WDO5-008

Doc. no. 211.331/DGB 11.98

Suggestions

 Corrections
Berger Lahr GmbH \& Co. KG

Breslauer Str. 7
Postfach 1180
D-77901 Lahr

WDO5-008

Power Drive with Oscillator

Edition: e133 nov. 98
Doc. no. 211.331/DGB 11.98

Sender

Name:
If you have found any faults within this documentation, or have any suggestions, we would also be pleased to receive any comments and suggestions.

Address:

Phone:

Suggestions and/or Corrections

Safety requirements

Please read the following safety requirements prior to installation, operation, maintenance and repair of the device.

- The intended use of the device is described in this manual in chapter "Purpose" and must be observed.
- Installation, maintenance and repair of the device shall be performed by a qualified electrician. National regulations concerning
- accident prevention
- installation of electrical and mechanical systems
- radio interference suppression shall be observed.
- The technical data of the device, particularly the ambient conditions, shall be observed.
- The device shall only be operated by trained personnel. BERGER LAHR offers training courses.
- The warranty is invalidated in case of unauthorized modification or opening of the device.
- Please ask your BERGER LAHR technical consultant prior to installing accessories not listed in the chapter "Description of accessories".
The address is to be found on the rear cover.
- The safety symbols and notes on the device and in the manual shall be observed.

Explanation of symbols

ATTENTION

Reference to a danger for the device or components, possibly resulting in the endangering of human life.
DANGER
Reference to a direct endangering of human life.

DANGER
High voltage at component, do not touch.

DANGER
High temperature at component, do not touch.

ATTENTION

Warning against electrostatic discharge (ESD).
Only touch the PC-board or component in an electrostatically-protected environment.

NOTE
Important or additional information concerning the device or the manual.
Page
1 General Description 1-1
1.1 Construction and Characteristics 1-1
1.2 Use / System Integration 1-2
1.3 Function 1-3
1.3.1 Function of the Oscillator 1-4
1.4 Technical Data 1-5
1.4.1 Electrical Data 1-5
1.4.1.1 Mains Connection 1-5
1.4.1.2 Motor Connection 1-5
1.4.1.3 Rotation Sensor Connection 1-5
1.4.1.4 Signal Connection 1-5
1.4.1.5 Equipment Protection 1-5
1.4.2 Mechanical Data 1-6
1.4.3 Ambient Conditions 1-7
2 Installation 2-1
2.1 Parts Specification 2-1
2.2 Accessories 2-2
2.3 Mounting 2-3
2.4 Cabling 2-4
2.4.1 General Information 2-4
2.4.2 Connecting the Motor 2-5
2.4.3 Adjusting the Equipment of the Mains Voltage 2-5
2.4.4 Connecting the Mains Power Cable 2-6
2.4.5 Connecting the Signal Cable 2-7
2.4.6 Connecting the Rotation Sensor 2-10
2.5 Initial Operation 2-11
2.5.1 Checklist for Initial Operation 2-11
2.5.2 Basic Adjustments 2-11
3 Operation 3-1
3.1 Drive 3-1
3.1.1 Input Signals 3-1
3.1.2 Output Signals 3-4
3.2 Switching On 3-5
3.3 Operating Possibilities of the Oscillator 3-6
3.3.1 Internal Functions 3-6
3.3.2 External Functions 3-8
3.4 Switching Off 3-10
Page
4 Errors / Faults 4-1
4.1 Status Indicator 4-1
4.2 Trouble Shooting Guide 4-2
4.3 Storage and Shipping 4-3
5 Maintenance 5-1
6 Appendix 6-1
6.1 Equipment Variants 6-1
6.2 Description of Accessories 6-2
6.2.1 Ballast Resistor 6-4
6.2.2 Rotation Sensor Cable 6-5
6.2.3 Terminal Adapter D 732 6-6
6.2.3.1 General Description 6-6
6.2.3.2 Technical Data 6-6
6.2.3.3 Parts Specification 6-8
6.2.3.4 Accessories 6-8
6.2.3.5 Mounting 6-8
6.2.3.6 Initial Operation 6-8
6.2.4 Heatsink 6-9
6.2.4.1 BERGER LAHR Heatsink 6-10
6.2.4.2 Dimensioning of a Heatsink 6-11
6.2.5 Fan Assembly 6-12
6.2.6 Motor Cable 6-13
6.2.7 Motor Rating Filter 6-13
6.2.8 Mains Filter 6-14
6.2.9 Interface Tester D 690 6-15
6.2.9.1 General Description 6-15
6.2.9.2 Technical Data 6-15
6.2.9.3 Parts Specification 6-17
6.2.9.4 Accessories 6-17
6.2.9.5 Mounting 6-17
6.2.9.6 Initial Operation 6-17
6.2.10 Signal Cable 6-18
6.2.11 Plug Set WDO5-008 6-18
6.3 Definition of Terminology 6-19
7 Index 7-1

1 General Description

1.1 Construction and Characteristics

Construction

The Power Drive WDO5-008 comprises of the following components (see figure 1-1):

- Current selection switch, for selecting the motor phase current;
- Parameter switch, for selecting the functions: rotation monitor, current reduction, rotation direction and step angle;
- Numerical status indicator;
- Signal connection for the drive of the power unit;
- Rotation sensor connection for the rotation monitoring function;
- Motor connection for a 5 phase stepping motor: wall mounted;
- Mains/-ballast connection for voltage supply (115V or 230 V alternating current) and for connecting an external ballast resistor for dissipating the brake energy;
- (Back of equipment:) Mounting bracket with screw connections for mounting the equipment to a wall and also as a heat conductor;
- Operating Elements for integrated Oscillator.

Characteristics

The Power Drive WDO5-008 is designed for wall mounting:

- The equipment can be mounted on a wall (e.g. in a switch cabinet);
- The heat conduction is effected by the mounting bracket (external cooling might also be required);
- All operational controls, indicators and all connections are to be found on the equipment front panel;

Further characteristics are:

- Operation with mains current
- Short circuit and short to earth protection of output stage
- Optoencoupled signal inputs and outputs.

1.2 Use / System Integration

The Power Drive WDO5-008 is used for the drive and the rotation monitoring of a 5 phase stepping motor of the wall mounting series. It is the link between a positioning controller (e.g. PLC, POSAB) and the stepping motor (see figure 1-2). The equipment is constructed for mounting in a cabinet.

Figure 1-2 System Integration

Motor Types

The Power Drives of the WDO5 series are constructed for the operation with special BERGER LAHR stepping motors. The special features of these motors are:

- 5 phase technique
- 5 wire connection
- Operating voltage of 325 V DC.

The table gives the appropriate motor sizes and motor models.

ATTENTION

Only the motors listed in the table underneath can be operated with WDO5-008.

1.3 Function

Figure 1-3 shows the most important function blocks of the equipment:

- In the mains supply circuit the mains voltage of 230 V AC or 115 V AC is transformed to a intermediate circuit voltage of 325 V DC.
- The switch power supply provides the supply voltage for the internal electronics modules.
- At the signal interface the In-/Outputsignal (see also section 3.1) between external control and internal electronic are optoencoupled. The base setting for the phase current, current reduction, boost, rotation direction and rotation monitoring is set on the parameter switch (see section 2.5).
- The rotation sensor interface is needed for the optoencoupling of the rotation sensor signals for the rotation monitor (recognition of contouring error).
- The Oscillator is used to generate the drive frequency for the control of the stepping motor.
- The regulator circuit control electronics - output stage - current regulator transforms the input signals pulse and direction into the output signals for the drive of the stepping motor. The block control electronics contains the ring counter logic, which defines the current pattern. The current regulator keeps the phase current on the predefined value.
- The status of the equipment is registered in the block protection and monitoring. Possible errors are shown via the status indicator as well as via the signal output (see section 3.12 and 4.1).

For further information on the meaning and function of the different drive/control signals see section 3.1.

Figure 1-3 Function Connection Diagram WDO5-008

1.3.1 Function of the Oscillator

The Oscillator generates the output signal PULSE OUT (driving frequency) to control the stepping motor. The oscillator can function in either

- Internal functions
- External functions

In internal functions the oscillator is controlled by the input signals F_{H} / \bar{F}_{L}, START/ $\overline{\text { STOP }}$, and the potentiometers FH and FL. The pulse signal PULSE OUT for the internal output stage is controlled by these input signals. The potentiometer F_{H} is used to control the limiting value of the higher frequency f_{H}, the potentiometer F_{L} controls the limiting value of the lower frequency $f \mathrm{f}$.

In external functions the oscillator is controlled by the input signal START/STOP and an external voltage on the input V_{IN}. The range of V_{IN} is -10 V to +10 V .

