Positioning and Sequence Control Unit for 3-phase Stepping Motors

WDP3-01X with OED3

Doc. no. 214.157/DGB

Ident. no.: 00441110002 Edition: e220 09.2003 Software version: 03.1XX

Safety instructions

Please read the following safety instructions prior to installation, operation, maintenance and repair of the device.

- The intended use of the device under is described "Purpose" and must be observed.
- Installation, maintenance and repair of the device shall be performed by a qualified electrician. National regulations concerning
 - accident prevention
 - installation of electrical and mechanical systems
 - radio interference suppression

shall be observed.

- The technical data of the device, particularly the ambient conditions, shall be observed.
- The device shall only be operated by trained personnel.
- The warranty is invalidated in case of unauthorized modification or opening of the device.
- Please ask your technical consultant prior to installing accessories not listed under "Accessories".
- The safety symbols and notes on the device and in the manual shall be observed.

Explanation of symbols

ATTENTION

Reference to a danger for the device or components, possibly resulting in the endangering of human life. DANGER Reference to a direct endangering of human life.

DANGER High voltage at component, do not touch.

DANGER High temperature at component, do not touch.

ATTENTION Warning against electrostatic discharge (ESD). Only touch the PC-board or component in an electrostatically-protected environment.

NOTE Important or additional information concerning the device or the manual.

	Proposals Improvements
Berger Lahr GmbH & Co. KG	WDP3-01X with OED3
Breslauer Str. 7 Postfach 1180	
D-77901 Lahr	Edition: d156 08.03 Doc. no. 214.157/DGB
Sender:	Please inform us, using this form, if
Name:	when reading this document.
Company/department:	ideas and proposals.
Address:	
Telephone no :	

Proposal and/or improvements:

Table of contents

1	Genera	al description	Page 1-1
	1.1	Structure and characteristics	1-1
	1.2	Function	1-2
	1.2.1	Hardware components	1-2
	1.2.2	Operating modes	1-4
	1.3	Technical data	1-6
	1.3.1	General data	1-6
	1.3.2	Electrical data	1-6
	1.3.3	Mechanical data	1-8
	1.3.4	Ambient conditions	1-8
	1.3.5	Regulations	1-9
	1.3.6	Approvals	1-9
2	Install	ation	2-1
	2.1	Scope of supply	2-1
	2.2	Accessories	2-2
	2.3	Assembly	2-3
	2.4	Wiring	2-5
	2.4.1	Mains connection	2-7
	2.4.2	Motor connection	2-8
	2.4.3	Signal interface	2-9
	2.4.3.1	Signal connection pin assignment	2-10
	2.4.4	RS 232 serial interface (OPT.1)	2-12
	2.4.5	RS 485 serial interface (OPT.1)	2-14
	2.4.6	Encoder interface (OPT.2)	2-16
	2.5	Setup	2-19
	2.5.1	Defaults	2-19
	2.5.2	Motor test	2-21

Table of contents

3	Operation		Page 3-1
	3.1	Controller operating modes	3-1
	3.2	Switching ON	3-2
	3.3	Controller STOP	3-4
	3.4	Editing mode	3-4
	3.5	Setting the motor phase current	3-5
	3.6	Manual mode via front panel	3-6
	3.7	Automatic mode	3-7
	3.8	Programming	3-8
	3.9	Switching OFF	3-8
4	Malfun	ictions	4-1
	4.1	Status indicators	4-1
	4.2	Troubleshooting tables	4-2
	4.3	Repair work	4-5
	4.4	Storage, shipment	4-5
5	Custor	ner service	5-1

6	6 Appendix		Page 6-1
	6.1	Device variants	6-1
	6.2	Description of accessories	6-2
	6.2.1	Fan	6-4
	6.2.2	Mains filter	6-5
	6.2.3	MP 923 interface converter	6-6
	6.2.3.1	General description	6-6
	6.2.3.2	Technical data	6-6
	6.2.3.3	Setup	6-7
	6.2.3.4	Status indicators	6-7
	6.2.4	Additional bleed resistor	6-9
	6.3	Glossary	6-10
	6.4	Abbreviations	6-13
7	Index		7-1
8	Correc	ctions and additions	8-1

1 General description

1.1 Structure and characteristics

- *Purpose* The WDP3-01X positioning and sequence control unit, which comprises the OED3 operating system, can be used for controlling the following BERGER LAHR 3-phase stepping motors:
 - with WDP3-014, motors of type size 90, (VRDM 39xx/50 LW.)
 - with WDP3-018, motors of type size 110, (VRDM 311xx/50 LW.)

Each unit is used for controlling one axis. The difference between the positioning and sequence control units WDP3-014 and WDP3-018 consists in their power ratings.

The controller can be freely programmed using a PC and the ProOED3 programming software. A PLC with integrated movement programming is possible.

An electronic gear or rotation monitoring can be implemented via the optional encoder interface.

Documentation This documentation describes installation and operation via the front panel keys, the inputs/outputs of the signal interface and the encoder interface.

Programming of the device is described in the documentation of the ProOED3 programming software.

Fig. 1-1 WDP3-01X positioning and sequence control unit with OED3

1.2 Function

1.2.1	Hardware components	A built-in PC board in Eurocard format type size 6 HU accommodates the processor unit, the power controller and the power supply unit. The most important function blocks of the unit are evident in the block diagram (fig. 1-2).
	Power supply unit External bleed resistor	The power supply unit is a high-performance AC/DC converter which can be connected to 115 VAC or 230 VAC supply voltages. The energy recovered by a motor during braking can be temporarily stored up to a certain extent. To dissipate a higher amount of braking energy, an external bleed resistor must be connected.
	DC/DC power supply unit	A DC/DC power supply unit generates various voltage levels for supplying the internal electronic circuits of the processor unit from the 24 VDC voltage supply.
		NOTE The electronic circuitry of the processor unit consists of PELV circuits as defined in the DIN standard VDE 0160.
	Interface configuration	Various interface configurations are possible according to the actual requirements.
		NOTE The interfaces installed in the device are indicated on the type plate. The following abbreviations are used:

acca.
Serial interface RS 232
Serial interface RS 485
Encoder interface RS 422

Fig. 1-2 Block diagram

- Signal interface The signal interface carries the input and output signals as well as the 24 VDC signal voltage.
- *Encoder interface* The encoder interface RS 422 (OPT.2) can be used for implementing an electronic gear or for rotation monitoring.
- Serial interface The RS 232 or RS 485 serial interface can be used for programming the controller (in editing mode) using a PC and the ProOED3 programming software. In addition, programmed communication, e.g. with an operating terminal, can be implemented via the serial interface (in automatic mode).
- Management processor The management processor is used in controller automatic mode for editing the application program and addressing the corresponding interfaces. In order to retain the application program on the controller after disconnecting the supply voltage, it must be written to the controller's EEPROM using a PC and the ProOED3 programming software. In the controller's FRAM, 3 variables can be stored to be retained even in case of power failure.
 - *Status display* Three seven-segment displays indicate operating states and any malfunctions.
 - *Keys* Three keys are provided on the front panel for operation and error acknowledgement.
 - Indexer The indexer (movement profile generator) generates a pulse sequence from the current movement parameters (travel, speed and acceleration). This pulse sequence is passed on to the power controller.
 - *Power controller* The power controller converts the pulse sequence received from the indexer into a current pattern for controlling the 3-phase stepping motor. The motor phase current can be set on the front panel; see chapter 3.5.

- **1.2.2 Operating modes** The following operating modes can be set on the front panel.
 - Manual mode via front panel

right using the front panel keys.

- Automatic mode
- Editing mode

Manual mode via front panel

NOTE

In controller automatic mode, manual mode and teach-in mode is possible via the signal inputs of the controller if the corresponding application program was loaded into the controller; see ProOED3 documentation.

