

SHOP NOTES

Pocket Guide and Reference Charts for CNC Machinists

- Made in the U.S.A. -

WHAT'S INSIDE THIS BOOKLET?

Decimal Equivalent Chart / Millimeter to Inch Chart Haas Mill G-Codes / Haas Mill M-Codes Haas Lathe G-Codes / Haas Lathe M-Codes Abbreviations and Measurement Units Mill and Lathe Formulas Tapping and Threading Formulas Tap Drill Calculation Drill Point Depth & Countersink Formulas Degree Formulas

Proudly printed and manufactured by:

Haas Automation, Inc.

800-331-6746 2800 Sturgis Rd., Oxnard, CA 93030 www.HaasCNC.com

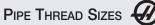
Decimal Equivalent Chart	2
Pipe Thread Sizes	5
Millimeter to Inch Chart	6
Metric Taps	8
Metric Thread Pitch Conversion	9
Haas Mill G-Codes	10
Haas Mill 5-Axis G-Codes	13
Haas Mill M-Codes	14
Haas Lathe G-Codes	16
Haas Lathe M-Codes	19
Abbreviations & Measurement Units	22
Mill and Lathe Formulas	23
Tapping and Threading Formulas	24
Tap Drill Calculation	25
Centerdrill Dimensions	26
Drill Point Depth & Countersink Formulas	27
Degree Formulas	28
Haas Advanced Edit Hot Keys	29
Haas Control Features	30

Haas operator's manuals and other information may be downloaded for free from the Haas website (www.HaasCNC.com). From the Haas home page, click on Resource Center, and then select Manuals & Documentation. Haas manuals and information are listed for you to access and download. Information is updated as necessary.