The pulse signal PULSE OUT and the splitting signal DIR OUT are fed to the signal interface.

Over the input 'PULSE' the stepping motor can be driven via an external pulse signal, when the STOP signal on the input START/STOP is activated or when $\left|\mathrm{V}_{\mathrm{IN}}\right| \leq 10 \mathrm{mV}$.

The rotation direction of the motor can be determined with the input 'DIRECT.' when the STOP Signal is activated or when $\left|\mathrm{V}_{\mathrm{IN}}\right| \leq 10 \mathrm{mV}$.

Figure 1-4 Functional Block Diagram, Oscillator

1.4 Technical Data

1.4.1 Electrical Data

1.4.1.1 Mains Connection

Power connection voltage, adjustable for 115 V AC, $-20 \%+15 \%$ 230 V AC, $-20 \%+15 \%$

Current at switch on (initial current) 30 A Fuse

Frequency 6.3 A slow $50-60 \mathrm{~Hz}$

Power consumption
max. 1600 VA
Power dissipation max. 120 W

1.4.1.2 Motor Connection

Protected in case of short circuit between motor phases

Max. cable length

Cable diameter
Screen connection
Motor voltage
without filter 50 m with filter 100 m

Phase current in 16 stages from 0.75 to 4.5 A

1.4.1.3 Rotation Sensor Connetion

This connection must be safely isolated from the mains.

Max. voltage to earth	60 V DC
Max. cable length	100 m
Cable diameter	$2 \times 0.5 / 10 \times 0.25 \mathrm{~mm}^{2}$
Screen connection	both sides

Electrical Characteristics of the Inputs

Optoencoupled and protected against reverse polarity.
The signal voltage level is typespecific
TTL or 24 V
Max. input voltage $\quad 5.25 \mathrm{~V} \quad 30 \mathrm{~V}$
Switch on point UE $\quad 2.5 \mathrm{~V} \quad 20 \mathrm{~V}$
Switch off point $U_{A} \quad 0.4 \mathrm{~V} \quad 3 \mathrm{~V}$
Typical input current at nominal current 10 mA

Electrical Characteristics of the Outputs

Optoencoupled, protected against reverse polarity, inductive resilient, short circuit protected.

Max. voltage drop $U_{R} \quad 28 \mathrm{~V}$
Max. switch current IL 10 mA
Voltage drop at 10 mA
max. 2 V

1.4.1.5 Equipment Protection

System of protection IP 20 according to DIN 40050 / IEC 529

Protection class
1
Protection switches Short circuit monitoring
Excessive temperature recognition
Over- and undervoltage recognition
Motorwire interruption recognition

1.4.1.4 Signal Connection

This connection must be safely isolated from the mains.

Max. voltage (power resistance) to earth	60 VDC
Cable diameter	$0.25 \mathrm{~mm}^{2}$
Screen connection	the control side only

1.4.2 Mechanical Data

Dimensions
see figure 1-5
Weight
without heat sink approx. 2.3 kg with heat sink approx. 5.9 kg

Figure 1-5 Equipment Dimensions
1.4.3 Ambient Conditions
Working conditions $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$
Storage temperature $-25^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Humidity class Fin accordance with DIN 40040Radio shielding in accordance with VDE 0871-Awhen the additional Mains andMotor rating filters are used.(see Accessories List)Overvoltage stability in accordance withVDE 0160 Class 2Resistance to interference in accordance withVDE 0843 /IEC 801

2 Installation

2.1 Parts Specification

The specification is to be checked for completeness.
Included in the specification are (see figure 2-1).

Item	Description	Order Number
1	WDO5-008.xx1-01	in accordance with type key
1	Plug Shell Mains Connection	
1	Plug Shell Motor Connection	Heat Conduction Paste
1	Technical Documentation WDO5-008	Doc. no. $211.331 / D G B$

Figure 2-1 Parts Specification

2.2 Accessories

The following items can be delivered on specific order:

Description	Order Number
Ballast Resistor	62501100600
Rotation Sensor Cable	see Appendix
Terminal Adapter D 732	62010732006
Heatsink	62500901000
Fan Assembly	62501201000
Motor Cable	see Appendix
Motor Rating Filter	62501100100
Mains Power Filter	62501100200
Interface Tester D 690	62010690006
Stepping Motor	see Doc-no. 371
Signal Cable	see Appendix
Plug Set WDO5-008	62501000100

NOTE
For a description of accessories see Appendix 6.2.

2.3 Mounting

The equipment must be mounted inside a switch cabinet which incorporates forced air-cooling. The mounting wall must be a good conductor of heat and have a smooth mounting surface because the heat loss is conducted away via mounting bracket. The maximum power dissipation of the equipment amounts to 120 W .

ATTENTION

The inlet air to the switch cabinet must be clean and there must be a good air supply system.

NOTE

If the equipment is not able to dissipate sufficient heat in the switch cabinet, a heatsink and also a fan assembly can be fitted to the equipment, see sections 6.2.4 and 6.2.5. The correct cooling conditions can be achieved by using the heatsinks, fans and cables recommended by BERGER LAHR. With other solutions it will be necessary to measure the temperature on the mounting bracket, see sections 6.2.4.2 "Dimensioning of a heatsink".

For the mounting of the equipment, an SW10 openend adjustable wrench is required; no further special tools required.

1. Drill 2 holes into the mounting wall, for dimensions see Figure 6-6
2. Apply heat-conducting paste between the back of the equipment and the mounting wall
3. Fasten the equipment with M6 screws.

Figure 2-2 Power Dissipation Diagram

NOTE

Note the distance between the centre lines of the equipment where there are combinations of several pieces of equipment, see table (data in mm).

Distance between centre lines (in mm) for equipment combinations	$\begin{aligned} & \infty \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \vdots \\ & 3 \end{aligned}$	∞ $\stackrel{\infty}{\dot{1}}$ $\stackrel{i}{n}$ $\stackrel{1}{3}$	$\begin{aligned} & \infty \\ & \underset{N}{N} \\ & \stackrel{1}{n} \\ & \vdots \\ & \vdots \end{aligned}$	$\begin{aligned} & \infty \\ & \frac{\infty}{\infty} \\ & \frac{1}{3} \end{aligned}$	$\frac{F}{\zeta}$	\bar{N} N N N	5 $\stackrel{-}{1}$ $\stackrel{1}{5}$
WDO5-008	87	87	87	87	74	74	74
WDP5-118	87	87	87	87	74	74	74
WDP5-228	87	87	87	87	74	74	74
WDP5-318	87	87	87	87	74	74	74
WP-111	74	74	74	74	61	61	61
WP-231	74	74	74	74	61	61	61
WP-311	74	74	74	74	61	61	61

NOTE

The mounting of the heatsink and fan assembly to the equipment is described in sections 6.2.4 and 6.2.5.

2.4 Cabling

2.4.1 General Information

All electrical connections are made via multi-pole plug connections on the front panel of the equipment (figure 2-3). Ready made cables are available as accessories (see section 2.2).

DANGER

Make sure that mains voltage is turned off before connecting cables to the equipment!

ATTENTION

- The installation of the power connections (motor, mains, ballast) is to be carried out by a skilled electrician in accordance with VDE 0105!
- Ensure the strain relief and screening of the cables.
- Every signal conducting pair has to be twisted before the connection.
- Mains-, motor- and signal cables have to be wired so that there is a spacial distance between the cables.
- The motor connection is linked with the mains potential.

NOTE
 NOTE

Signal and rotation sensor connections are electrically isolated from the mains.

Figure 2-3 Connection Overview

2.4.2 Connecting the Motor

1. Prepare the 5 wires of the motor cable and the screen which are to be connected to the plug with 'boot lace' ferrules.
2. Insert the six wires according to figure 2-4 into the cap of the mating plug and tighten the screws.
3. Join the plug shell halves together.
4. Set the plug onto the connection 06 and tighten screws.

ATTENTION

- To keep losses in the cable and in the power drive at a minimum, it is recommended to keep the wiring as short as possible.
- The maximum length of the motor cable is 100 m . From a cable length of 50 m onwards a motor rating filter (see Accessories) is to be connected in line between the motor connection and the beginning of the cable.

DANGER

Switch off mains power before releasing the lock of the motor plug.

2.4.3 Adjusting the Equipment to the Mains Voltage

The equipment can be adjusted to the mains voltage of 115 V AC or 230 V AC (works set up/adjustment see chapter 6.1 equipment variants):

ATTENTION

The setting up of the equipment to suit the Mains voltage is only to be carried out by, or under the guidance of BERGER LAHR service personel.