In manual mode via front panel, you can move the motor to the left or

Automatic mode

In automatic mode, you can start an application program which is loaded in the controller. The application program must previously have been created using a PC and the ProOED3 programming software and loaded into the controller (download).

NOTE

Since the controller does not have a battery-buffered main memory, the application program must be written to the controller's EEPROM after downloading. When switching on the controller, the application program is automatically loaded from the EEPROM into the main memory of the controller.

Editing mode

In controller editing mode, you can load an application program created with the PC and the ProOED3 programming software on the controller and test it in on-line mode.

Fig. 1-3 System environment

Axis operating modes

In controller automatic mode, you can use the ProOED3 command "mode" in the application program to activate the following axis operating modes:

- Point-to-point mode Positioning the axis from a given point A to a given point B at a programmed acceleration, speed and travel. Positioning can be effected with absolute values (relative to a reference point) or with incremental values (relative to the current position).
- Position following mode (electronic gear)
 In position following mode, you can implement an electronic gear via the encoder interface of the controller or a variable. The pulses fed to the encoder interface or stored in the variable are multiplied with a gear ratio and used for controlling the stepping motor.

Rotation monitoring

If the controller is equipped with an encoder interface (RS 422 IN), you can activate motor rotation monitoring from the application program; see ProOED3 documentation. For rotation monitoring, the motor must be fitted with an encoder. The rotation monitoring feature compares the set and actual positions of the motor and reports a rotation monitoring error if the difference between set and actual position exceeds a certain limit value (19 steps).

1.3 **Technical data**

1.3.1	General data	Power fail safe application program Power fail safe memory for 3 variat	n memory EEPROM bles FRAM
	<u>/</u>	ATTENTION After power-off, the contents of the for a certain period: – at an ambient temperature of 3 – at an ambient temperature of 5	he FRAM variables is retained only 30°C: approx. 250 days 50°C: approx. 60 days
		Memory space for sequence progra Memory space for PLC program	am 2000 instructions 1000 instructions
		Time for a PLC instruction	approx. 1.5 ms
1.3.2	Electrical data	Supply voltage, selectable	115 VAC 230 VAC to 240 VAC
	Mains connectio	Power loss WDP3-014 WDP3-018	60 W max. 110 W max.
		Mains frequency	50 to 60 Hz
		Mains error protection	one period
		Overvoltage stability acc. to DIN VI	DE 0160 Class 1
		Nominal power consumption WDP3-014 WDP3-018	3.6 A at 115 VAC 2.0 A at 230 VAC 6.5 A at 115 VAC 3.5 A at 230 VAC
		Starting current	70 A max
		Leakage current (IEC60990)	Motor cable <5m : <10mA Motor cable 5-50m : <50mA
		External fuse	6 A at 230 VAC 10 A at 115 VAC ("K" characteristic)
		NOTE The devices may only be operate	ed with fuse protection as specified
		lf necessary, use r.c.c.b. protect part 1/10.85.	tion according to DIN VDE 0664,
	System supp	bly Supply voltage	20 VDC to 30 VDC
	via siyilal illeridCe	Power consumption	1 A max.
		Ripple voltage	< 2 V _{pp}
		NOTE The 24 V voltage supply must meet t	the specifications of the DIN standard

The 24 V voltage supply must meet the specifications of the DIN standard VDE 0160 on safety extra-low voltage.

Motor connection	Phase curren WDP3 WDP3	nt 3-014 3-018		0.1 A to 2.5 A 0.1 A to 6.8 A
	No. of steps		1000 steps	per revolution
	Pulse rate			40 kHz max.
	Motor voltag	e	3 x 325 VDC (conne	cted to mains)
	Motor cable	(observe EN 60204 Length Cross-section	t standard) m ≥ 0.75 mm ² at cable ≥ 1.5 mm ² at cable	naximum 50 m length ≤ 30 m length > 30 m
	Shield conne	ection		On both ends
Signal interface	Electrical cl	haracteristics of th	ne inputs	
	Polarity reve 0.8 ms to 1.5	ersal protection, har 5 ms)	dware debounce (settl	ing time
	Signal voltag	ge U _{high}	15 V	DC to 30 VDC
	Signal voltag	ge U _{low}		< 3 VDC
	Input current	t at 24 VDC		7 mA
	Electrical cl	haracteristics of th	ne outputs	
	Short-circuit	protected, inductive	e loadability	
	Maximum ou	utput voltage		30 VDC
	Maximum sv	vitching current on	output Q0	400 mA
	Voltage drop	o at 400 mA		< 2 VDC
	Maximum sv	vitching current on	outputs Q1 to Q3	50 mA
	Voltage drop	o at 50 mA		< 2 VDC
	DANGER The signal connection voltage tow	inputs and the 24 must be definitely ards ground must	VDC supply voltage y isolated from mains t not exceed 60 VDC o	es on the signal s. The maximum or 25 VAC.
Serial interfaces	RS 232 inter	rface (option)		
	Internal leak	age resistance towa	ards ground	1 Mohm
	RS 485 four	-wire interface (or	otion)	
	Short-circuit	protected	150 mA max.	at short-circuit
	Internal leak	age resistance towa	ards ground	1 Mohm
	Supply voltage for MP 923	ge output	(10 VDC min.,	12 VDC 18 VDC max.)

Encoder interface	RS 422 IN signal level (optic	n)	
	Short-circuit protected		
	Internal leakage resistance to	wards ground 1 Mohr	n
	Maximum cable length	100 n	n
	Wire cross-section	2 x 0.5 mm ² and 10 x 0.25 mm	2
	Shield connection	On both ends	s
	Supply voltage output	5 VDC ±5% (300 mA max.	.))r
	12 VDC, 10 V	DC min./18 VDC max. (200 mA max.	.)
Device protection	Protection and monitoring circ short-circuit between motor le voltage and overvoltage	uits: Power amplifier overtemperature ads (no ground fault protection), unde	e, er
	Type of protection	IP 20 acc. to EN 60529: 1997	1
Mechanical data	Dimensions (fig. 1-4)	249 x 240 x 52 mn	n
	Weight	approx. 3200 g	g
Ambient conditions	Ambient temperature	0°C to +50°C	С
	Storage temperature	-25°C to +70°C	С
	Relative humidity	15% to 85% (non-condensing	% J)

Fig. 1-4 Dimensions

1.3.3

1.3.4

Regulations Machiner 1.3.5

1.5.5	Machinery directive	Insofar as the other eq tive 89/392/EWG and t requirements of BERGE directive is hereby certif	uipment complies with the machinery direc- he configuration meets the EMC testing ER LAHR, conformity with the machinery ied.
	EMC directive	In a configuration which BERGER LAHR, confor	meets the EMC testing requirements of mity with the following standards can be with the EMC directive 89/336/EWG:
		Radio interference sup (when using a mains fi	pression according to EN 50081-2: 1993 Iter, see Accessories)
		Static discharge	according to EN 60801-2: 1993, class 3
		Burst	according to IEC 801-4: 1988, class 4
	BERGER LAHR EMC testing requirements	 Use motor leads s Motor lead length 	supplied by BERGER LAHR. is 10 m.
		 Insert a mains fil mains power supp 	ter supplied by BERGER LAHR into the bly line.
		 Install the unit in a 	a switch cabinet.
		 Use signal lines suitable ing to the docume 	upplied by BERGER LAHR and wire accord- entation.
		 Run signal, mains establish a large and ground/earth. 	and motor cables separately (non-parallel) and surface area contact between the cable shield
		 Install the mains f a shielded connec unit. 	ilter directly at the unit. If this is not possible, use ction cable (1 m max.) between the filter and the
		 Establish a large ground (mount on rear wall or use a get 	surface area contact between filter/device and a grounded metal plate or on the switch cabinet ground strap).
Low	voltage equipment directive	Pursuant to the low-vol products are in conform	Itage equipment directive 73/23/EEC, the nity with the following standards:
		Protection class	1 acc. to prEN 50178: 1994
		Overvoltage	Category III acc. to prEN 50178: 1994
		Contamination	Grade 2 acc. to prEN 50178: 1994
1.3.6	Approvals	prEN 50178 classificat	ion VDE 0160/11.94
		EN 60950 classification	n VDE 0805: 1993 + A2: 1994
		UL 508 file no. 153 659	9

2 Installation

2.1 Scope of supply

Check that the delivery is complete.

