		
Входной сигнал		Вкл.	Выкл.	
Опролодома	Вкл	Отключен	Отключен	
Определена	Выкл	Включен	Отключен	
Не определ	ена	Отключен	Отключен	

Уставка ПИД задается с клавиатуры (параметр CON_10), сигнал обратной связи поступает на аналоговый вход, определенный как ('Process PID F/B'). Диапазон задания ПИД регулятора осуществляется в CON_11 от -100 до 100%, диапазон задания аналогового сигнала от -10 до 10В.

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
CON_11	Proc PID Ref	Уставка ПИД (клавиатура)	-100.0 - 100.0	%	0.0

Коэффициенты Р и I влияют на скорость изменения значения выхода ПИД. Если коэффициент Р равен 100%, коффициент I равен 0% и отклонение входной величины ПИД регулятора (CON_11 + Proc PID Ref - Proc PID F/B) равно 100%, то выход ПИД контроллера равен 100%. Если коэффициент I равен 10%, коэффициент Р равен 0 и входное отклонение равно 100%, то ПИД регулятору нужна 1 секунда, чтобы значение выхода ПИД регулятора стало равным 100%. Чем больше становится величина I, тем быстрее становится отклик, и время накопления значения уменьшается. Затем значение выхода ПИД регулятора (%) умножается на максимальную скорость, и полученная величина добавляется к значению заданной скорости.

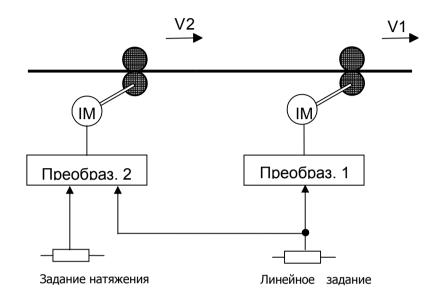
6. Описание функций

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
CON_13	Proc PID Kp	Р коэффициент ПИД	0.0 – 999.9	%	0.0
CON_14	Proc PID Ki	I коэффициент ПИД	0.0 - 100.0	%	0.0
CON_15	Proc PID Kd	D коэффициент ПИД	0.0 - 100.0	%	0.0

Для предотвращения насыщения ПИД регулятора при возникновении ошибки на выходе ПИД контроллера может быть установлен верхний и нижний предел. Это не влияет на основной регулятор скорости.

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
CON_16	Proc Pos Lmt	Положительный предел ПИД регулятора	-100 – 100	%	100
CON_17	Proc Neg Lmt	Отрицательный предел ПИД регулятора	-100 – 100	%	100

На выходе ПИД регулятора может использоваться низкочастотный фильтр. В этом случае выходное значение ПИД фильтруется, умножается на коэффициент усиления и добавляется к значению заданной скорости.

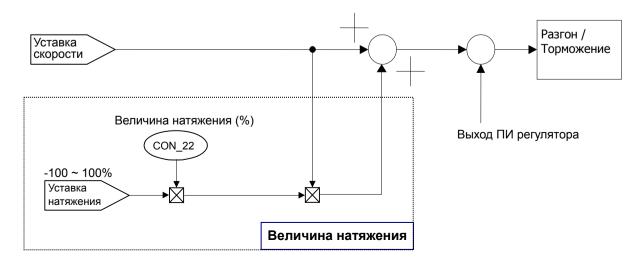

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
CON 18 Proc Out LPF	Proc Out LPF	Постоянная времени ПИД	0 – 500	MCOK	0
CON_10	FIOC OUT LFI	регулятора	0 – 300	мсек	U
CON 10	Due a OutCain	Коэффициент усиления	-250.0 –	%	0.0
CON_19	Proc OutGain	выхода ПИД	250.0		0.0

При наличии рассогласования на выходе ПИД при остановке преобразователь удерживает текущую скорость двигателя в течение времени "PID Hold Time", а затем останавливает двигатель на выбеге. Если на выходе ПИД нет рассогласования, двигатель останавливается независимо от установок времени "PID Hold Time".

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
CON_21	PIDHoldTime	Задержка ПИД	0 - 10000	мсек	5000

6.5.6 Контроль натяжения

Контроль натяжения - это тип контроля натяжения (без обратной связи). Величина натяжения – это соотношение разницы скорости двух катков. Натяжение рассчитывается по следующей формуле:

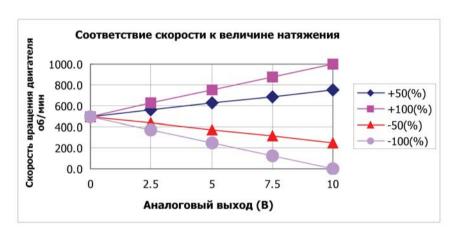

$$D = \frac{V1 - V2}{V2}$$

$$T = E \times S \times D = E \times S \times \frac{V1 - V2}{V2}$$

Где V1, V2: Скорость передачи каждого катка (м/мин)

- Т: Натяжение (кг)
- Е: Коэффициент эластичности обрабатываемого материала (кг/мм²)
- S: Площадь сечения обрабатываемого материала (мм²)

Опорное значение натяжения умножается на величину натяжения (задается в параметре CON_22) и добавляется к команде скорости,а результирующее значение используется как окончательная команда скорости.

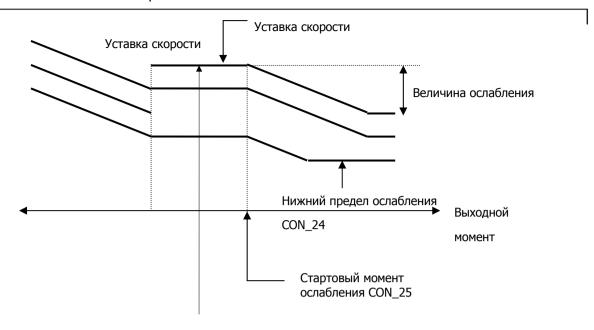


Один из многофункциональных аналоговых входов установите как опорный вход натяжения (диапазон от –100% до 100%), а опорное значение натяжения, умноженное на величину натяжения, добавьте к заданной скорости (Speed Ref) для получения окончательной величины заданной скорости.

Пример Настройка Аі2 как вход опорного значения натяжения.

Код	Дисплей	Описание	Диапазон	Ед.изм.	По умолчанию
AIO_13	Ai2 Define	Назначение аналогового многофункционального входа Ai2			Draw Ref
FUN_02	Spd Ref Sel	Источник задания скорости			Keypad1
FUN_12	Speed 0	Многошаговая скорость 0	0.0 – 3600.0	об/мин	500.0
CON_22	Draw %	Величина натяжения	-100.0 - 100.0	%	

Run speed = Spd Ref value + Spd Ref value $\times \frac{\text{Draw quantity}(\%)}{100(\%)} \times \frac{\text{Anolog input}(V)}{10(V)}$



6.5.7 Контроль «ослабления»

Контроль ослабления используется для изменения опорной скорости в зависимости от опорного момента. Этот способ управления используется для предотвращения насышения регулятора скорости в связи с разницей между заданной и реальной скоростью, в том случае когда преобразователь используется для поддержания нагрузки (например, если преобразователь используется для управления вращением подмоточного валика, дополнительного устройства основного вала). Как показанно на рисунке ниже, опорная скорость изменяется в зависимости от величины момента.

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
CON_23	Droop %	Величина ослабления	0.0 - 100.0	%	0.0
CON_24	Droop MinSpd	Нижний предел скорости контроля ослабления	0.0 – 3600.0	об/мин	0.0
CON_25	Droop MinTrq	Стартовый момент контроля ослабления %	0.0 - 100.0	%	0.0

Если опорный момент (выход регулятора скорости) становится выше, чем значение параметра CON_25, заданная скорость уменьшается, и, таким образом, уменьшается момент двигателя. Ниже представлены формулы для расчета величины ослабления:

Пример расчета величины ослабления

• Когда опорный момент положительный:

Droop Ref speed = (Torque Ref [%] - Droop Starting Torque[%]) * Droop Quantity[%]

Результирующее значение положительное. Следовательно, результирующая величина скорости уменьшается и должна соответствовать:

(Speed Ref – Droop Ref speed) > Droop low limit speed Droop Ref speed < (Speed Ref – Droop low limit speed)

Положительный предел определяется как "Speed Ref - Droop Low Limit Speed".

• Когда опорный момент отрицательный:

Droop Ref speed = -(Torque Ref [%] - Droop Starting Torque[%]) * Droop Quantity [%]

Результирующее значение отрицательное. Следовательно, результирующая величина скорости должна соответствовать:

(Speed Ref – Droop Ref speed) < Max Motor speed

Droop Ref speed > — (Max Motor speed — Speed Ref)

Отрицательный предел определяется как "Max Motor speed — Speed Ref".

6.5.8 Управление моментом

В параметре CON_01 можно выбрать способ управления преобразователем: поддержание скорости или момента. По умолчанию установлено поддержание скорости. Способ управления также может быть задан с помощью многофукнционального входа, определенного как 'Spd/Trq Sel'. Выбор способа управления с помощью входной клеммы обладает большим приорететом, чем значение, установленное в параметре CON_01.

(Пример) Многофункциональный вход Р6 определен как «Torque control».

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
		Определение			
DIO_06	P6 define	многофункционального			Spd/Trq sel
		входа Р6			
CON 01	Control Mode	Задание способа	Speed		Torquo
CON_01		управления	Torque		Torque

1) СОN_26 (Источник задания момента)

2) СОN_27 (Опорный момент (клавиатура))

В режиме поддержания скорости выход ASR используется как опорное значение момента. В режиме поддержания момента опорное значение момента задается с клавиатуры через аналоговый вход, определенный как 'Trq Ref Src', или через опциональную интерфейсную плату. Полярность изменяется при переключении направления вращения (команды скорости). Если для задания опорного момента испольуется аналоговый сигнал, аналоговое значение (от -10B до 10B) преобразуется в проценты от номинального момента ($-100 \sim 100 \%$). Величина опорного момента может задаваться в диапазоне от -250% до 250% настройкой смещения и усиления сигнала.

Параметр CON_27 "Torque Ref" предназначен для ввода значения опорного момента, если параметр CON_26 определен как «Кеураd».

	Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
	CON 36	Trq Ref Src	Выбор источника	None/Analog		None
	CON_26		опорного момента	Keypad/Option		None
	CON_27	Torque Def	Опорный момент	-180.0 – 180.0	%	0.0
		Torque Ref	(клавиатура)	-100.0 - 180.0	70	0.0

3) CON_32 (Источник отклонения момента)

4) CON 33 (Величина отклонения момента)

Величина отклонения момента - это дополнительное значение, добавляемое к значению опорного момента. Отклонения момента определяется параметром (CON_32) и может задаваться с клавиатуры через аналоговый вход или опциональную плату. Отклонение момента активируется при появлении сигнала на многофункциональном входе, запрограммированном как «UseTrq Bias». Величина на аналоговом входе [-0 - +10B] преобразуется в [-100 - +100%] и может быть расширена до [-250 - +250%] с помощью коэффициента усиления и смещения.

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
			None		
CON 33	Tra Diag Cra	Источник отклонения	Analog		None
CON_32	Trq Bias Src	момента	Keypad		None
			Option		
CON 33	Trq Bias	Величина отклонения	150.0 150.0	%	0.0
CON_33		момента	-150.0 – 150.0	70	0.0

5) CON_35 (Баланс момента)

При управлении лифтом может быть настроен баланс момента нагрузки для получения более комфортных ощущений при старте с использованием тензодатчика. Это специализированное устройство определения веса, установленное внизу кабины лифта. Значение параметра CON_35 настроено для отображения 50%, после того как вес кабины лифта станет равным весу противовеса.

Значение, отображаемое при нажатии кнопки [PROG] — это напряжение тензодатчика, подаваемое на преобразователь. С помощью кнопок [\blacktriangle] / [\blacktriangledown] задается значение компенсации нагрузки.

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
CON 35	Trg Balance	Величина баланса	0.0 - 100.0	%	50.0
CON_33	inq balance	момента	0.0 – 100.0	70	30.0

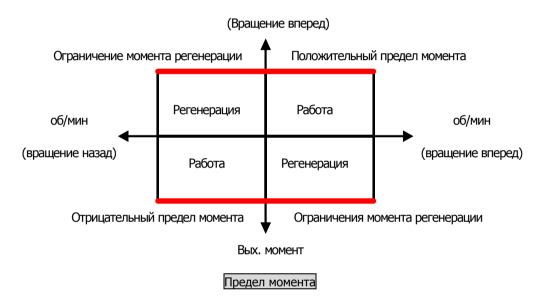
6) Отклонение момента разрешено/запрещено

Разрешение/запрещение задания отклонения момента определяется состоянием многофункциональной клеммы, определенной как 'Torque bias enable'. Если параметр CON_32 установлен как 'Keypad', величина отклонения момента задается в параметре CON_33. Для отключения «отклонения момента» установите параметр CON_32 в значение 'None'.

(Пример) Настройка многофункционального входа P5 как «Use Trg Bias»

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
		Назначение			
DIO_05	P5 define	многофункционального			Use Trq Bias
		входа Р5			

7) CON_34 (Компенсация момента)


Это величина отклонения момента для компенсации потерь, вызванных силой трения, которая изменяется в зависимости от вращения двигателя и добавляется к общей величине отклонения.

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
CON_34	Trq Bias FF	Компенсация момента потерь, вызванных силой трения	-150.0 – 150.0	%	0.0

8) CON_28 ~ 31 (Выбор источника ограничения момента, Ограничение момента при вращении вперед/назад/регенерации)

Ограничение момента может быть установленно независимо для вращения вперед, вращения назад и регенерации. Во всех этих режимах величина ограничения может быть установлена с помощью параметров, многофункционального входа или через опциональную плату.

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
CON 30	Tra I mt Cra	Выбор источника			Vnd Vnd Vnd
CON_28	Trq Lmt Src	ограничения момента			Kpd Kpd Kpd

Величина предела момента определяется с помощью девяти различных комбинаций, задаваемых в параметре CON_28.

Значение	Положительный предел	Отрицательный предел	Предел момента
CON_28	момента	момента	регенерации
Kpd Kpd Kpd	CON_29	CON_30	CON_31
Kpd Kpd Ax	CON_29	CON_30	Vx
Kpd Ax Kpd	CON_29	Vx	CON_31
Kpd Ax Ax	CON_29	Vx	Vx
Ax Kpd Kpd	Vx	CON_30	CON_31
Ax Kpd Ax	Vx	CON_30	Vx
Ax Ax Kpd	Vx	Vx	CON_31
Ax Ax Ax	Vx	Vx	Vx
Opt Opt Opt	Задается с опциональной	Задается с опциональной	Задается с
Орг Орг Орг	платы	платы	опциональной платы

Ух означает, что значение ограничения момента задается аналоговым входным сигналом.

9) Уставка тока момента

Значение момента преобразуется в уставку тока момента. Ток момента формируется из номинального тока и магнитного потока двигателя. При установке мощности двигателя в параметрах PAR_22 и PAR_26 устанавливаются начальные значения номинального тока и магнитного потока.

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
PAR_07 M	Motor Select	Выбор мощности	2.2 – 800.0	кВт	
	Motor Select	двигателя	2.2 – 800.0		
DAD 22	Rated-Curr	Номинальный ток	1.0 – 2000.0	Α	
PAR_22		двигателя			
DAD 36	Flux-Curr	Ток возбуждения	0.0 – 70% of	۸	
PAR_26		двигателя	PAR_22	Α	

6.5.9 Поиск скорости

Используется для повторного запуска двигателя, вращающегося на выбеге, без необходимости останова двигателя. Для включения некоторых режимов поиска скорости может понадобиться включение доп. функций (параметры FUN_58 и FUN_59).

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
CON_49	Speed Search	Параметры поиска скорости	1111		0100
FUN FO	Power-on Run	Запуск при появлении	Yes		No
FUN_58		напряжения питания	No		No
EUN EO	RST Restart	Повторный запуск после	Yes		No
FUN_59		сброса ошибки	No		No

Параметры поиска скорости CON_49 устанавливаются следующим образом:

Vo-	Установка				0-1/23111/2		
Код	Bit4	Bit3	Bit2	Bit1	Описание		
				√	Поиск скорости во время разгона		
			V		Поиск скорости при повторном запуске после сброса ошибки		
CON_49		V			Поиск скорости во время запуска после ошибки питания		
	V				Поиск скорости осуществляется, если параметр FUN_58 установлен в значение "Yes"		

- 0: Двигатель разгоняется без функции поиска скорости.
- 1: Функция поиска скорости выполняется во время разгона.

(Включая автоматический повторный запуск и запуск при появлении напряжения)

- (2) бит 2
 - 0: Двигатель разгоняется без функции поиска скорости после возникновении ошибки.
 - 1: Функция поиска скорости выполняется при повторном запуске после возникновения ошибки.

(Включая автоматический повторный запуск и запуск при появлении напряжения)

- (3) бит 3
 - 0: Двигатель останавливается при нарушении основного питания. Для перезапуска необходимо заново подать команду «ПУСК».
 - 1: Функция поиска скорости выполнятся при перезапуске после пропадания основного питания.
- (4) бит 4
 - 0: Двигатель разгоняется, только если параметр FUN_58 установлен в значение "Yes".
 - 1: Функция поиска скорости выполняется при разгоне, когда параметр FUN_58 установлен в значение "Yes".

6.6 Группа пользователя (USR_[][])

Группа пользователя используется для группировки часто используемых параметров.

6.6.1 Переход к требуемому параметру (USR_00)

Переход к требуемому параметру в группе USR может быть совершен с помощью параметра USR_00.

(Пример) Переход к параметру USR_03

Нажмите кнопку [PROG] и установите значение «3» используя кнопки [\blacktriangle], [\blacktriangledown], [SHITF/ESC], затем нажмите кнопку [ENT]. Произойдет переход к параметру USR_03. Если заданный параметр заблокирован или не существует, то произойдет переход к ближайшему параметру.

Переход к другим параметрам группы осуществляется с помошью кнопок $[\blacktriangle]$, $[\blacktriangledown]$.

6.6.2 Макрос

1) USR 01 (Инициализация макроса)

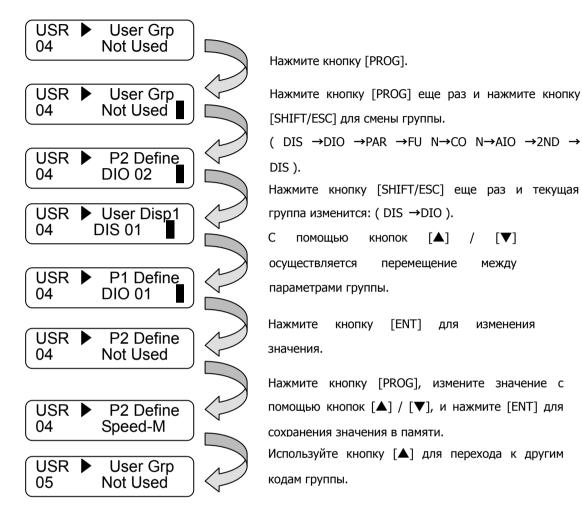
Тип параметров может быть определен согласно настройкам пользователя.

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
USR 01	JSR 01 Macro Init	cro Init Использовать	User Define		User Define
0317_01	Macro Init	макроопределение	E/L		OSEI DEIIIE

2) USR_02 (Запись)

Позволяет записать группу и значение параметра, определенного пользователем в памяти.

3) USR_03 (Вызов)


Позволяет прочитать из памяти группу и значение параметра, сохраненное параметром USR_02.

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
USR_02	User Save	Сохранение данных пользователя	No Yes		No
USR_03	User Recall	Вызов сохраненных данных	No Yes		No

6.6.3 Параметры пользователя (USR_04 ~ 67)

При нажатии кнопки [PROG] отображается тип и значение параметра. Параметр в группе USR может быть задан также как и параметр в любой другой группе. Если значение параметра не определено, то после нажатия кнопки [PROG], на диспле отображается значение 'Not Used', для изменения значения параметра нажмите кнопку [PROG] еще раз. В группе USR можно определить 64 параметра.

Переход из одной группы параметров к другой

6.7 Группа 2-го двигателя (2nd_[][])

Параметры группы 2-го двигателя эквивалентны параметрам группы PAR и используются при управлении двумя различными двигателями. Один из многофукнциональных входов P1 \sim P7 (DIO_01 \sim DIO_07) должен быть определен как "2nd Func" . Параметры 2-го двигателя аналогичны параметрам 1-го двигателя . Если на многофункциональном входе определенном как "2nd Func" нет сигнала, используются параметры первого двигателя. Если на входе определенном как "2nd Func" есть сигнал, то используются параметры второго двигателя.

6.7.1 Переход к требуемому параметру (2nd 00)

Переход к любому параметру группы может быть совершен с помощью параметра 2nd 00.

(Пример) Если необходимо перейти к параметру 2nd 02.

Нажмите кнопку [PROG] , установите значение «2» с помощью кнопок [SHIFT/ESC] / [▲] / [▼] и нажмите кнопку [ENT]. Если требуемый код не существует или не доступен, то будет совершен переход к ближайшему параметру.

Переход к другим параметрам группы осуществляется с помощью кнопок $[\blacktriangle]/[\blacktriangledown]$.

6.7.2 Выбор режима управления 2-го двигателя (2nd 01)

В преобразователе серии iV5 используется два способа управления: поддержание скорости и поддержание момента. В качестве датчика обратной связи используется инкрементальный энкодер.

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
2nd_01	2nd Ctl Mode	Способ управления 2-м двигателем	Speed Torque		Speed

6.7.3 Задание скорости 2-го двигателя

1) 2nd_02: Максимальная скорость 2-го двигателя

2) 2nd_04: Задание скорости вращения 2-го двигателя

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
2nd_02	2nd Max Spd	Максимальная скорость 2-го двигателя	400.0 ~ 3600.0	об/ми н	1800.0
2nd_04	2nd Spd 0	Многошаговая скорость 0 2-го двигателя	0.0 ~ 3600.0	об/ми н	0.0

6.7.4 Параметры разгона и торможения 2-го двигателя

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
2nd_05	2nd Acc S St	Наклон S кривой в начале разгона для 2-го двигателя	0.0 ~ 50.0	%	0.0
2nd_06	2 nd Dec S Ed	Наклон S кривой в конце разгона для 2-го двигателя	0.0 ~ 50.0	%	0.0
2nd_07	2nd Dec S St	Наклон S кривой в начале торможения для 2-го двигателя	0.0 ~ 50.0	%	0.0
2nd_08	2nd Dec S Ed	Наклон S кривой в конце торможения для 2-го двигателя	0.0 ~ 50.0	%	0.0
2nd_09	2nd Acc time	Время разгона 2-го двигателя	0.01 ~ 6000.0	сек	10.0
2nd_10	2nd Dec time	Время торможения 2-го двиг.	0.01 ~ 6000.0	сек	10.0

6.7.5 Параметры энкодера 2-го двигателя

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
2nd_12	2nd Enc #	Количество импульсов энкодера второго двигателя	360 ~ 4096	%	1024
2nd_13	2nd Enc Dir	Направление вращения энкодера 2-го двигателя	A Phase Lead B Phase Lead		A Phase Lead
2nd_14	2nd Enc Chk	Ошибка энкодера 2-го двигателя	Yes No		Yes
2nd_15	2nd Enc LPF	Постоянная времени энкодера 2-го двигателя	00 ~ 100	мсек	1

6.7.6 Параметры 2-го двигателя

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
2nd_17	2nd BaseSpd	Номинальная скорость 2-го двигателя	300.0 ~ 3600.0	об\мин	1800.0
2nd_18	2nd R-Volt	Номинальное напряжение 2-го двигателя	120 ~ 560	В	
2nd_19	2nd Pole #	Количество полюсов второго двигателя	2 ~ 12		4
2nd_20	2nd Mot Eff.	КПД второго двигателя	70 ~ 100	%	72
2nd_21	2nd R-Slip	Номинальное скольжение второго двигателя	10 ~ 250	об/мин	
2nd_23	2nd Flx Cur	Ток возбуждения 2-го двигателя	0.0~ Inverter rated current	Α	
2nd_24	2nd Mot Tr	Постоянная времени ротора 2-го двигателя	30 ~ 3000	мсек	
2nd_25	2nd Mot Ls	Индуктивность рассеяния 2-го двигателя	0.00 ~ 500.00	мГн	
2nd_26	2nd Mot sLs	Коэффициент рассеяния 2-го двигателя	0.00 ~ 10.00	мГн	
2nd_27	2nd Mot Rs	Сопротивление статора 2-го двигателя	0.000 ~ 5.000	Ом	

6.7.7 Дополнительные параметры 2-го двигателя

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
2nd_11	2nd Cool Mtd	Способ охлаждения 2-го двигателя	То же, что и для 1-го двигателя		Self-cool
2nd_32	2nd ETH 1min	Электронная термозащита в течении 1 минуты 2-го двигателя	То же, что и для 1-го двигателя		150
2nd_33	2nd ETH Cont	Длительная электронная термозащита 2-го двигателя	То же, что и для 1-го двигателя		100

6.8 Группа аналоговых входов/выходов (AIO_[][])

6.8.1 Переход к требуемому параметру (АІО_00)

Переход к требуемому параметру группы AIO может быть совершен с помощью параметра AIO_00 (Пример) Переход к параметру AIO_13.

Нажмите кнопку [PROG] и установите значение «5» с помощью кнопок [SHIFT/ESC] / [▲] / [▼]. После нажатия кнопки [ENT] произойдет переход к параметру AIO_13. Если требуемый параметр не существует или не доступен переход будет осуществлен к ближайшему параметру.

Переход к другим параметрам группы осуществляется с помошью кнопок [\blacktriangle], [\blacktriangledown].

6.8.2 Многофункциональный аналоговый вход

Параметры группы AIO предназначены для задания функций многофункциональных аналоговых входов, типа и калибровки входных сигналов, постоянной времени низкочастотного фильтра и критерия потери аналогового сигнала.

На плате управления расположены 3 аналоговых входа. Вход Ai3 предназначен для подключения температурного датчика двигателя (NTC/PTC типа). Тип входа Ai1 и Ai2 может быть установлен с помощью джамперов. Аналоговый вход может использоваться как опорное значение для 8 функций (10 функций для Ai3 включая температурный датчик двигателя NTC/PTC). Диапазон входного напряжения $-10 \sim 10$ В и диапазон входного тока $0 \sim 20$ мА. Нельзя выбирать одинаковую функцию для нескольких аналоговых входов. Если для входа установлена функция, которая уже используется для другого входа, то значение последнего аналогового входа становится "Not Used". При изменении типа аналогового входа вначале установите его как "Not Used".

(При использовании опциональной платы EXTN_I/O доступно 5 аналоговых входов. Для аналогового входа Ai5 доступна функция температурного датчика NTC/PTC).