1

DECIMAL EQUIVALENT CHART .0059 - .0980

Equiv.SizemmSizeEquiv.Sizemm <th>Decimal</th> <th>Drill</th> <th></th> <th>Тар</th> <th>Decimal</th> <th>Drill</th> <th></th> <th>Тар</th> <th>Decimal</th> <th>Drill</th> <th></th> <th>Тар</th> <th>Decimal</th> <th>Drill</th> <th></th> <th>Тар</th>	Decimal	Drill		Тар	Decimal	Drill		Тар	Decimal	Drill		Тар	Decimal	Drill		Тар
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			mm	· ·			mm				mm	· ·			mm	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0059	97	0 150		0320	67	0.813			20	0.507		1075	3/	4 762	#10.00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												#5-40				#12-02
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												I				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												10 0L				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		91				61										¹ / ₄ -20
.0091890.231.0410591.041.1160322.946.204065.182.0095880.241.0420581.067.1200313.048.205555.220.0100870.254.0430571.092.1250 1_{6} 3.175.209045.309.0105860.267.0465561.181.1285303.264.213035.410 1_{4} -28.0110850.279.0469 3_{64} 1.191#0-80.1360293.454#8-32 *#8-36.2188 7_{322} 5.566 1_{4} -32.0115840.292.0550541.397.1406 9_{64} 3.572.228015.791.0125820.318.0655531.511#1-64 *#1-72.1440273.658.2340A5.945.0135800.343.0635521.613.1495253.797#10-24.2380B6.045.0145790.368.0670511.778#2-56 *#2-64.1560243.912.2600D6.248.01661%40.397.0700501.778#2-56 *#2-64.1560233.912.26001/4 & 366.0166770.457.0760481.930.1570223.989.25001/4 & 6.764.0160780.406.073149 <td>.0087</td> <td>90</td> <td>0.221</td> <td></td> <td>.0400</td> <td>60</td> <td>1.016</td> <td></td> <td></td> <td>33</td> <td></td> <td>#6-40</td> <td>.2031</td> <td>13/64</td> <td></td> <td>4</td>	.0087	90	0.221		.0400	60	1.016			33		#6-40	.2031	13/64		4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.0091	89	0.231		.0410	59	1.041		.1160	32	2.946		.2040	6	5.182	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.0095	88	0.241		.0420	58	1.067		.1200	31	3.048		.2055	5	5.220	
.0105860.267.0465561.181.1285303.264.213035.410 $1/4-28$.0110850.279.0469 $3/64$ 1.191#0-80.1360293.454#8-32 • #8-36.2188 $7/32$ 5.556 $1/4-32$.0115840.292.0520551.321.1405283.569.221025.613.0125820.318.0550541.397.1406 $9/64$ 3.572.2280A5.944.0130810.330.0625 $1/16$ 1.588.1470263.734.2344 $15/64$ 5.953.0135800.343.0635521.613.1495253.977#10-24.2480B6.045.0146790.368.0670511.702.1520243.861.2470D6.248.0156 $1/64$ 0.397.0700501.778#2-56 • #2-64.1560233.912.2460D6.248.0160780.406.0730491.854.1560214.039#10-32.2500 $1/48$ 6.350.0210760.508.0781 $5/64$.1984.1610204.089.2656 $17/64$ 6.747.0225740.572.0810462.057.1695184.305.2770I6.909 $5/16^{-24}$.0220720.635.	.0100	87	0.254		.0430	57	1.092		.1250	1/8	3.175		.2090	4		