The scope of supply (fig. 2-1) comprises:

Qty.	Designation
1	Positioning and sequence control unit WDP3-014 with OED3 or WDP3-018 with OED3
1	Product insert
1	Ground strap
4	Mounting bracket
1	Fan for WDP3-018 with OED3

Fig. 2-1 Scope of supply

2.2 Accessories

The following accessories are available and must be ordered separately (for a description of accessories, see chapter 6.2):

- ProOED3 programming software (documentation with diskettes)
- 3-phase stepping motor
- Cable for encoder
- Fan for WDP3-018
- Motor cable 3 x 1.5 mm and 2 x 1.0 mm
- Motor cable 3 x 2.5 mm and 2 x 1.5 mm
- Mains filter
- MP 923 interface converter RS 232/RS 485
- RS 232/PC signal cable
- RS 422 IN/customer signal cable
- MP 924 interface distributor RS 485
- RS 485 LS/MP 923 signal cable
- Signal connection/customer signal cable
- Signal connection cable
- Signal cable for adapter slot option 1
- Signal cable (encoder) for adapter slot option 2
- Signal cable (pulse, direction) for adapter slot option 2
- Set of connectors (all sub-D connectors)
- Electronic gear cable

NOTE

Refer to the sales documentation for the positioning and sequence control unit WDP3-01X with OED3 for the accessory order numbers.

2.3 Assembly

DANGER

The supply voltage must be disconnected whenever assembly work is carried out.

NOTE

When installing the unit, a minimum clearance of 10 cm must be ensured above and below the unit or to the adjacent unit. Leave 15 cm free in front of the unit to give room for fitting the cable connections.

The unit should be installed vertically in a switch cabinet and it may be necessary to provide external ventilation (see fig. 2-3). You can use the mounting brackets to install the unit on the rear or on the left (fig. 2-2).

Fasten the ground strap supplied at the bottom front of the unit with screws and connect it to a grounded part of the switch cabinet.

ATTENTION

Clean air supply must be ensured in the switch cabinet.

Fig. 2-2 Installation

Ventilation The positioning and sequence control unit WDP3-014 with OED3 can be operated without ventilation, if the minimum clearances (10 cm) are observed. The positioning and sequence control unit WDP3-018 with OED3 can be operated without ventilation up to a phase current of 3.7 A and an ambient temperature of 50°C. If these values are exceeded or if the status display "07" repeatedly indicates overtemperature, the unit must be ventilated externally (fig. 2-3). The fan on the WDP3-018 unit with OED3 must be mounted at the bottom. Accessory fan The airstream must pass through the unit from bottom up (see fig. 2-2). The arrow on the fan indicates the direction of the airstream if the fan is connected correctly (red = 24 VDC, black = 24 VGND). Fasten the fan with four screws at the bottom of the unit after having cut out the grille (see chapter 6.2.1). Connect the fan to the external 24 VDC voltage supply. NOTE

Ensure that the airstream in and around the unit is unobstructed.

Fig. 2-3 Temperature – phase current – ventilation

2.4 Wiring

DANGER

The supply voltage must be disconnected whenever wiring work is carried out.

DANGER

The motor connection is internally linked to the supply connection (325 V).

ATTENTION

Wiring work may only be carried out in accordance with the DIN standard VDE 0105 by trained personnel.

ATTENTION

Run and shield power, motor and signal cables separately.

ATTENTION

Free, unassigned pins must not be wired.

ATTENTION

The unit must have external fuse protection (see chapter 1.3).

ATTENTION

Good heat dissipation must be ensured when installing a bleed resistor (accessory).

NOTE

See chapter 1.3 for the technical data of the individual connections and interfaces.

NOTE

The interfaces installed in the device are indicated on the type plate.

NOTE

The ground connections of the interfaces in adapter slots 21 and 22 are internally interconnected.

NOTE

Shield connection on both ends ensures optimum protection against interference for digital systems. However, it should be noted that differential potentials (in particular in case of supply from different sources) may cause inadmissible currents in the shields. Such interfering currents can be avoided by using suitable bonding conductors. The following crosssections should be used for bonding lines:

16 mm^2 Cu for bonding lines up to 200 m 25 mm^2 Cu for bonding lines longer than 200 m

Wiring layout Figure 2-4 illustrates the wiring layout of the positioning and sequence control unit with the available interfaces.

Communication between PC and positioning and sequence control unit is effected either through the RS 232 or the RS 485 interface, depending on the actual interface configuration.

NOTE

If the controller is provided with an RS 485 interface and the PC with an RS 232 interface, an interface converter (e.g. MP 923, see chapter 6.2.3) must be used.

Fig. 2-4 Wiring diagram

2.4.1 Mains connection 230V

1.

Set the 115 V or 230 V mains voltage on the selector switch at the unit top.

- 2. Mount wire end ferrules on the device end of the mains power cable.
- 3. Fasten three litz wires (fig. 2-5) with screws:
 - L Phase (115 VAC or 230 VAC)
 - N Neutral
 - PE Protective conductor

NOTE

A mains filter can be inserted in order to shield the unit against interference (see chapter 6.2.2).

Fig. 2-5 Mains connection – device end

2.4.2 Motor connection

- 1. Release the two screws and remove the connector (fig. 2-7) from the unit.
- 2. Preparation the motor cable (fig. 2-6), and mount wire end ferrules on the device end of the motor cables.
- 3. Fasten the litz wires with screws.
- 4. Fastenthe connector to the front panel (item 24) with screws.

Preparation the motor cable

Fig. 2-6 Preparing the motor cable

Fig. 2-7 Motor connection

NOTE

An additional bleed resistor can be used for dissipating a higher amount of braking energy (see chapter 6.2.4).

NOTE

The sense of rotation of the motor can be inverted by interchanging two motor leads. In this case, also the limit switch inputs LIMP and LIMN as well as the A and A signals of any rotation monitoring encoder connected must be interchanged.

ATTENTION Connect the shield of the motor cable after the following assembly instruction!

Installing the motor cable

The following items required for installing the motor cable on the side of the device are included in the accessory bag:

Qty.	Designation
1	Terminal angle
1	Shield terminal
1	Screw M4 x 8
2	Screw M3 x 8 with serrated washer
1	Serrated washer M4

Installing the terminal angle

DANGER

Electric shock from high voltage! If longer screws are used, they may contact live parts. This may result in fatal injury.

The terminal angle is fastened to the bottom of the device with the screws and serrared washers supplied with the device. Correct installation of the terminal angle is extremely important for grounding the motor cable shield and for strain relief.

Fig. 2-8 Installing the terminal angle

DANGER

Electrical device with higher deflection current > 3,5mA. Connection of a second protective conductor absolutely necessary. Please note minimum cross-section according to IEC 60364-5-54. *Fastening the shield terminal* The left position is provided for fastening the cable tothe fastening brakket.

Fig. 2-9 Fastening the shield terminal

The shield angle is suspended on the bracket from below. The motor cable is not subject to strain and securely grounds shield when installed in this way.