Значение	Определение	Описание	
Speed Ref	Опорная скорость	± 10 В эквивалентно $\pm 100\%$ максимальной скорости.	
Proc PID Ref	Уставка ПИД	± 10 В эквивалентно $\pm 100\%$ уставки ПИД.	
Proc PID F/B	Обратная связь ПИД	± 10 В эквивалентно $\pm 100\%$ значения от датчика обратной связи ПИД.	
Draw Ref	Уставка режима «Натяжения»	± 10 В эквивалентно $\pm 100\%$ уставки «контролера натяжения».	
Torque Ref	Опорный момент	± 10 В эквивалентно $\pm 100\%$ номинального момента. С помощью установки усиления и смещения можно задать $-250 \sim 250\%$ номинального момента.	
Flux Ref	Магнитный поток	± 10 В эквивалентно $\pm 100\%$ номинального магнитного потока.	
Torque Bias	Отклонение момента	± 10 В эквивалентно $\pm 100\%$ номинального момента. С помощью установки усиления и смещения можно задать $-250 \sim 250\%$ номинального момента.	
Torque Limit	Ограничение момента	± 10 В эквивалентно $\pm 100\%$ номинального момента. С помощью установки усиления и смещения можно задать $-250\sim 250\%$ номинального момента.	
Use Mot NTC	Датчик двигателя NTC	Вход температурного датчика двигателя (NTC). При использовании этой функции на дисплее отображается температура двигателя и формируется	

		сигнал ошибки при перегреве двигателя.			
		Предупреждение: Функция используется только с двигателями LG-OTIS.			
Use Mot PTC	Датчик двигателя РТС	Вход температурного датчика двигателя (РТС). При использовании этой функции на дисплее отображается температура двигателя и формируется сигнал ошибки при перегреве двигателя. Функция работает только с датчика ми типа РТ100.			

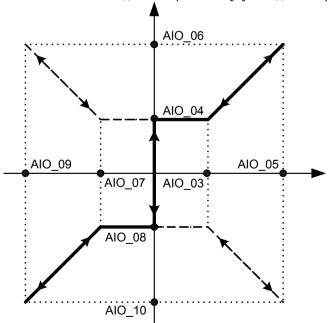
Ниже приведено описание параметров настройки аналоговых входов.

Пара-	×	Описание	:	Ед.	
метр	Дисплей	Имя	Диапазон	изм.	Описание параметра
AIO_01	Ai1 Define	Назначение многофункциональ- ного аналогового входа Ai1	Speed Ref Proc PID Ref Proc PID F/B Draw Ref Torque Ref Flux Ref Torque Bias Torque Limit		Определяет назначение многофункционального аналогового входа Ai1.
AIO_02	Ai1 Source	Тип сигнала многофункциональ- ного аналогового входа Ai1	$ \begin{array}{c} -10 \rightarrow 10V \\ 10 \rightarrow -10V \\ 0 \rightarrow 10V \\ 10 \rightarrow 0V \\ 0 \rightarrow 20\text{mA} \\ 20 \rightarrow 0\text{mA} \end{array} $		Определяет тип сигнала многофункционального аналогового входа Ai1.
AIO_03	Ai1 In X1	Минимальное напряжение аналогового входа Ai1	0.00 ~ Ai1 In X2	%	Устанавливает минимальное значение аналогового входа. Независимо от состояния AIO_02 значение равно 0[В] (напряжение) или 0[мА] (ток)
AIO_04	Ai1 Out Y1	Смещение минимального напряжения аналогового входа Ai1	-10.00 ~ Ai1 Out Y2	%	Задает смещение значения AIO_01 относительно значения параметра AIO_03.
AIO_05	Ai1 In X2	Максимальное напряжение аналогового входа Ai1	0.00 ~ 100.00	%	Задает максимальное значение аналогового входа.
AIO_06	Ai1 Out Y2	Усиление максимального напряжения аналогового входа AI1	0.00 ~ 250.00	%	Задает смещение значения AIO_01 относительно параметра AIO_05.
AIO_07	Ai1 In -X1	Минимальное отрицательное напряжение аналогового входа Ai1	Ai1 In X2 ~ 0.00	%	Устанавливает минимальное отрицательное значение аналогового входа. Независимо от состояния AIO_02 значение равно 0[В](напряжение) или 0[мА](ток)
AIO_08	Ai1 Out -Y1	Смещение минимального отрицательного напряжения аналогового входа Ai1	Ai1 Out Y2 ~ 10.00	%	Задает смещение значения AIO_01 относительно значению параметра AIO_07.
AIO_09	Ai1 In -X2	Максимальное отрицательное напряжение аналогового входа Ai1	-100.00 ~ 0.00	%	Задает максимальное отрицательное значение аналогового входа.

AIO_10	Ai1 Out -Y2	Усиление отрицательного напряжения аналогового входа Ai1	-250.00 ~ 0.00	%	Задает смещение значения AIO_01 относительно значения параметра AIO_09.
AIO_11	Ai1 LPF	Постоянная времени входа Ai1	0 ~ 2000	мсек	Устанавливает постоянную времени фильтра аналогового входа.
AIO_12	Ai1 Wbroken	Критерий потери сигнала аналогового входа Ai1	None Half of x1 Below x1		Определяет критерий потери сигнала на аналоговом входе Ai1

Параметры AIO_13 \sim AIO_36(Ai2 \sim Ai3) аналогичны параметрам для аналогового входа (Ai1), описанным выше. (При использовании платы EXTN_I/O, параметры AIO_37 \sim AIO_60 (аналоговые входы Ai4 \sim Ai5) аналогичны описанным выше). Для аналоговых входов Ai3 и Ai5 не доступен токовый вход.

В параметре AIO_03 определяется величина аналогового напряжения или тока, которая будет принята преобразователем за 0 % от максимального значения напряжения 10 [В] или тока 20 [мА].


Например, если вы установите параметр AIO_03 в значение 20[%], минимальное значение для аналогового входа будет 2 [В] или 4 [мА]. Если значении параметра AIO_04 установлено как 0[%], величина напряжения ниже 2[В], или тока ниже 4[мА] поступающего в преобразователь будет принято за 0 [%].

Параметр AIO_04 задает смещение минимальной величины аналогового сигнала определенной в AIO_03. Например, если параметр AIO_03 установлен как 20[%] и параметр AIO_04 установлен как 20[%] то при подаче входного сигнала напряжения 2[В] или тока 4[мА], преобразователь определит его как 20[%] (в то время как это соответствует 0[%] минимального значения).

Параметр AIO_05 определяет максимальное значение аналогового входа Ai1. Оно соответствует 100[%]. Например, если вы установите параметр AIO_05 Ai1 в значение 50[%], то напряжение на входе выше 5[B] или ток выше 10[MA], будет воспринято как 100[%] величины аналогового входа.

Параметр АІО 06 задает коэффициент усиления входного аналогового сигнала.

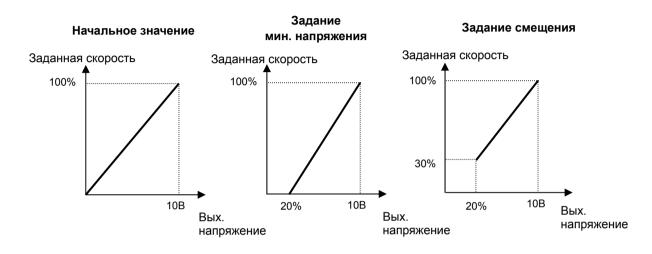
Например, если значение параметра AIO_05 задано как 100[%] и значение параметра AIO_06 задано как 50[%], то напряжение 10[В] или ток 20[мА] будут определены преобразователем как 100 [%] (в то время как параметром AIO_05 эта величина определена как 50[%]). Таким образом, если номинальная скорость равна 1800[об/мин], и напряжение на аналоговом входе равно 10 [В] выходная скорость составит 900 [об/мин].

Параметры AIO_03 и AIO_05 задают диапазон входного сигнала тока или напряжения. В общих случаях значение параметра AIO_03 устанавливается как 0[%], и значение параметра AIO_05 устанавливается как 100[%]. Но если значение входного сигнала нестабильно в нижней точке (0[B] или 0 [MA]), то для исключения нестабильного участка увеличьте значение параметра AIO_03.

Если диапазон значений входного сигнала отличается от требуемого (например, $1 \sim 9$ [B] или $4 \sim 18$ [мА]), то значение входного сигнала можно откалибровать с помощью параметров AIO_04 и AIO_06. При использовании двухполярного сигнала калибровка отрицательной величины производится в параметрах AIO_07 \sim AIO_10 аналогично.

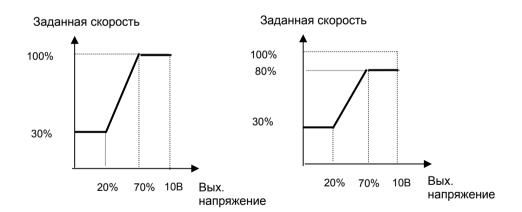
Работа в квадратах 2, 4 диаграммы (пунктирная линия характеристики) возможна при соответственной настройке параметра AIO_02.

2) Настройка смещения и усиления сигнала с помощью клавиатуры:


• Настройка параметра AIO_04 Подключите источник напряжения или тока к клеммам Ai1 \sim 5G. Подайте 0[B] или 0[мA] и установите значение параметра AIO_03 в 0%.

Кнопка	Дисплей	Описание
	AIO ► Ai1 Out Y1 04 0.00 %	Начальное значение смещения (По умолчанию)
PROG	AIO ►Ai1 0.18 % 04 Bias 0.00 %	Нажмите кнопку [PROG] текущее значение входного сигнала [%] отображается в верхней строке дисплея, а значение смещения отображается в нижней строке.
•	AIO ►Ai1 0.00 % 04 Bias 0.18 %	Если вы хотите настроить смещение так чтобы 0.00% выходного значения соответствовало 0В входного напряжения, с помощью кнопки [▲] измените значение смещения так, чтобы получить 0.00% в верхней строке.
ENT	AIO Ai1 Out Y1 04 0.18 %	При нажатии кнопки [ENT] измененное значение смещения будет сохранено.

• Настройка параметра AIO_06. Подключите источник тока или напряжения к клеммам Ai1 \sim 5G. Подайте 10[B] или 20[мA] и установите параметр AIO_05 в значение 100%.


Кнопка	Дисплей	Описание
	AIO Ai1 Out Y2 06 100.00 %	Начальное значение усиления (по умолчанию).
PROG	AIO ►Ai1 98.00 % 06 Gain 100.00 %	Нажмите кнопку [PROG]. В верхней строке будет отображено текущее значение выхода в процентах от входного значения. В нижней строке будет отображено текущее значение усиления.
•	AIO Ai1 100.00 % 06 Gain 102.00 %	Для того чтобы 100.00 % выходного значения соответствовало 10В входного напряжения настройте величину усиления с помощью кнопки [▲] так, чтобы значение в верхней строке стало равно 100.00 %.
ENT	AIO Ai1 Out Y2 06 102.00 %	При нажатии кнопки [ENT], измененное значение усиления будет сохранено.

Подобным образом настраиваются параметры AIO_08 и AIO_10 и другие аналоговые входы (Ai2 и Ai3). Например, установив параметры AIO_03 = 20%, AIO_05 = 70%, AIO_04 = 30%, AIO_06 = 80% для входа $0 \sim 10B$, получим следующие характеристики:

Задание макс. напряжения

Заданная скорость

3) Критерий потери сигнала многофункционального входа Ai1 (AIO_1)

Вы можете задать уровень аналогового сигнала, при котором преобразователь будет определять потерю сигнала.

Код	Дисплей	Назначение		Ед.	Описание
КОД	дисписи	Имя параметра	Диапазон	изм.	Simeanne
			None		Условие потери сигнала не проверяется
AIO_12	Ai1 Критерий потери сигнала многофункционального аналогового сигнала Ai1	. сигнала многофункциональ-	Half of x1		Потеря сигнала будет зафиксирована, если значение на аналоговом входе меньше 1/2 от значения параметра AIO_03.
		Below x1		Потеря сигнала будет зафиксирована, если значение на аналоговом входе меньше значения параметра AIO_03.	

Критерий потери сигнала для аналоговых входов Ai2 и Ai3 задается в параметрах AIO_24 и AIO_36.

4) Время определения потери сигнала многофункционального входа (параметр AIO_73)

В параметре АІО_73 задается время, по истечение которого будет выдан сигнал о потере аналогового сигнала.

- Кол	Лисплой	Назначение		Ед.	0	
КОД	Код Дисплей Имя		Диапазон	изм.	Описание	
AIO_73	Time out	Время для определения потери сигнала	0.1 ~ 120.0	сек	Задает время для определения условия потери аналогового сигнала с момента совпадения условия потери сигнала до выдачи сигнала о потере сигнала на аналоговом входе.	

Параметр AIO_73 используется для определения потери сигнала аналоговых входов Ai1 ~ Ai3. (Если используется опциональная плата EXTN_I/O, параметр также определяет время потери сигнала для аналоговых входов Ai4 и Ai5).

6.8.3 Аналоговый выход

1) Параметры AIO_74 ~ 83 используются для настройки аналоговых выходов (задание источника сигнала, смещение, усиление, задание абсолютного значения)

В преобразователях серии SV-iV5 используется два аналоговых выхода, которые, в зависимости от настройки, предназначены для отображения различных величин. Выходное напряжение находится в пределе $-108 \sim +108$.

- Ko-	Пистей	Назначени	1e	Ед.	0-400
Код	Дисплей	РМИ	Диапазон	изм.	Описание
AIO_74	AO1 Define	Назначение многофункциональн ого аналогового выхода AO1.			Задает назначение многофункционального аналогового выхода A01.
AIO_75	AO1 Source	Тип многофункциональн ого аналогового выхода AO1	$ \begin{array}{c} -10 \rightarrow 10V \\ 10 \rightarrow -10V \\ 0 \rightarrow 10V \\ 10 \rightarrow 0V \end{array} $		Определяет тип многофункционального аналогового выхода A01.
AIO_76	AO1 Bias	Смещение многофункциональ- ного аналогового выхода AO1	-100.0 ~ AIO_77	%	Определяет смещение многофункционального аналогового выхода AO1.
AIO_77	AO1 Gain	Усиление многофункционального аналогового выхода АО1	0.0 ~ 500.0	%	Определяет усиление многофункционального аналогового выхода A01.
AIO_78	AO1 ABS	Использование абсолютного значения аналогового выхода AO1	No / Yes		Задает использование абсолютного значения аналогового выхода A01.

Параметры аналогового выхода AO2 (AIO_79 \sim AIO_83) имеют такие же функции. На рисунке ниже представлена диаграмма многофункционального аналогового выхода AO1. Пунктирная линия показывает альтернативную характеристику (при выборе типа аналогового сигнала выхода AO1).

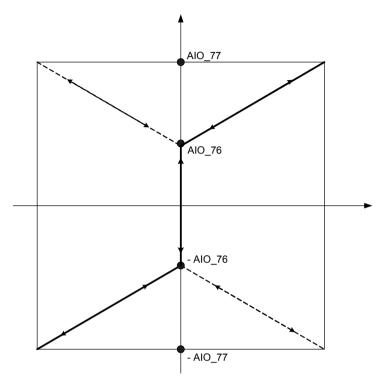
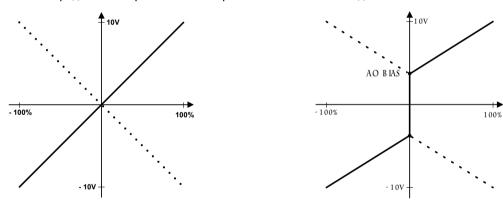


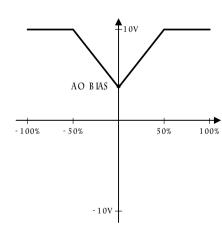
Диаграмма аналогового выхода

2) Настройка смещения и усиления с клавиатуры

Настройка смещения (параметр AIO_76)


Кнопка	Дисплей	Описание
	AIO A01 Bias 76 0.0 %	Начальное значение смещения (по умолчанию)
PROG	AIO Ao1 0.18 % 76 Bias 0.00 %	Нажмите кнопку [PROG]. Текущее выходное напряжение отображается в верхней строке (в процентах от входного значения). Смещение отображается в нижней строке.
•	AIO Ao1 0.00 % 76 Bias 30.0 %	Если необходимо чтобы выходное значение выдавалось если значение больше 30%, измените значение на 30% с помощью кнопки [▲].
ENT	I/O ► A01 Bias 76 30.0%	После нажатия кнопки [ENT] измененное значение смещения будет сохранено.

Настройка усиления (параметр AIO_77)


Вы можете настроить кривую выходного сигнала так, чтобы выходное значение соответствовало 10В.

Кнопка	Дисплей	Описание
	AIO AO1 Gain 100.0 %	Начальное значение усиления (по умолчанию)
PROG	AIO ► Ao1 30.0 % 77 Gain 100.0 %	Нажмите кнопку [PROG]. Текущее значение (в процентах от входного значения) отображается в верхней строке. Значение усиления отображается в нижней строке.
A	AIO ► Ao1 30.0 % 77 Gain 200.0 %	Если вы хотите чтобы 10В соответствовали 200% входного сигнала, установите значение усиления в 200% с помощью кнопки [▲].
ENT	AIO AO1 Gain 200.00 %	После нажатия кнопки [ENT] измененное значение усиления будет сохранено.

На рисунках ниже представлены различные настройки аналогового выхода.

По умолчанию (Смещение : 0%, Усиление : 100%)

AO BIAS

-100%
-100%
-100%

Усиление 200%

Использование абсолютного значения

Смещение 30%

Многофункциональные выхода могут отображать следующие значения:

Дисплей	Описание	Уровень выходного сигнала
AiX Value	Входное аналоговое значение	<u>+</u> 10 В: 10В, 20мА
PreRamp Ref	Заданная опорная скорость	<u>+</u> 10 В: Максимальная скорость
PostRamp Ref Текущая опорная скорость		<u>+</u> 10 В: Максимальная скорость
ASR Inp Ref Вход ASR		<u>+</u> 10 В: Максимальная скорость
Motor Speed	Скорость вращения двигателя	± 10 В: Максимальная скорость
Speed Dev	Отклонение скорости	<u>+</u> 10 В: Номинальное скольжение * 2
ASR Out	Выход ASR	<u>+</u> 10 B: 250%
Torque Bias	Смещение момента	+6 B: 150%
PosTrq Limit	Положительный предел момента	10B: 250%
NegTrq Limit	Отрицательный предел момента	10B: 250%
RegTrq Limit	Предел момента регенерации	10B: 250%
Torque Ref	Опорный момент	<u>+</u> 10 B: 250%
IqeRef	Уставка тока возбуждения	± 10 В: 250% от номинального тока возбуждения
Iqe	Ток момента	± 10 В: 250% от номинального тока возбуждения
Flux Ref	Уставка потока	10В: Номинальный поток * 2
IdeRef	Уставка тока возбуждения	10В: Номинальный поток * 2
Ide	Ток возбуждения	10В: Номинальный поток * 2
ACR_Q Out	Выход ACR оси Q	<u>+</u> 10 B: 300/600
ACR_D Out	Выход ACR оси D	<u>+</u> 10 B: 300/600
VdeRef	Уставка напряжения оси D	<u>+</u> 10 B: 300/600
VqeRef	Уставка напряжения оси Q	<u>+</u> 10 B: 300/600
Out Amps RMS	Выходной ток	10В: Номинальный поток * 2
Out Volt RMS	Выходное напряжение	<u>+</u> 10 B : 300/600
Power	Выходная мощность	<u>+</u> 10 В: Номинальный выход * 2
DC Bus Volt Напряжение звена постоянного тока		10 B: 500/1000B
Proc PI Ref	Уставка ПИД	<u>+</u> 10 В: Уставка ПИД
Proc PI FB	Обратная связь ПИД	<u>+</u> 10 В: Уставка ПИД
Proc PI Out	Выход ПИД	<u>+</u> 10 В: Уставка ПИД
Mot NTC Temp Температура двигателя (NTC)		+10B : 150°C
Mot PTC Temp	Температура двигателя (РТС)	+10B : 150°C
Inv Temp	Температура преобразователя	<u>+</u> 10 B: 100℃
Inv i2t	Токовремянная защита (i2t)	10 B: 150%

Глава 7. WEB управление

7.1 Переключение на режим WEB

На дисплее пульта управления может отображаться до 32 цифр или букв латинского алфавита. При установке параметра CON_02 в значение "WEB Control" преобразователь переключается на WEB режим. Начальный экран дисплея представлен на рисунке ниже. Более подробное описание пульта приведено в пункте 4.1 главы 4.

7.1.1 Переключение в режим Web

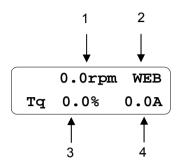
CON Application 02 General Vect

Перейдите в группу CON к параметру CON_02

CON ▶ Application 02 General Vect ■

Нажмите кнопку [PROG]. Появится курсор (■)

CON ▶ Application
02 WEB Control ■


Измените значение параметра на «WEB control» с помощью кнопки [\blacktriangle].

CON ▶ Application
02 WEB Control

Нажмите кнопку [ENT].

7.2 Главный экран в режиме WEB

7.2.1 Главный экран

На рисунке выше изображен главный экран. Он отображается при включении преобразователя, также к нему можно перейти, нажав кнопку [SHIFT/ESC]. В таблице ниже приведено описание элементов экрана.

Nō	Название	Описание	
1	Скорость двигателя	Скорость вращения двигателя (об/мин)	
2	Режим управления	SPD: Режим контроля скорости TRQ: Режим контроля момента WEB: WEB режим BX: Аварийный останов BAT: Управление от батарей	
3	Момент вращения	Отображается в % от номинального тока двигателя	
4	Выходной ток	Выходной ток (среднеквадратичное значение)	

7. 3 Изменение групп параметров

При использовании режима WEB в меню появляется новая группа WEB.

Название	Отображение на дисплее	Описание	
Группа мониторинга	DIS	Отображение параметров: Скорость двигателя, Способ управления, Создаваемый момент, Выходной ток, Параметры пользователя, ПИД выход/уставка/обратная связь, Ошибка преобразователя и т.д.	
Группа цифровых входов/выходов	DIO	Параметры цифровых входов/выходов.	
Группа параметры	PAR	Инициализация параметров, Чтение/запись параметров, Блокировка параметров, Автотюнинг и т.д.	
Функциональная группа	тин торможения. Время и характеристика разгона/торможения.		
Режим работы, ПИ регулятор автоматического регулятора (ASR), ПИД регулирование, Параметры режима Draw, Парам		Режим работы, ПИ регулятор автоматического регулятора скорости (ASR), ПИД регулирование, Параметры режима Draw, Параметры режима Droop, Параметры управления моментом, Параметры V/F управления и т.д.	
Группа внешних устройств	EXT	Группа доступна при использовании опциональной интерфейсной платы. Параметры интерфейса и т.д.	
Группа аналоговых входов/выходов	AIO	Параметры аналоговых входов/выходов	
Группа WEB	WEB	Контроль «диаметра» и «натяжения» рулона. Параметры для работы WEB режима.	

• Более подробно основные группы параметров (кроме группы WEB) описаны в Главе 6.

7.4 Установка параметров, требуемых для Web управления

Для работы в WEB режиме необходимо правильно настроить параметры группы WEB. Более подробное описание параметров WEB режима представлено в главе 7.7.

7.4.1 Установка режима WEB управления (Обязательно)

Режим управления устанавливается в параметре CON_02. По умолчанию установлен режим "General Vect". Для работы в WEB режиме установите параметр CON_02 в значение "WEB CONTROL". Группа параметров WEB доступна только тогда, когда параметр CON_02 установлен в значение "WEB CONTROL".

CON Application
02 WEB Control

7.4.2 Задание команды Линейной скорости (Опционально)

В преобразователях серии iV5 скорость можно задавать через аналоговый вход, клавиатуру, интерфейсную плату (в параметре FUN_02). Для работы в WEB режиме установите значение параметра FUN_02 в значение "Line SPD Ref" или "Line SPD Opt". Значения "Line SPD Ref" и "Line SPD Opt" доступны, если режим работы (параметр CON_02) установлен как "WEB Control". Для задания линейной скорости через аналоговые входы Ai1, Ai2, Ai3 установите параметр AIO_01, AIO_13, или AIO_25 в значение "Line Spd Ref". Для задания линейной скорости через интерфейс установите параметр FUN_02 в значение "Line SPD Opt" (адрес параметра в общей области памяти 0x050D). Более подробно работа интерфейсной платы описана в инструкции по эксплуатации платы.

① Задание линейной скорости через аналоговый вход

FUN Spd Ref Sel
02 Line SPD Ref

AIO Ail Define
01 Line SPD Ref

2 Задание линейной скорости через интерфейсную плату

FUN Spd Ref Sel 02 Line SPD Opt

7.4.3 Функция удержания диаметра (Опционально)

Если необходимо остановить вычисление диаметра во время WEB управления, установите один из многофункциональных входов (DIO_01 \sim DIO_07) в значение "Dia Hold". При появлении сигнала на этом входе диаметр не вычисляется, скорость вращения двигателя постоянная, соответствующая текущему диаметру. При отключении сигнала на клемме, вычисление диаметра продолжается.

DIO P1 Define 01 Dia Hold

7.4.4 Функция перехода в исходное положение (Обязательно)

При достижении полного диаметра рулона при намотке или при окончании размотки возникает необходимость заменить рулон. Для этого необходимо подать сигнал в преобразователь о замене рулона. Функция перехода в исходное положение может быть задана с помощью многофункционального входа (DIO_01 \sim DIO_07), аналогового входа или через интерфейсную плату. В параметре WEB_03 задается источник команды перехода в исходное положение.

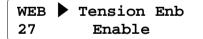
① Переход в начальное положение с помощью многофункционального входа

Установите параметр WEB_03 в значение "Keypad". Установите один из многофункциональных входов (DIO_01 ~ DIO_07) в значение "Dia Preset". Два других многофункциональных входа установите в значения "Core size-L" и "Core size-H". Теперь можно выбрать один из четырех диаметров (задаваемых в параметрах WEB-04 ~ WEB-07) при появлении сигнала на клемме определенной как "Dia Preset". Минимальный диаметр задается в параметре WEB_10.

РЗ Вкл/Выкл	Р4 Вкл/Выкл	Используемый диаметр
OFF	OFF	WEB-04 (Diam Preset 1)
ON	OFF	WEB-05 (Diam Preset 2)
OFF	ON	WEB-06 (Diam Preset 3)
ON	ON	WEB-07 (Diam Preset 4)

② Переход в начальное положение с помощью аналогового сигнала

Установка начального положения производится при установке параметра WEB_03 в значение "Analog". В этом случае один из аналоговых входов Ai1 \sim Ai3 должен быть настроен как "Diam Preset" (параметр AIO_01, AIO_13 или AIO_25). Минимальное значение диаметра ограничивается параметром WEB_10.


DIO P2 Define
18 Dia Preset

3 Переход в начальное положение через интерфейс

Для работы с интерфейсной платой установите параметр WEB_03 в значение "Option". В этом случае команда на переход в начальное положение устанавливается в параметре с адресом 0x0510. Более подробно работа с интерфейсной платой описана в инструкции по эксплуатации к плате.

7.4.5 Функция «Отмена натяжения» (Обязательно)

При работе в режиме WEB управления, вы можете использовать контроль натяжения при использовании тензодатчика или натяжного валика. В этом случае значение с датчика натяжения используется для управления ПИД регулятором. Если параметр WEB_27 установлен в значение "Enable", и многофункциональный вход, определенный как «TensionDisabe», активен, то выход ПИД заблокирован и контроль натяжения не производится. Когда параметр WEB_27 установлен как "Disable", функция «Отмена натяжения» не используется. Для использования функции «Отмены натяжения» установите один из многофункциональных входов (DIO_01 ~ DIO_07) в значение "TensionDisable".