2.4.4 Connecting the Mains Power Cable

1. Prepare the wires of the mains cable with 'boot lace' ferrules.
2. Insert the 5 wires into the mating plug terminal block and tighten screws (see figure 2-5).
3. Join the plug shell halves together.
4. Set the plug onto connection 07 and tighten screws.

DANGER

Make sure that mains power is disconnected before releasing mains cable! The mains plug must not be inserted while connections are being made and the power supply must not be turned on.

NOTE

- A mains filter can be inserted in the circuit to provide screening from interference, see section 6.2.8.
- A ballast resistor should be connected to B+ or B- if display "4" lights up during braking in operation, see section 6.2.1.

Figure 2-5 Mains and Load Connections

2.4.5 Connecting the Signal Cable

1. Twist the wires of the signal cables in pairs and solder them onto the 37 pins Sub-D-socket, according to figure 2-6.
2. Insert cable into the cable entry clamp (strain relief) and clamp it. Connect the screen on the side of the control with earth (GND).

NOTE

When using a push-pull drive, it may be useful to connect the screen to the plug shell on both ends of the cable.
3. Put on socket shell.
4. Plug socket to socket connection panel 04 and tighten screws.

\triangle

ATTENTION

- Maximum length of the signal cable: 50 m .
- All signal connections shall be safely isolated from the mains (maximum voltage to earth: 60 V DC).
- The normal earth for the signal wire Vin must be connected on the control side with VIN GND.
- The normal earth (OPTO GND) for the signal wire START/STOP and $\mathrm{F}_{\mathrm{H}} / \bar{F}_{\mathrm{L}}$ must be connected on the control side with GND.

Signal Connection (04)

1) When operating without rotation sensor these contacts have no function.
2) $32-13$ bridget not resdy

32-14 bridget resdy
Umin $=5 \mathrm{~V}$
Umax $=30 \mathrm{~V}$ AC, 36 V DC
$1 \mathrm{~min}=10 \mathrm{~mA}$
$\max =0,2 \mathrm{~A}$
Pmax $=5 \mathrm{~W}$
Smax $=6 \mathrm{VA}$
3) $\pm 10 \mathrm{~V}$ analogue

Figure 2-6 Wiring the Signal Socket

Circuitry of the Optocoupler Signal Interface

For the electrical isolation of the signal inputs and outputs optocouplers are used; the type-specific circuits are shown in figure 2-7.

In the case of an alternating signal voltage level choose the equipment variant with 5 V signal level. Also wire into the external feeder additional protective resistors to ensure a current of approx. 10 mA .

Figure 2-8 shows the possible connections of the signal Inputs and Outputs. The Push-Pull drive (which is also used in the BERGER LAHR Positioning Controller) offers the advantage of a higher signal to noise ratio.

NOTE

To drive the oscillator inputs/outputs ($\mathrm{FH}_{\mathrm{H}} / \bar{F}_{\mathrm{L}}$, START/ $\overline{\text { STOP }}$) only the $3^{\text {th }}$ and $4^{\text {th }}$ circuit possibility are suitable because the -Inputs (Connections) of these inputs are connected together (OPTO GND see figure 2-13).

$1^{\text {st }}$ Possibility

Push-Pull Drive
$2^{\text {nd }}$ Possibility

npn-Drive (earth switched)
$3{ }^{\text {rd }}$ Possibility

pnp-Drive (positive switched)
$4{ }^{\text {th }}$ Possibility

Figure 2-8 External Connections of Signal Interface

Circuity of the Oscillator-Signal Interface

The oscillator is internally electrically seperated via a switch power supply see section 1.3. Internal section circuit of the in/outputs, see figure 2-9.

Figure 2-9 Internal Circuit of the Oscillator Signal Interface

The outputs PULSE OUT and DIR OUT serve as connections for measuring equipment, i.e. frequency counter, see Figure 2-10.

Figure 2-10 External Circuit of the Oscillator Signal Interface

NOTE

The outputs DIR OUT and PULSE OUT can be used to drive a second power drive.
However consider the response times according to figure 3-1. The second axis is driven earth switched; see figure $2-8,2^{\text {nd }}$ possibility.

2.4.6 Connecting the Rotation Sensor

Some motor types have a built-in rotation sensor (see table in section 1.2)

1. Connection on the side of the equipment: Solder the wires of the rotation sensor cable onto the pins of the 15 pins Sub-D-socket, see figure 2-11.
2. Insert the screen into the cable entry clamp/strain relief and clamp it.
3. Put on the plug shell.
4. Plug the plug onto socket 05 and tighten screws. Attach the screen to plug shell.
5. Twist the wires of the rotation sensor cable in pairs according to figure 2-11.
6. Make the connection on the side of the motor with 12 pins+PE-circular connector according to figure 2-11. Also attach the screen to the cable entry clamp.
7. Switch the DIL switch 03 to: rotation monitor active (see section 2.5 Initial Operation).

Figure 2-11 Wiring of the Rotation Sensor

2.5 Initial Operation

2.5.1 Checklist for Initial Operation

Before you make initial adjustments to the equipment check the following points:

- Has the mounting of the equipment and the heatsink respectively been carried out correctly (see section 2.3)?
- Is the air supply and air removal ensured?
- Has the correct motor type been built in (see section 1.2)?
- Has the equipment been wired correctly (see section 2.4)?
- Has the equipment been adjusted to the given mains voltage?
- Have motor-, signal- and rotation sensor cable been wired so that there is a spacial distance between them?

2.5.2 Basic Adjustments

The basic adjustments are made with the Current Selection Switch and the Parameter Switch (see figure 2-12) as follows:

DANGER

High Current - Switch off equipment before making any adjustments!

NOTE

The wiring of the signal interface can be tested with the Interface Tester D 690 (see Accessories).

Figure 2-12 Adjustment Elements

Adjustment of the Phase Current

 smaller value.

1. Unscrew and remove the plexiglass cover from the front panel of the equipment.
2. Adjust phase current at the rotary switch 01 (see figure 2-12) according to the motor data label. Pay attention to the diagram in figure 2-13.

For possible adjustments see figure 2-14. If the phase current which is stated on the motor data label should not be adjustable, choose the next

ATTENTION

Never choose too high a current! The maximum phase current is not to be exceeded and if, then only for a short time (boost-signal), to avoid a motor overload. Ensure appropriate cooling (temperature on the housing of the equipment $100^{\circ} \mathrm{C}$ maximum)!

NOTES

- Smaller phase currents are allowed but they reduce the rotation moment accordingly.
- The automatic power reduction should, if possible, always be switched on in order to reduce the power dissipation (see figure 2-15).

Figure 2-13 Permitted Phase Current Dependent on Ambient Temperature and Lenght of Motor Cable

Figure 2-14 Switch Settings Phase Current Selection Switch

Parameter Adjustment

1. Adjust desired parameters according to figure 2-15 with the DIL switch 03 (see figure 2-12). The basic adjustment as set by BERGER LAHR is depicted.
2. After finishing the adjustments do not forget to put the plexiglass cover back on.

Figure 2-15 Switch Settings Parameter Switch

NOTES

- The effects of the signal inputs DIRECT and F/H STEP can be inverted with the parameter switches 3 (rotation direction) and 4 (step width) respectively.
- When current reduction is active, at a standstill (pulse frequency $<10 \mathrm{~Hz}$) the motor phase current is reduced to 50%. This leads to a cooling of the motor and a reduction of the stopping moment by approximately 50%.

ATTENTION

- Caution mains current- operate the equipment only when the plexiglass cover is in place!
- For motors with Rotation Sensor the parameter switch 1 for the rotation monitoring must be set on active, for motors without Rotation Sensor the switch must be set on not active.

Adjustments of the Oscillator Frequency $\mathrm{F}_{\mathrm{H}} / \overline{\mathrm{F}} \mathrm{L}$

1. Phase current and parameter adjustments:

- Phase current adjustment, see page 2-12
- Parameter adjustment, see page 2-13.

2. Set operational mode selection switch to 'int' position, see figure 2-12.
3. Connect frequency counter to signal plug 04 (figure 2-6) connect to pins:

- pin 18 PULSE OUT
- pin 19 OPTO GND.

4. Switch on power supply to WDO5.
5. Activate input signal ENABLE
6. Activate input signal START as follows:

- feed up 24 V or 5 V (according to type of device) to pin 16.
- apply 0 V to pin 19.

7. With the potentiometer FL set the desired lower frequency limiting value $f \mathrm{~L}$ of the pulse signal PULSE OUT.
8. Activate input signal FH as follows:

- feed up 24 V or 5 V (according to type of device) to pin 35.
- apply 0 V to pin 10.

9. With the potentiometer FH set the desired upper frequency limiting value $f \mathrm{f}$ of the pulse signal PULSE OUT.