Fig. 2-10 Installed motor cable

2.4.3 Signal interface

The signal inputs I 16 to I 20 are pre-assigned ex works. The other signal inputs and outputs can be freely assigned.

1. Solder the litz wires to the connector according to the signal connection pin assignment table.

ATTENTION Free, unassigned pins must not be wired.

NOTE

Connect system supply voltage ground to protective ground.

- 2. Push the shield back and fix with a cable tie.
- 3. Insert two bolts (fig. 2-7) into the connector shell.
- 4. Place the connector into the connector shell.
- 5. Fasten the cable and the shield to the connector shell by clamping it with the strain relief bracket.

ATT Ens

ATTENTION

Ensure good electrical contact between the shield and the connector shell.

Connect the shield on both ends.

- 6. Assemble the two parts of the connector shell with two screws.
- 7. Fasten the connector to the front panel (item 23) with the bolts.

DANGER

All signal connections must be definitely isolated from mains. The voltage towards ground must not exceed 60 VDC or 25 VAC. All signal circuits are internally grounded via a 1 Mohm bleed resistor.

Fig. 2-7 Signal connector assembly – device end

2.4.3.1 Signal connection pin The following table shows the pin assignment of the signal connection. assignment

1*I13: LIMNNegative limit switch I/O supply voltage \leftarrow 234111 \leftarrow 5110 \leftarrow 6*I14: REFReference switch \leftarrow 717 \leftarrow 815 \leftarrow 913 \leftarrow 1011 \leftarrow 11- $-$ 121314Q3 \rightarrow	Pin		Assignment	
VO supply voltage \leftarrow 234111 \leftarrow 5110 \leftarrow 6*114: REFReference switch717 \leftarrow 815 \leftarrow 913 \leftarrow 1011 \leftarrow 11- $-$ 121314Q3 \rightarrow	1*	I 13: LIMN	Negative limit switch	\leftarrow
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			I/O supply voltage	\leftarrow
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	-	-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	-	-	
5110 \leftarrow 6^* I 14: REFReference switch \leftarrow 717 \leftarrow 815 \leftarrow 913 \leftarrow 1011 \leftarrow 11 $ -$ 12 $ -$ 13 $ -$ 14Q 3 \rightarrow	4	I 11		\leftarrow
6^* I 14: REFReference switch \leftarrow 717 \leftarrow 815 \leftarrow 913 \leftarrow 1011 \leftarrow 11 $ \leftarrow$ 12 $ -$ 13 $ -$ 14Q 3 \rightarrow	5	I 10		\leftarrow
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6*	I 14: REF	Reference switch	\leftarrow
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	17		\leftarrow
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	15		\leftarrow
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	13		\leftarrow
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	11		\leftarrow
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11	_	-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	_	-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13	-	-	
	14	Q 3		\rightarrow
$ $ 15 $ $ Q 1 \rightarrow	15	Q 1		\rightarrow
16* 24VDC System supply voltage ←	16*	24VDC	System supply voltage	\leftarrow
17* 24VDC System supply voltage	17*	24VDC	System supply voltage	\leftarrow
18* IO24VDC I/O supply voltage	18*	IO24VDC	I/O supply voltage	\leftarrow
19* IO24VDC I/O supply voltage	19*	IO24VDC	I/O supply voltage	\leftarrow
20* I 12: LIMP Positive limit switch ← I/O supply voltage	20*	I 12: LIMP	Positive limit switch I/O supply voltage	← ←
	21	_		
22	22	_		
23* 115: STOP Stop 4	23*	115: STOP	Stop	4
	24	_	_	`
25 18	25	18		
	26	16		
27 14	27	14		
28 12	28	12		
29 10	29	10		<
	30	_	_	<u> </u>
	31	_	_	
32	32	_		
33 Q 2	33	Q 2		\rightarrow
34 00	34	00		
35* GND System and I/O supply voltage ground	35*	GND	System and I/O supply voltage ground	-
36* GND System and I/O supply voltage ground	36*	GND	System and I/O supply voltage ground	4
	37	_		<u></u>

Minimum wiring requirement for starting up via front panel (e.g. manual movement mode).

Signal = active low I = Input Q = Output

*

Fig. 2-8 Wiring example

2.4.4 RS 232 serial interface

(OPT.1)

NOTE The RS 232 serial interface is installed in adapter slot 21; see type plate.

1. Solder the litz wires to the connector in accordance with fig. 2-9 and fig. 2-10.

Pin	Signal	Description
1	-	_
2	RXD	Received data \leftarrow
3	TXD	Transmitted data \rightarrow
4	_	_
5	GND	Ground
6	_	_
7	_	_
8	_	_
9	_	_

 $\leftarrow \ \text{Input} \ \rightarrow \ \text{Output}$

- 2. Push the shield back and fix with a cable tie.
- 3. Insert two bolts (see fig. 2-11) into the connector shell.
- 4. Place the connector into the connector shell.
- 5. Fasten the cable and the shield to the connector shell by clamping it with the strain relief bracket.

ATTENTION

Ensure good electrical contact between the shield and the connector shell.

Connect the shield on both ends.

- 6. Assemble the two parts of the connector shell with two screws.
- 7. Fasten the connector to the front panel (item 21) with the bolts.

ATTENTION

For reasons of noise immunity, the RS 232 cable should be as short as possible (15 m max.)!

NOTE

The attachment screws of the connector shells must have M3 thread on the device end and UNC thread on the PC end.

NOTE

With an RS 232 interface, networking is not possible.

Fig. 2-11 Interface connector assembly – device end

F

2.4.5 RS 485 serial interface

0

OPT.1

(OPT.1)

NOTE

NOTE

The RS 485 serial interface is installed in adapter slot 21; see type plate.

- The serial interface is a four-wire interface.
- 1. Solder the litz wires to the connector as illustrated in fig. 2-12.

Pin	Signal	Description	
1, 6	12VDC	MP 923 supply voltage	\rightarrow
2, 7	GND	MP 923 supply voltage ground	\rightarrow
3	TXD	Inverted transmitted data	\rightarrow
4	RXD	Inverted received data	\leftarrow
5	SGND	Signal ground	
8	TXD	Transmitted data	\rightarrow
9	RXD	Received data	\leftarrow

 $\leftarrow \quad \mathsf{Input} \quad \rightarrow \quad \mathsf{Output}$

- 2. Push the shield back and fix with a cable tie.
- 3. Insert two bolts (see fig. 2-13) into the connector shell.
- 4. Place the connector into the connector shell.
- 5. Fasten the cable and the shield to the connector shell by clamping it with the strain relief bracket.

ATTENTION

Ensure good electrical contact between the shield and the connector shell.

Connect the shield on both ends.

- 6. Assemble the two parts of the connector shell with two screws.
- 7. Fasten the connector to the front panel (item 21) with the bolts.

NOTE

For a PC with RS 232 interface, the MP 923 interface converter can be used (see chapter 6.2.3).

Fig. 2-12 Interface connection – device end

Fig. 2-13 Interface connector assembly – device end

2.4.6 Encoder interface (OPT.2)

The encoder connection can be used either for rotation monitoring or for an electronic gear (position following mode).

NOTE

The encoder interface is installed in adapter slot 22; see type plate.

- *Wiring* 1. Solder the litz wires to the connector as described below.
 - 2. Push the shield back and fix with a cable tie.
 - 3. Insert two bolts (fig. 2-14) into the connector shell.
 - 4. Place the connector into the connector shell.
 - 5. Fasten the cable and the shield to the connector shell by clamping it with the strain relief bracket.

ATTENTION

Ensure good electrical contact between the shield and the connector shell. Connect the shield on both ends.