1591.5 rpm

08

Параметр WEB_27 должен быть установлен как "Enable"

7.4.6 Задание максимальной скорости двигателя (Обязательно)

Задание максимальной скорости вращения в режиме WEB при минимальном диаметре для поддержания максимальной линейной скорости задается в параметре WEB_08. Пример: Если максимальная линейная скорость равна 100 [м/мин], коэффициент редукции 5:1, и диаметр стержня 100 [мм], максимальная скорость двигателя может быть вычислена по следующей формуле:

Макс. скорость двиг. [об/мин] =
$$Kos\phi$$
. $pedykuuu \times \frac{Makc$. лин. скорость диаметр стержня х π = $5 \times \frac{100 \, [m \, / \, muh]}{0.1 \, [m] \times \pi} = 1591.55 \, [oб \, / \, muh]$

WEB MaxMotor SPD

7.4.7 Задание минимальной эффективной линейной скорости (Обязательно)

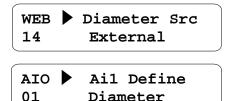
Минимальная эффективная линейная скорость - это минимальное значение линейной скорости, при которой возможно вычисление диаметра. Линейная скорость при работе в WEB режиме должна быть выше

минимальной эффективной линейной скорости. Если значение линейной скорости меньше этого значения, диаметр не вычисляется. Эффективная линейная скорость настраивается в параметре WEB 09.

7.4.8 Задание минимального диаметра (Обязательно)

Минимальный диаметр определяется диаметром минимального стержня в процентах от максимального диаметра. Значение минимального диаметра используется как минимальный предел диаметра. Выбор диаметра стержня ограничен значением минимального диаметра. Диаметр стержня должен быть равным или быть меньше минимального диаметра. Минимальный диаметр задается в параметре WEB 10.

7.4.9 Источник вычисления диаметра (Обязательно)


В режиме WEB преобразователь поддерживает значение линейной скорости. Если диаметр рулона уменьшается, то скорость вращения двигателя увеличивается. Если диаметр увеличивается, скорость вращения двигателя уменьшается. Таким образом, величина линейной скорости поддерживается постоянной. Величина диаметра может вычисляться программно или при использовании внешнего датчика, подключенного к аналоговому входу преобразователя.

□ Программное вычисление диаметра.

Вычисление диаметра преобразователем с помощью встроенных программных функций вычисления диаметра. Установите параметр WEB_14 в значение "Internal".

□ Вычисление диаметра преобразователем с использованием внешнего датчика

Для использования внешнего датчика определения диаметра установите параметр WEB_14 в значение "External", а параметр AIO_01, AIO_13 или AIO_25 Ai3 (Назначение многофункционального аналогового входа) в значение "Diameter".

Примечание: Когда параметр WEB_14 установлен в "External", функция инициализации диаметра не работает.

7.4.10 Выбор функции (намотка/размотка) (Обязательно)

Используется три способа контроля натяжения:

- 1) Размотка. В процессе размотки диаметр рулона становится меньше.
- 2) Фиксированный диаметр. Контроль натяжения рулона фиксированного диаметра.
- 3) Намотка. В процессе намотки диаметр рулона становится больше.

При использовании функции намотки или фиксированного диаметра установите параметр WEB_17 в значение "Rewind". При использовании функции размотки установите параметр WEB_17 в значение "Unwind". Направление вращения двигателя определяется значением параметра WEB_17.

① Если преобразователь управляет промежуточным валиком или при намотке материала рулона:

2 При размотке материала рулона

7.4.11 Подача сверху /Подача снизу (Обязательно)

При размотке/намотке рулона может использоваться два способа подачи материала: подача сверху или снизу (параметр WEB_18). При подаче сверху намотка/размотка производится с верхней части. При подаче снизу намотка/размотка производится с нижней части. Направление вращения и выход ПИД определяются в зависимости от команды вращения преобразователя, параметров WEB_17 и WEB_18.

□ При намотке/размотке материала с верхней части рулона:

□ При намотке/размотке материала с нижней части рулона:

На рисунках ниже показаны 4 различных режима, определяемых функцией намотки/размотки и функцией подачи сверху/подачи снизу.

Намотка (подача материала сверху). Вращение вперед.

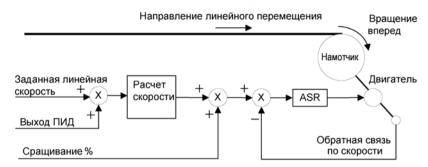


Рис 1. Намотка рулона при подаче материала сверху.

Намотка (подача материала снизу). Команда вращения вперед.

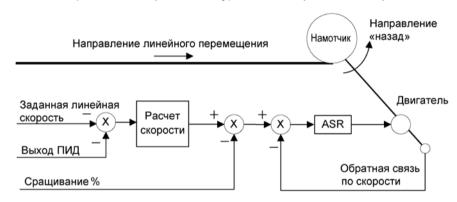


Рис 2. Намотка рулона при подаче материала снизу

Размотка (подача материала сверху). Команда вращения вперед.

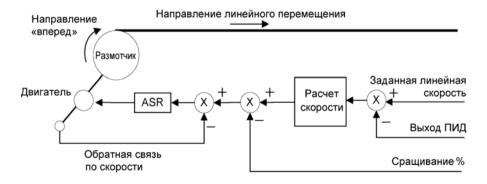
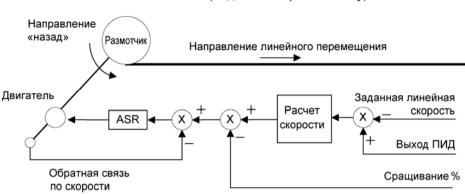
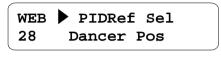



Рис 3. Размотка рулона при подаче материала сверху

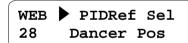
Размотка (подача материала снизу).

Рис 4. Размотка рулона при подаче материала снизу.

7.4.12 Задание входа уставки натяжения (Обязательно)


При использовании тензодатчика для контроля натяжения опорное значение используется для задания уставки натяжения. В этом случае окончательное значение натяжения используется как опорное значение входа ПИД. Когда функции «Ослабление натяжения», «Ускорение натяжения», «Снижение натяжения» не используются, входное значение становится опорным значением ПИД регулятора. Уставка натяжения может задаваться с клавиатуры, с помощью аналогового сигнала или через коммуникационную плату. Кроме того, верхний/нижний предел ограничен диапазоном –100.0% ~ 100.0%. Для этого параметр WEB_28 должен быть установлен в значение "Тарег Out". Если используется натяжной ролик, то контролируется положение ролика, а не реальное натяжение. Следовательно, если параметр WEB_28 установлен как "Dancer Pos", значение, заданное как опорное натяжение, не используется. При использовании натяжного ролика результирующее натяжение определяется суммой параметра WEB_29, аналогового входа и значения, полученного через коммуникационный интерфейс.

□ Установка опорного натяжения с клавиатуры (при использовании тензодатчика)
 Опорное натяжение устанавливается в параметре WEB_19.


□ Установка опорного натяжения с помощью аналогового сигнала (при использовании тензодатчика)
Для использования аналогового сигнала в качестве опорного натяжения нужно установить один из аналоговых входов Ai1 ~ Ai3 (параметры AIO_01, AIO_13 или AIO_25) в значение "Tension Ref".

AIO Ail Define
01 Tension Ref

- Задание опорного натяжения через интерфейсную плату (при использовании тензодатчика)
 Для задания опорного натяжения с помощью интерфейсной платы используется адрес 0x0511. Более подробно работа с интерфейсной платой описана в инструкции по эксплуатации опциональной платы.
- Ф Установка положения натяжного валика с клавиатуры (при использовании натяжного валика)
 Для настройки положения натяжного валика с помощью клавиатуры установите параметр WEB_28 в значение "Dancer Pos" и установите положение валика в параметре WEB_29.

⑤ Установка положения натяжного валика через аналоговый вход (при использовании натяжного валика). Для настройки положения натяжного валика с помощью аналогового сигнала установите параметр WEB_29 в значение "Dancer Pos" и установите один из аналоговых входов Ai1 ~ Ai3 (параметры AIO_01, AIO_13 или AIO_25) в значение "Dancer Ref".

 Установка положения натяжного валика через интерфейсную плату (при использовании натяжного валика).

Для настройки положения с помощью интерфейсной платы установите параметр WEB_28 в значение "Dancer Pos". Положение натяжного валика задается по адресу 0x0512. Более подробно работа с коммуникационным интерфейсом описана в инструкции по эксплуатации опциональной платы.

Для эффективной работы WEB режима должны быть заданы следующие параметры ПИД:

- -. WEB_30 (Коэффициент ПИД P1)
- -. WEB_32 (коэффициент ПИД I1)
- -. WEB_42 (Усиление выхода ПИД при намотке) или WEB_43 (Усиление выхода ПИД при размотке)

-. Остальные параметры, используемые для ПИД регулирования, можно не изменять. Для настройки других параметров ПИД регулятора обратитесь к подробному описанию параметров WEB группы (глава 7.7).

7.4.13 Источник датчика обратной связи ПИД регулятора (Обязательно)

Задание значения обратной связи ПИД регулятора может быть выполнено двумя способами: с помощью аналогового сигнала или через коммуникационный интерфейс. Для задания источника обратной связи ПИД используется параметр WEB_47.

□ Задание обратной связи ПИД через аналоговый сигнал

Для получения сигнала обратной связи ПИД через аналоговый сигнал установите параметр WEB_47 в значение "Analog", и установите один из аналоговых входов Ai1 \sim Ai3 (параметры AIO_01, AIO_13 или AIO_25) в значение "Tension F/B".

□ Задание обратной связи ПИД через интерфейсную плату

Для получения сигнала обратной связи ПИД через интерфейс установите параметр WEB_47 в значение "Option". Адрес значения обратной связи 0x0513. Более подробно работа с коммуникационным интерфейсом описана в инструкции к опциональной плате. Информация о текущем значении обратной связи должна передаваться не реже чем один раз в 10 мсек. Если частота обновления значения обратной связи больше 10 мсек, то применять данный способ не рекомендуется.

7.5 Группа мониторинга (DIS_[][])

7.5.1 DIS_01 ~ 03 (Параметры пользователя 1, 2 и 3)

В параметрах DIS_01 \sim DIS_03 можно задать параметры, которые будут отображаться на дисплее в основном меню. По умолчанию эти параметры имеют следующие значения: "PreRamp Ref" для DIS_01, "DC Bus Volt" для DIS_03, и "Terminal In" для DIS_03. Если значение параметра CON_02 установлено как "WEB Control", в параметрах DIS_01 \sim DIS_03 отображаются следующие параметры:

Код	Дисплей	Функция	Ед. изм.	Описание
DIS_01	Diameter	Диаметр	%	Отображает значение диаметра (в %)
	Line SPD CMD	Линейная скорость	%	Отображает значение линейной скорости (в %)
	Reel SPD	Скорость	%	Отображает значение скорости вращения (в %)
		вращения		

7.5.2 Группа цифровых входов/выходов (DIO_[][])

1) DIO_01 ~ DIO_07 (Назначение многофункциональных входов P1~7)

В режиме WEB (Параметр CON_02 установлен как "WEB Control") можно использовать дополнительные функции многофункциональных входов:

Код	Дисплей	Функция		Описа	ние			
	Dia Hold	Команда остановки вычисления диаметра	Активируется, когда нужно остановить вычисление диаметра					
	Dia Preset	Команда инициализации диаметра		-	лизации диаметра			
	CoreSize-L Выбор стержня 1		Выбор одного из четырех диаметров (параметры WEB_04 ~ WEB_07) комбинацией сигналов двух входов					
			Размер стержня L	Размер стержня Н	Используемый размер			
			Выкл	Выкл	WEB_04 Diam Preset 1			
	CoreSize-H	Выбор стержня 2	Вкл	Выкл	WEB_05 Diam Preset 2			
			Выкл	Вкл	WEB_06 Diam Preset 3			
			Вкл	Вкл	WEB_07 Diam Preset 4			
	Tension Disable	Запрет контроля натяжения	рет контроля натяжения Отключает выход ПИД контроллера при активации входа.					
DIO_01 ~ DIO_07	PI Gain Sel	Переключение коэффициентов ПИД	Коэффициенты Р и I переключаются с 1 к 2 при активации входа. (WEB_30) (WEB_31) (WEB_32) (WEB_33)					
D10_07	PID ITerm Clear	Сброс накопленного значения коэффициента I ПИД регулятора	Сбрасывает накопленное значение коэффициента I ПИД регулятора при активации входа.					
	Taper Disable	Запрет функции «Ослабление натяжения»	Отключение активации м		ия натяжения» при нального входа			
	Stall Enable	Задание функции «Снижения натяжения»	Включение ф	ункции «Сни	ижения натяжения» при нального входа.			
	Boost Enable	Задание функции «Усиление натяжения»	Включение ф	рункции «Уси	иление натяжения» при нального входа.			
	Quick Stop	Функция аварийного останова	Преобразова	тель оста времени, за	анавливается после данного в параметре			
	Jog Web	Задание функции Jog	Вращение с скоростью Јод при активации входа. Параметр FUN_01 должен быть установлен в "Terminal 1", Вращение Јод осуществляется, даже если вход Fx не активирован					
	Under Wind	Функция «Намотка снизу»	Хотя значение параметра WEB_18 установлено как "Overwind", производится подача материала снизу, при активации входа.					
	Unwinder	Задание функции «Размотка»	Хотя значение параметра WEB_17 установлено как намотка ("Rewind"), при активации входа устанавливается режим «Размотка».					

(1) Функция удержания диаметра:

Если многофункциональный вход, установленный в "Dia Hold" активирован, вычисление диаметра прекращается и удерживается текущее значение. Функция удержания диаметра работает, если

удовлетворено одно из нижеследующих условий:

- ① Условие инициализации диаметра (Кроме инициализации параметра) не удовлетворено, и активирован многофункциональный вход, определенный как "Dia Hold".
- ② Условие инициализации диаметра (Кроме инициализации параметра) не удовлетворено, и активирован многофункциональный вход, определенный как "Quick Stop".
- ③ Условие инициализации диаметра (Кроме инициализации параметра) не удовлетворено, и активирован многофункциональный вход, определенный как "Quick Stop", и активирован многофункциональный вход, определенный как "TensionDisable" или параметр WEB 27 установлен как "Disable".
- ④ Условие инициализации диаметра (Кроме инициализации параметра) не удовлетворено, и активирован многофункциональный вход, определенный как "Jog Web".
- ⑤ Условие инициализации диаметра (Кроме инициализации параметра) не удовлетворены, и произошел обрыв полотна (WEB Break).

(2) Функции установки диаметра:

При активации многофункционального входа, определенного как "Dia Preset", функция установки диаметра активируется, если выполняется одно из следующих условий:

- ① При активации многофункционального входа, установленного как "Dia Preset", и если линейная скорость меньше заданного значения параметра WEB_09.
- ② При активации многофункционального входа, установленного как "Dia Preset", и активации многофункционального входа, установленного как "TensionDisable".

При инициализации параметров (параметр PAR_01) начальное значение диаметра равно значению параметра WEB_04.

(3) Функции Јод режима:

Работа производится в Jog режиме, если выполняется одно из следующих условий при активации многофункционального входа, установленного как "Jog Web":

- ① Параметр FUN_01 установлен в "Terminal 1", и активирован вход, определенный как "Jog Web"
- ② Параметр FUN_01 установлен в "Keypad", и активирован вход, определенный как "Jog Web", после того как нажата кнопка FWD на клавиатуре
- З Когда параметр FUN_01 установлен в "Terminal 1", преобразователь не включает вращение, если активированы оба сигнала «Fx» и «Jog Web».

2) Назначение многофункциональных выходов (параметры DIO_41 ~ I/O_43)

Когда параметр CON_02 установлен как "WEB Control", вы можете использовать дополнительные функции многофункциональных выходов:

Код	Дисплей	Значение параметра		Ед.	Описание			
Код	дисплеи	Имя	Диапазон	изм.	Описание			
		Определение обрыва полотна	WEB Break	%	Определение и выдача сигнала об обрыве полотна			
DIO_41	AX1 Define	Определение отклонения лин. скорости	Up to Spd	%	Определение и выдача сигнала при отклонении линейной скорости от заданной			
		Определение «неправильного диаметра»	False Core	%	Подача сигнала, если диаметр меньше, чем значение параметра WEB_16			

Остальные функции многофункциональных выходов такие же, как и в стандартном режиме.

7.5.3 Группа аналоговых входов/выходов (АІО_[][])

Если значение параметра CON_02 установлено как "WEB Control", возможно использовать следующие дополнительные функции аналоговых входов/выходов:

Vo-	Пистой	Значение параметра		E= 1/22/	Описание
Код	Дисплей	РМЯ	Диапазон	Ед. изм.	Описание
		Задание линейной скорости	Line SPD Ref	%	Задание линейной скорости от 0 до 100% значения параметра WEB_08 при входном сигнале 0 ~ 10В. При использовании источника (10В распознается только 0 ~ 10В).
		Задание натяжения	Tension Ref	%	Задание команды натяжения (±100%) при входном сигнале ±10В
	Ai1 Define	Положение натяжного валика	Dancer Ref	%	Вход положения натяжного валика ($\pm 100\%$) при входном сигнале ± 10 В
AIO_01		Команда «Ослабления натяжения»	Taper Ref	%	Вход команды «ослабления натяжения» $(\pm 100\%)$ при входном сигнале ± 10 В
		Обратная связь натяжения	Tension F/B	%	Вход датчика обратной связи натяжения $(\pm 100\%)$ при входном сигнале ± 10 В
		Значение диаметра	Diameter	%	При использовании датчика измерения диаметра $(\pm 100\%)$ при входном сигнале ± 10 В
		Инициализация диаметра	Diam Preset	%	Инициализация диаметра с помощью аналогового входа ($\pm 100\%$) при входном сигнале ± 10 В
	AO1 Define	Выходная линейная скорость	Line Speed	%	Вывод результирующей линейной скорости (суммы команды задания скорости и выхода ПИД контроллера)
AIO_74		Выходная команда натяжения	Tension Out	%	Выходное натяжение после вычисления «Ослабления натяжения», «Усиления натяжения» и «Уменьшения натяжения»
		Диаметр	Diameter	%	Выходное значение текущего диаметра

7.5.4 Функциональная группа (FUN_[][])

Если параметр CON_02 группы CON установлен как "WEB Control", возможно использование следующих дополнительных функций:

Код	Лисппой	Значение параметра		Ед.	Описание	
КОД	Дисплей	Имя	Диапазон	изм.	Описание	
FUN_02 S	Cnd Dof Col	Способ задания скорости	Line SPD Ref		Задание линейной скорости с помощью аналогового сигнала при использовании WEB режима.	
	Spd Ref Sel		Line SPD Opt		Задание линейной скорости через коммуникационный интерфейс при использовании WEB режима.	

Примечание: При установке параметра FUN_02 в значения, отличающиеся от "Line SPD Ref" или "Line SPD Opt", WEB управление не может осуществляться. Для использования WEB управления установите параметр FUN_02 в значение "Line SPD Ref" или "Line SPD Opt".

7.5.5 Группа управления (CON_[][])

Параметр CON_02 позволяет выбрать режим работы преобразователя (Основной режим или WEB режим). Для использования WEB режима установите параметр CON_02 в значение "WEB Control". Если этого не сделать, то параметры WEB режима будут не доступны.

Код	Дисплей	Значение параметра		Ед. изм.	Описание	
		РМИ	Диапазон	г д. изм.	Описание	
CON 03	Application	Down poser.	General Vect		Используется для работы в основном режиме.	
CON_02	Application	Режим работы	WEB Control		Используется при работе в WEB режиме.	

7.6 Список параметров группы WEB (WEB [][])

7.0 CII	7.0 CHRCOK Hapamerpos rpyllisi WEB (WEB_[][])									
			Значение на	Значен	ние пара	аметра	Изменение			
Nō	Адрес	Имя параметра	дисплее	Диапазон	Ед. изм.	По умолчанию	во время работы	Стр.		
WEB_00	-	Переход к требуемому параметру	Jump Code	1 – 59			Да			
WEB_01	7C01	Отображение текущего диаметра	Diameter	5.0 - 100.0	%	10.0	Нет	7-17		
WEB_02	7C02	Отображение начального диаметра	Current Core (Display Only)	0 (Diam Preset 1) 1 (Diam Preset 2) 2 (Diam Preset 3) 3 (Diam Preset 4) 4 (Analog) 5 (Option)		0 (Diam Preset 1)	Нет	7-18		
WEB_03	7C03	Выбор типа инициализации диаметра	DiaPresetSrc	0 (Keypad) 1 (Analog) 2 (Option)		0 (Keypad)	Нет	7-18		
WEB_04	7C04	Начальное значение 1-го диаметра	Diam Preset 1	WEB_10 - 100.0	%	10.0	Нет	7-20		
WEB_05	7C05	Начальное значение 2-го диаметра	Diam Preset 2	WEB_10 - 100.0	%	15.0	Нет	7-20		
WEB_06	7C06	Начальное значение 3-го диаметра	Diam Preset 3	WEB_10 - 100.0	%	20.0	Нет	7-20		

WED 07	707	Начальное значение 4-го	Diama Duanat 4	WED 10 100 0	0/	25.0	11	7.20
WEB_07	7C07	диаметра	Diam Preset 4	WEB_10 - 100.0	%	25.0	Нет	7-20
WEB_08	7C08	Максимальная скорость вращения	MaxMotor SPD	75.0 – 3600.0	об/ мин	300.0	Да	7-21
WEB_09	7C09	Минимальная линейная скорость	MinLine SPD	0.0 - 100.0	%	5.0	Нет	7-21
WEB_10	7C0A	Минимальный диаметр	Min Diameter	5.0 - 100.0	%	10.0	Нет	7-21
WEB_11	7C0B	Задание времени разгона/торможения для WEB режима	AccDecWeb	0 (No) / 1 (Yes)		1 (Yes)	Нет	7-22
WEB_12	7C0C	Время разгона для WEB режима	Acc TimeWeb	0.00 - 6000.0	сек	0.50	Да	7-22
WEB_13	7C0D	Время торможения для WEB режима	Dec TimeWeb	0.00 - 6000.0	сек	0.50	Да	7-22
WEB_14	7C0E	Выбор источника расчета диаметра	Diameter Src	0 (Internal) 1 (Exernal)		0 (Internal)	Да	7-22
WEB_15	7C0F	Постоянная времени расчета диаметра	Diameter LPF	0.01 - 300.00	сек	5.00	Да	7-22
WEB_16	7C10	Задание величины «ложного диаметра»	False Core	0.0 - 50.0	%	5.0	Да	7-22
WEB_17	7C11	Режим намотки/размотки	Re/Un Wind	0 (Rewind) 1 (Unwind)		0 (Rewind)	Нет	7-23
WEB_18	7C12	Режим подачи сверху/снизу	O/U Wind	0 (Overwind) 1 (Underwind)		0 (Overwind)	Нет	7-23
WEB_19	7C13	Задание опорного натяжения	TensionInput	-100.0 - 100.0	%	0.0	Да	7-26
WEB_20	7C14	Тип «Ослабления натяжения»	Taper Type	0 (None) 1 (Hyperbolic) 2 (Linear)		0 (None)	Нет	7-26
WEB_21	7C15	Величина «Ослабления натяжения»	Taper Input	-100.0 - 100.0	%	0.0	Нет	7-26
WEB_22	7C16	Тип «Усиления натяжения»	Boost Type	0 (Proportional) 1 (Fixed)		0 (Proportional)	Нет	7-27
WEB_23	7C17	Величина «Усиления натяжения»	Boost Input	0.0 - 50.0	%	0.0	Нет	7-27
WEB_24	7C18	Тип «Уменьшения натяжения»	Stall Type	0 (Proportional) 1 (Fixed)		0 (Proportional)	Нет	7-28
WEB_25	7C19	Величина «Уменьшения натяжения»	Stall Input	0.0 - 50.0	%	0.0	Нет	7-28
WEB_26	7C1A	Время плавного набора номинального натяжения	Tension Ramp	0.00 - 600.00	сек	5.00	Да	7-29
WEB_27	7C1B	Задание контроля натяжения	Tension Enb	0 (Disable) 1 (Enable)		1 (Enable)	Нет	7-29
WEB_28	7C1C	Источник уставки ПИД	PIDRef Sel	0 (Dancer Pos) 1 (Taper Out)		1 (Taper Out)	Нет	7-30
WEB_29	7C1D	Задание положения натяжного ролика	Dancer Pos	-100.0 - 100.0	%	0.0	Да	7-30
WEB_30	7C1E	ПИД. Коэффициент Р1	ProcPID Kp1	0.0 - 999.9	%	10.0	Да	7-30
WEB_31	7C1F	ПИД. Коэффициент Р2	ProcPID Kp2	0.0 - 999.9	%	0.0	Да	7-30
WEB_32	7C20	ПИД. Коэффициент I1	ProcPID Ki1	0.0 - 100.0	сек	5.0	Да	7-31
WEB_33	7C21	ПИД. Коэффициент I2	ProcPID Ki2	0.0 - 100.0	сек	0.0	Да	7-31

			Значение на	Значен	ние пара	метра	Изм. во	
Nō	Адрес	Имя параметра	дисплее	Диапазон	Ед. изм.	По умолчанию	время работы	Стр.
WEB_34	7C22	ПИД. Время переключения между коэффициентами	PIDGain RAMP	0.1 - 100.0	сек	1.0	Да	7-31
WEB_35	7C23	ПИД. Тип кривой коэффициента Р	P Profiler	0 (Linear) 1 (Square) 2 (Cubed) 3 (Quadratic)		0 (Linear)	Нет	7-32
WEB_36	7C24	ПИД. Усиление кривой коэффициента Р	P Apt Gain	-1.00 - 10.00		0.00	Нет	7-33
WEB_37	7C25	ПИД. Коэффициент D	ProcPID Kd	0.0 - 100.0	%	0.0	Да	7-33
WEB_38	7C26	ПИД, Постоянная времени коэффициента D	ProcKd LPF	0.0 - 100.0	сек	2.0	Да	7-33
WEB_39	7C27	ПИД. Положительный предел	Proc Pos Lmt	-100.0 - 100.0	%	100.0	Да	7-33
WEB_40	7C28	ПИД. Отрицательный предел	Proc Neg Lmt	-100.0 - 100.0	%	-100.0	Да	7-33
WEB_41	7C29	Постоянная времени выхода ПИД	PID Out LPF	0.00 - 100.00	сек	1.00	Да	7-33
WEB_42	7C2A	Усиление выхода ПИД при намотке	PIDOGainRe	-250.0 – 250.0	%	0.0	Да	7-34
WEB_43	7C2B	Усиление выхода ПИД при	PIDOGainUn	-250.0 – 250.0	%	0.0	Да	7-34

		размотке						
WEB_44	7C2C	Тип ПИД контроллера	PID Type	0 (Proportional) 1 (Fixed)		0 (Proportional)	Нет	7-35
WEB_45	7C2D	Минимальная величина выхода ПИД	Min FPID	0.0 - 50.0	%	10.0	Нет	7-35
WEB_46	7C2E	Время поддержания выхода ПИД после удержания	PIDHoldTime	0.0 - 100.0	сек	5.0	Да	7-35
WEB_47	7C2F	Источник обратной связи ПИД	PID F/B Src	0 (Analog) 1 (Option)		0 (Analog)	Нет	7-36
WEB_48	7C30	Функция определения обрыва полотна	WB Enable	0 (No) / 1 (Yes)		0 (No)	Да	7-38
WEB_49	7C31	Задержка функции «определения обрыва» при старте	INV WB Delay	0.1 - 600.0	сек	1.0	Да	7-38
WEB_50	7C32	Время определения обрыва	WB Delay	0.1 - 600.0	сек	1.0	Да	7-38
WEB_51	7C33	Уровень определения обрыва	WB Level	0.0 - 100.0	%	0.0	Да	7-38
WEB_52	7C34	Определение отклонения линейной скорости	UTS Enable	0 (No) / 1 (Yes)		0 (No)	Да	7-39
WEB_53	7C35	Уровень отклонения линейной скорости	UTS Level	0.0 - 100.0	%	0.0	Да	7-39
WEB_54	7C36	Задание времени «быстрого останова»	Quick Stop	0.0 - 100.0	сек	1.0	Да	7-40
WEB_55	7C37	Задание скорости JOG	JogSpd Web	0.0 - 100.0	%	10.0	Да	7-40
WEB_56	7C38	Выбор времени разгона/торможения скорости JOG	JogTime Sel	0 (No) / 1 (Yes)		1 (Yes)	Нет	7-40
WEB_57	7C39	Задание времени разгона JOG	JogAcc Time	0.00 - 6000.0	сек	5.00	Да	7-40
WEB_58	7C3A	Задание времени торможения JOG	JogDec Time	0.00 - 6000.0	сек	5.00	Да	7-40
WEB_59	7C3B	Задание уровня склейки полотна	Splice Level	0.0 - 100.0	%	0.0	Да	7-41

7.7 Группа параметров WEB

7.7.1 Переход к требуемому параметру (WEB 00)

Переход к любому параметру группы WEB можно произвести с помощью параметра WEB_00.