.0115840.292.0520551.321.1405283.569.221025.613.0120830.305.0550541.397.1406 9_{644} 3.572.228015.791.0125820.318.0595531.511#1-64 • #1-72.1406 27 3.658.2340A5.944.0130810.330.0625 1_{16} 1.588.1470263.734.2340B6.045.0135800.343.0635521.613.1495253.797#10-24.2380B6.045.0156 1_{64} 0.397.0700501.778#2-56 • #2-64.1540233.912.2460D6.248.0160780.406.0730491.854.1563 5_{132} 3.969.2570F6.528 5_{116} -18.0200760.508.0781 5_{164} 1.930.1570223.988.2570F6.528 5_{116} -18.0210750.533.0785471.994#3-48.1610204.089.2666 17_{64} 6.747.0225740.572.0810462.063.16951.84.305.2770J7.036.0240730.660.0890432.261#4-40.1730174.394.2810K7.137.0240710.660.0890 <td< td=""><td>.0105</td><td>86</td><td>0.267</td><td></td><td>.0465</td><td>56</td><td>1.181</td><td></td><td>.1285</td><td></td><td>3.264</td><td></td><td>.2130</td><td>3</td><td>5.410</td><td>¹/₄-28</td></td<>	.0105	86	0.267		.0465	56	1.181		.1285		3.264		.2130	3	5.410	¹ / ₄ -28
.0115840.292.0520551.321.1405283.569.221025.613.0120830.305.0550541.397.1406 9_{644} 3.572.228015.791.0125820.318.0595531.511#1-64 • #1-72.1406 27 3.658.2340A5.944.0130810.330.0625 1_{16} 1.588.1470263.734.2340B6.045.0135800.343.0635521.613.1495253.797#10-24.2380B6.045.0156 1_{64} 0.397.0700501.778#2-56 • #2-64.1540233.912.2460D6.248.0160780.406.0730491.854.1563 5_{132} 3.969.2570F6.528 5_{116} -18.0200760.508.0781 5_{164} 1.930.1570223.988.2570F6.528 5_{116} -18.0210750.533.0785471.994#3-48.1610204.089.2666 17_{64} 6.747.0225740.572.0810462.063.16951.84.305.2770J7.036.0240730.660.0890432.261#4-40.1730174.394.2810K7.137.0240710.660.0890 <td< td=""><td>.0110</td><td>85</td><td>0.279</td><td></td><td>.0469</td><td>3_{/64}</td><td>1.191</td><td>#0-80</td><td>.1360</td><td>29</td><td>3.454</td><td>#8-32 • #8-36</td><td>.2188</td><td>7/32</td><td>5.556</td><td>1/₄-32</td></td<>	.0110	85	0.279		.0469	3 _{/64}	1.191	#0-80	.1360	29	3.454	#8-32 • #8-36	.2188	7/32	5.556	1/ ₄ -32
.0125820.318.0595531.511#1-64 • #1-72.1440273.658.2340A5.944.0130810.330.0625 1_{116} 1.588.1470263.734.2344 15_{164} 5.953.0135800.343.0635521.613.1495253.797#10-24.2380B6.045.0145790.3688.0670511.702.1520243.861.2400C6.147.0156 1_{64} 0.397.0700501.778#2-56 • #2-64.1540233.912.2460D6.248.0160780.406.0730491.854.1563 5_{32} 3.989.2570F6.528 5_{116} -18.0200760.508.0781 5_{64} 1.984.1590214.039#10-32.2610G6.629.0210750.533.0785471.994#3-48.1610204.089.2656 17_{64} 6.747.0225740.572.0810462.083#3-56.1665184.305.2770J7.036.0250720.635.0860442.184.1719 11_{64} 4.366.2770J7.036.0260710.660.0890432.261#4-40.1730174.394.2810K7.137.0280700.711 <td< td=""><td>.0115</td><td>84</td><td>0.292</td><td></td><td>.0520</td><td>55</td><td>1.321</td><td></td><td>.1405</td><td>28</td><td>3.569</td><td></td><td>.2210</td><td></td><td>5.613</td><td></td></td<>	.0115	84	0.292		.0520	55	1.321		.1405	28	3.569		.2210		5.613	
.0130810.330.0625 1_{16} 1.588.1470263.734.2344 15_{64} 5.953.0135800.343.0635521.613.1495253.797#10-24.2380B6.045.0145790.368.0670511.702.1520243.861.2420C6.147.0156 1_{64} 0.397.0700501.778#2-56•#2-64.1540233.912.2460D6.248.0160780.406.0730491.854.1563 5_{32} 3.969.2500 1_{4} &E6.350.0180770.457.0760481.930.1570223.988.2570F6.528 5_{116} -18.0200760.508.0781 5_{64} 1.984.1560214.039#10-32.2660H6.747.0225740.572.0810462.057.1660194.216.2660H6.756.0240730.610.0820452.083#3-56.1695184.305.2720I6.909 5_{16} -24.0250720.635.0860442.184.1719 11_{64} 4.366.2770J7.036.0260710.6660.0890432.261#4-48.1770164.496#12-24.2813 9_{32} 7.144 5_{16} -32.028070	.0120	83	0.305		.0550	54	1.397		.1406	⁹ / ₆₄	3.572		.2280	1	5.791	