Adjustment of the Motor Acceleration

1. Activate the input signal ENABLE to release the power drive.
2. Set Acceleration selection switch to ' F ', see figure 2-12.
3. Accelerate motor with connected load by activating the input signals START and FH .
4. Brake the motor with connected load by activating the input signal STOP.
5. Turn the acceleration selection switch counterclockwise one position at a time and repeat steps 3 and 4 until the motor acceleration differs from the permissible operating range.
6. Then turn the acceleration selection switch two positions clockwise.

For possible settings of the acceleration selection switch, see Figure 2-16.

Acceleration Selection Switch

Switch Position	Acceleration $[\mathbf{H z} / \mathbf{m s}] \pm \mathbf{2 0 \%}$
0	435
1	395
2	353
3	312
4	278
5	245
6	214
7	188
8	166
9	145
A	125
B	106
C	88
D	71
F	55

Figure 2-16 Switch Settings Acceleration Selection Switch

Adjustment of the Operational Mode of the Oscillator

Set the operational mode selection switch to the desired setting 'int/ext', see figure 2-12.

3 Operation

3.1 Drive

The Power Drive WDO5-008 is linked with the external drive unit via the signal connection 04.

The meaning and functions of the individual signals are described below:

NOTE

The signal wiring can be tested with the Interface Tester D 690 (see Accessories).

3.1.1 Input Signals

NOTE
Input 'active' means current flow through the Optocoupler.

BOOST (Current Increase)

- Input 'not active': Nominal current (as set on Rotary Switch 01)
- Input 'active': Double nominal current (but max. 4.5 A)

ATTENTION

Current increase via BOOST above the nominal current of the motor is only allowed for short time spans (20\% of the switching-on time of the motor, maximum 10 secs).

NOTE
If the BOOST is activated during a motor standstill, an active current reduction is blocked.

F/H STEP (Stepangle)

Dependent on the adjustment of the parameter switch 03/4 (see figure 2-15):

- Input 'not active': Half Step (Parameter Switch OFF)
- Input 'active': Full Step (Parameter Switch OFF)
or
- Input 'not active': Full Step (Parameter switch ON)
- Input 'active': Half Step (Parameter Switch ON)

NOTE

When set on 'Half Step'the motor makes 1000 steps / rotation, on 'Fullstep'it makes 500 steps/ rotation.

PULSE (Step)

With each increasing signal edge on the PULSEInput the motor carries on one more step.

DIRECT. (Direction of Rotation)

Dependent upon the position of the Parameter Switch 03/3 (see figure 2-15):

- Input 'not active': Right hand rotation (Parameter Switch ON)
- Input 'active':
or
- Input 'not active':
- Input 'active':

Left hand rotation (Parameter Switch ON)

Left hand rotation (Parameter Switch OFF)
Right hand rotation
(Parameter Switch ON)

NOTE
Rotation Direction when looking at the motor shaft (flange side).

For the signal response times for PULSE and DIRECT. See figure 3-1.

IPWMIN (Current Control)

Input for the Pulse Width modulated signal for the Phase Current Control ($0-100 \%$ or Boost $0-200 \%$ of the set phase current). The PWM signal lies in the frequency range from $10 \ldots . .20 \mathrm{kHz}$.

NOTE
The Signal Frequency should be selected from outside of the audio range (approx. 20 kHz).

Figure 3-1 Response Time PULSE/DIRECT.

Figure 3-2 Phase Current Control via input IPWMIN

ENABLE (Enabling Command)

- Input 'active': enabling command power unit.
- Input 'not acitve': Elimination of a not saved error report (see section 4.2) and resetting of the ring counter (see output signal 0-Phase). The motor is disconnected from the current.

ATTENTION

With Input ENABLE 'not active' the motor is powerless, that means it has no stopping moment.

$$
\begin{array}{ll}
\text { ENABLE } \\
\text { READY } \\
\mathrm{t}_{1}=\mathrm{t}_{2}<5 \mathrm{~ms} & \begin{array}{l}
\text { Switch on/off time } \\
\text { of power stage }
\end{array} \\
\mathrm{t}_{3}>100 \mathrm{~ms} & \begin{array}{l}
\text { Waiting time } \\
\text { for ENABLE }
\end{array}
\end{array}
$$

Figure 3-3 ENABLE/READY switching times

RM RESET (Reset Rotation Monitor)

Input 'active'when motor is at a standstill (no pulses): reset of the rotation monitor after recognizing a contouring error (status indicator "1",
see section 4.2) and reset of the ring counter (see
O-PHASE, section 3.1.2).

Figure 3-4 Signal Times RM RESET

NOTE

- Signal times for RM RESET see figure 3-4. In the time zone A the rotation monitor is switched off, but the monitor can be driven.
In the time zone B the rotation monitor is switched on; while in this state
the motor must not be driven, i.e. there are no pulses allowed.
- During activation of the RM RESET, an active current reduction is blocked (see figure 2-15).

3.1.2 Output Signals

NOTE
Output 'active' means low resistance. Output 'not active' means high resistance.

RM FAULT (Fault Rotation Monitor)

This output switches 'not active' (high resistance) when the rotation monitor recognizes a contouring error. The equipment is reset by Input RM RESET (see section 3.1.1).

NOTE

If a contouring error (contouring distance > 16 half steps) is signalled via the RM FAULT output, the motor remains powered-up and the PULSE input is opened. The standby relay indicates "ready".

0-PHASE (Ring Counter Count Zero)

Each time the ring counter count is zero the output is switched 'not active' (high resistance), see figure $3-5$.

NOTE

Figure 3-5 shows the dependence of the output signal 0-PHASE on the ring counter at Full Step operation. At Half Step operation the ring counter has a cycle of 20 steps.

Figure 3-5 Dependance of the 0-PHASE Output on the Ring Counter count at Full Step

TEMP.INT. (Temperature Prewarning Internal)

Dependent upon phase current and the temperature of the heatsink the output TEMP.INT. is switched to 'not active'(high resistance) see figure 3-6.

TEMP.MOT. (Motor Temperature)

At a motor temperature of $95^{\circ} \mathrm{C}$ and above the output TEMP.MOT. switches to 'not active'(high resistance).

Readiness Relay Contacts

When the equipment is ready to operate the contacts 32-14 are connected. In the case of an error the contacts 32-13 are connected.

NOTE

For further information on errors see chapter 4.

3.2 Switching On

Switch on the mains voltage at external switch.
After the equipment has been switched on it reports its readiness, after approx. 1.5 s (the red point on the 7 segment indicator 02 is lit).

Figure 3-6 Typical Switch Behaviour TEMP. INT. in Dependence on Phase Current and the Heatsink Temperature

NOTE

If instead of the red point a figure is lit, an error is indicated (see section 4.2). If the figure 8 is lit the ENABLE-Input has not bee wired.
 has not bee wired.

3.3 Operational possibilities of the Oscillator

Operational Modes of the Oscillator

The following operational modes can be adjusted on the oscillator:

- Internal functions
- External functions

3.3.1 Internal Functions

Operation and Control of the Oscillator

Figure 3-7 Operating Elements, Signal at Oscillator

1. Adjust phase current and parameter, see page

2-11 and 2-12.
2. Adjust oscillator frequency and motor acceleration, see page 2-14.
3. Set operational mode to 'int'.
4. Activate input 'ENABLE' (release output stage).

Signals on Oscillator; Using Internal Mode

Input START/STOP

The input signal is used to start and stop the oscillator.

- Input 'active low' means start the oscillator.
- Input 'active high' means stop the oscillator.

Input $\mathrm{FH}_{\mathrm{H}} / \overline{\mathrm{F}}_{\mathrm{L}}$

The input signal \bar{F}_{H} / F_{L} controlls the raising and lowering of the pulse frequency PULSE OUT within the set frequency limits f_{H} and f_{L} set on the potentiometers F_{H} and F_{L}.

- Input 'active high' means acceleration on the upper frequency limiting value f_{H}.
- Input 'active low' means acceleration or braking on the lower frequency limiting value f_{L}.

Output PULSE OUT

The pulse signal PULSE OUT is used to control the motor. The output PULSE OUT can be used to measure the pulse signal.
The connection between the pulse signal PULSE OUT and the input signals START/仿TOP, $\mathrm{FH} / \overline{\mathrm{F}}_{\mathrm{L}}$, is shown in figure 3-8.

NOTE

Voltage level of the signals see chapter 1.4.1.4.

Figure 3-8 Oscillator Signals, Pulse Diagram with Internal Mode

3.3.2 External Functions

Function and Control of the Oscillator

Figure 3-9 Operating Elements, Signal at Oscillator

1. Adjust phase current and parameter, see page 2-11 and 2-12.
2. Adjust motor acceleration, see page 2-14.
3. Set operational mode to 'ext'.
4. Activate input 'ENABLE' (release output stage).
5. Activate input START (starts the external operation).