- 6. Assemble the two parts of the connector shell with two screws.
- 7. Fasten the connector to the front panel (item 22) with the bolts.
- 8. Twist the encoder cable wires in pairs.
- 9. Establish the connection on the motor end.

ATTENTION

When using 5 V encoders, –SENSE must be connected to 5VGND and +SENSE to 5VDC on the encoder end of the cable.

NOTE

The encoder signal type (pulse/direction or A/B signals) and the internal evaluation (single, double or quadruple) must be selected for an electronic gear (see chapter 6 in the ProOED3 documentation).

Fig. 2-14 Encoder connector assembly – device end

Pin	Signal	Description	
1	А	Encoder signal A	<u>(</u>
2	5VDC	Sensor supply voltage -	\rightarrow
3	5VGND	Sensor supply voltage ground -	\rightarrow
4	12VDC	Sensor supply voltage -	\rightarrow
5	B	Encoder signal B	\leftarrow
6	_	_	
7	TEMP_MOT	Line interruption	\leftarrow
8	_	_	
9	Ā	Encoder signal A	\leftarrow
10	+SENSE	Sense regulator 5VDC	\leftarrow
11	-SENSE	Sense regulator 5VGND	\leftarrow
12	В	Encoder signal B	<u>(</u>
13	_	_	
14	_	_	
15	-	-	

Encoder interface: Encoder signal type A/B

 $\overline{\text{Signal}} = \text{active low} \quad \leftarrow \quad \text{Input} \quad \rightarrow \quad \text{Output}$

The encoder can be supplied with 12 V or from a 5 V sense regulator.

ATTENTION

When using 5 V encoders, –SENSE must be connected to 5VGND and +SENSE to 5VDC on the encoder end of the cable.

ATTENTION

The <u>TEMP_MOT</u> input is used for detecting a line interruption. For this purpose, <u>TEMP_MOT</u> must be connected to 5VDC on the encoder.

\bigcirc		Pulse/direction signals
$ \begin{array}{ c c c c c c } & \bigcirc & $	white brown red violet blue black red/blue green yellow grey/pink	PULSE PULSE SVDC +SENSE 5VGND -SENSE 12VDC DIR DIR TEMP_MOT
\subseteq		

Encoder interface: Pulse/direction signal type

Pin	Signal	Description
1	PULSE	Pulse
2	5VDC	Sensor supply voltage \rightarrow
3	5VGND	Sensor supply voltage ground \rightarrow
4	12VDC	Sensor supply voltage \rightarrow
5	DIR	Direction \leftarrow
6	_	_
7	TEMP_MOT	Line interruption \leftarrow
8	_	_
9	PULSE	Pulse
10	+SENSE	Sense regulator 5VDC \leftarrow
11	-SENSE	Sense regulator 5VGND \leftarrow
12	DIR	Direction
13	-	_
14	_	_
15	_	_

 $\overline{\text{Signal}} = \text{active low} \quad \leftarrow \quad \text{Input} \rightarrow \quad \text{Output}$

The encoder can be supplied with 12 V or from a 5 V sense regulator.

ATTENTION

When using 5 V encoders, –SENSE must be connected to 5VGND and +SENSE to 5VDC on the encoder end of the cable.

ATTENTION

The <u>TEMP_MOT</u> input is used for detecting a line interruption. For this purpose, <u>TEMP_MOT</u> must be connected to 5VDC on the encoder.

Fig. 2-15 Pulse/direction timing diagram

2.5 Setup

2.5.1 Defaults

After switching on, and after program start, the unit is set to the following default parameters:

Parameter	Default
Axis operating mode	Point-to-point
Motor position	0
Number of steps	1000 steps per revolution
Maximum system speed	32768 Hz
Set speed	1000 Hz
Start/stop speed	100 Hz
Safety distance for reference movement	0 steps
Acceleration	125 Hz/ms (linear ramp)
Signal evaluation	Positive and negative limit switch, stop
Normalizing factors for position	Numerator 1000; Denominator 1000
Gear ratio for electronic gear	Numerator 0; Denominator 1; Gear ratio 0
Motor current (can be set via front panel)	WDP3-014 = 0.5 A WDP3-018 = 1.0 A
when stepped	as a percentage of front panel setting
when accelerating/decelerating at constant speed	100% 80%
Rotation monitoring	inactive

NOTE

For other control parameters, see ProOED3 documentation.

NOTE

Before starting up the unit for the first time, check that the connected motor is suitable for the respective device variant (see chapter 6.1) and that the controller has been wired correctly (see chapter 2.4). For starting up via the front panel, the minimum wiring requirements for the signal interface must be observed (see chapter 2.4.3.1).

ATTENTION

The mains power supply and the 24 V supply voltage of the unit must be switched off.

Set the mains voltage to 115 V or 230 V, as appropriate, with the 1. selector switch on the unit top.

ATTENTION

The setting must correspond to the actual mains voltage available.

- 2. Check that all connectors are properly connected.
- 3. Switch on the power supply for the power controller.
- Switch on the 24 V supply voltage for the processor unit. 4. (Mains voltage and 24 V supply voltage may also be switched on simultaneously.)
- Press the \bigcirc key until "01" is displayed. The controller is now in 5. STOP status.
- 6. Set the motor phase current in accordance with the motor type plate:
 - Press the \bigcirc key until "01" starts flashing in the display.
 - Press and hold the key and press the key several times until "11" is displayed.
 - Release the event way. The latest selection appears flashing in the seven-segment display: Display = Motor phase current (in A)
 - Use the (+) and (-) keys to set the motor phase current according to the motor type plate.
 - Confirm and input the set value by pressing the key.

ATTENTION

The set phase current must be equal to or less than the nominal phase current specified on the motor type plate (the lower the set phase current, the lower the motor torque).

2.5.2 Motor test

A manual movement should be executed in order to check the motor wiring and the current settings:

- Press the O key until "01" starts flashing in the display.
- Press and hold the experiment key and press the two several times until "91" is displayed.
- Release the ^(c) key. An "M" starts flashing in the seven-segment display.
- Move the motor in single step or continuous running mode by pressing \oplus and \bigcirc as appropriate:

 Hey
 Clockwise rotation
 Key
 Counterclockwise rotation (as seen from front towards the motor shaft)

– Exit manual mode by pressing the \bigcirc key.

Single step:

If you press the key only briefly, the motor performs a single step.

Continuous operation:

If you keep the key pressed, the motor starts at a speed of 100 Hz. As long as you keep the key pressed, the speed increases up to 4 kHz in 5 speed steps.

NOTE

The sense of rotation of the motor can be changed by inverting the motor lines. If you do this, you also have to interchange the limit switch inputs LIMP and LIMN as well as the signals A and A of any connected encoder for rotation monitoring.

NOTE

Further tests, e.g. I/O test, are available in the ProOED3 programming software; see ProOED3 documentation.

3 Operation

3.1 Controller operating modes

Processor unit status displays	Operating mode	Description	Reference
	Controller STOP	Program execution stopped	See chapter 3.3
Ed	Editing mode	Programming with ProOED3 software	See ProOED3 documen- tation
	Set motor current	Setting the motor phase current according to motor type plate	See chapter 3.5
91	Manual mode	Moving the motor manually via front panel keys during drive setup and tecting	See chapter 3.6
		unve setup and testing	
•	Automatic mode	Automatic program execution	See chapter 3.7

The following figure shows the major mode transitions:

Fig. 3-1 Mode transitions

3.2 Switching ON

ATTENTION

The mains voltage set on the selector switch must correspond to the required supply voltage (see type plate).

DANGER

Persons or electrically conductive objects must never touch live parts of the device or equipment.

DANGER

The movement range of the equipment must be kept clear of persons and objects.