.0135800.343.0635521.613.1495253.797#10-24.2380B6.045.0145790.368.0670511.702.1520243.861.2420C6.147.0156 1_{64} 0.397.0700501.778#2-56•#2-64.1540233.912.2460D6.248.0160780.406.0730491.854.1560 23 3.969.2570F6.528 5_{746} .0180770.457.0760481.930.1570223.988.2570F6.528 5_{746} .0200760.508.0781 5_{64} 1.984.1590214.039#10-32.2610G6.629.0210750.533.0785471.994#3-48.1610204.089.2656 17_{64} 6.747.0225740.572.0810462.057.1660194.216.2700I6.909 5_{746} .0240730.610.0820452.083#3-56.1695184.305.2720I6.909 5_{746} .0250720.635.0860442.184.1719 11_{64} 4.366.2770J7.036.0260710.6660.0890432.261#4-48.1770164.496#12-24.2813 9_{32} 7.144 5_{746} <td>.0125</td> <td>82</td> <td>0.318</td> <td></td> <td>.0595</td> <td>53</td> <td>1.511</td> <td>#1-64 • #1-72</td> <td>.1440</td> <td>27</td> <td>3.658</td> <td></td> <td>.2340</td> <td>А</td> <td>5.944</td> <td></td>	.0125	82	0.318		.0595	53	1.511	#1-64 • #1-72	.1440	27	3.658		.2340	А	5.944	
.0135800.343.0635521.613.1495253.797#10-24.2380B6.045.0145790.368.0670511.702.1520243.861.2420C6.147.0156 1_{64} 0.397.0700501.778#2-56•#2-64.1540233.912.2460D6.248.0160780.406.0730491.854.1560 23 3.969.2570F6.528 5_{746} .0180770.457.0760481.930.1570223.988.2570F6.528 5_{746} .0200760.508.0781 5_{64} 1.984.1590214.039#10-32.2610G6.629.0210750.533.0785471.994#3-48.1610204.089.2656 17_{64} 6.747.0225740.572.0810462.057.1660194.216.2700I6.909 5_{746} .0240730.610.0820452.083#3-56.1695184.305.2720I6.909 5_{746} .0250720.635.0860442.184.1719 11_{64} 4.366.2770J7.036.0260710.6660.0890432.261#4-48.1770164.496#12-24.2813 9_{32} 7.144 5_{746} <td>.0130</td> <td>81</td> <td>0.330</td> <td></td> <td>.0625</td> <td>¹/16</td> <td>1.588</td> <td></td> <td>.1470</td> <td>26</td> <td>3.734</td> <td></td> <td>.2344</td> <td>¹⁵/₆₄</td> <td>5.953</td> <td></td>	.0130	81	0.330		.0625	¹ /16	1.588		.1470	26	3.734		.2344	¹⁵ / ₆₄	5.953	
.0156 1_{64} 0.397.0700501.778#2-56 • #2-64.1540233.912.2460D6.248.0160780.406.0730491.854.1563 $5_{/32}$ 3.969.2500 1_{4} &E6.350.0180770.457.0760481.930.1570223.988.2570F6.528 $5_{/16}$ -18.0200760.508.0781 $5_{/64}$ 1.984.1590214.039#10-32.2610G6.629.0210750.533.0785471.994#3-48.1610204.089.2656 $17_{/64}$ 6.747.0225740.572.0810462.057.1660194.216.2660H6.576.0240730.610.0820452.083#3-56.1695184.305.2720I6.909.0250720.635.0860442.184.1719 $11_{/64}$ 4.366.2770J7.036.0260710.660.0890432.261#4-40.1730174.394.2810K7.137.0280700.711.0935422.3751.800154.572.2900L7.366.0292690.742.0938 $3_{/32}$ 2.381.1800154.572.2900L7.366.0310680.787.0966412.438 <td>.0135</td> <td>80</td> <td>0.343</td> <td></td> <td>.0635</td> <td>52</td> <td>1.613</td> <td></td> <td>.1495</td> <td>25</td> <td>3.797</td> <td>#10-24</td> <td>.2380</td> <td>В</td> <td>6.045</td> <td></td>	.0135	80	0.343		.0635	52	1.613		.1495	25	3.797	#10-24	.2380	В	6.045	