Signals on Oscillator; using External mode

Input Vin

The external input voltage V_{IN} is used to drive the oscillator using external operation. The oscillator generates a frequency of the output signal PULSE OUT which is proportional to the voltage level VIN. Voltage range for VIN:
-10 V to $+10 \mathrm{~V} ; \pm 1 \mathrm{~V}$ corresponding to 3 kHz .
-10 mV to +10 mV recognised as 0 (STOP).

NOTE

When voltage level of $V_{I N}$ is negative the rotation direction is reversed. The rotation direction depends on the adjustment of the parameter switch, see figure 2-15.
External pulse injection via the input PULSE is possible when $-10 \mathrm{mV} \leq \mathrm{V}_{\mathrm{IN}}$ $\leq+10 \mathrm{mV}$ or the input STOP is activated.

Input START/STOP

The input signal is used for starting and stopping the oscillator.

- Input 'active high' means START.
- Input 'active low' means STOP.

The output signal PULSE OUT is blocked with STOP, see figure 3-10.

Input PULSE

The optocoupler input signal PULSE is used to drive the motor when the voltage at the input VIN $\leq 10 \mathrm{mV}$ or STOP was activated.

Output Signal PULSE OUT

The pulse signal PULSE OUT is used to drive the motor. The output PULSE OUT of the oscillator can be used for measurement purposes. The oscillator generates the frequency for PULSE OUT dependent upon the amount of the input voltage Vin, see figure 3-10.

Output DIR OUT

The output DIR OUT of the oscillator is for measurement purposes. The output signal DIR OUT is:

- 0 V when the amplitude of the input signal V_{IN} is nagative.
- high when the amplitude of the input signal V_{IN} is positive. See figure 2-9 and 2-10.

NOTE
Input 'active high' means: input voltage 4 V to 30 V or not connected.
Input 'active low' means: input voltage 0 V to 1 V .

Figure 3-10 Oscillator Signals, Pulse Diagram Using External Mode

3.4 Switching Off

Switch off mains voltage at external switch.

ATTENTION

Disconnection of the mains cable is only permitted after all phases of the supply voltage have been switched off.

4 Errors / Faults

4.1 Status Indicator

Several monitoring and security functions establish the proper operation of the equipment. The condition of the equipment is conveyed to the exterior by two methods:

- visually via a 7 Segment-LED-Indicator
- electrically via the Readiness Relay contacts and the signal outputs TEMP. INT.,TEMP. MOT. and RM FAULT (see section 3.1.2). In this way the actual condition of the Power Drive is reported to the superordinate control unit (e.g. PLC).

In the table below the possible equipment conditions and the respective consequences for the equipment output are shown.

The following section contains notes on how to remove errors quickly.

Indica- tion	Readiness- Relais	Meaning	Motor Output	Signal Outputs
.	ready	Equipment ready	active *	
.	ready	Motor temperature warning	active	TEMP. MOT not active**
0	ready	Equipment temperature warning	active	TEMP. INT not active**
1	ready	Rotation monitor	active	RM FAULT not active**
2	ready	Ballast working	active	
3	not ready	Exc. temperature	not active	
4	not ready	Short circuit	not active	
6	not ready	Undervoltage	not active	
7		(not occupied)		
8	not ready	ENABLE not active	not active	
9		(not occupied)		

* This is valid when there is no signal at the input IPWMIN
** Under normal conditions the signal outputs TEMP. INT, RM FAULT, TEMP. MOT are active, witch means low resistance

ATTENTION

According to the type of the fault there will be no current at the motor output. The the stopping moment of the motor falls down to zero.

4.2 Trouble Shooting Guide

NOTE
The fault indications which are marked in the Trouble Shooting Table with a *
reset by input ENABLE (see section 3.1.1). are saved in the equipment and can be

4.3 Storage and Shipping

When equipment or insert cards are stored the following points have to be taken into consideration:

- the maximum humidity (see 1.4 Technical Data) is not to be exceeded!
- the storage temperature (see 1.4 Technical Data) is not to be exceeded!
- the stored parts have to be protected from dirt and dust!
- equipment and insert cards which show the following symbol are obly to be unpacked, stored or installed in working areas which are electrostatically protected!
- equipment and insert cards which have accumulators should be connected to the mains at least once a month!
- the original packing has to be saved!

When equipment and insert cards are shipped, the following points have to be taken into consideration:

- equipment and insert cards should, if possible, only be shipped in their original packing!
- insert cards should be packed without batteries or accumulators into covers which convey electrostatic on both sides (if possible use the original packing)!
- insert cards should be packed with batteries or accumulators into covers which convey electrostatic on the outside and anti-electrostatic on the inside (if possible use the original packing)!
- equipment or insert cards with the following symbol should only be packed in electrostatically protected working areas!

5 Maintenance

WDO5-008 requires no maintenance.

6 Appendix
 6.1 Equipment Variants

Type Code for Wall Mounted Equipment WDO5

6.2 Description of Accessories

Figure 6-1 Accessories

The following accessories can be delivered on special order:

Position in figure 6-1	Description	Order Number	Reference
1	Ballast Resistor	62501100600	see Paragraph 6.2.1
2	Rotation Sensor Cable	$62501404 \times x x$	see Paragraph 6.2.2
3	Terminal Adapter D 732	62010732006	see Paragraph 6.2.3
4	Heatsink	62500901000	see Paragraph 6.2.4
5	Fan Assembly	62501201000	see Paragraph 6.2.5
6	Motor Cable	$62501301 x x x$	see Paragraph 6.2.6
7	Motor Rating Filter	62501100100	see Paragraph 6.2.7
8	Mains Filter	62501100200	see Paragraph 6.2.8
9	Interface Tester D 690	62010690006	see Paragraph 6.2.9
10	Signal Cable, Control Side Open	$62501401 x x x$	see Paragraph 6.2.10
11	Signal Cable for Interface Tester or Terminal Adaptor	$62501402 x x x$	see Paragraph 6.2.10
12	Plug Set WDO5-008	62501000100	see Paragraph 6.2.11

6.2.1 Ballast Resistor

For reducing an increased braking energy a Ballast Resistor HSD 70 is used.

ATTENTION

With the mounting of the ballast resistor adequate cooling must be ensured.

1. Loosen Screws and remove mains connector (see figure 6-2).
2. Remove Mains Connector Cover.
3. Attach 'boot lace' ferrules to the ends of the ballast resistor jumper connections that are to be connected to the mains connector.
4. Connect wires from ballast resistor to terminals $B+$ and B - and tighten terminal srews.
5. Locate and clamp cables in place in connector housing.
6. Replace Mains Connector Cover.
7. Relocate Mains Connector in position 07 on front panel, replace screws and tighten.

Figure 6-2 Ballast Resistor Connection

6.2.2 Rotation Sensor Cable

The Rotation Controller Cable can be ordered in the following length:

Cable Length	Order Number
5 m	62501404050
10 m	62501404100
15 m	62501404150
20 m	62501404200
50 m	62501404500

The rotation Sensor Cable includes:

Description	Order Number
15 pole plug	N4-673-247
plug shell (15 pole)	N4-673-237
12 pole socket	N8-704-89
12 contacts	N8-704-90
cable	H6-928-50

The Rotation Sensor Connection is shown and described in chapter 2.4.8.

6.2.3 Terminal Adapter D732

6.2.3.1 General Description

Figure 6-3 Terminal Adapter D732

The Terminal Adapter D 732 is used for connecting the BERGER LAHR power units of the series WD with a control unit.
The Terminal Adapter D 732 consists mainly of a printed circuit board on which the one Sub-D-plug, 11 LEDs and two connector blocks are installed. The LEDs indicate the signal status of particular inputs and outputs. The signal conditions of the outputs are indicated by yellow LEDs, the signal conditions of the inputs are indicated by green LEDs. All inputs and outputs are conveyed onto the connector blocks. The assignment of terminals is shown on the following page.
The link to the power unit connection of the WD equipment is made via a cable and the Sub-D-plug. No additional operating voltage has to be connected.

NOTE
The equipment is subject to the regulations of the Protective Low Voltage.