ATTENTION

The unit must be grounded with a protective conductor.

The basic settings of the unit must conform to the actual requirements; see chapter 2.5.

The following requirements must be fulfilled before switching on the unit:

Requirement	Reference
Ambient conditions in line with the technical data?	See chapter 1.3
Sufficient space for ventilation available?	See chapter 1.3
Wiring of the unit (in particular signal inputs for limit switches, reference switch and stop) carried out properly?	See chapter 2.4
Mains voltage set correctly on the selector switch?	See chapter 2.5
Motor phase current set correctly?	See chapter 2.5

1. Switch on the power supply for the power controller.

ATTENTION

If a program was loaded into the controller's EEPROM with the ProOED3 programming software, the program starts automatically after power-on.

You can prevent this by pressing the \bigcirc key while switching on.

2. Switch on the supply voltage for the processor unit (24 VDC). After power-on, the controller performs a self-test with the hardware and software components. Fig. 3-2 shows the power-on sequence of the controller.

Fig. 3-2 Power-on sequence

3.3 Controller STOP

The application program is stopped. To change to this status, press the \bigcirc key until "01" is displayed.

From this status, you can call various functions:

- Editing mode for programming the controller with the ProOED3 programming software.
- Setting the motor phase current.
- Manual movement of the motor with the \oplus and \bigcirc keys on the front panel.

When you set the controller to automatic mode by pressing the $^{(\pm)}$ key, the program always starts at the beginning.

3.4 Editing mode

○√

This operating mode is used for programming and operation with $\ensuremath{\mathsf{ProOED3}}$.

Activate editing mode as follows:

- 1. Press the \bigcirc key until "01" is displayed. The controller is now in STOP status.
- 2. Press and hold the key and press the key several times until "Ed" is displayed.

You can now program the controller with a PC and the ProOED3 software.

NOTE

For more information, refer to the ProOED3 documentation.

3.5 Setting the motor phase current

Since it is possible to connect various motor types to the controller, the maximum phase current must be adjusted to the motor actually connected.

- 1. Press the \bigcirc key until "01" is displayed. The controller is now in STOP status.
- 2. Press the \bigcirc key until "01" starts flashing in the display.
- 3. Press and hold the ⁽e) key and press the ⁽⁺⁾ key several times until "11" is displayed.
- 4. Release the ⁽²⁾ key. The latest selection appears flashing in the seven-segment display: Display = Motor phase current (in A).
- Use the ⁺ and ⁻ keys to set the motor phase current according to the motor type plate. Confirm and input the set value by pressing the [€] key.

ATTENTION

The set phase current must be equal to or less than the nominal phase current specified on the motor type plate (the lower the set phase current, the lower the motor torque).

3.6 Manual mode via front panel

Before calling manual mode, you must set the correct motor phase current first; see chapter 3.5.

In manual mode, you can move the stepping motor manually using the controller front panel keys. You can do this either in single steps or in continuous running mode.

Proceed as follows:

- 1. Press the \bigcirc key until "01" is displayed. The controller is now in STOP status.
- 2. Press and hold the (+) key and press the (+) key several times until "91" is displayed.
- 3. Release the [€] key. An "M" starts flashing in the seven-segment display.
- 4. Move the motor in single step or continuous running mode by pressing \oplus and \bigcirc as appropriate:
 - (+) key
 Clockwise rotation
 Counterclockwise rotation (as seen from front towards motor shaft)

Single step:

If you press the key only briefly, the motor performs a single step.

Continuous operation:

If you keep the key pressed, the motor starts at a speed of 100 Hz. As long as you keep the key pressed, the speed increases up to 4 kHz in 5 speed steps.

5. Exit manual mode by pressing the $\textcircled{}{}$ key.

NOTE

The sense of rotation of the motor can be changed by inverting the motor lines. If you do this, you also have to interchange the limit switch inputs \overline{LIMP} and \overline{LIMN} as well as the signals A and A of any connected encoder for rotation monitoring.

NOTE

In manual mode, all limit switches are monitored.

3.7 Automatic mode

Before calling automatic mode, you must set the correct motor phase current first; see chapter 3.5.

In this mode, an application program developed with the ProOED3 programming software can be executed.

Program start

As a prerequisite, an application program must have been loaded into the controller and written to the controller's EEPROM with the ProOED3 programming software.

Automatic mode is automatically activated after controller power-on. In controller STOP status, the $^{(+)}$ key must be pressed for approx. 3 sec. to activate automatic mode.

NOTE

NOTE

An application program can also be started, stopped or tested ("debugged") from the programming device ("on-line").

- The program is always executed from program start.
 - \rightarrow A dot is displayed in the status displays.

For more information, see ProOED3 documentation.

3.8 Programming

Programming of the unit is effected in editing mode (see chapter 3.4) using the ProOED3 programming software and a PC.

ATTENTION

Before switching off power supply the programme transfer must be completed.

Important program data will otherwise be destroyed which can only be restored by the Berger Lahr Service.

Documentation note

Programming an application program with ProOED3 is described in the ProOED3 documentation.

3.9 Switching OFF

Switch off the supply voltages for the power controller and the processor unit.

ATTENTION

The connected motor is deenergized after disconnecting the power controller supply voltage, i.e. it does not have any holding torque. Before disconnecting the supply voltage, ensure that any vertical loads are prevented from falling down (e.g. use motor with brake).

4 Malfunctions

4.1 Status indicators

Processor unit status displays

The two seven-segment displays on the right (item 20) indicate operating states, malfunctions on the processor unit and power controller (see chapter 4.2 for a troubleshooting table).

The displays show the following operating modes:

Processor unit status displays	Operating mode	Description
	Controller STOP	Program execution stopped; see chapter 3.3
Ед	Editing mode	Programming with the ProOED3 software; see chapter 3.4
	Set motor current	Setting the motor phase current according to the motor type plate; see chapter 3.5
ן פ ר ח	Manual mode	Moving the motor manually using the front panel keys during drive setup and testing; see chapter 3.6
•	Automatic mode	Automatic program execution; see chapter 3.7

4.2 Troubleshooting tables

The following table lists the possible malfunctions indicated with an error code in the status display (item 20), their possible causes and methods for rectification.

If several errors occur, the corresponding error codes are stored in the controller.

The error codes can be displayed one after the other by pressing the O key.

Display Cause I		Rectification	
A	Self-test error	Call Technical Services department.	
Ε 🛛	Motor lead short-circuit	Check the motor wiring.	
	Power controller not ready	Switch on the supply voltage.	
	Line interruption	Disconnect the unit and check the cable.	
05	Overvoltage on power controller	Connect a bleed resistor; see chapter 6.2.4.	
\Box 7	Power controller overtemperature	Let the power controller cool down while the motor is at a standstill.	
		Install a fan set; see chapter 6.2.1.	
08	Error on encoder for electronic gear; line broken	Check encoder wiring; see chapter 2.4.6.	
$\Box \Box$	Motor overtemperature	Reduce the phase current; see chapter 3.5.	
		Reduce the load.	
	Power controller undervoltage (<200 V)	Check the voltage supply.	
2	Rotation monitoring active, contouring error	Check mechanical components for ease of movement.	
4	Power controller without voltage supply	Check voltage supply. Switch on the voltage supply for the power controller first before switching on the voltage supply for the processor unit.	
	Internal power controller defective	If switching on is not possible, call Technical Services department.	
16	Short-circuit on an output q	Check signal connector wiring; see chapter 2.4.3.	
20	Incorrect limit switch LIMP or limit switch malfunction	Check wiring and function of the limit switch or the sense of rotation of the motor; see chapter 2.4.3.1. LIMP must be approached with CW rotation of the motor.	
21	Incorrect limit switch LIMN or limit switch malfunction	Check wiring and function of the limit switch or the sense of rotation of the motor; see controller manual. LIMN must be approached with CCW rotation of the motor.	
	CW limit switch LIMP actuated	Move out of the limit switch range in manual mode; see chapter 3.6.	
E 5	CCW limit switch LIMN actuated	Move out of the limit switch range in manual mode; see chapter 3.6.	