(Пример) Переход к параметру WEB_03;

Нажмите кнопку [PROG], затем с помощью кнопок [SHIFT/ESC] / [\blacktriangle] / [\blacktriangledown] установите значение «3».

При нажатии кнопки [ENT] произойдет переход к параметру WEB_03.

Переход к другим параметрам группы WEB может быть осуществлен с помощью кнопок [\blacktriangle] / [\blacktriangledown].

7.7.2 Отображение диаметра

1) Параметр WEB_01: Отображение диаметра

В параметре отображается значение диаметра (в процентах), вычисляемое в преобразователе или полученное от внешнего датчика (через аналоговый вход преобразователя).

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
WEB_01	Diameter	Отображение текущего диаметра	5.0 - 100.0	%	10.0

2) Параметр WEB_02: Отображение текущего диаметра

В параметре отображается значение выбранного диаметра. В параметре WEB_03 задается источник задания

диаметра. Если параметр WEB_03 установлен как "Keypad", то в зависимости от комбинации сигналов на многофункциональных входах (DIO_01 \sim DIO_07) в параметре WEB_02 отображается "Diam Preset 1 \sim Diam Preset 4". Если параметр WEB_03 установлен как "Analog", в параметре WEB_02 отображается "Analog". Если параметр WEB_03 установлен как "Option", то отображается "Option".

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
WEB_02	Current Core	Отображение начального выбранного диаметра (только чтение)	Diam Preset 1 Diam Preset 2 Diam Preset 3 Diam Preset 4 Analog Option		Diam Preset 1

7.7.3 Инициализация диаметра

1) Параметр WEB_03: Выбор способа инициализации диаметра

Когда рулон намотан полностью при намотке или когда рулон окончательно размотан при размотке, необходимо заменить рулон. После замены рулона в преобразователь должна поступить команда задания начального значения диаметра. Начальный диаметр может задаваться с помощью многофункциональных входов, аналогового сигнала или через интерфейсную плату.

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
WEB_03	DiaPresetSrc	Выбор типа инициализации диаметра	Keypad Analog Option		Keypad

- ① Инициализация начального диаметра с помощью многофункциональных входов:
 - -.Для инициализации начального диаметра необходимо установить пар. WEB 03 в значение "Keypad".
 - -. Выбрать один из многофункциональных входов (DIO_01 \sim DIO_07) и установить его в значение "Dia Preset".
 - -. Выбрать два многофункциональных входа (DIO_01 \sim DIO_07) и установить их в значения "CoreSize-L" и "CoreSize-H".
 - -. Начальный диаметр будет установлен при наличии сигнала на многофункциональном входе, установленном как "Dia Preset". Значение начального диаметра выбирается из параметров WEB_04 ~ WEB_07 (в зависимости от комбинации входов, определенных как "CoreSize-L" и "CoreSize-H").
 - -. При использовании стержня только одного диаметра использование сигналов "CoreSize-L" и "CoreSize-H" не нужно. При инициализации используется значение диаметра, задаваемое в параметре WEB_04.

Пример) Входы Di1, Di2, Di3 (параметры DIO_01, DIO_02, и DIO_03) определены как "Dia Preset", "CoreSize-L" и "CoreSize-H" соответственно.

0 3	Preset Src Keypad		
DIO 01	P1 define Dia Preset		
DIO 02	,		

DIO P3 define
03 CoreSize-H

Р2 Вкл/Выкл	РЗ Вкл/Выкл	Используемый диаметр
Выкл	Выкл	Параметр WEB_04
Вкл	Выкл	Параметр WEB_05
Выкл	Вкл	Параметр WEB_06
Вкл	Вкл	Параметр WEB_07

- ② Инициализация начального диаметра с помощью аналогового сигнала
 - -. Для инициализации диаметров установите параметр WEB_03 в значение "Analog".
 - -. Затем выберете один из многофункциональных входов (DIO_01 \sim DIO_07) и установите его в значение "Dia Preset".
 - -. Выберете один из аналоговых входов (AIO_01, AIO_13, AIO_25) и установите его в значение "Diam Preset".
 - -. При активации входа, определенного как "Dia Preset", устанавливается начальное значение диаметра, определенное значением на аналоговом входе. Это значение не может быть меньше значения параметра WEB 10.

Пример: Параметр DIO 01 установлен как "Dia Preset", и параметр AIO 01 установлен как "Diam Preset".

WEB Preset Src
03 Analog

DIO P1 define
01 Dia Preset

AIO Ail Define
Ol Diam Preset

- 3 Инициализация начального диаметра через интерфейс
 - -. Для инициализации параметров через интерфейсную плату установите параметр WEB_03 в значение "Option".
 - -. Выберете один из многофункциональных входов (DIO_01 \sim DIO_07) и установите его в значение "Dia Preset".
 - -. При активации входа, установленного как "Dia Preset", устанавливается начальное значение диаметра, заданное через интерфейсную плату. Значение диаметра ограничивается величиной, заданной в параметре WEB_10.

2) WEB_04: начальное значение 1-го диаметра

3) WEB_05: начальное значение 2-го диаметра

4) WEB_06: начальное значение 3-го диаметра

5) WEB_07: начальное значение 4-го диаметра

При намотке рулона начальное значение соответствует диаметру стержня, при размотке — начальное значение соответствует полному рулону. При инициализации начального диаметра с помощью многофункциональной клеммы, определенной как "Dia Preset", записывается значение диаметра, заданное в параметрах WEB_04 ~ WEB_07 в зависимости от состояния многофункциональных входов, определенных как "CoreSize-L" и "CoreSize-H". Если входы "CoreSize-L" и "CoreSize-H" не активны, то записывается значение параметра WEB_04 (начальное значение 1). Если преобразователь используется для управления промежуточным роликом (не происходит размотки/намотки), то необходимо установить значение в параметрах WEB_04 ~ WEB_07 в 100.0 %. При задании диаметра с помощью аналогового сигнала и через интерфейсную плату параметры WEB_04 ~ WEB_07 не используются. Значение параметров WEB_04 ~ Web_07 задается в процентах от полного диаметра.

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
WEB_04	Diam Preset 1	Начальное значение 1-го диаметра	WEB_10 - 100.0	%	10.0
WEB_05	Diam Preset 2	Начальное значение 2-го диаметра	WEB_10 - 100.0	%	15.0
WEB_06	Diam Preset 3	Начальное значение 3-го диаметра	WEB_10 - 100.0	%	20.0
WEB_07	Diam Preset 4	Начальное значение 4-го диаметра	WEB_10 - 100.0	%	25.0

Условия для инициализации диаметра:

- Многофункциональный вход, определенный как "Dia Preset", активен, и линейная скорость меньше значения параметра WEB 09.
- Многофункциональный вход, определенный как "Dia Preset", активен, и активен многофункциональный вход, определенный как "TensionDisable".
- При инициализации параметров частотного преобразователя (параметр PAR_01), значение диаметра устанавливается равным значению параметра WEB 04.

7.7.4 Задание скорости при WEB управлении

1) WEB_08: Максимальная скорость вращения при минимальном диаметре

Функция определяет максимальную скорость вращения двигателя при минимальном диаметре при максимальной линейной скорости. Пример: При максимальной линейной скорости 100 [м/мин],

коэффициентом редукции 5:1 и диаметром стержня 100 [мм], максимальная скорость двигателя будет равна 1591.5 [об/мин].

Макс. скорость двиг. [об/мин =
$$Kos\phi$$
 . $pedyкции \times \frac{Makc. лин скорость}{Диаметр стержня $x\pi = 5 \times \frac{100 \ [m/мин]}{0.1 \ [m] \times \pi} = 1591.5 \ [oб/мин]$$

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
WEB_08	MaxMotor SPD	Максимальная скорость двигателя	75.0 – 3600.0	об/мин	300.0

Примечание: После установки проверьте скорость вращения двигателя, задав максимальную линейную скорость на минимальном диаметре.

2) WEB_09: Минимальная эффективная линейная скорость

Данная функция связана с вычислением диаметра и инициализаций начального диаметра. Значение минимальной линейной скорости задается в процентах от максимальной линейной скорости (100%). Во время намотки/размотки линейная скорость должна быть выше минимальной линейной скорости. Если текущая линейная скорость меньше минимальной скорости, то вычисление диаметра не производится. Если линейная скорость меньше заданного значения, и один из многофункциональных входов, определенный как "Dia Preset" активирован, значение диаметра инициализируется.

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
WEB_09	MinLine SPD	Минимальная линейная скорость	0.0 - 100.0	%	5.0

3) WEB 10: Минимальный диаметр

В параметре отображается диаметр минимального стержня [%]. Параметр используется как минимальный предел при вычислении «Ослабления натяжения», вычислении Р коэффициента, вычислении диаметра при размотке, при инициализации начального значения диаметра, заданного аналоговым сигналом или через интерфейсную плату. Значение параметра WEB_10 должно быть меньше или равно значениям параметров WEB_04 ~ WEB_07. Если преобразователь управляет промежуточным роликом, и размотка/намотка не производится, то значение параметра WEB_10 должно быть установлено в 100 [%].

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
WEB_10	Min Diameter	Минимальный диаметр	5.0 - 100.0	%	10.0

4) WEB 11: Задание времени разгона/торможения для WEB режима

5) WEB_12 : Задание времени разгона WEB режима

6) WEB_13 : Задание времени торможения WEB режима

Если параметр WEB_11 установлен в "No", параметры WEB_12 и WEB_13 не отображаются. Время разгона/торможения определяется параметрами FUN_40 и FUN_41. Если параметр WEB_11 установлен в "Yes", параметры WEB_12 и WEB_13 отображаются в группе WEB и используются для задания времени разгона и торможения.

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию _
WEB_11	AccDecWeb	Задание времени разгона/торможения для Web режима	No Yes		Yes
WEB_12	Acc TimeWeb	Время разгона для Web режима	0.00 - 6000.0	сек	0.50
WEB_13	Dec TimeWeb	Время торможения для Web режима	0.00 - 6000.0	сек	0.50

7.7.5 Вычисление диаметра

1) WEB 14: Выбор источника расчета диаметра

Эта функция определяет, будет ли диаметр рассчитываться программно, или будет использован внешний датчик изменения диаметра, подключенный к аналоговому входу. Если параметр WEB_14 установлен как "Internal", величина диаметра вычисляется программно. Если параметр WEB_14 установлен как "External", значение диаметра определяется внешним датчиком. Также если параметр WEB_14 установлен как "External", диаметр не вычисляется и процедура инициализации начального диаметра не работает.

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
WEB_14	Diameter Src	Выбор источника расчета диаметра	Internal External		Internal

2) WEB 15: Постоянная времени расчета диаметра

При вычислении диаметра во избежание резкого изменения значения можно использовать низкочастотный фильтр (LPF). При большом значении времени фильтра диаметр вычисляется медленнее. Если значение маленькое, то диаметр вычисляется быстрее.

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
WEB_15	Diameter LPF	Постоянная времени расчета диаметра	0.01 – 300.00	сек	5.00

3) WEB_16: Задание величины ложного диаметра

Когда один из многофункциональных выходов (параметры DIO_41 \sim DIO_43) установлен как "False Core" и текущий диаметр меньше значения, устанавливаемого в параметре WEB_16, вход активируется. Значение параметра задается в процентах от максимального диаметра.

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
WEB_16	False Core	Задание величины ложного диаметра	0.0 - 50.0	%	5.0

7.7.6 Задание параметров намотки/размотки

1) WEB_17: Режим намотка/размотка

При контроле натяжения используется три режима работы: контроль натяжения рулона фиксированной величины, контроль натяжения при наматывании рулона (диаметр рулона увеличивается) и контроль натяжения при разматывании рулона (диаметр рулона уменьшается). При намотке рулона, если диаметр рулона не изменяется, установите параметр WEB_17 в значение "Rewind". При размотке рулона установите параметр WEB_17 в значение "Unwind".

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
WEB_17	Re/Un Wind	Режим намотка/размотка	Rewind Unwind		Rewind

2) WEB_18: Подача материала сверху/снизу

При намотке или размотке используется два способа подачи материала. Материал может подаваться с верхней части рулона или с нижней части рулона. С помощью этой функции определяется направление вращения двигателя. В таблице ниже определяется направление линейной скорости, направление ПИД и направление «Сращивания» в зависимости от значения параметров WEB_17 и WEB_18.

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
WEB_18	O/U Wind	Режим подачи сверху/снизу	Overwind Underwind		Overwind

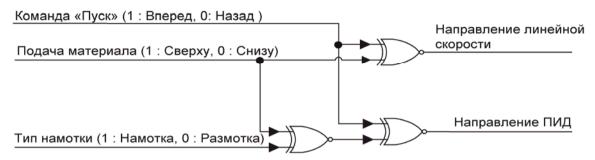
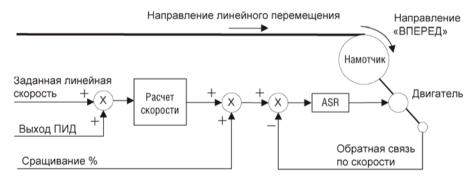
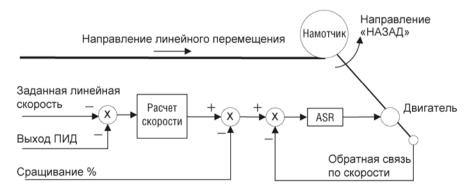

Режим	Намотка		Размотка		
Направление	Подача сверху	Подача снизу	Подача сверху	Подача снизу	
Линейная скорость	Положительное	Отрицательное	Положительное	Отрицательное	
ПИД	Положительное	Отрицательное	Отрицательное	Положительное	
«Сращивание»	Положительное	Отрицательное	Отрицательное	Положительное	

Таблица 1. Направление линейной скорости, ПИД и «сращивания» при вращении в прямом направлении.

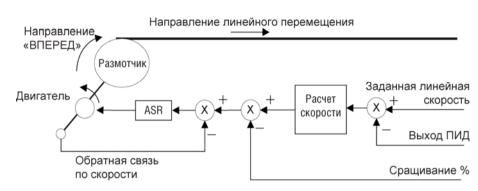
Режим	Намотка		Размотка		
Направление	Подача сверху	Подача снизу	Подача сверху	Подача снизу	
Линейная скорость	Отрицательное	Положительное	Отрицательное	Положительное	
ПИД	Отрицательное	Положительное	Положительное	Отрицательное	
«Сращивание»	Отрицательное	Положительное	Положительное	Отрицательное	


Таблица 2. Направление линейной скорости, ПИД и «сращивания» при вращении в обратном направлении.

Направление выхода ПИД и линейной скорости


Направление линейной скорости и ПИД

Намотка (подача материала сверху). Команда «вращение вперед».



Задание намотки/размотки, направления вращения при команде в прямом направлении

Намотка (подача материала снизу). Команда «вращение вперед».

Задание намотки/размотки, направления вращения при команде в прямом направлении

Размотка (подача материала снизу). Команда «вращение вперед».

Задание намотки/размотки, направления вращения при команде в прямом направлении

Размотка (подача материала снизу). Команда «вращение вперед».

Задание намотки/размотки, направления вращения при команде в прямом направлении

7.7.7 Задание параметров натяжения

1) WEB_19: Задание опорного натяжения

При использовании тензодатчика для контроля натяжения необходимо задать опорное натяжение. При использовании натяжного ролика необходимо задать его положение. В этом случае необходимо задать «Ослабление натяжения», «Ускорение натяжения» и «Снижение натяжения» в зависимости от типа оборудования. В параметре WEB_19 задается опорное значение натяжения при использовании тензодатчика для контроля натяжения. Опорное натяжение формируется как сумма значения параметра WEB_19, входного аналогового значения (вход Ai1 ~ Ai3, заданный как "Tension Ref") и значения, установленного через интерфейсную плату (адрес 0х0511). Подробно формирование опорного натяжения представлено на функциональной схеме режима WEB.

При использовании натяжного ролика для контроля натяжения необходимо задать положение натяжного

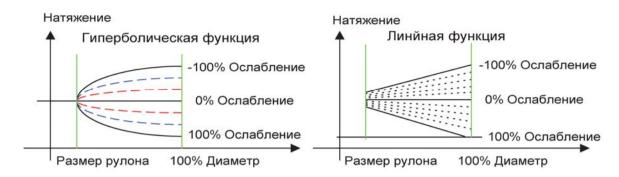
ролика. Если параметр WEB_28 установлен как "Dancer Pos", и положение натяжного валика задано в параметре WEB_29, то входное натяжение (параметр WEB_19) суммируется с величиной натяжения натяжного ролика. При настройке аналогового выхода AO1 или AO2 (параметры AIO_74, AIO_79) в значение "Tension Out" на выходе выдается значение натяжения.

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
WEB_19	Tension Input	Задание опорного натяжения	-100.0 - 100.0	%	0.0

2) WEB_20: Задание типа «ослабление натяжения»

3) WEB_21: Величина «ослабления натяжения»

Во время намотки при увеличении диаметра рулона натяжение в направлении центра рулона увеличивается. На рисунке 12 показаны направления векторов натяжения. Вектор «нагрузки» направлен к центру рулона, его воздействие отклоняет вектор реального натяжения. Для того чтобы уменьшить нагрузку и приблизить реальное натяжение к желаемому, используется функция «ослабления натяжения». Возможны два типа «ослабления натяжения»: линейное и гиперболическое. Для использования гиперболического «ослабления натяжения» установите параметр WEB_20 в значение "Hyperbolic", натяжение изменяется нелинейно в зависимости от диаметра. Если параметр WEB_20 установлен в значение "Linear", при изменении диаметра натяжение изменяется линейно.


Если «ослабление натяжения» не используется, то параметр WEB_20 должен быть установлен в значение "None", или активирован один из многофункциональных входов (параметры DIO_01 \sim DIO_07), определенный как "Taper Disable".

Конечная величина «Ослабления натяжения» формируется как сумма параметра WEB_21, значения на аналоговом входе, определенном как "Taper Ref", и значения, заданного через интерфейсную плату (адрес 0x0514). В основном значение «Ослабления натяжения» больше 0, но в некоторых случаях оно меньше 0 (если диаметр увеличивается, натяжение тоже становится больше).

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
WEB_20	Taper Type	Тип «Ослабления натяжения»	None Hyperbolic Linear		None
WEB_21	Taper Input	Величина «Ослабления натяжения»	-100.0 - 100.0	%	0.0

Диаграмма векторов натяжения

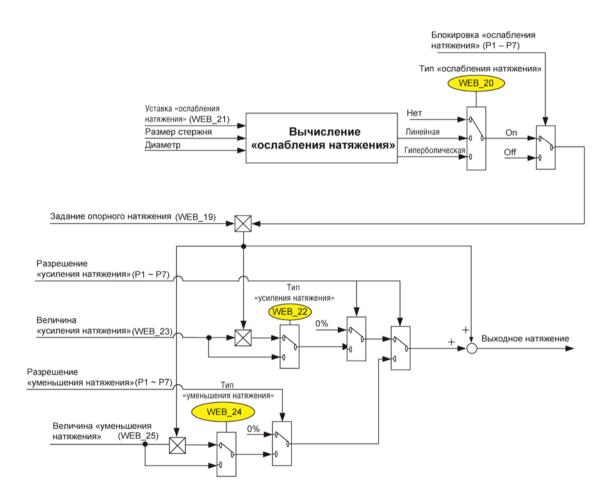
Натяжение при линейной и гиперболической функции «Ослабления натяжения»

4) WEB 22: Тип «Усиления натяжения»

5) WEB_23: Величина «Усиления натяжения»

Эта функция используется для обрыва полотна с помощью усиления натяжения. Если параметр WEB_22 установлен как "Fixed", окончательное натяжение определяется как сумма величины «усиления натяжения» (параметр WEB_23) и заданного натяжения. Например, если функция «Ослабления натяжения» не используется, заданное натяжение равно 50 [%] и параметр WEB_23 установлен как 20 [%], окончательное 70 [%]. Если WEB 22 натяжение составит параметр установлен как "Proportional", окончательное напряжение определяется как значение суммы натяжения и натяжения, умноженного на величину «усиления натяжения» (параметр WEB 23). Например, если функция «Ослабления натяжения» не используется, заданное натяжение равно 50 [%], параметр WEB 23 установлен как 20 [%], окончательное натяжение станет равным 60 [%]. Если один из многофункциональных входов определен как "Boost Enable", то функция «Усиления натяжения» работает при активном состоянии входа.

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
WEB_22	Boost Type	Тип «Усиления натяжения»	Proportional Fixed		Proportional
WEB_23	Boost Input	Величина «Усиления натяжения»	0.0 - 50.0	%	0.0


6) WEB_24 : Тип «Уменьшение натяжения»

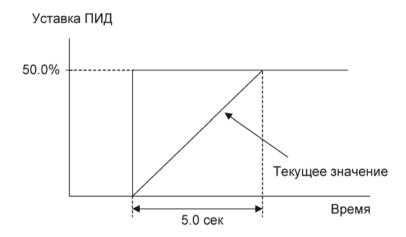
7) WEB_25 : Величина «Уменьшения натяжения»

Эта функция используется для обрыва полотна при ослаблении натяжения. Если параметр WEB_24 установлен в значение "Fixed", то окончательное натяжение определяется как разница между опорным натяжением и значением параметра WEB_25. Например, если функция «Ослабления натяжения» не используется, заданное натяжение равно 50[%], параметр WEB_24 равен 20[%], окончательное натяжение станет равно 30[%]. Если параметр WEB_24 установлен как "Proportional", окончательное натяжение равно разнице заданного натяжения и заданного натяжения, умноженного на величину «Уменьшения натяжения» (параметр WEB_25). Например, если функция «Ослабления натяжения» не используется, если заданное

натяжение равно 50[%] и значение параметра WEB_25 равно 20[%], окончательное натяжение будет равно величине 40[%]. Если один из многофункциональных входов определен как "Stall Enable", то функция «уменьшения натяжения» работает при активном состоянии входа.

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
WEB_24	Stall Type	Тип «Уменьшения натяжения»	Proportional Fixed		Proportional
WEB_25	Stall Input	Величина «Уменьшения натяжения»	0.0 - 50.0	%	0.0

Опорное натяжение при использовании функций «Ослабления натяжения», «Усиления натяжения», «Уменьшения натяжения».

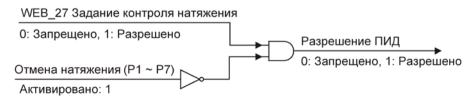

8) WEB_26: Время плавного набора номинального натяжения

При начале вращения натяжение намного меньше заданного натяжения. Из-за этого будет возникать большое рассогласование, что может привести к рывкам и неравномерному вращению.

Во избежание этого, при получении сигнала от тензодатчика или натяжного ролика, изменение выхода ПИД

будет плавно изменяться в течение времени WEB_26. Если параметр WEB_26 установлен как 10.0[сек], и окончательная величина ПИД установлена как 50[%], натяжение будет изменяться, так как показано на рис.

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
WEB_26	Tension Ramp	Время плавного набора номинального натяжения	0.00 - 600.00	сек	5.00



Изменение натяжения при использовании плавного набора

9) WEB_27: Задание контроля натяжения

Данная функция разрешает или запрещает вывод окончательного значения ПИД регулятора. Если один из многофункциональных входов (Параметры $I/O_01 \sim I/O_07$), установленный как "TensionDisable", не активен и параметр WEB_27 установлен как "Enable", ПИД регулятор работает. Если вход, определенный как "TensionDisable" активен, или параметр WEB_27 установлен как "Disable", то выход ПИД заблокирован.

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
WEB_27	Tension Enb	Задание контроля натяжения	Disable Enable		Enable

Разрешение работы ПИД регулятора

7.7.8 ПИД регулирование

1) WEB 28: Источник уставки ПИД

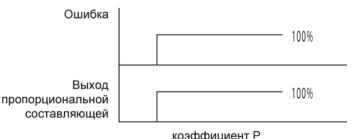
При использовании тензодатчика для контроля натяжения контролер ПИД регулирует действительное натяжение. Соответственно опорное значение ПИД должно быть выходом функции «Ослабления натяжения». Следовательно, параметр WEB 28 при использовании тензодатчика должен быть установлен в значение "Taper Out". При использовании натяжного ролика ПИД поддерживает заданное положение натяжного валика, и параметр WEB 28 должен быть установлен в значение "Dancer Pos". В этом случае установите один из аналоговых выходов (параметры AIO 74, AIO 79) в значение "Tension Out" и подключите натяжной валик. В этом случае параметр WEB 29 станет опорным значением входа ПИД.

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
WEB_28	PIDRef Sel	Источник уставки ПИД	Dancer Pos Taper Out		Taper Out

2) WEB 29: Задание положения натяжного ролика

Для поддержания необходимого натяжения необходимо задать положение натяжного валика. В этом случае натяжение определяется как отклонение текущего положения натяжного валика от опорного положения натяжного валика. Опорное положение натяжного валика определяется как сумма параметра WEB 29 и значения с аналогового входа (Ai0 ~ Ai3), установленного в значение "Dancer Ref".

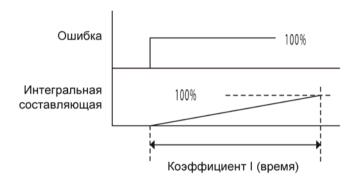
Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
WEB_29	Dancer Pos	Задание положения натяжного ролика	-100.0 - 100.0	%	0.0


3) WEB_30: ПИД. Задание коэффициента Р1

4) WEB_31: ПИД. Задание коэффициента Р2

Если коэффициент Р равен 100%, то при наличии рассогласования 100% выход ПИД будет 100% (если коэффициент I = 0). Если коэффициент Р равен 50%, то при наличии рассогласования 100% выход ПИД будет 50% (если коэффициент I = 0).