6.2.3.2 Technical Data

Electrical Data

Signal Voltage
$24 \mathrm{~V} \pm 10 \%$
Current Intake per LED
Current reduction at inputs
Current reduction at outputs
$<0.1 \mathrm{~V}$ < 3 V

Mechanical Data

Dimensions
approx. $113 \times 78 \times 52 \mathrm{~mm}$
Weight
approx. 180 g

Ambient Conditions

Storage Temperature $\quad-25^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Operating Temperature
$0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Humidity Class F in accordance to DIN 40040

Assignment of Terminals

Pin	Abbreviation	Meaning	$\leftarrow \mathrm{I} / \rightarrow \mathrm{O}$
1	+ PULSE	Pulse	\leftarrow
2	+ DIRECT.	Direction	\leftarrow
3	+ ENABLE	Enabling Command Power Unit	\leftarrow
4	+ IPWMIN	PWM Current-Control	\leftarrow
5	+ F/H STEP	Stepangle Full Step/Half Step	\leftarrow
6	+ BOOST	Current Increase	\leftarrow
7	+ RM RESET	Rotation Monitor Reset ${ }^{1)}$	\leftarrow
8	+ RM FAULT	Rotation Monitor Error ${ }^{1)}$	\rightarrow
9	+ 0-PHASE	Zero-Phase	\rightarrow
10	+ TEMP.INT.	Temperature Monitor Heatsink	\rightarrow
11	+ TEMP.MOT	Temperature Monitor Motor ${ }^{1}$)	\rightarrow
12	-	-	-
13	READY NC	Relay Contact Power Unit not ready	\rightarrow
14	READY NO	Relay Contact Power Unit Ready	\rightarrow
15	-	-	-
16	START/STOP	Oscillator Start/Stop ${ }^{2)}$	\leftarrow
17	VIN GND	Oscillator Control Current Ground ${ }^{2)}$	\leftarrow
18	PULSE OUT	Oscillator Pulse Output ${ }^{2}$	\rightarrow
19	GND OUT	Oscillator Output Ground ${ }^{2)}$	\rightarrow
20	- PULSE	Pulse	\leftarrow
21	- DIRECT.	Direction	\leftarrow
22	- ENABLE	Enable Command Power Unit	\leftarrow
23	- IPWMIN	PWM Current Control	\leftarrow
24	- F/H STEP	Stepangle Full Step/Half Step	\leftarrow
25	- BOOST	Current Increase	\leftarrow
26	- RM RESET	Rotation Monitor Reset ${ }^{1)}$	\leftarrow
27	- RM FAULT	Rotation Monitor Error ${ }^{1)}$	\rightarrow
28	-0-PHASE	Zero-Phase	\rightarrow
29	- TEMP.INT.	Temperature Monitor Heatsink	\rightarrow
30	- TEMP.MOT	Temperature Monitor Motor ${ }^{1}$)	\rightarrow
31	-	-	-
32	READY C	Relay Contact	-
33	-	-	-
34	-	-	-
35	FL/FH	Oscillator Frequency down/up ${ }^{2)}$	\leftarrow
36	VIN	Oscillator Control Voltage -/+ $10 \mathrm{~V}^{2)}$	\leftarrow
37	DIR.OUT	Oscillator Direction Output ${ }^{2)}$	\rightarrow
38	-	Screen Connection	-

I= Input $\quad \mathrm{O}=$ Output
${ }^{1)}$ When operated without Rotation Sensor these signals have no function
${ }^{2)}$ These signals are present only with WDO power units

6.2.3.3 Parts Specification

Item	Description	Order Number
1	D 732	62010732006

6.2.3.4 Accessories

Item	Description	Order Number
1	Cable 1.5 m	62501402015

6.2.3.5 Mounting

With the foot element the Terminal Adapter can be hooked onto the mounting rails DIN EN which are available on the market.

6.2.3.6 Initial Operation

1. Switch off equipment WDO, and the control.
2. Connect Terminal Adapter D 732 with cable to WDO equipment, see figure 6-4.

ATTENTION
Only use the original cable (see accessories) or a screened cable!
3. Tighten fixing screws of the plugs.
4. Wire the Terminal Adapter with the control.
5. Switch on equipment WDO and control.

Figure 6-4 Initial Operation of Terminal Adapter D732

6.2.4 Heatsink

6.2.4.1 BERGER LAHR heatsink

The correct cooling conditions for the WDO power drive can be obtained with a BERGER LAHR heatsink.
The heatsink (figures 6-5 and 6-6) can be mounted inside or outside of the switch cabinet.

NOTE
Consider the additional room required and the distances between the middle axes in the case of combined mounting of several units of equipment, see table (indications in mm).

Distances between centre lines for equipment combinations	\circ \circ 0 0 \vdots \vdots	$\stackrel{\infty}{\tau}$ $\stackrel{\omega}{\circ}$ $\stackrel{1}{0}$ 3	$\begin{aligned} & \infty \\ & \underset{N}{N} \\ & \dot{N} \\ & \stackrel{1}{0} \\ & \vdots \end{aligned}$		$\begin{aligned} & \bar{F} \\ & \frac{1}{\prime} \\ & \stackrel{n}{2} \end{aligned}$	$\begin{aligned} & \bar{N} \\ & \stackrel{1}{N} \\ & \end{aligned}$	न $\stackrel{1}{1}$ $\stackrel{1}{3}$ 3
WDO5-008	87	87	87	87	74	74	74
WDP5-118	87	87	87	87	74	74	74
WDP5-228	87	87	87	87	74	74	74
WDP-318	87	87	87	87	74	74	74
WP-111	74	74	74	74	61	61	61
WP-231	74	74	74	74	61	61	61
WP-311	74	74	74	74	61	61	61

Figure 6-5 Mounting of Heatsink

Figure 6-6 Drilling Schemes

Mounting of the Equipment with the Heatsink Inside the Switch Cabinet

1. With the heatsink mounted inside the switch cabinet (see figure 6-5).
2. Drill two holes into the mounting wall and tap a thread M6 (see figure 6-6).
3. Attach heatsink with two screws (M6) (see figure 6-7) to the mounting wall.
4. Apply the heat conducting paste between the back panel of the equipment and the mounting wall.
5. Set equipment onto the two guide pins of the heatsink and tighten screws (SW 10).

NOTE
Take into consideration the distances between units in the case of combined mounting of equipment, see table on page 6-9.

Mounting of the Equipment with the Heatsink Outside the Switch Cabinet

1. With the heatsink mounted outside the switch cabinet (see figure 6-5).
2. Drill four holes into the mounting wall (see figure 6-6).
3. Remove the two guide pins of the heatsink.
4. Apply the heat conducting paste between the heatsink and the mounting wall.
5. Screw the heatsink with two screws (M6) onto the mounting wall (see figure 6-7).
6. Apply the heat conducting paste between the back panel of the equipment and the mounting wall.
7. Set the equipment onto the two guide pins of the heatsink and tighten the two screws (SW 10).

Bild 6-7 Abmessungen Kühlkörper

6.2.4.1 Dimensioning of a heatsink

If a BERGER LAHR heatsink is not used, the heatsink must be dimensioned as follows for wall mounting. In order to select a heatsink with sufficient thermal conductivity it is necessary to determine the thermal resistance. The following variables need to be known to calculate the thermal resistance $R_{\text {th }}$:

- Power dissipation of Pv of the equipment
- Ambient temperature Tu
- Prewarning temperature TTEMP.INT. of the equipment

1. Calculation of the power dissipation Pv

The first step is to determine the power dissipation Pv which has to be eliminated by the heat sink. Pv depends mainly on motor cable and phase current. The following formula is used to calculate the power dissipation:
$P_{V}=\frac{1+E D}{2} \bullet\left(k_{1} C_{k} L_{k}+k_{2} I_{P h}+P_{R}\right)$
$\frac{1+E D}{2}=$ Influence of the duty cycle with
$\mathrm{k}_{1} \mathrm{C}_{K} L_{K}=$ Influence of the motor cable with $\mathrm{k}_{1}=0,04 \mathrm{~W} / \mathrm{nF}$
$\mathrm{C}_{K}=$ capacitance of the motor cable in nF at 100 m
$\mathrm{L}_{\mathrm{K}}=$ Length of motor cable in m
$\mathrm{k}_{2} \mathrm{I}_{\mathrm{Ph}}=$ Influence of the phase current with $\mathrm{k}_{2}=23,5 \mathrm{~W} / \mathrm{A}$
$\mathrm{IPh}=$ phase current in A
$\mathrm{P}_{\mathrm{R}}=5 \mathrm{~W}$ internal losses
For the general calculation this gives us:

$$
\mathrm{P}_{\mathrm{V}}=\frac{1+\mathrm{ED}}{2} \bullet\left(0,04 \frac{\mathrm{~W}}{\mathrm{nFm}} \bullet \mathrm{C}_{\mathrm{K}} \mathrm{~L}_{\mathrm{K}}+23,5 \frac{\mathrm{~W}}{\mathrm{~A}} \bullet \mathrm{I}_{\mathrm{Ph}}+5 \mathrm{~W}\right)
$$