Display	Cause	Rectification
26	Reference switch defective or disconnected	Check the reference switch.
<u>]</u>	STOP input active	Deactivate the STOP input.
40 41 42	Internal errors: 40 = Error during initialization 41 = Error in SEQUENCE component 42 = Error in PLC component	Controller errors, call Technical Services department.
48	OED3 operating system not found on controller	Call Technical Services department.
56	No EEPROM available	Call Technical Services department.
57	EEPROM write error	Call Technical Services department.
98	Error handling by application program	Eliminate the error by application program; see ProOED3 documentation.
		Change the control parameter "Error handling by user" in ProOED3; see ProOED3 documentation.
99	Error display by ProOED3 error menue	Display error with ProOED3 error menue and eliminate it; see ProOED3 documentation.

DANGER

The mains supply voltage must be disconnected for any check on the mains, motor, or bleed resistor wiring.

NOTE If error handling is not effected by the application program, errors can be acknowledged via the front panel keys.

Other malfunctions

The following table lists possible malfunctions which are not displayed.

Malfunction	Cause	Rectification
Motor does not move even with current available	Motor is mechanically blocked	Release motor brake, if available.
No motor torque	One or more motor leads	Check motor wiring; see chapter 2.4.2.
Motor does not move	interrupted	
Motor does not follow control	Motor leads interchanged or one or more motor leads interrupted	
	Motor and positioning and sequence control unit do not match	Use the appropriate motor type; see chapter 6.1.

DANGER

The mains supply voltage must be disconnected for any check on the mains, motor, or bleed resistor wiring.

4.3 Repair work

ATTENTION Any necessary

Any necessary repair work must not be carried out except by BERGER LAHR!

Mark all connections whenever disassembling the unit.

The set parameters and the mounting location number of the old unit must be transferred to the new one when replacing a unit.

4.4 Storage, shipment

The following requirements apply when storing units or PC boards:

- The maximum air humidity must not be exceeded (see chapter 1.3).
- The storage temperature specification must be observed (see chapter 1.3).
- Stored parts must be protected from dust and dirt.
- Units or PC boards marked with the symbol

may only be unpacked, stored and installed in an electrostatically protected environment.

- The original packing material should be kept for later use.

The following requirements apply when shipping units or PC boards:

- Units or PC boards must be shipped in their original packing material.
- PC boards without batteries or accumulators must be packed in wrapping which is electrically conductive on both sides (use original wrapping, if possible).
- PC boards with batteries or accumulators must be packed in wrapping which is electrically conductive on the outside and antistatic on the inside (use original wrapping, if possible).
- Units or PC boards marked with the symbol

may only be packed in an electrostatically protected environment.

5 Customer service

The Technical Services department offer the following services under the phone numbers given:

- Spare part information by direct line

Phone: +49 (0) 7821 - 946 - 606

Express spare part shipment from Lahr; reaches most destinations in Europe within 24 hours.

- **Technical advice in case of failures** by hotline

Phone: +49 (0) 7808 - 943 - 226

Fax: +49 (0) 7808 - 943 - 499

Internet e-mail: hotline@berger-lahr.com

Of course, the Technical Services department also offer the following services:

- On-site maintenance and
- direct communication with your service specialist.

6 Appendix

6.1 Device variants

The following device variants are available, depending on the 3-phase stepping motors with a motor voltage of 325 V which can be used and depending on the interface configuration:

Unit	For use with motor type	
WDP3-014 with OED3	Type size 90 VRDM 39xx/50 LW.	
WDP3-018 with OED3	Type size 110 VRDM 311xx/50 LW.	

Interface (adapter slot 21 OPT.1)	Encoder interface (adapter slot 22 OPT.2)	
RS 232	Not installed	LRS 422 IN
RS 485 LS	Not installed	LRS 422 IN

NOTE

The interfaces installed in the device are indicated on the type plate. The following abbreviations are used:

RS 232	Serial interface RS 232
RS 485 LS	Serial interface RS 485
LRS 422 IN	Encoder interface RS 422

6.2 Description of accessories

Fig. 6-1 Accessories

The following	accessories	mav be	ordered	separately	(see fia.	6-1):
ine reneting	400000000000000000000000000000000000000	1110, 20	0100100	ooparatory	(000 mg.	• • • • •

Item no.	Designation	Reference
1	3-phase stepping motor with or without encoder	See chapter 6.1 and 3-phase stepping motor drives catalogue
2	Fan for WDP3-014	See chapter 6.2.1.
3	Mains filter	See chapter 6.2.2.
4	MP 923 interface converter RS 232/RS 485	See chapter 6.2.3.
5	Additional bleed resistor	See chapter 6.2.4.
6	Set of connectors (all sub-D connectors)	
	Non-terminated cables	
7	Cable for encoder	
8	Motor cable 3 x 1.5 mm and 2 x 1.0 mm Motor cable 3 x 2.5 mm and 2 x 1.5 mm	
9	Signal cable for signal connection	
10	Signal cable for serial interface	See sales documentation
11	Motor encoder cable	
	Ready-made cables	
12	RS 232/PC signal cable, terminated on both ends	
13	RS 422 IN/customer signal cable, terminated on device end	
14	RS 485 LS/MP 923 signal cable, terminated on both ends	
15	Signal connection/customer signal cable, terminated on device end	

Non-terminated cables are available in the following lengths:

 $5 \ m \quad 10 \ m \quad 15 \ m \quad 20 \ m \quad 25 \ m \quad 30 \ m \quad 50 \ m \quad 75 \ m \quad 100 \ m \ 200 \ m$

Ready-made cables are available in the following lengths:

1.5 m 2 m 3 m 5 m

NOTE

Refer to the sales documentation for the positioning and sequence control unit WDP3-01X with OED3 for the accessory order numbers.

6.2.1 Fan The unit can be provided with a fan in order to improve heat dissipation (see chapter 2.3).

The fan (fig. 6-2) must be mounted at the bottom of the unit. The airstream must pass through the unit from bottom up (see fig. 2-2). The arrow on the fan indicates the direction of the airstream if the fan is connected correctly (red = 24 VDC, black = 24 VGND).

- 1. Cut out the grille on the unit.
- 2. Fasten the fan to the bottom of the unit with four screws.
- 3. Connect the fan to the external 24 VDC voltage supply.

NOTE Ensure that the airstream in and around the unit is unobstructed.

6.2.2 Mains filter

A mains filter (fig. 6-3) can be inserted into the mains supply line for radio interference suppression.

NOTE

When connecting the mains filter, the EMC testing specifications of BERGER LAHR must be observed.