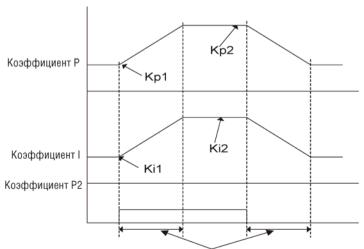
Если активирован один из многофункциональных входов (DIO_01 \sim DIO_07), определенный как "PI Gain Sel", коэффициент Р переключается из значения WEB_30 в значение WEB_31. Переключение происходит в течение времени, заданного в параметре WEB 34.


Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
WEB_30	ProcPID Kp1	ПИД. Коэффициент Р1	0.0 – 999.9	%	100.0
WEB_31	ProcPID Kp2	ПИД. Коэффициент Р2	0.0 – 999.9	%	0.0

5) WEB_32 : ПИД. Коэффициент I16) WEB_33 : ПИД. Коэффициент I2

Коэффициент I 1[сек] определяет время, в течение которого выход ПИД накопит значение 100[%] при рассогласовании 100[%] (коэффициент P = 0). Если активирован один из многофункциональных входов (DIO_01~DIO_07), определенный как "PI Gain Sel", коэффициент I переключается из значения WEB_32 в значение WEB_33 в течение времени, заданного в параметре WEB_34.

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
WEB_32	ProcPID Ki1	ПИД. Коэффициент I1	0.0 - 100.0	сек	5.0
WEB_33	ProcPID Ki2	ПИД. Коэффициент I2	0.0 - 100.0	сек	0.0



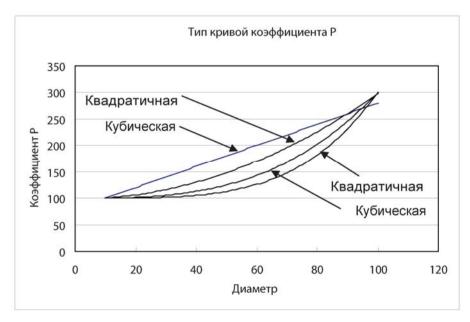
I коэффициент

7) WEB_34: Время переключения между коэффициентами

Резкое изменение коэффициентов Р и I может привести к рывкам и вибрации. Во избежание этого, значения коэффициентов изменяются плавно в течение заданного времени. При активации одного из многофункциональных входов, определенного как "PI Gain Sel", происходит переключение значений коэффициентов ПИД.

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
WEB_34	PIDGain RAMP	Время переключения между коэффициентами	0.1 ~ 100.0	сек	1.0

Время переключения Р1 коэффициентов (WEB-34)


Время переключения РІ коэффициентов

8) WEB 35: ПИД. Тип кривой коэффициента Р

9) WEB_36: ПИД. Усиление кривой коэффициента Р

При намотке рулона при увеличении диаметра увеличивается инерционность рулона. Поэтому для снижения влияния инерции при увеличении диаметра, коэффициент Р изменяется. Можно задать 4 типа кривой изменения коэффициента Р: линейную (Linear), квадратную (Square), кубическую (Cubed) и квадратичную (Quadratic), в зависимости от типа рулона. В параметре WEB_35 задается тип кривой. Параметр WEB_36 задает усиление коэффициента Р. Если параметр WEB_36 установлен в 0, функция не работает.

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
WEB_35	P Profiler	ПИД. Тип кривой коэффициента Р	Linear Square Cubed Quadratic		Linear
WEB_36	P Apt Gain	ПИД. Усиление кривой коэффициента Р	-1.00 - 10.00		0.00

P Gain applicable where P Gain: 100.0[%], Adaptation Gain: 2.00, Core Size: 10.0[%]

10) WEB_37: ПИД. Коэффициент D

11) WEB_38: Постоянная времени коэффициента D

Параметры WEB_37 и WEB_38 задают значение дифференциального коэффициента D. Если рассогласование составляет 100[%], и параметр WEB_37 установлен в значение 100 [%], то выход контроллера D станет равным 100[%] после истечения времени WEB_38. Если время WEB_38 не учитывается, значение на выходе контроллера D появляется при изменении величины рассогласования. При возникновении нестабильности системы необходимо увеличить время Web_38.

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
WEB_37	ProcPID Kd	ПИД. Коэффициент D	0.0 - 100.0	%	0.0
WEB_38	ProcKd LPF	ПИД. Постоянная времени коэффициента D	0.0 - 100.0	сек	2.0

12) WEB_39: Положительный предел ПИД

13) WEB_40 : Отрицательный предел ПИД

Параметры WEB_39 и WEB_40 — это верхний и нижний пределы окончательного выхода ПИД контроллера. Параметр WEB_39 определяет положительный предел выходного значения ПИД. Параметр WEB_40 определяет отрицательный предел выходного значения ПИД. Верхний и нижний пределы задаются в процентах от максимального значения. Например, если рассогласование равно 100[%] и коэффициент Р ПИД контроллера установлен в 200[%], выход ПИД станет равным 200[%]. Если верхний предел установлен и равен 100[%], выход ПИД станет 100[%].

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
WEB_39	Proc Pos Lmt	Положительный предел ПИД	-100.0 – 100.0	%	100.0
WEB_40	Proc Neg Lmt	Отрицательный предел ПИД	-100.0 - 100.0	%	-100.0

14) WEB_41 Постоянная времени выхода ПИД

Эта функция задает время низкочастотного фильтра на выходе ПИД. При увеличении времени фильтра время реакции на изменение состояния станет больше, но стабильность работы увеличится.

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
WEB_41	PID Out LPF	Постоянная времени выхода ПИД	0.00 - 100.00	сек	1.00

15) WEB_42 : Усиление выхода ПИД при намотке

16) WEB 43: Усиление выхода ПИД при размотке

Эти функции задают усиление выходного значения ПИД. При намотке рулона (параметр WEB_17 установлен в "Rewind") используется параметр WEB_42. При размотке рулона (параметр WEB_17 установлен в "Unwind") используется параметр WEB_43. Величина усиления задается в процентах от максимальной линейной скорости. Например, если параметр WEB_44 установлен в значение "Fixed", и величина усиления выхода ПИД равна 10[%], и линейная скорость равна 50[%], выходная линейная скорость будет равна 60[%]. Если заданная величина усиления отрицательная, величина выхода ПИД будет отрицательной. Это может использоваться для подключения тензодатчика, работающего в инверсивном режиме. Например, если максимальное натяжение соответствует минимальному значению выходного напряжения датчика 0[В], а минимальное натяжение — максимальному значению 10[В].

При использовании ПИД регулятора, если линейная скорость равна «0», и выход ПИД равен отрицательному значению, двигатель может начать вращаться в противоположном направлении. В преобразователях серии iV5, выход преобразователя блокируется, если выход ПИД больше линейной скорости, и происходит вращение в обратном направлении.

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
WEB_42	PIDOGainRe	Усиление выхода ПИД при намотке	-250.0 – 250.0	%	0.0
WEB_43	PIDOGainUn	Усиление выхода ПИД при размотке	-250.0 – 250.0	%	0.0

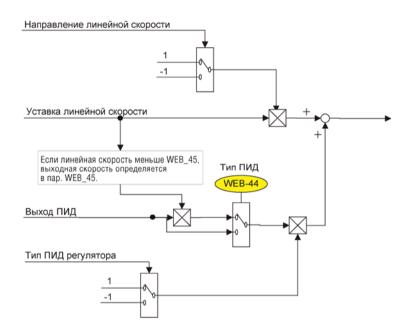
17) WEB_44: Тип ПИД регулятора

18) WEB_45: Минимальная величина выхода ПИД

Возможно использовать два типа ПИД регулятора: фиксированный и пропорциональный. Если параметр WEB_44 установлен как "Fixed", значение выхода ПИД регулятора не зависит от линейной скорости. Т.е. результирующая линейная скорость равна сумме заданной линейной скорости и выхода ПИД. Например, если заданная линейная скорость равна 50[%], и выход ПИД равен 10[%], результирующая линейная скорость станет равной 60[%]. Если заданная линейная скорость изменится с 50[%] до 60[%], результирующая линейная скорость станет равной 70[%].

А. Когда параметр WEB_44 установлен как "Fixed", результирующая линейная скорость будет равна: Результирующая линейная скорость [%] = Заданная линейная скорость [%] + Выход ПИД [%]

Если параметр WEB_44 PID установлен как "Proportional", выход ПИД пропорционален заданной линейной скорости. Т.е. результирующая скорость равна сумме линейной скорости и выхода ПИД, умноженного на линейную скорость. Например, если заданная линейная скорость равна 50[%] и выход ПИД равен 10[%], результирующая линейная скорость будет равна 55[%]. В этом случае линейная скорость больше, чем величина параметра WEB_45.


B. Когда параметр WEB_44 установлен как "Proportional", результирующая линейная скорость будет равна (если линейная скорость > значения параметра WEB 45):

Результирующая линейная скорость [%] = Заданная линейная скорость[%] +
$$\frac{\text{Выход }\Pi \text{ИД}[\%] \text{ x } \text{Линейная скорость}[\%]/100}{100}$$

При начале вращения система должна поддерживать натяжение при начальном натяжении и нулевой линейной скорости. В формуле выше, если линейная скорость равна «0», то и результирующая линейная скорость тоже будет равна «0», и поддержание натяжения не будет производится. Для поддержания натяжения, в случае, если линейная скорость меньше значения параметра WEB_45, результирующая линейная скорость будет рассчитываться по нижеприведенной формуле

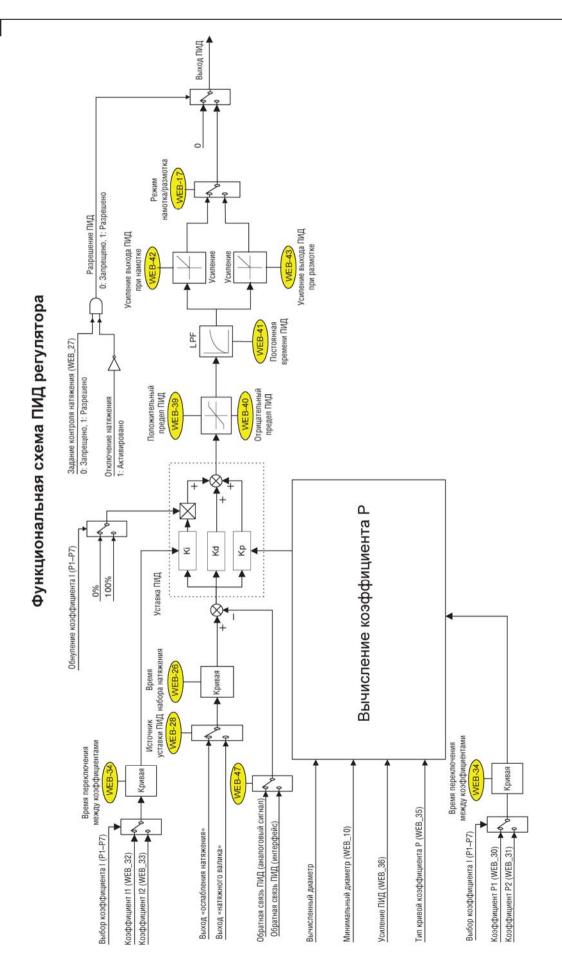
C. Если параметр WEB_44 установлен как "Proportional", результирующая линейная скорость (если линейная скорость < WEB_45):

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
WEB_44	PID Type	Тип ПИД регулятора	0 (Proportional) 1 (Fixed)		0 (Proportional)
WEB_45	Min FPID	Минимальная величина выхода ПИД	0.0 - 50.0	%	10.0

Тип ПИД регулятора

19) WEB_46 Время поддержания выхода ПИД после удержания

При команде «Удержание» (Hold) скорость двигателя уменьшается до 0. При возникновении рассогласования скорость вращения двигателя определяется отклонением ПИД. Чтобы этого избежать используется функция поддержания выхода ПИД. ПИД регулирование осуществляется в течение времени, заданного в параметре WEB_46 PID, и затем двигатель останавливается на выбеге (за счет силы трения). Если выход ПИД равен 0, то двигатель останавливается сразу (время WEB_46 не учитывается).


Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
WEB_46	PIDHoldTime	Время поддержания выхода ПИД после удержания	0.0 - 100.0	сек	5.00

20) WEB_47: Источник обратной связи ПИД

В параметре WEB_47 задается источник обратной связи ПИД регулятора. Если параметр установлен как "Analog", и один из многофункциональных аналоговых входов (Ai1 \sim Ai3) определен как "Tension F/B", то в качестве сигнала обратной связи используется значение с этого аналогового входа. Если параметр WEB_47 установлен как "Option", значение обратной связи принимается через коммуникационный интерфейс.

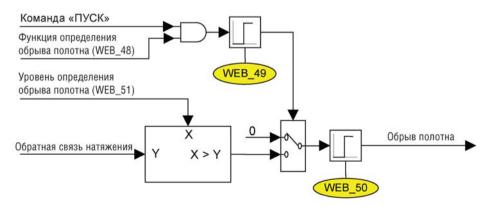
Если параметр WEB_47 установлен как "Option", убедитесь, что период опроса не превышает 10 [мсек].

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
WEB_47	PID F/B Src	Источник обратной связи ПИД	Analog Option		Analog

Функциональная схема ПИД регулятора

7.7.9 Определение обрыва полотна

1) WEB_48: Функция определения обрыва полотна


2) WEB_49: Задержка функции определения обрыва при старте

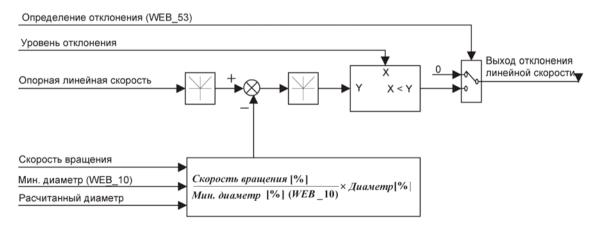
3) WEB_50: Время определения обрыва

4) WEB_51: Уровень определения обрыва

При работе в режиме WEB полотно может порваться при излишнем натяжении. Если работа после обрыва полотна продолжается, то возможна порча продукции или повреждение оборудования. При определении обрыва выход ПИД устанавливается в «0», и вычисление диаметра прекращается. Также если один из многофункциональных выходов (DIO_41 ~ DIO_43) установлен как "WEB Break", то при определении обрыва полотна на выходе выдается сигнал, который может использоваться для индикации обрыва. Для включения функции определения обрыва установите параметр WEB_48 в значение "Yes". В начале вращения величина натяжения меньше номинальной, и для того чтобы исключить ложные срабатывания, используется задержка при старте. В параметре WEB_49 задается время, в течение которого функция обрыва не работает (после начала вращения). В параметре WEB_51 задается величина порогового натяжения. Если натяжение становится меньше значения параметра WEB_51 в течение времени Web_50, то определяется обрыв полотна. Параметр WEB_50 используется для исключения ложных срабатываний при возникновении кратковременных скачков величины натяжения. Параметр WEB_51 задается в процентах от максимального натяжения.

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
WEB_48	WB Enable	Функция определения обрыва полотна	No Yes		No
WEB_49	INV WB Delay	Задержка функции определения обрыва при старте	0.1 - 600.0	сек	1.0
WEB_50	WB Delay	Время определения обрыва	0.1 - 600.0	сек	1.0
WEB_51	WB Level	Уровень определения обрыва	0.0 - 100.0	%	0.0

Функциональная схема определения обрыва полотна


7.7.10 Отклонение линейной скорости

1) WEB_52: Определение отклонения линейной скорости

2) WEB_53: Уровень отклонения линейной скорости

При WEB управлении во время равномерного движения реальная линейная скорость практически равна заданной линейной скорости. ПИД регулятор сглаживает отклонения реальной скорости от заданной линейной скорости. Однако при резких изменениях линейной скорости, повреждении двигателя или механических частей оборудования может возникнуть аварийная ситуация. Если параметр WEB_52 установлен в значение "Yes", то при отклонении реальной линейной скорости от заданной на величину большую, чем величина, заданная в параметре WEB_53, активируется один из многофункциональных выходов (AX1 ~ OC1), определенный как "Up to Spd". Уровень отклонения (параметр WEB_53) задается в процентах от линейной скорости. Во избежание произвольного изменения сигнала, используется гистерезис 2[%]. Если заданное значение параметра WEB_53 слишком маленькое, то возможны частые ложные срабатывания.

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
WEB_52	UTS Enable	Определение отклонения линейной скорости	No Yes		No
WEB_53	UTS Level	Уровень отклонения линейной скорости	0.0 - 100.0	%	0.0

Функциональная схема линейной скорости

7.7.11 : Задание времени «Быстрого останова»

Если один из многофункциональных входов установлен как "Quick Stop" (Параметры DIO_01 \sim DIO_07), то при активации этого входа происходит аварийный останов двигателя. При этом поддерживается заданное натяжение в течение времени, заданного в параметре WEB_54 Quick Stop. Натяжение сохраняется даже после

полной остановки двигателя. Например, если скорость намотки рулона 170[об/мин], и коэффициент редукции равен 10:1, скорость вращения двигателя равна 1700[об/мин]. Если скорость размотки рулона равна 140[об/мин], и коэффициент редукции равен 11:1, скорость вращения двигателя равна 1540[об/мин]. Если время в параметре WEB_54 установлено в 5[сек], то при активации многофункционального входа, определенного как "Quick Stop", двигатель остановится за 5[сек], несмотря на то, что скорость вращения в двух случаях различная.

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
WEB_54	Quick Stop	Задание времени «Быстрого останова»	0.0 - 100.0	сек	1.0

7.7.12 Скорость JOG для WEB режима

1) WEB_55: Задание скорости Jog

2) WEB_56: Время разгона/торможения скорости Jog

3) WEB_57: Задание времени разгона Јод

4) WEB_58: Задание времени торможения Jog

Если активирован многофункциональный вход (параметры DIO_01 ~ DIO_07), определенный как "Jog Web", ПИД регулирование осуществляется, но вычисление диаметра не производится. Скорость Jog задается в параметре WEB_55 в процентах от максимальной скорости (параметр WEB_08). Например, если параметр WEB_08 установлен в значение 300[об/мин], и скорость JOG, заданная в параметре WEB_55 равна 20[%], то при активации многофункционального входа (Параметры DIO_01 ~ DIO_07), определенного как "Jog Web", скорость двигателя станет равной 60[об/мин]. Если параметр WEB_56 установлен как "Yes", то используются значения времени разгона/торможения, заданные в параметрах WEB_57 и WEB_58 (вместо значений параметров FUN_40 и FUN_41).

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
WEB_55	JogSpd Web	Задание скорости Јод	0.0 - 100.0	%	10.0
WEB_56	JogTime Sel	Время разгона/торможения скорости Jog	No Yes		Yes
WEB_57	JogAcc Time	Задание времени разгона Jog	0.00 - 6000.0	сек	5.00
WEB_58	JogDec Time	Задание времени торможения Jog	0.00 - 6000.0	сек	5.00

7.7.13 Задание скорости склейки

При использовании сращивания полотна стержень рулона должен заменяться без изменения линейной скорости. При использовании функции «сращивания» ПИД контроллер не работает с пустым стержнем рулона. В этом случае должен активироваться многофункциональный вход (параметры DIO_01 ~ DIO_07), определенный как "TensionDisable". Функция «сращивания полотна» не работает со скоростью Jog. При установке нового стержня происходит резкое изменение нагрузки. Из-за этого скорость уменьшается, натяжение рулона уменьшается, и возникает ослабление полотна. Во избежание этого скорость во время склеивания должна быть выше заданной линейной. Параметр WEB_59 задается в процентах от значения линейной скорости.

Например, если линейная скорость равна 50 [м/мин], и значение параметра WEB_59 равно 10[%], результирующая линейная скорость будет 55 [м/мин].

Код	Дисплей	Описание	Диапазон	Ед. изм.	По умолчанию
WEB_59	Splice Level	Уровень склейки полотна	0.0 - 100.0	%	0.0

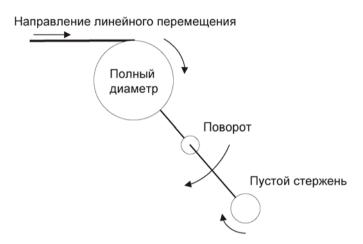
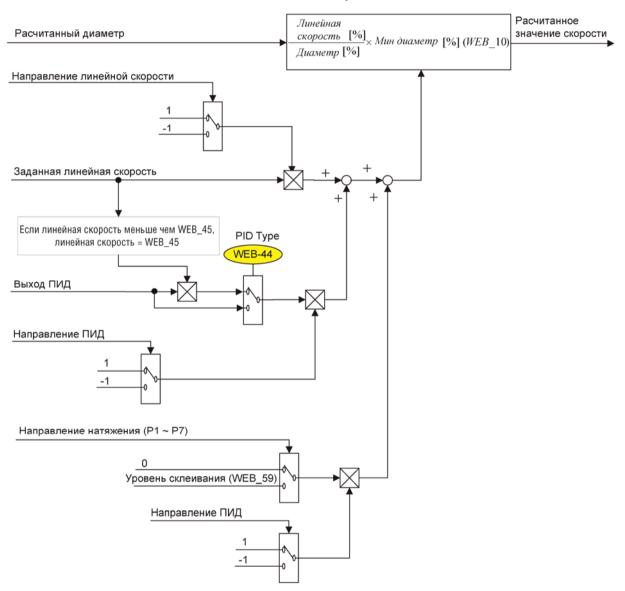



Диаграмма процесса склейки полотна

Вычисление скорости

Функциональная схема расчета линейной скорости

Глава 8 - Проверка и устранение неисправностей

Преобразователи серии iV5 - это сложное промышленное оборудование, изготовленное с использованием современных полупроводниковых технологий. Частотный преобразователь может быть поврежден при несоблюдении условий эксплуатации, таких как температура, влажность окружающей среды, уровень вибрации. Требуется соблюдать определенные требования для предотвращения выхода преобразователя из строя.

8.1 Меры предосторожности

Осторожно!

- Перед началом осмотра убедитесь, что преобразователь обесточен.
- В преобразователе используются электролитические конденсаторы большой емкости, способные сохранять заряд в течение длительного времени после отключения питания. Перед началом работ убедитесь, что конденсаторы полностью разряжены (с помощью мультиметра).
- Для проведения измерения выходного напряжения преобразователя необходим специализированный мультиметр. Высокая частота ШИМ выходного напряжения не позволяет проводить точное измерение с помощью стандартного мультиметра.

8.2 Ключевые точки

Некоторые элементы преобразователя имеют ограниченный срок службы. По истечении этого срока, их качество может ухудшаться в связи с изменением внутренней структуры. Поэтому для предотвращения выхода преобразователя из строя требуется регулярная и периодическая проверка, особенно если преобразователь эксплуатируется при следующих условиях:

- Температура окружающей среды выше номинальной;
- Во время работы часто происходит пуск и останов преобразователя;
- Входное напряжение и нагрузка значительно изменяются;
- Преобразователь подвергается вибрации и ударам;
- Преобразователь подвергается воздействию агрессивных газов, масленой пыли, пыли, металлической стружки.

осторожно!

■ Отказ компонентов преобразователя не может быть предсказан заранее. Отказ компонентов может привести к пробою входных предохранителей или ошибке преобразователя. Если у вас есть подозрения, что преобразователь работает нестабильно, обратитесь к локальному дистрибьютору LS.

8.3 Порядок проверки

Область	Ключевые точки	Описание	Как проверять	Критерий оценки	Инструмент
Силовые цепи	Общая проверка	1) Проверка сопротивления мегомметром (между силовыми клеммами и клеммой заземления) 2) Есть ли ослабленные болты? 3) Есть ли следы перегрева элементов?	1) Отсоедините силовые кабели. Соедините клеммы R, S, T, U, V и W и измерьте сопротивление между клеммами и земляной клеммой, используя мегомметр. 2) Затяните болты. 3) Визуальный осмотр.	1) Сопротивление должно быть 5МОм и выше. Не должно быть неисправностей 2) и 3)	Мегомметр 500B постоянного тока
	Провод заземления	1) Есть следы коррозии? 2) Есть ли следы повреждения в месте подключения?	1) Отключите питание, осмотрите заземляющий провод. 2) Отсоедините, осмотрите, подсоедините обратно	1) Не должно быть следов повреждения. 2) Не должно быть следов повреждения.	-
	Блок силовых клемм	Есть повреждения?	Визуальный осмотр.	Не должно быть повреждений.	1
	Конденсаторы звена постоянного тока	Измерение емкости конденсаторов.	Измерьте емкость с помощью прибора для измерения емкости.	85% или больше от номинальной емкости.	Измеритель емкости

8. Проверка и устранение неисправностей

Область	Ключевые точки	Описание	Как проверять	Критерий оценки	Инструмент
	Реле	1) Есть звук вибрации? 2) Есть повреждение контактов?	1) Проверка на слух. 2) Визуальный осмотр.	Не должно быть вибрации и повреждения контактов.	,
	© 2) Обрыв внутри		1) Визуальный осмотр. 2) Отсоедините один конец и замерьте сопротивление с помощью мультиметра.	1) Не должно быть повреждений. 2) Сопротивление должно быть в пределах ±10%.	Цифровой или аналоговый мультиметр
	Входные диоды, IGBT	Проверка на наличие пыли или мусора.	Визуальный осмотр.	Продуйте сжатым воздухом.	1
	латы	1) Проверьте, нет ли следов повреждений элементов, следов		2) Не используйте растворители для очистки платы.	
	Печатные платы	ржавчины, пятен масла, грязи. 2) Проверьте	Визуальный осмотр.	3) Удалите мусор и пыль, продув плату сжатым воздухом.	ı
	Пе	надежность крепления разъемов.		4) Присоедините разъемы.	
				5) Если невозможно заменить поврежденные элементы, замените преобразователь целиком.	
Цепи управления и защиты	_		1) Измерьте напряжение между клеммами U, V, и W на выходных клеммах преобразователя.	1) Одинаковое напряжение между фазами	
Цепи упр: защ	Проверка работы	2) Проверьте работу цепей защиты и индикации.	2) Принудительно замкните или разомкните защитные цепи.	~200В (~400В) отклонение 4В(8В) 2) Сигнал при сбое	Цифровой мультиметр

Область	Ключевые точки	Описание	Как проверять	Критерий оценки	Инструмент
Система охлаждения	Вентиляторы охлаждения	1) Есть ли ослабленные болты крепления вентилятора? 2) Вентилятор покрыт пылью?	1) Затяните болты крепления вентилятора. 2) Осмотрите вентилятор. Удалите пыль.	1) Не должно быть повреждений. 2) Не должно быть пыли.	-
Индикация	Измеритель	Нормально ли читаются значения?	Проверьте индицируемые значения на дисплее пульта.	Значения должны соответствовать стандартным.	Мультиметр

8.4 Периодическая проверка (один раз в год)

Область	Ключевые точки	Описание	Как проверять	Критерий оценки	Инструмент
Силовые цепи	Общая проверка	1) Проверка сопротивления мегомметром (между силовыми клеммами и клеммой заземления) 2) Есть ли ослабленные болты? 3) Есть ли следы перегрева элементов?	1) Отсоедините силовые кабели. Соедините клеммы R, S, T, U, V и W, измерьте сопротивление между клеммами и земляной клеммой, используя мегомметр. 2) Затяните болты. 3) Визуальный осмотр.	1) Сопротивление должно быть 5МОм и выше. Не должно быть неисправностей 2) и 3).	Мегомметр 500В постоянного тока
Силов	Провод заземления	1) Есть следы коррозии? 2) Есть ли следы повреждения в месте подключения?	1) Отключите питание, осмотрите заземляющий провод. 2) Отсоедините, осмотрите, подсоедините обратно.	1) Не должно быть следов повреждения. 2) Не должно быть следов повреждения.	
	Блок силовых клемм	Есть повреждения?	Визуальный осмотр.	Не должно быть повреждений.	ı

8. Проверка и устранение неисправностей

Область	Ключевые точки	Описание	Как проверять	Критерий оценки	Инструмент
	Конденсат оры звена постоянно го тока	Измерение емкости конденсаторов.	Измерьте емкость с помощью прибора для измерения емкости.	85% или больше от номинальной емкости	Измери- тель емкости
	контактов? 1) Трещина в изоляции резистора? 2) Обрыв внутри резистора?		1) Проверка на слух. 2) Визуальный осмотр.	Не должно быть вибрации и повреждения контактов	ı
			1) Трещина в изоляции резистора? 2) Отсоедините один конец и замерьте сопротивление с помощью мультиметра.		Цифровой или аналоговый мультиметр
	Входные диоды, IGBT	Проверка на наличие пыли или мусора.	Визуальный осмотр.	Продуйте сжатым воздухом	ı
	1) Проверьте, нет ли следов повреждений на элементах, следов		Визуальный осмотр.	1) Очистите плату антистатической тканью. Если это не помогло, замените плату на новую. 2) Не используйте растворители для очистки платы. 3) Удалите мусор и пыль, продув плату сжатым воздухом. 4) Присоедините разъемы. 5) Если невозможно заменить поврежденные элементы, замените преобразователь целиком.	