If the accessory motor cable as supplied by BERGER LAHR is used, the following formula is obtained for calculation of the power dissipation:

$$
P_{V}=\frac{1+E D}{2} \bullet\left(0,4 \frac{W}{m} \bullet L_{K}+23,5 \frac{W}{A} \bullet I_{P h}+5 W\right)
$$

The cable capacitance CK is 10 nF at 100 m .
2. Calculation of the necessary thermal resistance Rth
The following equations are applicable:
$\mathrm{R}_{\mathrm{th}}=\frac{\mathrm{T}_{\text {TEMP.INT. }}-\mathrm{T}_{\mathrm{U}}}{\mathrm{P}_{\mathrm{V}}}$
$\mathrm{T}_{\text {TEMP.INT. }}=\mathrm{T}_{\max }-\mathrm{k}_{0} \mathrm{IPh}_{\mathrm{p}}$
TTEMP.INT. $=80^{\circ} \mathrm{C}-5 \frac{{ }^{\circ} \mathrm{C}}{\mathrm{A}} \bullet l_{\text {Ph }}$
This gives us the following equation for the thermal resistance:
$\mathrm{R}_{\mathrm{th}}=\frac{80^{\circ}-5 \frac{{ }^{\circ} \mathrm{C}}{\mathrm{A}} \bullet \mathrm{I}_{\mathrm{Ph}}-\mathrm{T}_{\mathrm{U}}}{\mathrm{P}_{\mathrm{V}}}$

$\mathrm{T}_{\text {TEMP.INT. }}=$	prewarning temperature
$\mathrm{T}_{\text {max }}$	$=$ maximum permissible temperature
	on mounting bracket
$\mathrm{k}_{0} \mathrm{I}_{\mathrm{Ph}}$	$=$
	influence of the phase current on the
	prewarning temperature
I_{Ph}	$=$
T_{U}	$=$ phase current
P_{V}	$=$
	ambient temperature
	power dissipation

To check the dimensioning of the heatsink, the temperature on the mounting bracket should be measured. This temperature must be smaller than the prewarning temperature TTEMP.INT. of the equipment. See Figure 6-8.

Figure 6-8 Power dissipation diagram

NOTE

The thermal resistance of the heatsink supplied by BERGER LAHR is $0.5 \mathrm{~K} / \mathrm{W}$ without additional air cooling and $0.17 \mathrm{~K} / \mathrm{W}$ when a fan is used. The equipment itself can also be air-cooled (minimum air flow $1 \mathrm{~m} / \mathrm{s}$) instead of using a heatsink.

6.2.5 Fan Assembly

For improving the removal of waste heat, the heatsink can be equipped with a fan.

The fan (figure 6-8) is hooked onto the bottom of the heatsink and screwed on with two screws.

Connect the fan with external voltage supply: 24 V DC.

Further fan assemblies can be connected in parallel via the second clamp pair.

Figure 6-9 Dimensions: Fan Assembly

6.2.6 Motor Cable

The Motor Cable can be ordered in the following length:

Cable Length	Order Number
5 m	62501301005
10 m	62501301010
15 m	62501301015
20 m	62501301020
50 m	62501301050

The Motor Cable includes:

Description	Order Number
6 -pole plug	N8-704-91
6 contacts	N8-704-92
cable	H6-928-51

The motor connection is shown and described in chapter 2.4.2.

6.2.7 Motor Rating Filter

A Motor Rating Filter is connected in line with the motor cable when the motor cable is 50 m or longer and to ensure radio shielding/ interface suppression (also under 50 m) in accordance to VDE 0871/ limiting value class A.

The filter must be installed in the switch cabinet near the device and provided with external ventilation.

Only use the motor cable approved by BERGER LAHR. Other cables could generate higher currents due to a higher capacity, which could lead to the destruction of the devices.

Ambient conditions

Storage temperature $-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Operating temperature
up to a phase current of $4 \mathrm{~A} \quad 0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ up to a phase current of $5 \mathrm{~A} \quad 0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$
Humidity class
F acc. to DIN 40040
(non-condensing)

Figure 6-10 Motor Rating Filter

Appendix

6.2.8 Mains Filter

The Mains Filter is connected in line with the mains cable to ensure interference suppression in accordance to VDE 0871/ limiting value class A.

The connection to the Mains filter should be of $\geq 2.5 \mathrm{~mm}^{2}$

Ambient conditions

Storage temperature $-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Operating temperature $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$

Humidity class, components
F acc. to DIN 40040
Humidity class, tested to IEC 68 part 2-3 at:

Air temperature Relative humidity non-condensing
$+40^{\circ} \mathrm{C},+2^{\circ} \mathrm{C}$
$93 \%,+2 \%,-3 \%$

Figure 6-11 Mains Filter

6.2.9 Interface Tester D 690

6.2.9.1 General Description

The Interface Tester D 690 is used for testing the signal conditions for BERGER LAHR wall mounting equipment:

- WDO5-xxx (Power Drive)
- WP-xxx (Positioning Unit)
- WDP5-xxx (Positioning Unit with Power Drive)

The Interface Tester D 690 consists mainly of a printed circuit board on which 6 Sub-D-plugs and sockets and 43 LEDs are installed. The signal meanings of the LEDs are explained on the following page. The signal conditions of the outputs are indicated by yellow, the signal conditions of the inputs by green LEDs. The Interface Tester is divided into two parts. As can be seen in figure 6-11, one part is intended for the WDO, the other for WP/WDP equipment. The Interface Tester is connected in line with the signal wire of the equipment.
No additional voltage has to be connected. The diagnostic sockets on each end of the base plate are intended for measurement and testing procedures.

6.2.9.2 Technical Data

Electrical Data

Signal Voltage WP/WDP part
Signal Voltage WDO part
Current Intake per LED
Current reduction at tester
$24 \mathrm{~V} \pm 10 \%$
3.5 to $24 \mathrm{~V} \pm 10 \%$ approx. 2 mA
$0,1 \mathrm{~V}$

Mechanical Data

Dimensions approx. $205 \times 80 \times 32 \mathrm{~mm}$
Weight
approx. 150 g

Ambient Conditions

Ambient Temperature when Operating $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ Storage Temperature $-25^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$ Humitdity Class F in accordance with DIN 40040

NOTE

The equipment is subjected to the regulations of the Protective Low Voltage.

Figure 6-12 Interface Tester D 690

WDO Part

Pin	Abbreviation	Meaning	Signal Logic	$\leftarrow \mathbf{I} / \rightarrow \mathbf{O}$
$1 / 20$	PULSE	Pulse	Pulse	\leftarrow
$2 / 21$	DIRECT.	Direction	selectable	\leftarrow
$3 / 22$	ENABLE	Enable Power Unit	active high	\leftarrow
$4 / 23$	IPWMIN	PWM Current Control	Pulse	\leftarrow
$5 / 24$	F/H STEP	Stepangle Full Step/Half Step	selectable	\leftarrow
$6 / 25$	BOOST	Current Increase	active high	\leftarrow
$7 / 26$	RM RESET	Rotation Monitor Reset	active high	\leftarrow
$8 / 27$	RM FAULT	Rotation Monitor Error	active low	\rightarrow
$9 / 28$	0-PHASE	Zero-Phase	active high	\rightarrow
$10 / 29$	TEMP.INT.	Temperature Monitor Heatsink	active low	\rightarrow
$11 / 30$	TEMP.MOT	Temperature Monitor Motor	active low	\rightarrow

WP/WDP Part

Pin	Abbreviation	Meaning	Signal Logic	$\leftarrow 1 / \rightarrow 0$
18	IO24V	I/O Supply Voltage		\leftarrow
19	IO24V	I/O Supply Voltage		\leftarrow
16	24 V	System Supply Voltage		\leftarrow
17	24V	System Supply Voltage		\leftarrow
15	READY O.	Ready for Operation	active high	\rightarrow
25	AUTOM	Automatic	active high	\leftarrow
23	STOP	Stop	active low	\leftarrow
20	$\overline{\text { LIM. }{ }^{+}+}$	Positive Limit Switch	active low	\leftarrow
1	LIM.X-	Negative Limit Switch	active low	\leftarrow
14	FAULT/CL	Fault/Clock	active high	\rightarrow
33	INPOS	Position reached	active high	\rightarrow
34	END/L.A.	Program End/Load acknowledge	active high/low	\rightarrow
4	START	Start	active high	\leftarrow
26	MAN. ${ }_{+}$	Manual Drive. Positive Rotation Direction	active high	\leftarrow
7	MAN.X-	Manual Drive. Negative Rotation Direction	active high	\leftarrow
28	DATA8	Program Number 2^{3}	active high	\leftarrow
9	DATA4	Program Number 2^{2}	active high	\leftarrow
29	DATA2	Program Number 2^{1}	active high	\leftarrow
10	DATA1	Program Number 2^{0}	active high	\leftarrow
5	LOAD	Save Position	active high	\leftarrow
27	MAN.REF.	Manual Reference Drive	active high	\leftarrow
8	MAN.L/H	Slow/Fast Manual Drive	active high	\leftarrow
22	RM RESET	Rotation Monitor Reset	active high	\leftarrow
32	TEMP.INT.	Temperature Monitor Heatsink	active high	\rightarrow
24	RS/CL.A	Program Start/Clock acknowledge	active high	\leftarrow
6	ADD.REF.	Additional Reference Switch	active low	\leftarrow
13	FOLLOW.F.	Contouring Distance: Limit	active high	\rightarrow
35	24VGND	System Supply Voltage Ground		\leftarrow
36	24VGND	System Supply Voltage Ground		\leftarrow
37	IOGND	I/O-Supply Voltage Ground		\leftarrow