Fig. 6-3 Mains filter

Ambient conditions

Storage temperature	-25°C to +70°C
Operating temperature	0°C to +55°C
Humidity class	F acc. to DIN 40040
Humidity class, tested to IEC 68 part 2-3 at: Air temperature Relative humidity non-condensing	+40°C, +2°C 93%, +2%, -3%

6.2.3	MP 923 interface converter		
6.2.3.1	General description	The MP 923 interface converter is used f RS 485 LS (RS 422) interface to a V24 (RS	or data transmission from an 232) interface and vice versa.
		The interface converter must be powered e connection (2-pin female diode connector connector with 12 VDC. With BERGER LA WDP3), power is supplied via the RS 485	ither via the power supply unit) or via the RS 485 (RS 422) HR positioning units (e.g. (RS 422) connection.
6.2.3.2	Technical data	Electrical data	
		Voltage supply	9.6 to 15 VDC/150 mA
		Interfaces	RS 485 LS (RS 422) V24 (RS 232)
		Mechanical data	
		Dimensions	97 x 65 x 30 mm
		Weight	approx. 130 g
		Ambient conditions	
		Storage temperature	-25°C to +70°C
		Operating temperature	0°C to +55°C
		Humidity class	F acc. to DIN 40040
		Humidity class, tested to IEC 68 part 2-3 a Air temperature Relative humidity non-condensing	at: +40°C, +2°C 93%, +2%, -3%

Fig. 6-4 MP 923 interface converter

6.2.3.3 Setup

1. Wire the MP 923 interface converter in accordance with fig. 6-5.

ATTENTION

NOTE

The interface cables must be shielded on both ends via the connector shells!

The MP 923 is supplied with 12 VDC power via the RS 485 (RS 422)

ATTENTION

For reasons of noise immunity, the V24 (RS 232) cable should be as short as possible (15 m max.)!

2. Switch on the mains voltage.

connector of the BERGER LAHR controller.

- → The LED "POWER ON" lights up. The two other LEDs remain dark.
- 3. Start data transmission.
 - → Depending on the sense of the data transmission, either the LED marked "RS 485 → V24" or the LED marked "RS 485 \leftarrow V24" lights up.

6.2.3.4 Status indicators

The status indicators show the operating status or any malfunction.

LED	Lit	Not lit	Flashing
"POWER ON"	Supply voltage available	Supply voltage not available	
"RS 485 → V24"	RS 485 (RS 422) interface incorrectly wired (signal lines TxD (\overline{TxD}) and RxD (\overline{RxD}) interchanged)	No data transmission from RS 485 (RS 422) to V24 (RS 232)	Data transmission from RS 485 (RS 422) to V24 (RS 232) enabled
"RS 485 ← V24"	V24 (RS 232) interface incorrectly wired (pins 2 and 3 interchanged)	No data transmission from V24 (RS 232) to RS 485 (RS 422)	Data transmission from V24 (RS 232) to RS 485 (RS 422) enabled

Fig. 6-5 MP 923 interface converter setup

6.2.4 Additional bleed resistor (only at units < RS 40) The additional bleed resistor FZP 200 (180 ohms, 150 W) can be used for dissipating a major amount of braking energy (fig. 6-6).

DANGER

High voltages are present at the bleed resistor connections (approx. 325 VDC).

DANGER

The bleed resistor heats up when a great amount of braking energy is produced.

ATTENTION

Good heat dissipation must be ensured when installing the bleed resistor.

- 1. Switch the mains voltage OFF.
- 2. Provide the two bleed resistor leads with wire end ferrules on the device end.
- 3. Connect the two litz wires to the terminals at the bottom of the unit.

Fig. 6-6 Additional bleed resistor

6.3 Glossary

Absolute dimensions

Refers to a system of dimensions for positioning operations. The reference point for positioning is the reference point of the system.

Absolute positioning

For absolute positioning, the position value refers to the zero point of the axis.

CCW rotation

Sense of rotation of the motor in a counterclockwise direction (as seen from front towards the motor shaft).

Commands

The functions of a controller are accessed using commands. Commands are sent from the master to a controller (slave). The controller interprets and executes the commands.

CW rotation

Sense of rotation of the motor in a clockwise direction (as seen from front towards the motor shaft).

Download

With the download function, data are loaded into the controller from a master computer.

Electronic gear

Externally supplied pulses are counted as A/B encoder signals or pulse/direction signals and multiplied with a gear ratio. These pulses are used as the reference variable for stepping motor positioning.

Encoder

Sensor for motor position detection (actual position detection).

Encoder signals A/B

Pulse signals of an encoder. For one motor revolution, a defined number of pulse signals (e.g. 1000) is generated by the encoder. The encoder signals are subjected to single, double or quadruple evaluation.

Gear ratio

Multiplication factor for positioning operations, which is composed of a numerator and a denominator (step-down gearing or step-up gearing).

Incremental (relative) dimensions

Refers to a system of dimensions for the positioning unit. The reference point for positioning is the current position.

Inputs/outputs

The controller is provided with a certain number of inputs and outputs through which sequential operations are controlled.

Limit switch

Switch for limiting the travel and for reference movements.

Master/slave principle

Principle of communication in a network.

Only the master is permitted to send commands. Slaves only receive and execute commands.

Negative limit switch

Limit switch in CCW (counterclockwise) direction. Motor rotation in a counterclockwise sense as seen from front towards the motor shaft.

Network mode

An operating mode used for a network of positioning units. Several units are connected to a host via a physical link. Selection of the units to be addressed is effected by a device polling command.

Positive limit switch

Limit switch in CW (clockwise) direction. Motor rotation in a clockwise sense as seen from front towards the motor shaft.

Power controller

A motor is controlled by a power controller. The power controller converts positioning signals from the processor control into signals for motor control.

Pulse/direction signals

Signals for reference variable input for an electronic gear.

Reference movement

Motor movement towards the CCW or CW limit switch or a reference switch for setting a reference point for the system of dimensions.

Reference point

Position value after a reference movement or after setting the reference point.

Reference speed

The reference speed is the speed at which the axis moves away from a limit switch.

Reference switch

A switch which can be approached from either direction for a reference movement.

Relative positioning

For incremental positioning, the position value refers to the current position of the axis.

Rotation monitoring

Rotation monitoring is used for detecting positional deviations of motor movements. The actual position is detected by an encoder and then compared with the setpoint. If the difference between actual and set position exceeds a preset value, a contouring error is reported and the motor is decelerated.

RS 485 interface

Serial interface for a network configuration.

Teach-in

The teach-in function is used for storing positions which have been approached by manual control.

Upload

The upload function is used for reading data from the controller.

6.4 Abbreviations

AC	Alternating Current
ASCII	American Standard Code for Information Interchange
DC	Direct Current
Doc. no.	Documentation number
DP	Decentralized peripheral equipment
Е	Encoder
FI	Fault current
HU	Height Unit
I	Input
I/O	Input/Output
IBS	Interbus-S interface
LED	Light Emitting Diode
Μ	Motor
PBDP	Profibus-DP interface
PC	Personal Computer
PELV	Protected Extra Low Voltage
PLC	Programmable Logic Controller
Q	Output
7 Index

Α	
Acceleration	2-19
Accessories	2-2, 6-2
Application mode	3-7
Application program	3-7
Automatic mode	1-4
Axis operating modes	
Point-to-point mode	1-5
Position following mode	1-5
с	
Connections	
Encoder interface	1-8, 2-16
Mains connection	1-6, 2-7
Motor connection	1-7, 2-8
RS 232 serial interface	1-7, 2-12
RS 485 serial interface	1-7, 2-14
Signal interface	1-7, 2-9
D	
Defaults	2-19
Displays	

Luminous displays	4-1
E	
Editing mode	1-4
Encoder signal type	
A/B signals	2-17

A/B signals	2-17
Pulse/direction	2-18
Error code	4-2

F

panel	1-1
	panel

М

Malfunctions	4-2
Manual mode	1-4
via front panel	1-4
Motor current reduction	2-19
Ν	
Normalizing factors	2-19
Number of steps	2-19
0	
Operating modes	3-1
R	
Rotation monitoring	1-5
S	
Set speed	2-19
Start speed	2-19
System speed	2-19
т	
Timing diagram	
Encoder signals A/B	2-17
Pulse/direction	2-18
V	
Ventilation	2-4
W	
Wiring layout	2-6

8 Corrections and additions

At present there are no corrections or additions.