Область	Ключевые точки	Описание	Как проверять	Критерий оценки	Инструмент
Цепи управления и защиты	Проверка работы	1) Проверьте отклонение выходного напряжения во время вращения. 2) Проверьте работу цепей защиты и индикации	1) Измерьте напряжение между клеммами U, V, и W на выходных клеммах преобразователя. 2) Принудительно замкните или разомкните защитные цепи.	1) Одинаковое напряжение между фазами ~200В (~400В) отклонение 4В(8В). 2) Сигнал при сбое.	Цифровой мультиметр.
Система охлаждения	Вентиляторы охлаждения	1) Есть ли ослабленные болты крепления вентилятора? 2) Вентилятор покрыт пылью?	1) Затяните болты крепления вентилятора. 2) Осмотрите вентилятор. Удалите пыль.	1) Не должно быть повреждений. 2) Не должно быть пыли.	1
Индикация	Измеритель	Нормально ли читаются значения?	Проверьте индицируемые значения на дисплее пульта.	Значения должны соответствовать стандартным.	Мультиметр

8.5 Периодическая проверка (один раз в два года)

Область	Ключевые точки	Описание	Как проверять	Критерий оценки	Инструмент
Силовые цепи	Общая проверка	Проверка сопротивления мегомметром (между силовыми клеммами и клеммой заземления)	Отсоедините силовые кабели. Соедините клеммы R, S, T, U, V и W, измерьте сопротивление между клеммами и клеммой заземления, используя мегомметр.	Сопротивление должно быть 5МОм и выше.	Мегомметр 500В постоянного тока

8. Проверка и устранение неисправностей

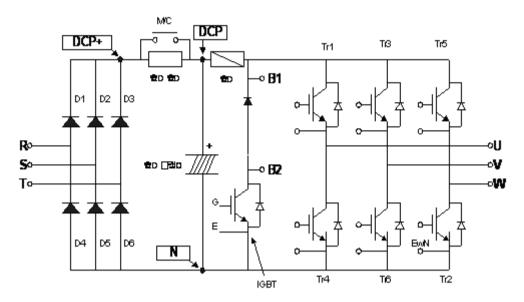
Область	Ключевые точки	Описание	Как проверять	Критерий оценки	Инструмент
Двигатель	Сопротивление изоляции	Измерение сопротивления с помощью мегомметра между выходными клеммами и земляной клеммой	Отсоедините кабели от клемм U, V, и W, и затем соедините их между собой.	Сопротивление должно быть 5МОм и выше	Мегомметр 500В постоянного тока

8.6 Измерение сопротивления мегомметром

(1)	Для	тестир	ования	силовых	кабелей	отклі	ючите	их с	эт пре	еобразовате	я.	Убедит	гесь,
	что	тестов	ое напря	яжение не	е подаетс	я на г	преобр	азов	вателі	Ь.			
\Box	Оти	пишита	кабели	OT MOTOU	пит слип	- DING	папал	uэu	эпом	измерениа	СОП	потивп	ДЦИС

 □ Отключите кабели от источника питания перед началом измерения сопротивления изоляции. Используйте мегомметр (класс =500В).

□ Выполните измерение сопротивления изоляции силовых кабелей (сопротивление между кабелями и землей).


8.7 Период замены и обслуживания частей преобразователя

Некоторые элементы частотного преобразователя со временем изнашиваются и теряют свои первоначальные свойства. Если вовремя не производить их замену, может произойти авария преобразователя. Поэтому требуется регулярная замена этих частей:

Запасные части	Период замены	Критерии	Действия
Охлаждающий вентилятор	2 ~ 3 года	Замедление или прекращение вращения	Замените на новый
Конденсаторы звена постоянного тока 5 лет		Уменьшение емкости	Замените на новые
Конденсаторы плат управления 5 лет		Уменьшение емкости	Замените на новые
Реле платы управления	-	Повреждение	Замените на новое
Тормозной резистор	-	Повреждение	Замените на новый

Ориентировочная длительность работы рассчитывается при длительной работе с номинальной нагрузкой. Также длительность работы зависит от условий эксплуатации и параметров окружающей среды.

8.8 Проверка Диодного модуля и модуля IGBT

- 1. Отключите кабели от клемм входного питания (R, S, T) и выходных клемм (U, V, W)
- 2. Проверьте сопротивление между клеммами В1 (или P/L1), N и R, S, T и между клеммами В1, N и U, V, W в прямом и обратном направлении.
- 3. Перед началом измерений убедитесь, что конденсаторы звена постоянного тока разряжены.
- 4. При проверке p-n перехода сопротивление в обратном направлении составляет несколько МОм. При проверке в прямом направлении сопротивление составляет десятки Ом (отличается в зависимости от типа модуля). Сопротивление не должно значительно отличаться от других фаз. На измерение сопротивления может оказывать влияние конденсаторы звена постоянного тока.

Глава 9 – Устранение неисправностей и обслуживание

9.1 Экран ошибок

Предупреждение

При возникновении ошибки, преобразователь отключает выходы и отображает ошибку. В этом случае причина ошибки может быть устранена до сброса ошибки. Игнорирование причины ошибки может привести к аварии преобразователя.

Защитная функция	Дисплей	Тип	Описание		
Перегрузка по току	OC-U OC-V OC-W	Latch	Преобразователь отключает выход, если выходной ток превышает 200% от номинального тока преобразователя.		
Замыкание на землю	Ground Fault	Latch	Преобразователь отключает выход при замыкании выходной фазы на землю, или если ток утечки больше установленного значения. Защитная функция «Перегрузка по току» может защитить преобразователь при замыкании на землю из-за пробоя изоляции.		
Превышение напряжения	Over Voltage	Latch	Преобразователь отключает выход, если напряжение в звене постоянного тока превышает номинальное значение (200В тип: =400В, 400В тип: =820В) при торможении или регенерации.		
Пониженное напряжение	Low Voltage	Level	Преобразователь отключает выход, если напряжение звена постоянного тока ниже минимального значения. Пониженное входное напряжение может привести к снижению рабочего момента и перегреву двигателя.		
Перегрузка	Over Load	Latch	Преобразователь отключает выход, если выходной ток превышает 180% номинального тока преобразователя в течении определенного времени (задается программно).		
Перегрузка преобразователя	Inv OLT	Latch	Преобразователь отключает выход, если выходной ток превышает 150%		
Перегрев	InvOver Heat	Latch	Преобразователь отключает выход, если произошел перегрев радиатора из-за повреждения охлаждающего вентилятора или при попадании посторонних предметов в вентилятор.		
радиатора	OHD Open *1)	Latch	Преобразователь отключает выход при обрыве OHD и при перегреве радиатора.		
Обрыв термодатчика NTC типа	InvThem OP	Latch	Преобразователь отключает выход при обрыве датчика преобразователя NTC типа.		
Перегрев двигателя	MotOver Heat	Latch	Преобразователь отключает выход, если температура двигателя превысит 150°C.		
Ошибка термодатчика двигателя	MotThem Err	Latch	При ошибке температурного датчика, измеряющего температуру двигателя (NTC – обрыв, PTC – K3), преобразователь отключает выход.		
Электронное термореле	E-Thermal	Latch	Встроенное электронное термореле позволяет определить перегрев двигателя. При перегрузке двигателя преобразователь отключает свой выход. Преобразователь не может защитить двигатель при использовании многополюсного двигателя или при использовании нескольких двигателей. В этом случае используйте отдельные тепловые реле. Величина перегрузки: 150% в течение одной минуты.		
Внешняя ошибка (Н.З. контакт)	Ext Trip-B	Latch	Эта функция используется для останова преобразователя при возникновении системной аварии при подаче внешнего сигнала.		

*1) Только для преобразователей SV2800 ~ 5000iV5.

Защитная функция	Дисплей	Описание
K3 IGBT	Arm Short-U Arm Short-V Arm Short-W Arm Short-DB	Преобразователь отключает выход при коротком замыкании IGBT или выходной фазы. Ошибка короткое замыкание тормозного IGBT (Arm Short-DB) используется в преобразователях мощностью 11 кВт ~ 22 кВт. В преобразователях SV2800 \sim 3750iV5 отображается (ArmShort).
Обрыв предохранителя	Fuse Open	Преобразователь отключает выход при обрыве предохранителя, вызванного повреждением IGBT или коротким замыканием силовых цепей.
Ошибка энкодера	Encoder Err	1)Отображается при потере сигнала энкодера (аппаратно). 2)Отображается при программном определении ошибки энкодера (в течение времени PAR-14).
Защита ВХ (моментальная остановка)	ВХ	Используется для аварийной остановки преобразователя. Преобразователь отключает выход при активации клеммы, определенной как ВХ, и возвращается к нормальной работе при отключении сигнала ВХ. Используйте эту функцию с осторожностью.
Превышение скорости	Over Speed	Отображается, если двигатель вращается с скоростью выше 120% от заданной.
Ошибка коммуникации	COM Error CPU Error	Ошибка отображается при нарушении связи между преобразователем и пультом управления.
Аппаратная ошибка	HW- Diag	Ошибка отображается при сбое процессора, или когда преобразователь блокирует вывод сигналов на затвор IGBT.
Блокировка вентилятора*1)	FAN Lock	Преобразователь отключает выход при блокировке вентилятора.
Ошибка питания энкодера ^{*1)}	Enc Power	Преобразователь отключает выход при неисправности питания энкодера.
Ошибка вентилятора и магнитного	FAN/ MC PWR	Отображается при отключении понижающего трансформатора для питания вентилятора или обрыве предохранителя трансформатора (преобразователи $30 \sim 160 \text{ kBt}$).
контактора	MeTWK	Преобразователь отключает выход, если напряжение \sim 220В не подается на вентилятор и магнитный контактор (преобразователи 30 \sim 160 кВт, =DC).
Ошибка вентилятора	FAN PWR	Отображается при отключении понижающего трансформатора для питания вентилятора или обрыве предохранителя трансформатора (Преобразователь мощностью 220 кВт. Переменное напряжение питания). Преобразователь отключает свой выход, если не подается напряжение ~220В для питания вентилятора и магнитного контактора (Преобразователь мощностью 220 кВт. Постоянное напряжение питания).

^{*1)}Только для преобразователей SV2800~5000iV5.

9.2 Мониторинг состояния ошибки

9.2.1 Мониторинг ошибки

Параметр	Дисплей	Описание
DIC OF	00.11	Отображение текущей ошибки.
DIS_05	OC-U	(Перегрузка по току фазы U)

 Перед сбросом ошибки проверьте значение текущей ошибки. Нажав кнопку [PROG] с помощью кнопок [▲],[▼], можно посмотреть параметры работы во время возникновения ошибки, такие как выходная частота, ток, напряжение, сигнал обратной связи, опорный/текущий момент, статус работы и время работы. Для выхода нажмите кнопку [ENT]. Нажатие кнопки [RESET] сохраняет текущую ошибку в параметре DIS_05.

9.2.2 Отображение предыдущих ошибок

 Две предыдущие ошибки сохраняются в параметре DIS_05. Ошибка "Last fault 1"- это последняя ошибка, "Last fault 2" – предпоследняя.

Параметр	Дисплей	Описание
DIS_05	Last Fault1	Предыдущая ошибка 1
DIS_05	Last Fault2	Предыдущая ошибка 2

Пункт параметра DIS_05 "Fault Clear" очищает данные последних двух ошибок. "Last fault1" и
"Last fault2".

9.3 Сброс ошибки

Для сброса ошибки необходимо выполнить одну из трех операций:

- 1) Нажмите кнопку [RESET] на клавиатуре.
- 2) Замкните клемму RST на клемму CM.
- 3) Отключите преобразователь и включите его снова.

9.4 Устранение неисправности

9.4.1 Проведите следующую диагностику перед устранением неисправности.

- 1) Силовые кабели подключены правильно?
- 2) Джамперы настройки энкодера на плате ввода/вывода установлены правильно?

Если тип энкодера «открытый коллектор» или «комплементарный», установите переключатель JP4 в положение "ОС" и переключатель JP2 в положение "Р15". Если тип энкодера Line Drive, установите переключатель JP4 в положение "LD" и переключатель JP2 в положение "Р5".

По умолчанию: тип Line Drive

- 3) Направление вращение двигателя установлено правильно?

по часовой стрелке (если смотреть с фронтальной части, там где расположен охлаждающий вентилятор).

- 4) Преобразователь работает нормально без нагрузки?
 - Обратитесь к главе «Управление с клавиатуры и многофункциональных клемм»

9.4.2 Проверка перед установкой

Проверьте пункты (1) \sim (9) перед установкой. Проверьте пункты (10) \sim (16) при возникновении проблем во время работы.

1) Двигатель не вращается

- ① Мигает красный индикатор?

При возникновении ошибки нажмите кнопку [RESET] для сброса ошибки и запустите двигатель снова.

DIS Terminal In 0010000000

- ② Способ запуска (команды Пуск/Стоп) установлен правильно?

2) Двигатель не вращается. Зеленый индикатор [REV], [FWD] горит.

- ① Клеммы преобразователя U, V, W подключены к двигателю?
- Вал двигателя заклинен с помощью тормоза двигателя или внешнего тормозящего устройства?
 - Проверьте подключение тормозной муфты двигателя и время отключения тормоза.

9. Устранение неисправностей и обслуживание

- 3 Значение параметра DIS_01 (Уставка скорости) равно «0»?
- ④ Параметр PAR_07 (Мощность двигателя) установлен правильно?
- ⑤ Параметр PAR_17 (Скорость двигателя) установлен правильно?
 - ☞ Убедитесь, что значение соответствует значению на шильде двигателя.
- ⑥ Параметр PAR_22 (Номинальный ток двигателя) установлен правильно?
 - ☞ Убедитесь, что значение соответствует значению на шильде двигателя.
- Параметр PAR_26 (Магнитный поток двигателя) установлен правильно?
- ® Параметр PAR_21 (номинальное скольжение двигателя) установлен правильно?
 - ☞ Убедитесь, что значение соответствует значению на шильде двигателя.
- Параметр PAR 27 (Постоянная времени двигателя (Тг) установлен правильно?
- Параметр РАК 19 (количество полюсов двигателя) установлен правильно?
 - ☞ Убедитесь, что значение соответствует значению на шильде двигателя.
- ① Параметр CON_28 (Источник ограничения момента) установлен как " Kpd Kpd Kpd ".
 - Параметры CON_29 ~ CON_31 установлены правильно?
 - ☞ Параметры CON_29 ~ CON_31 определяют верхний предел выходного момента. Если для работы

требуется больший момент, измените значение этих параметров. Перегрузочная способность преобразователей серии iV5 составляет 150% (в течение 1-й минуты) при использовании предела момента 150%.

- ® Когда параметр CON_28 (Источник ограничения момента) установлен как "Analog" или "Option", соответствующие значения установлены правильно?

3) Скорость двигателя не увеличивается во время работы.

- ① Параметр PAR_10 (количество импульсов энкодера) установлен правильно?
 - Значение по умолчанию 1024. Установите значение параметра согласно разрешению энкодера.
- ② Установите параметр FUN_01 как "Keypad", параметр FUN_02 как "Keypad1", FUN_12 в значение 100.0грт (об/мин) и нажмите кнопку [FWD]. Если скорость двигателя не равна 100.0 об/мин, проверьте подключение энкодера.
 - \Rightarrow Если энкодер отсоединен или провода энкодера подключены неправильно, двигатель вращается с низкой скоростью (30.0 \sim 60.0 об/мин) и рабочим током более 150% от номинального. Проверьте подключение энкодера.
- ③ Если скорость двигателя не увеличивается и находится в пределах 30.0 ~ 60.0 об/мин, остановите двигатель и переключите фазы А и В энкодера. Если двигатель вращается в обратном направлении, перейдите к пункту (4).
 - Ф При использовании энкодера типа Line Drive подсоедините фазы A+, A- на место B+, B- и фазы B+,
 В- на место фаз A+, A-. При использовании комплементарного энкодера и энкодера с выходом типа
 «открытый коллектор» поменяйте местами фазы РА и РВ.

Или измените значение параметра PAR_11 (направление вращения энкодера) и запустите двигатель.

9. Устранение неисправностей и обслуживание

4) Двигатель вращается в обратном направлении.

Измените значение параметра PER_11 (направление вращения энкодера) и запустите двигатель.

- (5) Направление вращения двигателя не может быть изменено.
- ① Источник команд Пуск/Стоп задан правильно?
- ② Убедитесь, что не активны клеммы, определенные как FWD/REV

6) Неисправность клавиатуры или многофункциональных клемм.

- ① Индикаторы кнопок [REV], [FWD], [STOP] на клавиатуре горят красным или зеленым цветом.
- (2) Когда мигает индикатор кнопки [STOP].
- ③ Когда мигают индикаторы кнопки [REV], [FWD].
 - ଙ Мигание индикаторов означает процедуру разгона/торможения. Если преобразователь продолжает

работу при таких условиях, это означает, что емкость нагрузки вычислена неправильно и превышает номинал преобразователя. Перейдите к пункту C(16).

7) Скорость вращения не изменяется после команды «Пуск».

- ① Параметр FUN_02 настроен правильно?
 - В преобразователе используется три способа задания частоты: аналоговое, с помощью клавиатуры
 или через интерфейсную плату. Выберете необходимый способ задания.
- ② Параметр DIS_01 (Опорная скорость) отображает правильное значение?
- ③ Параметр FUN_02 установлен как "Кеураd" и скорость, отображаемая в параметрах DIS_01 ~ DIS_03, неправильная.
- ④ Если параметр FUN_02 установлен как "Analog", и в параметрах DIS_01 ~ DIS_03 отображается не верное значение скорости.

Двигатель продолжает вращение, когда напряжение на аналоговом входе равно «0» при задании скорости вращения через аналоговый сигнал.

- ① Когда параметр AIO_11 (назначение аналогового входа Ai1) определен как "Speed Ref".
 - → Настройте параметр AIO_16 (Смещение минимального сигнала). (Задается в %).
 Отображаемое значение это команда скорости. Установите требуемое значение (например, 0.0%) и нажмите [ENTER].
- ② Выполните те же шаги для настройки аналоговых входов Ai2 ~ Ai3.

9. Устранение неисправностей и обслуживание

9) Двигатель вращается со скоростью меньшей, чем заданная. Двигатель перегревается или вращается рывками.

- ① Проверьте подключение двигателя.
- 2 Мощность двигателя установлена правильно?
- Параметры двигателя установлены верно?

10) На дисплее ничего не отображается?

- ① Кабель соединяющий преобразователь и клавиатуру натянут?
 - ☞ Проверьте преобразователь и подключение клавиатуры.
- 2 Входное питание подано?

11) Скорость двигателя изменяется и скорость не постоянна во время вращения.

- ① Для подключения энкодера используется экранированный кабель типа витая пара?
 - © Сигналы от энкодера должны передаваться через экранированную витую пару. В противном случае скорость может меняться на низкой (или высокой) скорости за счет входных шумов, что приводит к

вибрации двигателя или ненормальным звукам при остановке.

- Правильно ли осуществлено заземление преобразователя, двигателя и энкодера?
 - Убедитесь в том, что подключено заземление преобразователя и энкодера. Клеммы для подключения заземления преобразователя расположены на правой нижней части платы управления. Открутите болт и вставьте заземляющий провод энкодера, закрутите болт. (Более подробно подключение описано в главе 3.4). Для заземления двигателя используется клемма G силовых клемм.
- Подключите заземление преобразователя и двигателя к магистрали заземления здания.
 - В противном случае будут возникать помехи, приводящие к неправильному считыванию показаний энкодера.
- Коэффициент усиления Р слишком большой, а нагрузка преобразователя маленькая?
- (5) Увеличьте значение параметра PAR_13 (постоянная фильтра энкодера).
- Убедитесь, что энкодер надежно подсоединен к валу двигателя и нет проскальзывания вала.
 - Некачественное соединение энкодера и двигателя может приводить к проскальзыванию. Проверьте качество присоединения.

12) Измененные параметры не сохраняются.

 Отключите преобразователь и включите его снова. Если проблема не исчезла, обратитесь к локальному представителю LS.

9. Устранение неисправностей и обслуживание

13) Постоянно появляется ошибка "Fuse Open".

- Входное напряжение соответствует требуемому?
- ② Используется правильное чередование фаз U, V, W?
 - ☞ Проверьте уровень входного сигнала.
- 3 Изоляция двигателя повреждена?

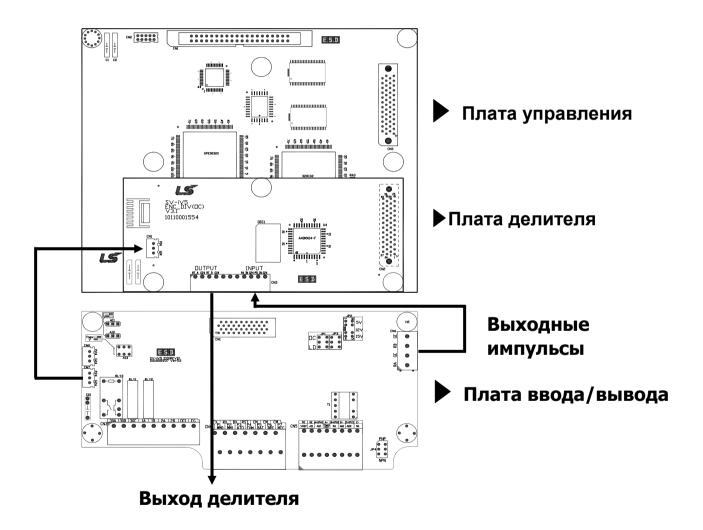
14) Входной ток двигателя слишком большой.

- ① Проверьте подключение двигателя.
 - ☞ Проверьте подключение двигателя (треугольник/звезда 220В/380В).
- 2 Мощность двигателя установлена правильно?
- З Параметры двигателя установлены правильно?
 - ☞ Перейдите к пункту (2) и (9) и проверьте подключение двигателя и преобразователя.

15) Во время работы часто появляются ошибки ОС-U (V,W). (Входной ток двигателя колеблется).

- 1 Проверьте соединение энкодера.
 - При некачественном соединении энкодера возникает вибрация двигателя, и в преобразователь поступает неверный сигнал от энкодера. Преобразователь использует сигналы от энкодера для управления двигателем. Если скорость ниже заданной (при проскальзывании вала энкодера), то выходной ток увеличивается. Если ошибка не исчезает, обратитесь к производителю энкодера.

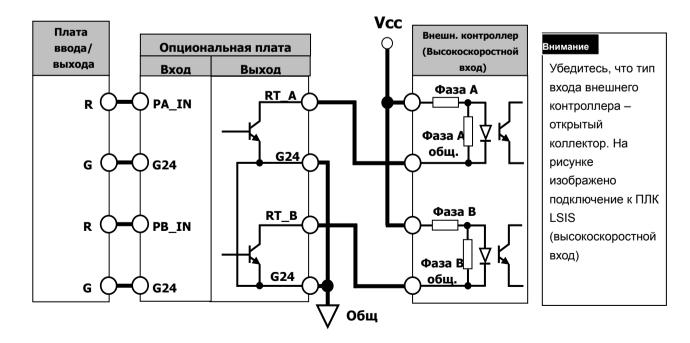
- 2 Нет потери выходной фазы преобразователя?
- З Изоляция обмоток двигателя повреждена?
 - ☞ Перейдите к пункту (13).


16) Разгон/торможение не может быть осуществлен правильно и мигает индикатор [REV],

[FWD]. (Нагрузка и опорный сигнал частоты колеблется).

- ① Проверьте подключение двигателя.
- ② Проверьте параметры FUN_40 ~ FUN_47 (Время разгона/торможения) и DIS_00 (нагрузка двигателя).

Глава 10 - Опциональные платы


- 10.1 Опциональная плата «Делитель импульсов энкодера» 10.1.1 Установка и подключение платы «Делитель импульсов энкодера».
- Подключите разъем опциональной платы CN2 к разъему CN4 на плате управления.

10.1.2 Рекомендации по подключению платы «Делитель импульсов энкодера»

-. Подключите выходные клеммы энкодера (тип выхода: Открытый коллектор) платы ввода/вывода к входным клеммам опциональной платы.

Клеммы платы «делителя импульсов энкодера»		Назначение клемм	Подключаемые устройства и клеммы
	PA_IN	Вход делителя. Фаза А	Плата ввода/вывода: RA
			(Выход фазы А)
Вход	PB_IN	Вход делителя. Фаза В	Плата ввода/вывода: RB
БХОД			(Выход фазы В)
	G24	Общий	Плата ввода/вывода: GE
			(Общий)
	RT_A	Выход делителя. Фаза А	Внешний контроллер:
Выход RT_B			Вход фазы А
		Выход делителя. Фаза В	Внешний контроллер:
			Вход фазы В
	G24	Общий	Внешний контроллер: Общий

10.1.3 Выход делителя энкодера

Параметры доступны при установленной опциональной плате. Установите требуемое значение делителя для мониторинга сигналов от энкодера.

Код	Адрес	Дисплей	Описание	Диапазон	Ед. изм.	По умолча- нию
PAR_31	731F	EncDiv Ratio	Коэффициент делителя выходных импульсов	1 ~ 1128		1
PAR_32	7320	EncDivFilter	Выходной фильтр делителя	0 ~ 15		0

Плата «делителя импульсов энкодера» выдает один импульс при совпадении количества импульсов и значения параметра PAR_31. Смещение выходных фаз A и B соответствуют входным фазам. Делитель (параметр PAR_31) может принимать значения от 1 (один импульс на каждый импульс) до 1128 (1 импульс на каждые 1128 импульсов). Коэффициент деления не может быть установлен больше 1, и числитель может быть установлен только как 1 или 2. Ниже приведена формула для вычисления коэффициента деления.