$I=$ Input $\quad O=$ Output

6.2.9.3 Scope of Supply

Item	Description	Order Number
1	D 690	62010690006

6.2.9.4 Accessories

Item	Description	Order Number
1	Cable $1,5 \mathrm{~m}$ for WDO	62501402015
1	Cable 1,5 m for WDP	62501408015
2	Foot Element	00050090045

6.2.9.5 Mounting

The Interface Tester can be hooked onto the mounting rails DIN EN which are available on the market with the foot element.

6.2.9.6 Initial Operation

1. Switch off equipment WP/WDP or WDO.
2. Connect the Interface Tester D 690 in line with the cable between WP/WDP or WDO equipment and periphery, see figure 6-13.

ATTENTION
The insertion of the Interface
Tester can reduce the immunity to interference of the signal inputs. Use only the cable provided or a screened signal cable.
3. Tighten screws on the plug.
4. Switch on the equipment WP/WDP or WDO.
5. If desired the signal conditions at the diagnostic socket can be tested with a measuring instrument. The pin assignement of the diagnostic socket is the same as the pin assignment of the signal plug.
6. Test the interface.

NOTE

The only Outputs which can be tested are those that were wired in by the customer.

Figure 6-13 Initial Operation of Interface Tester D690

6.2.10 Signal Cable

The signal cable open at the end of the drive side can be ordered in the following length:

Cable length	Order Number
1 m	62501401010
2 m	62501401020
5 m	62501401050
10 m	62501401100
25 m	62501401250

The Signal Cable includes:

Description	Order Number
37 pole socket	N4-673-203
Plug shell (37 pole)	N4-673-239
Cable	H6-928-44

The Signal connection is shown and described in chapter 2.4.7.

The Signal Cable for the Interface tester or the Terminal adaptor can be ordered in the following lengths:

Cable length	Order Number
1 m	62501402010
2 m	62501402020
5 m	62501402050
10 m	62501402100

The Signal Cable includes:

Description	Order Number
37 pole socket	N4-673-203
37 pole plug	N4-673-249
Plug shell (37 pole)	N4-673-239
Cable	H6-928-44

e

6.2.11 Plug Set WDO5-008

The plug set includes:

Description	Order Number
15 pole plug	N4-673-247
Plug shell (15 pole)	N4-673-237
37 pole socket	N4-673-203
Plug shell (37 pole)	N4-673-239

6.3 Definition of Terminology

Ballast Resistor	Resistor for reducing the motor's braking energy
Boost	Short time increase of the set phase current to increase the rotation moment when accelerating or braking the motor
Clockwise Rotation	This means, looking onto the motor shaft (flange side) the rotation is clockwise (= positive drive direction)
Contouring Distance	Dynamic difference between the position of the rotor- and the statorrotational field
Contouring Error	Positioning error which occurs when the contouring distance is becoming to big or to small
Counterclockwise	This means, looking onto the motor shaft (flange side) the rotation is counterclockwise (= negative rotation)
Current Control	Controlling the phase current with a pulse width modulated input signal (IPWMIN)
ENABLE Command	Signal input for activating the drive ENABLE
5-Phase Stepping Motor	Special stepping motor for wall mounting equipment from BERGER/LAHR
Full Step	Rotation angle of the 5-Phase stepping motor per step 72° (corresponding with 500 steps/rotation)
Half Step	Rotation angle of the 5-Phase stepping motor per step 0.36° (1000 steps/rotation)
Phase Current	The current which is flowing through the motor winding
Pulse Frequency	Number of driving pulses per second; With each pulse the motor makes one step.
Pulse Width Modulation	Controlling of an analogue range via the relation of pulse width/and the length of a period of an input signal (see also current control)
Ring Counter	Cyclicly running counter with topped decoding logic for producing the current pattern for the 5 phases of the stepping motor
Rotation Monitor / Rotation Sensor	Switch for recognizing a contouring error
Start/Stop Frequency	Highest pulse frequency at which the motor can start and stop without contouring error, with a defined load.
Step	Turning of the motor shaft of the stepping motor for a fixed angle (see also Half Step/ Full Step)
Step Angle	Nominal angle around which the motor shaft of the stepping motor is turning at each drive impulse (see also Half Step/Full Step)

7 Index

A	
Adjusting Elements	2-11
Adjustments	2-11 ff
B	
Ballast Connection	1-1, 2-6
Ballast Resistor	6-4
Boost	1-3, 2-12, 3-1 f
Brake Energy	1-1, 6-4
C	
Connections	1-1, 1-5, 2-5
Current Control	3-2
Current Pattern	1-3
Current Reduction	1-3, 2-13
Current Selection Switch	1-1, 2-12 f
D	
Dimensions	1-6
Equipment	1-6
Fan	6-12
Heatsink	6-10
Direction of Rotation	1-3, 2-13, 3-2
Drive	1-2, 3-1
E	
Enabling	3-3
Equipment Condition	4-1
Error Report	4-1
F	
Fan	
Connection	6-12
Mounting	6-12
5-Phase Stepping Motor	1-2
Frequency	1-5
Front Panel	1-1
Functions Block	1-3
Fuse	1-5
H	
Heatsink	2-3, 6-9 f
Dimensioning	6-11
Mounting	2-3, 6-10

Page

Page

I	
Input	$1-5,2-8 \mathrm{ff}, 3-1$
Interface Tester	$6-15 \mathrm{ff}$
Intermediate Circuit Voltage	$1-3$

M

Mains

\quad Mains Filter	$6-14$
\quad Mains Voltage	$1-5,2-6$
Mode of Operation	$2-13,3-1$
Motor	$1-2,2-13$
\quad Motor Cable	$2-5,6-13$
\quad Motor Rating Filter	$6-13$
Motor acceleration	
\quad Adjustment	$2-14$
Mounting Bracket	$1-1$
Mounting Wall	$1-1,2-3,6-10$

0

Oscillator	$1-3 \mathrm{f}$
\quad External operation	$1-4,3-3 \mathrm{f}$
Function	$1-4$
\quad Internal operation	$1-4,3-6 \mathrm{f}$
\quad Signals	$3-7,3-9$
Oscillator frequency	
\quad Adjustment	$2-14$
Operating Temperature	$1-7$
Outputs	$1-5,2-9,3-4$

P

Parameter Switch	$1-1,1-3,2-13$
Phase Current	$1-5,2-12,3-2$
PLC	$1-2,3-6$
Plug Set	$6-18$
Positioning control	$1-2,3-1$
Power Dissipation	$1-5$
Power Pack	$1-3$

R

Ring Counter 1-3, 3-4
Rotation Monitor $\quad 1-3,2-13,3-4$
Reset 3-3
Rotation Sensor $\quad 1-3,2-10$
cable 6-5

	Page
S	
Servo Step Operation	$1-2$
Signal	
\quad Signal Cable	$2-7,6-18$
\quad Signal Connection	$1-5,2-8 \mathrm{f}$
\quad Signal In-/Outputs	$3-1 \mathrm{ff}$
\quad Signal Interface	$1-3,2-8 \mathrm{f}$
\quad Signal Wiring	$2-8 \mathrm{f}$
Standby Relay	$3-5,4-1$
Status indicator	$1-1,1-3,4-1$
Stepangle	$1-1$
Step Size	$2-13$
Stepping Motor	$1-2$
Switch cabinet	$1-1,6-10$
T	
Temperature	$3-5$
Terminal Adapter	$6-6$
Trouble Shooting	$4-2$
Type Code	$6-1$
W	
Wall Mounting	$1-1,2-3$
Weight	$1-5$