N – количество тысяч ($\underline{\mathbf{0}}$ 000), и M – число меньшее тысячи (0 $\underline{\mathbf{000}}$).

$$PAR_31 = N \times 1000 + M.$$

Коэффициент деления = (1+N)/M

Начальные данные: N (0, 1), M $(1 \sim 128)$

Когда значение PAR_31 меньше 1000 (N=0), и числитель равен 1. Если PAR_31 больше 1000 (N=1) – числитель равен 2. Например, если PAR_31 установлен как 15, коэффициент деления равен 1/15, и если PAR_31 установлен как 1015, коэффициент деления равен 2/15.

Максимальный коэффициент деления задается как 1/128. N не может быть больше, чем 1. С помощью кнопки «UP» пульта значение параметра PAR_31 увеличивается в следующей последовательности: $1 \to 2 \to 3 \to 4 \to ...$ $\to 127 \to 128$ (Division ratio: 1/128) $\to 1002$ (Коэффициент деления: 1) $\to 1003 \to ... \to 1128$ (Коэффициент деления: 1/64). С помощью кнопки «Down» на клавиатуре значение соответственно уменьшается.

10.2 Список опциональных плат для iV5

10.2.1 Специализированные платы для iV5

No.	Опциональная плата	Назначение	Код
1	ENC DIV(OC)	Плата делителя импульсов энкодера	64070003
2	EL I/O	Функциональная плата «Грузовой лифт»	64070004
3	SYNC I/O	Плата синхронизации	64070006
4	SIN/COS(Encoder)	Плата SIN/COS энкодера	64070007
5	EXTN I/O	Плата дополнительных входов/выходов	64070008

Подробно использование платы ENC DIV(OC) описано в главе 10.1. Подробное описание платы EXTN I/O представлено в главе 3.4.3. Более подробная информация находится в инструкции к опциональной плате.

10.3.1 Платы коммуникационных интерфейсов для iV5

No.	Опциональная плата	Назначение	Код
1	RS485/Modbus-RTU	Коммуникационный интерфейс RS485/Modbus-RTU	6400007
2	DEVICENET	Коммуникационный интерфейс DeviceNet	64050022
3	PROFIBUS-DP	Коммуникационный интерфейс Profibus-DP	64050023
4	CC-Link	Коммуникационный интерфейс CC-Link	64050024

Более подробная информация представлена в инструкции к плате.

Глава 11 — Аксессуары

11.1 Входной автомат(LS) и Магнитный контактор(LS)

Напряжение	Двигатель (кВт)	Модель преобразователя	ный контактор(LS) Входной автомат (LS)	Магнитный контактор (LS)
	2.2	SV022iV5-2DB	TD125U/30A, EBS33b30A	GMC-18
	3.7	SV037iV5-2DB	TD125U/30A, EBS33b30A	GMC-32
	5.5	SV055iV5-2DB	TD125U/50A, EBS53b50A	GMC-40
	7.5	SV075iV5-2DB	TD125U/60A, EBS63b60A	GMC-50
200B	11	SV110iV5-2DB	TD125U/100A, EBS103b100A	GMC-65
2000	15	SV150iV5-2DB	TD125U/125A, EBS203b125A	GMC-100
	18.5	SV185iV5-2DB	TS250U/150A, EBS203b150A	GMC-125
	22	SV220iV5-2DB	TS250U/175A, EBS203b175A	GMC-150
	30	SV300iV5-2	TS250U/225A, EBS203b225A	GMC-150
	37	SV370iV5-2	TS400U/300A, EBS403b300A	GMC-220
400B	2.2	SV022iV5-4DB	TD125U/15A, EBS33b15A	GMC-12
	3.7	SV037iV5-4DB	TD125U/15A, EBS33b15A	GMC-18
	5.5	SV055iV5-4DB TD125U/30A, EBS33b30A		GMC-22
	7.5	SV075iV5-4DB	TD125U30A, EBS33b30A	GMC-32
	11	SV110iV5-4DB TD125U/50A, EBS53b50A		GMC-40
	15	SV150iV5-4DB	TD125U/60A, EBS103b60A	GMC-50
	18.5	SV185iV5-4DB	TD125U/80A, EBS103b80A	GMC-65
	22	SV220iV5-4DB	TD125U/100A, EBS103b100A	GMC-65
	30	SV300iV5-4(380B)	TD125U/125A, EBS203b125A	GMC-100
	37	SV370iV5-4(380B)	TS250U/150A, EBS203b150A	GMC-125
	45	SV450iV5-4(380B)	TS250U/175A, EBS203b175A	GMC-150
	55	SV550iV5-4(380B)	TS250U/225A, EBS203b225A	GMC-180
	75	SV750iV5-4(380B)	TS400U/300A, EBS403b300A	GMC-220
	90	SV900iV5-4(380B)	TS400U/400A, EBS403b400A	GMC-300
	110	SV1100iV5-4(380B)	TS800U/500A, EBS603b500A	GMC-400
	132	SV1320iV5-4(380B)	TS800U/600A, EBS603b600A	GMC-400
	160	SV1600iV5-4(380B)	TS800U/600A, EBS603b600A	GMC-600
	220	SV2200iV5-4(380B)	ABS803/800A, EBS803b800A	GMC-800
	280	SV2800iV5-4	ABS1003/1000A, EBS1003b1000A	1000A
	315	SV3150iV5-4	ABS1203/1200A, EBS1203b1200A	1200A
	375	SV3750iV5-4	1400A, 1400A	1400A

※ Заказ входного автомата и магнитного контактора можно осуществить с помощью каталога LS.

Позиции, для которых указан только рабочий ток, в ближайшее время будут доступны для заказа.

11.2 Входной предохранитель, Дроссель переменного тока, Дроссель постоянного тока

	Двигатель	Модель	Входной	Дроссель	Дроссель
Напряжение	(кВт)	преобразователя	предохранитель	переменного	постоянного
				тока	тока
	2.2	SV022iV5-2DB	25 A	0.88 мГн, 14 А	
	3.7	SV037iV5-2DB	40 A	0.56 мГн, 20 А	
	5.5	SV055iV5-2DB	40 A	0.39 мГн, 30 А	_
	7.5	SV075iV5-2DB	50 A	0.28 мГн, 40 А	_
200B	11	SV110iV5-2DB	70 A	0.20 мГн, 59 А	_
2002	15	SV150iV5-2DB	100 A	0.15 мГн, 75 А	_
	18.5	SV185iV5-2DB	100 A	0.12 мГн, 96 А	<u> </u>
	22	SV220iV5-2DB	125 A	0.10 мГн, 112 А	_
	30	SV300iV5-2	150 A	0.08 мГн, 134 А	0.35 мГн, 152 А
	37	SV370iV5-2	200 A	0.07 мГн, 160 А	0.30 мГн, 180 А
400B	2.2	SV022iV5-4DB	10 A	3.23 мГн, 7.5 А	-
	3.7	SV037iV5-4DB	20 A	2.34 мГн, 10 А	-
	5.5	SV055iV5-4DB	20 A	1.22 мГн, 15 А	-
	7.5	SV075iV5-4DB	30 A	1.14 мГн, 20 А	_
	11	SV110iV5-4DB	35 A	0.81 мГн, 30 А	-
	15	SV150iV5-4DB	45 A	0.61 мГн, 38 А	-
	18.5	SV185iV5-4DB	60 A	0.45 мГн, 50 А	-
	22	SV220iV5-4DB	70 A	0.39 мГн, 58 А	-
	30	SV300iV5-4(380B)	100 A	0.33 мГн, 67 А	1.19 мГн, 76 А
	37	SV370iV5-4(380B)	100 A	0.27 мГн, 82 А	0.98 мГн, 93 А
	45	SV450iV5-4(380B)	100 A	0.22 мГн, 100 А	0.89 мГн, 112 А
	55	SV550iV5-4(380B)	150 A	0.15 мГн, 121 А	0.75 мГн, 135 А
	75	SV750iV5-4(380B)	200 A	0.13 мГн, 167 А	0.44 мГн, 187 А
	90	SV900iV5-4(380B)	250 A	0.11 мГн, 201 А	0.35 мГн, 225 А
	110	SV1100iV5-4(380B)	300 A	0.09 мГн, 245 А	0.30 мГн, 274 А
	132	SV1320iV5-4(380B)	400 A	0.08 мГн, 290 А	0.26 мГн, 324 А
	160	SV1600iV5-4(380B)	400 A	0.06 мГн, 357 А	0.22 мГн, 399 А

220 SV2200iV5-4(380B)		800 A	0.029 мГн, 799 А	0.1 мГн, 530 А
280	SV2800iV5-4	900 A	0.029 мГн, 799 А	0.090 мГн, 836 А
315	SV3150iV5-4	1000 A	0.024 мГн, 952 А	0.076 мГн, 996 А
375	SV3750iV5-4	1200 A	0.024 мГн, 952 А	0.064 мГн, 1195 А

Ж Для преобразователей 2.2~22кВт дроссель постоянного тока не используется.

В этих преобразователях не предусмотрены клеммы для подключения дросселя постоянного тока.

11.3 Выбор тормозного резистора и блока динамического торможения

11.3.1 Выбор резистора для динамического торможения

Параметры резистора подбираются для 150% номинального тормозного тока и коэффициента использования 5%. Мощность резистора должна быть увеличена вдвое для коэффициента использования 10%. Для преобразователей мощностью 300 кВт и выше необходимо использовать блок динамического торможения.

Птообтоототот	Номинальная мощность (5% коэффициент использования)				
Преобразователь	[Ом]	[кВт] ⁽²⁾			
SV 022iV5-2 DB	50	400			
SV 037iV5-2 DB	33	600			
SV 055iV5-2 DB	20	800			
SV 075iV5-2 DB	15	1200			
SV 110iV5-2 DB	10	2400			
SV 150iV5-2 DB	8	2400			
SV 185iV5-2 DB	5	3600			
SV 220iV5-2 DB	5	3600			
SV 022iV5-4 DB	200	400			
SV 037iV5-4 DB	130	600			
SV 055iV5-4 DB	85	800			
SV 075iV5-4 DB	60	1200			
SV 110iV5-4 DB	40	2400			
SV 150iV5-4 DB	30	2400			
SV 185iV5-4 DB	20	3600			
SV 220iV5-4 DB	20	3600			

^{✓ (1):} Коэффициент использования (ED) задан для времени 100 сек.

 ^{✓ (2):} Номинальная мощность при естественном охлаждении.

11.3.2 Подключение датчика температуры на тормозной резистор.

Датчик температуры подключается к тормозным резисторам LS для предотвращения возникновения пожара.

Клеммы подключения тормозного резистора	Силовые клеммы преобразователя	Действия
B1, B2	P, BR	
P7, CM	Один из многофункциональных входов (P1 ~ P7) должен быть определен как 'External Fault Signal b Contact'.	Контакт замкнут при нормальной температуре окружающей среды и разомкнут при превышении температуры.

11.3.3 Блок динамического торможения

① SV037DBH-2: 37кВт/200В блок торможения (10% ED)

② SV037DBH-4: 37кВт/400В блок торможения (10% ED)

③ SV075DBH-4: 75кВт/400В блок торможения (10% ED)

④ SV075DB-4 : 75кВт/400В блок торможения (100% ED)

5 SV220DB-4 : 220кВт/400В блок торможения (100% ED)

- Для преобразователей мощностью 90 кВт и более используется два блока торможения.
- Когда коэффициент использования (ED) больше чем 10%, используйте тормозной блок для 100% ED (Например: вертикальная нагрузка, такая как: кран, лебедка, лифт).
- Когда мощность преобразователя более 220 кВт, используйте блок торможения для SV2200DB-4 (100% ED).
- При использовании блока торможения 100% ED, обратитесь к инструкции к блоку торможения.

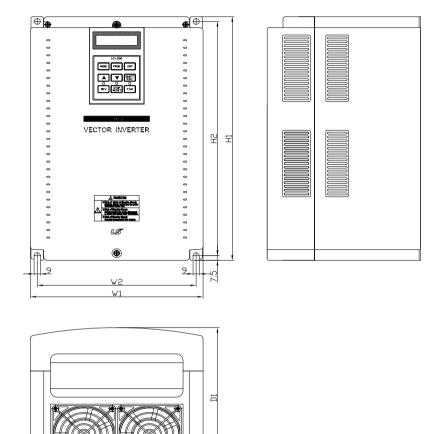
11.3.4 Комбинация блоков торможения

Блок		SV[][][] iV5-2	SV[][][][]iV5-4				
тормо	жения	300/370	300/370 450/550/750 900/1100/1320/1600 2200 2800/3150/375			2800/3150/3750	
200B	37кВт	1					
	37кВт		1				
400B	75кВт			1	2		
	220кВт					1	2

Примечание)

- 1. Пример) для преобразователя SV-900iV5-4(90кВт) используйте два блока торможения 75кВт-400В.
- 2. Подробная информация об использовании блока торможения представлена в документации на блок динамического торможения.

11.3.5 Тормозной резистор для блока торможения

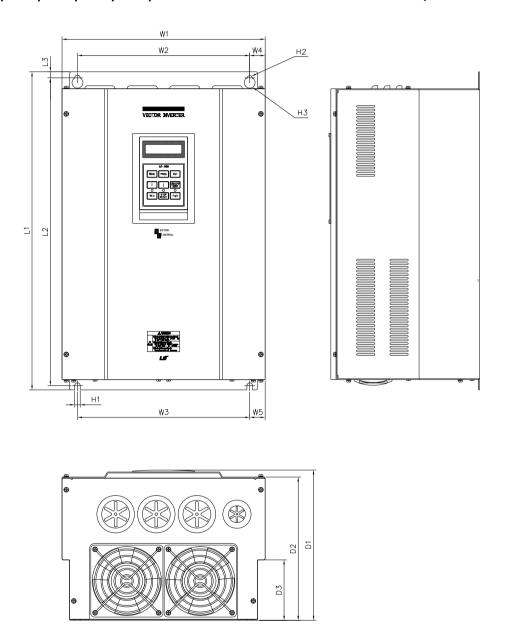

E - cy - ch y cyclyd	100% Момент торможения, 10% ED			
Блок торможения	Сопротивление $[\Omega]$	Мощность [кВт]		
37кВт-200В	3	5		
37кВт-400В	12	5		
75кВт-400В	6	10		
75кВт-400В	6	Более подробно		
		использование 100% ED		
		резисторов описано в		
220кВт-400В	2	инструкции к блоку		
		динамического		
		торможения.		

Для заметок

Глава 12 - Габаритные размеры

- SV 022, 037, 055, 075, 110, 150, 185, 220iV5-2DB(MD)
- SV 022, 037, 055, 075, 110, 150, 185, 220iV5-4DB(MD)

***MD:** Пластиковый корпус

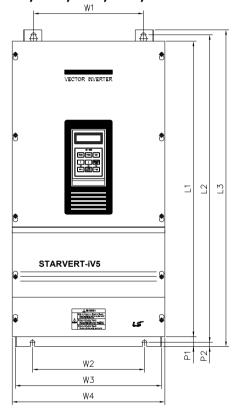


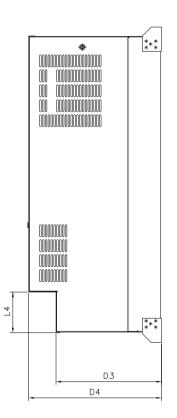
• Размеры (единицы измерения: мм)

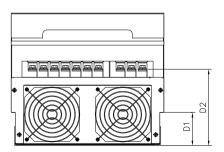
Модели	W1	W2	H1	H2	D1	
SV022iV5-2/4DB(MD)			284	269	207	
SV037iV5-2/4DB(MD)	200	180	201	209	207	
SV055iV5-2/4DB(MD)	200	100	355	340	202	
SV075iV5-2/4DB(MD)			555	3 1 0	202	
SV110iV5-2/4DB(MD)	250	230	385	370	221	
SV150iV5-2/4DB(MD)	230	230	363	370	221	
SV185iV5-2/4DB(MD)	304	284	460	445	254	
SV220iV5-2/4DB(MD)						

- SV055, 075, 110, 150, 185, 220iV5-2DB
- SV055, 075, 110, 150, 185, 220iV5-4DB
- SV055, 075, 110, 150, 185, 220iV5-4D

*DC: Постоянное напряжение питания

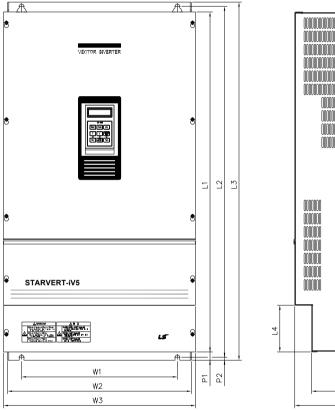

• Размеры (единица измерения: мм)

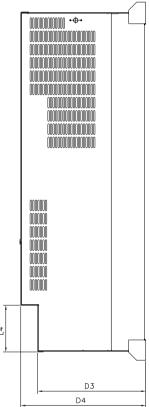

12. Габаритные размеры

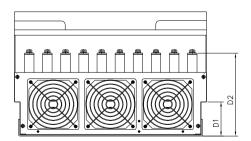

Модели	W1	W2	W3	W4	W5	L1	L2	L3	D1	D2	D3	H1	H2	НЗ
SV055iV5-2/4DB	234.4	180	180	27.2	27.2	406.2	391.2	7.5	221.1	209.5	75	6	Ф6	Ф12
SV075iV5-2/4DB	251.1	130	130	27.2	27.2	100.2	331.2	7.5	221.1	200.5				
SV110iV5-2/4DB														
SV150iV5-2/4DB	225	204	204	25.5	25.5	F26	F00	10	249.6	237	100	7	Ф7	Ф14
SV185iV5-2/4DB	335	284	284	25.5	25.5	526	509	10	248.6	23/	100	/	Ψ,	Ψ14
SV220iV5-2/4DB														

- SV300, 370iV5-2
- SV300, 370, 450, 550, 750iV5-4
- SV300, 370, 450, 550, 750iV5-4DC

***DC**: Постоянное напряжение питания

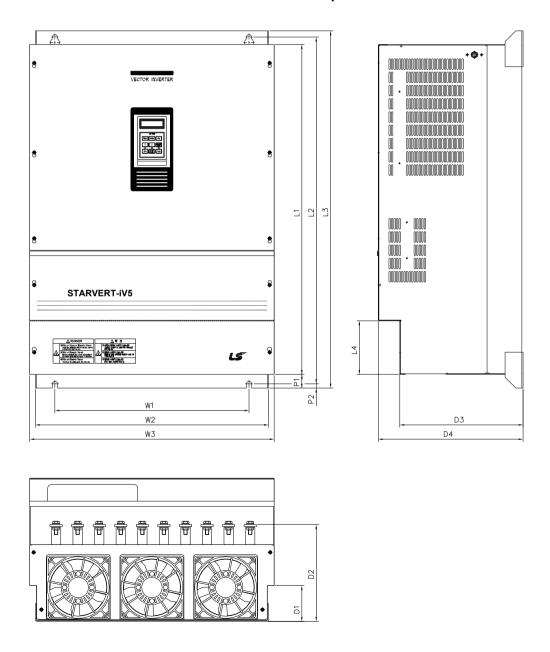



• Размеры (единицы измерения: мм)


Модели	W1	W2	W3	W4	L1	L2	L3	D1	D2	D3	D4	P1	P2
SV300iV5-2/4	270	270	210.2	250	625	660	690	120	107	256.6	200.2	16.0	0
SV370iV5-2/4	270	270	319.2	350	635	660	680	120	197	256.6	308.2	16.9	8
SV450iV5-4													
SV550iV5-4	275	275	359.6	375	730.6	758.5	780	82.3	189.3	259	326	24.5	10.5
SV750iV5-4													

- SV900, 1100, 1320, 1600iV5-4
- SV900, 1100, 1320, 1600iV5-4DC

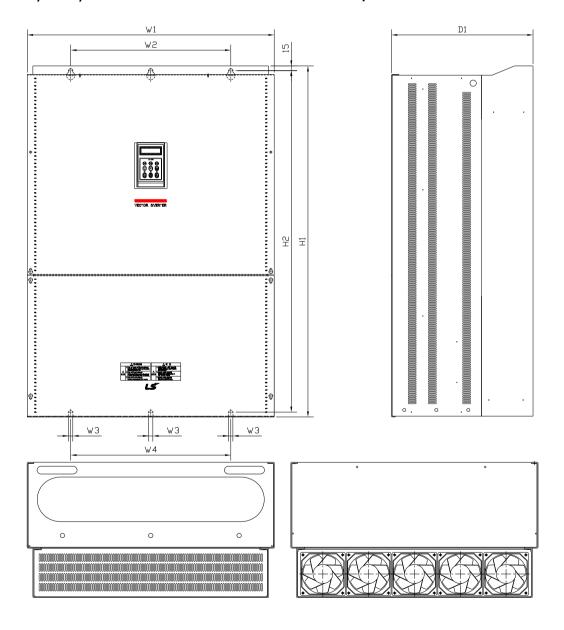
*DC: Постоянное напряжение питания



• Размеры (единицы измерения: мм)

Модели	W1	W2	W3	L1	L2	L3	D1	D2	D3	D4	P1	P2
SV900iV5-4	420	F07	F20	720	760	700	02.2	224.6	206.2	225	22.5	0.5
SV1100iV5-4	430	507	530	729	760	780	83.2	234.6	286.2	335	23.5	8.5
SV1320iV5-4	430	F07	F20	040	000	1000	05.3	221.6	200	245	22.5	0.5
SV1600iV5-4		507	530	949	980	1000	95.2	231.6	298	345	23.5	8.5

- SV2200iV5-4
- SV2200iV5-4DC
- ***DC**: Постоянное напряжение питания

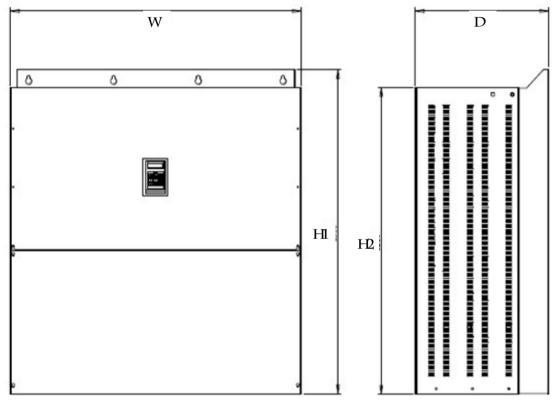


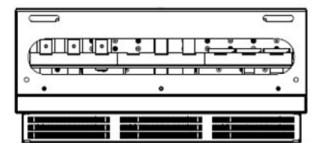
• Размеры (единицы измерения: мм)

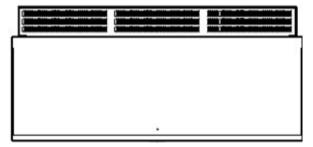
Модели	W1	W2	W3	L1	L2	L3	L4	D1	D2	D3	D4	P1	P2
SV2200iV5-4	540	649	680	922	968.5	998	150	100.2	271	343	403	38	12

- SV2800, 3150, 3750iV5-4
- SV2800, 3150, 3750iV5-4DC

*DC: Постоянное напряжение питания

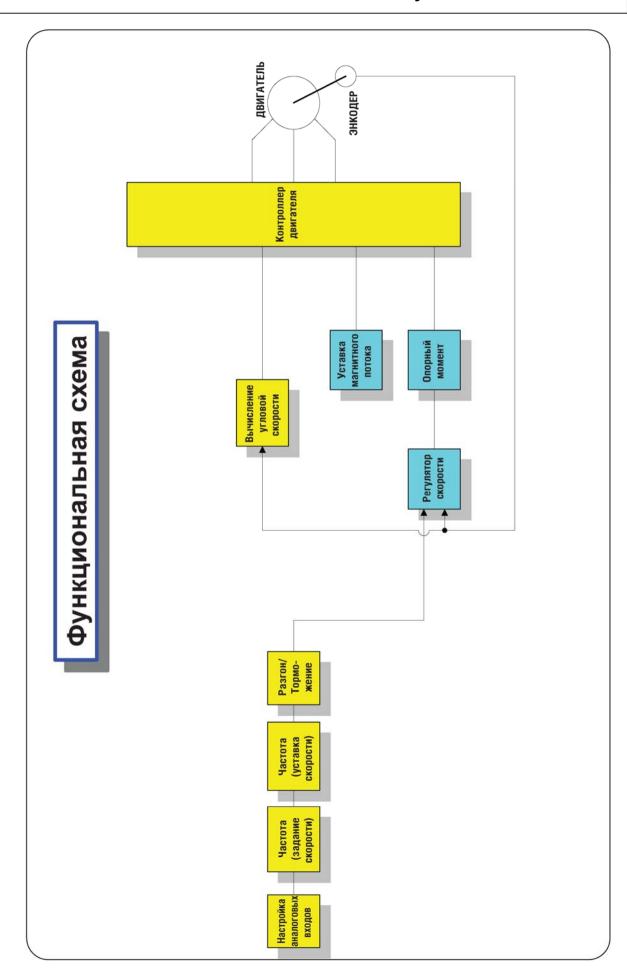

• Размеры (единицы измерения: мм)

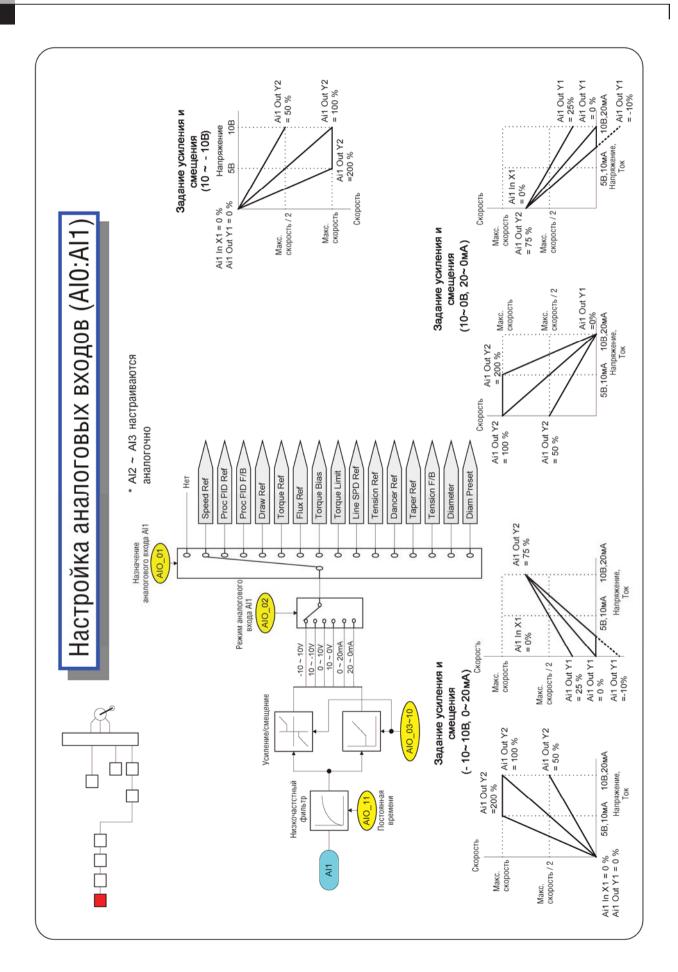

12. Габаритные размеры


Модели	W1	W2	W3	W4	H1	H2	D1
SV2800iV5-4	772	500	13	500	1140.5	1110	442
SV3150iV5-4	922	580	14	580	1302.5	1271.5	495
SV3750iV5-4	922	360	14	380	1302.5	12/1.5	1 95

■ SV5000iV5-4

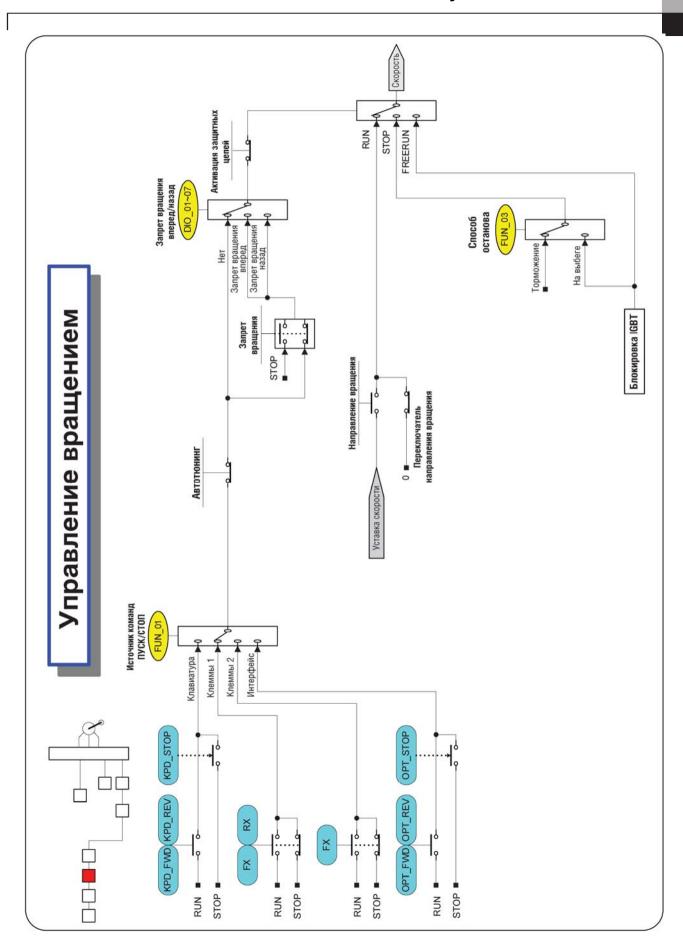
■ **SV5000iV5-4DC** *DC : Постоянное напряжение питания

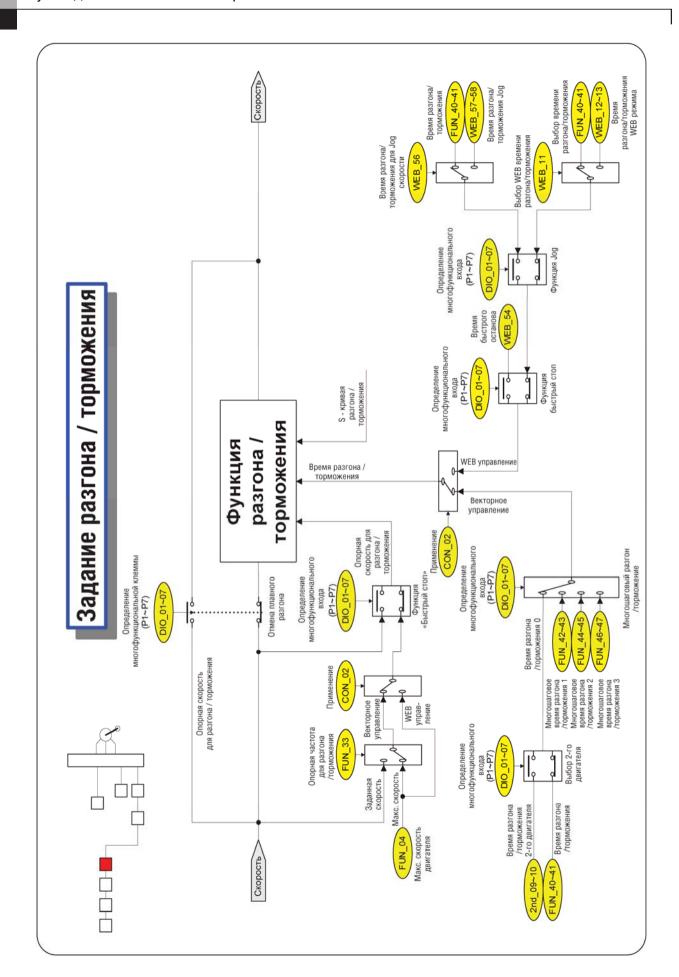


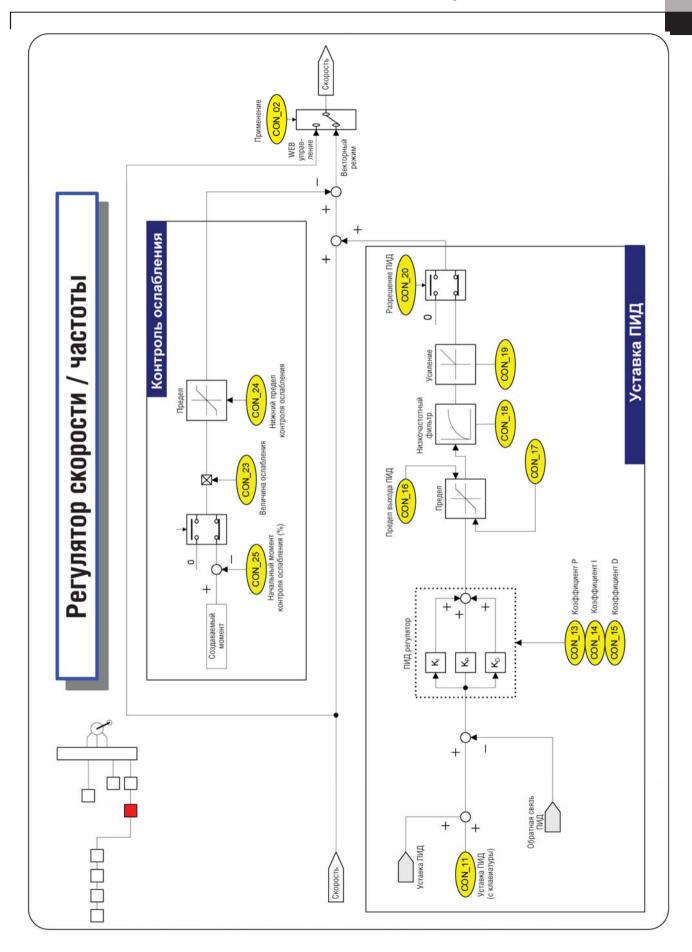


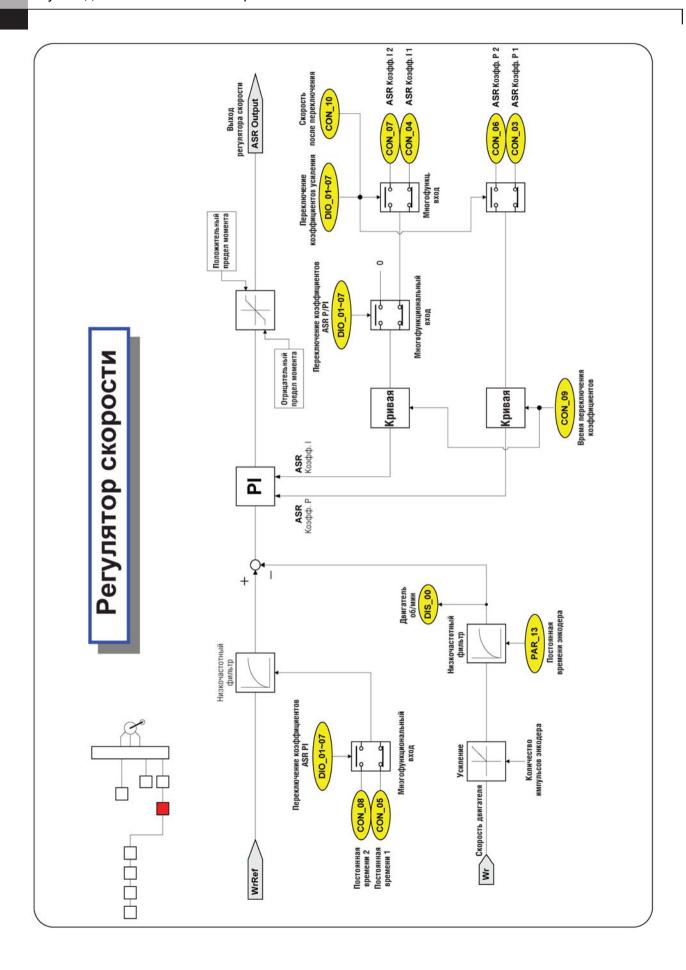
• Размеры (единицы измерения: мм)

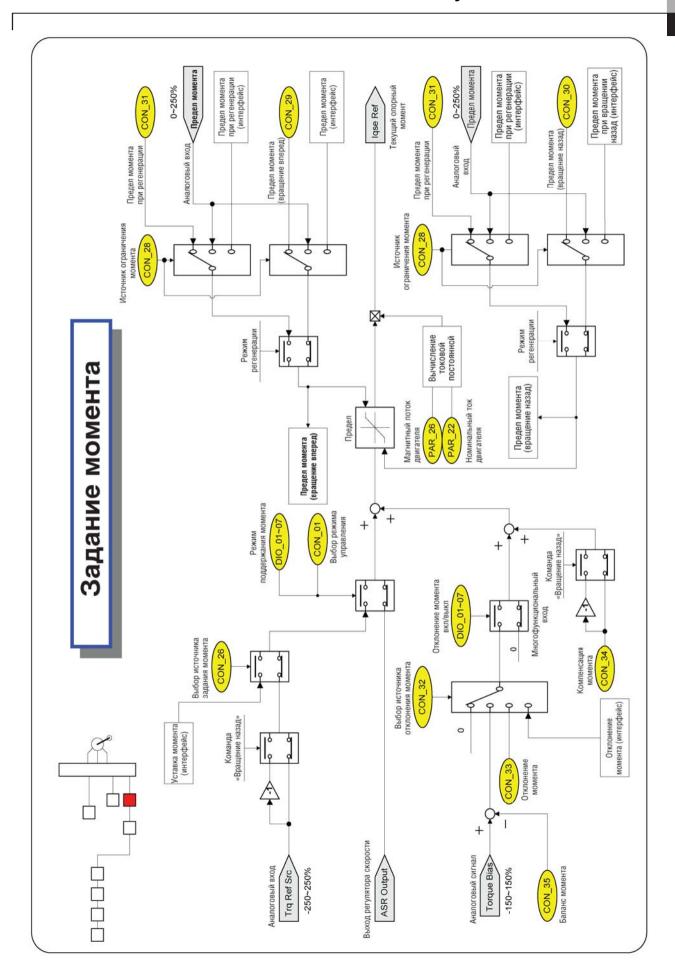
Модели	W1	W3	H1	D1
SV5000iV5-4	1200	1330	1260	550

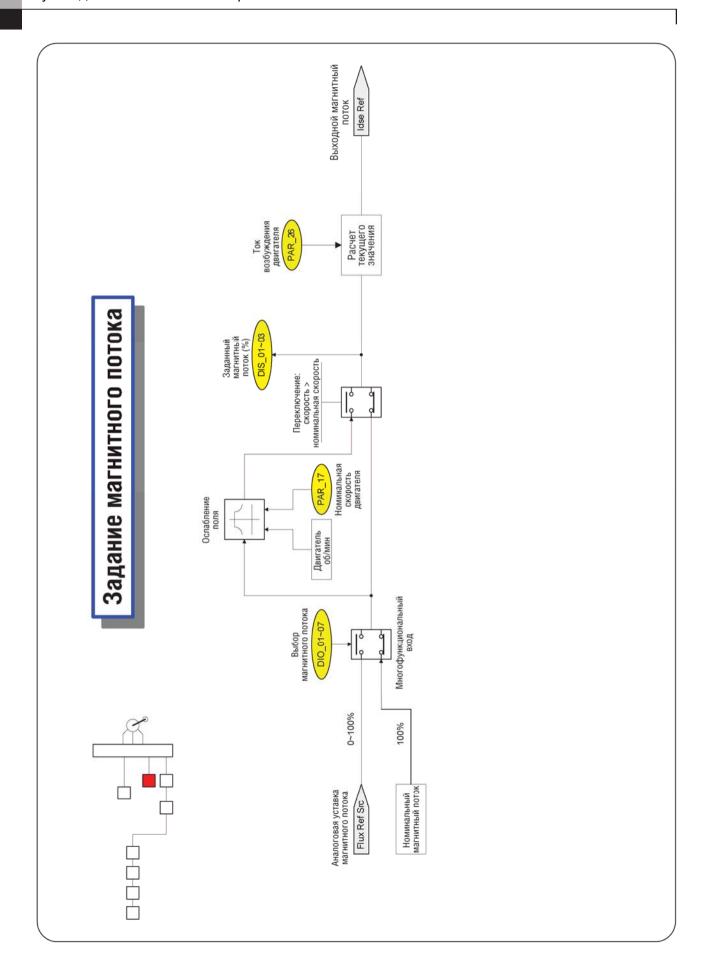

Для заметок

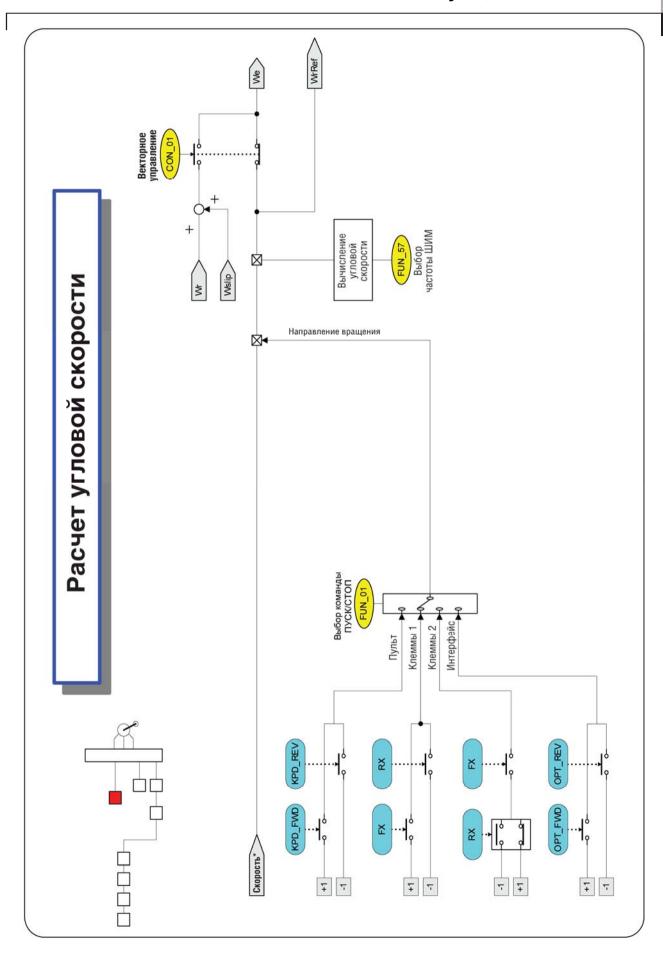


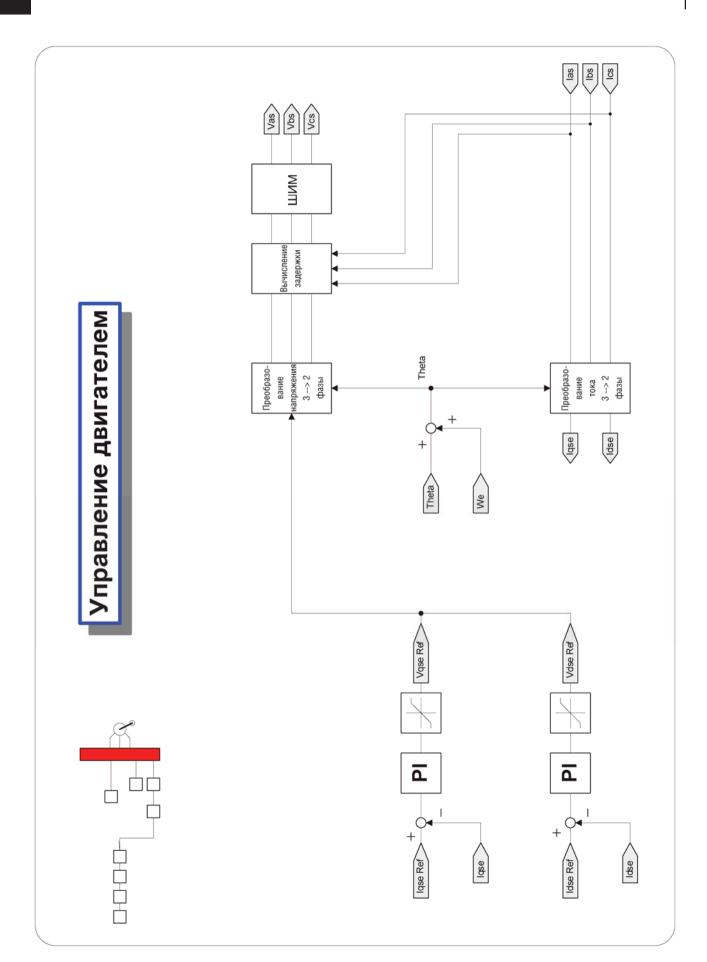


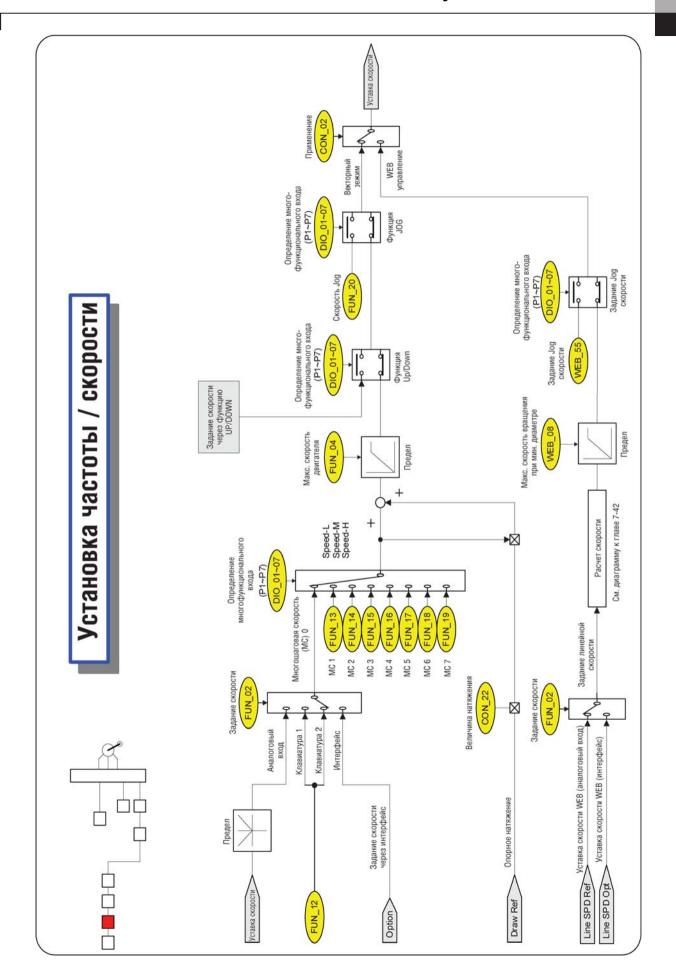



Задание частоты /скорости Уставка скорости Управление вращением Максимальная скорость двигателя









Для заметок

СТАНДАРТИЗАЦИЯ

1. Ток короткого замыкания

"Допускается использовать в цепях, способных выдержать значения (представлены в таблице 1) среднеквадратичного тока, при напряжении 240В (для 240 класса) и 480В (для 480 класса)

Таблица1*

Мощность преобразователя	Номинал
200/400В класс: 5.5кВт, 7.5кВт, 11кВт, 15кВт, 18.5 кВт, 22кВт, 30кВт, 37кВт	5,000A
400В класс: 45кВт, 55кВт, 75кВт, 90кВт, 110кВт, 132кВт	10,000A
400В класс: 160кВт, 220кВт	18,000A

2. Маркировка предохранителя/автомата

Используйте предохранители класса H или K5 (сертификат UL) и сертифицированные автоматы защитного отключения. Параметры предохранителей и автоматов представлены в таблице:

Bx.	Мощн. [кВт]	Внешний		Автомат		Внутренний предохранитель			
напр.		предохранитель							
[B]	נוטאן	Ток [A]	Напряжение [В]	Ток [A]	Напряжение [В]	[A]	Напряжение [~ В/ = В]	Производи- тель	Номер модели
	5.5	40	500	50	220	60	250	Hinode Elec	250GH-60
	7.5	50	500	60	220	60	250	Hinode Elec	250GH-60
	11	70	500	100	220	125	250	Hinode Elec	250GH-125
200	15	100	500	100	220	150	250	Hinode Elec	250GH-150
класс	18.5	100	500	225	220	175	250	Hinode Elec	250GH-175
	22	125	500	225	220	225	250	Hinode Elec	250GH-225
	30	150	500	225	220	250	250	Hinode Elec	250GH-250S
	37	200	500	225	220	250	250	Hinode Elec	250GH-250S
	5.5	20	500	30	460	35	660	Hinode Elec	660GH-35
	7.5	30	500	30	460	35	660	Hinode Elec	660GH-35
	11	35	500	50	460	63	660	Hinode Elec	660GH-63
	15	45	500	60	460	80	660	Hinode Elec	660GH-80
	18.5	60	500	100	460	100	660	Hinode Elec	660GH-100
	22	70	500	100	460	125	660	Hinode Elec	660GH-125
	30	100	500	100	460	125	600	Hinode Elec	600FH-125S
400	37	100	500	225	460	150	600	Hinode Elec	600FH-150S
класс	45	100	500	225	460	200	600	Hinode Elec	600FH-200S
Miacc	55	150	500	225	460	200	600	Hinode Elec	600FH-200S
	75	200	500	225	460	125	600	Hinode Elec	600FH-125S
	90	250	500	400	460	200	600	Hinode Elec	600FH-200S
	110	300	500	400	460	200	600	Hinode Elec	600FH-200S
	132	400	500	400	460	300	600	Hinode Elec	600FH-300S
	160	400	500	400	460	300	600	Hinode Elec	600FH-300S
	220	_	_	600	460	600	600	Hinode Elec	600SPF- 600UL

3. Силовые кабели

- 1) Используйте только медные кабели, 75°C.
- 2) Для подключения входных и выходных силовых клемм используйте кабели с кабельными наконечниками.
- **4. Осторожно!** Перед снятием крышки преобразователя выждите как минимум 10 минут (после отключения). Преобразователь должен быть установлен в щите с принудительной вентиляцией.

ЗАЯВЛЕНИЕ О СООТВЕТСТВИИ

MLI	нижепо	пписав	DANIII
TAT DI	HIMCHU	IIIMCAD	шисси.

Представитель: LSIS Co., Ltd.

Адрес: LS Tower, Hogye-dong, Dongan-gu,

Anyang-si, Gyeonggi-do 1026-6,

Korea

Производитель LSIS Co., Ltd.

Адрес: 181, Samsung-ri, Mokchon-Eup,

Chonan, Chungnam, 330-845,

Korea

Удостоверяем и заявляем, что следующее оборудование:

Тип оборудования: Inverter (Power Conversion Equipment)

Название модели: STARVERT-iV5 series

Торговая марка: LSIS Co., Ltd.

Соответствует требуемым директивам и стандартам:

2006/95/EC Directive of the European Parliament and of the Council on the harmonisation of the laws of Member States relating to Electrical Equipment designed for use within certain voltage limits

2004/108/EC Directive of the European Parliament and of the Council on the approximation of the laws of the Member States relating to electromagnetic compatibility

на основе следующих стандартов:

EN 61800-3:2004 EN 50178:1997

и, следовательно, соответствует требованиям и стандартам 2006/95/CE и 2004/108/CE.

Place: Chonan, Chungnam,

<u>Korea</u>

(Подпись /Дата)

Mr. Dok Ko Young Chul / Factory Manager (Имя Фамилия / Должность)

Гарантия

Производитель		LSIS Co., Ltd.	Дата установки	
Модель		SV-iV5	Срок гарантии	
14	Название			
Информация	Адрес			
клиента	Тел.			
	Название			
Дистрибьютор	Адрес			
	Тел.			

Частотный преобразователь был произведен с учетом всех требований LSIS и прошел технический контроль. Гарантийный период 18 месяцев со дня изготовления. Срок гарантии может быть изменен в особых случаях.

Гарантийный ремонт

При возникновении неисправности преобразователя в гарантийный период вы можете обратиться к нашим дистрибьюторам или сервисный сервис для осуществления ремонта. Для более полной информации обратитесь в ближайшее представительство LS.

Не гарантийный ремонт

- Гарантийный ремонт не будет производится в следующих случаях:
 - Неисправность была вызвана неправильным хранением и повреждением при транспортировке.
 - Ошибка вызвана ошибками пользователя в программной или аппаратной части оборудования.
 - Ошибка вызвана нарушением работы питающей сети или неправильным подключением.
 - Неисправность вызвана форс-мажорными обстоятельствами (пожар, наводнение, землетрясение).
 - Преобразователь был модифицирован или отремонтирован не в сервисном центре LS.
 - На изделии отсутствует шильда.
 - Преобразователь эксплуатировался с нарушением условий эксплуатации или истек срок гарантии.
- Ремонт оборудования снятого с производства
 - Для преобразователей, снятых с производства, ремонт может быть осуществлен в течении пяти лет после снятия их с производства..
- Отказ от ответственности за физическую потерю и т.д.

Организация LSIS не производит страхование от прямых и косвенных потерь (включая потери при продаже, потери прибыли и т.д.).

История обновлений

Nº	Дата	Редакция	Изменения	
1	Май, 2001	1-я редакция	Версия 1.00	
2	Март, 2002	2-я редакция	Версия 1.20 / Добавлены параметры	
3	Апрель, 2002	3-я редакция	Версия 1.30 / Изменения в функциях	
4	Октябрь, 2002	4-я редакция	Версия 1.40 / Добавлены и изменены функции	
5	Июнь, 2003	5-я редакция	Версия 1.50 / Добавлены и изменены функции	
6	Декабрь, 2004	6-я редакция	Ver. 1.70 / Добавлена информация о MD типе	
7	Ноябрь, 2005	7-я редакция	Ver. 1.91 / Добавлены дополнительные модели	
8	Май, 2006	8-я редакция	Ver. 2.10 / Добавлены функции	
9	Июнь, 2008	9-я редакция	Ver.2.40 / Синхронная работа, WEB режим, добавлены модели 280~375кВт	
10	Апрель, 2009	10-я редакция	Ver2.41 / Добавлен режим работы от батарей	
11	Июль, 2010	11-я редакция	Ver. 2.61 Добавлены преобразователи с питанием постоянным током	
12	Январь, 2013	12-я редакция	Ver.2.70 Увеличена мощность до 500 кВт	

Забота об окружающей среде.

Организация LSIS считает защиту окружающей среды приоритетным направлением своей работы, и делает все возможное для сохранения окружающей среды.

Утилизация

Преобразователи LS могут быть утилизированы как промышленные отходы и разделены на железные, алюминиевые, бронзовые и синтетические составляющие.