.0160780.406.0730491.854.1563 $5_{/32}$ 3.969.2500 $1_{4}\&E$ 6.350.0180770.457.0760481.930.1570223.988.2570F6.528 $5_{/16}$ -18.0200760.508.0781 $5_{/64}$ 1.984.1590214.039#10-32.2610G6.629.0210750.533.0785471.994#3-48.1610204.089.2656 $17_{/64}$ 6.747.0225740.572.0810462.057.1660194.216.2660H6.766.0240730.610.0820452.083#3-56.1695184.305.2770J7.036.0250720.635.0860442.184.1719 $11_{/64}$ 4.366.2770J7.036.0260710.660.0890432.261#4-40.1730174.394.2810K7.137.0280700.711.0935422.375#4-48.1770164.496#12-24.2813 $9_{/32}$ 7.144 $5_{/16}$ -32.0292690.742.0938 $3_{/32}$ 2.381.1800154.572.2900L7.366.0310680.787.0966412.438.1820144.623#12-28.2900L7.366	.0145	79	0.368		.0670	51	1.702		.1520	24	3.861		.2420	С	6.147	
.0180770.457.0760481.930.1570223.988.2570F 6.528 $5_{/16}$ -18.0200760.508.0781 $5_{/64}$ 1.984.1590214.039#10-32.2610G6.629.0210750.533.0785471.994#3-48.1610204.089.2656 $17_{/64}$ 6.747.0225740.572.0810462.057.1660194.216.2660H6.756.0240730.610.0820452.083#3-56.1665184.305.2770J7.036.0250720.635.0860442.184.1719 $11_{/64}$ 4.366.2770J7.036.0260710.660.0989432.261#4-40.1730174.394.2810K7.137.0280700.711.0935422.375.1800154.572.2900L7.366.0292690.742.0938 $3_{/32}$ 2.381.1800154.572.2900L7.366.0310680.787.0966412.438.1820144.623#12-28.2900L7.493	.0156	1 _{/64}	0.397		.0700	50	1.778	#2-56 • #2-64			3.912		.2460	D	6.248	
.0180770.457.0760481.930.1570223.988.2570F 6.528 $5_{/16}$ -18.0200760.508.0781 $5_{/64}$ 1.984.1590214.039#10-32.2610G6.629.0210750.533.0785471.994#3-48.1610204.089.2656 $17_{/64}$ 6.747.0225740.572.0810462.057.1660194.216.2660H6.756.0240730.610.0820452.083#3-56.1665184.305.2770J7.036.0250720.635.0860442.184.1719 $11_{/64}$ 4.366.2770J7.036.0260710.660.0989432.261#4-40.1730174.394.2810K7.137.0280700.711.0935422.375.1800154.572.2900L7.366.0292690.742.0938 $3_{/32}$ 2.381.1800154.572.2900L7.366.0310680.787.0966412.438.1820144.623#12-28.2900L7.493	.0160	78	0.406		.0730	49	1.854		.1563	5 _{/32}	3.969		.2500	1/ ₄ &E	6.350	
.0200760.508.0781 $5'_{64}$ 1.984.1590214.039#10-32.2610G6.629.0210750.533.0785471.994#3-48.1610204.089.2656 17_{64} 6.747.0225740.572.0810462.057.1660194.216.2660H6.756.0240730.610.0820452.083#3-56.1695184.305.2720I6.909.0250720.635.0860442.184.1719 11_{64} 4.366.2770J7.036.0260710.6600.0890432.261#4-40.1730174.394.2813 $9_{/32}$ 7.144 $5_{/16}$ -32.0280700.711.0935422.375#4-48.1770164.496#12-24.2900L7.366.0292690.742.0936 $3_{/32}$ 2.381.1800154.572.2900L7.366.0310680.787.0960412.438.1820144.623#12-28.2950M7.493	.0180	77	0.457		.0760	48	1.930		.1570		3.988		.2570	F	6.528	⁵ / ₁₆ -18
.0225740.572.0810462.057.1660194.216.2660H6.756.0240730.610.0820452.083#3-56.1695184.305.2720I6.909 5_{16} -24.0250720.635.0860442.184.1719 11_{64} 4.366.2770J7.036.0260710.6660.0890432.261#4-40.1730174.394.2810K7.137.0280700.711.0935422.375#4-48.1770164.496#12-24.2813 9_{32} 7.144 5_{16} -32.0292690.742.0938 3_{32} 2.381.1800154.572.2900L7.366.0310680.787.0966412.438.1820144.623#12-28.2950M7.493	.0200	76	0.508		.0781	⁵ / ₆₄	1.984		.1590	21	4.039	#10-32	.2610	G	6.629	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		75			.0785	47	1.994	#3-48	.1610	20	4.089		.2656	¹⁷ / ₆₄	6.747	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.0225	74	0.572		.0810	46	2.057		.1660	19	4.216		.2660	Н	6.756	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.0240	73	0.610		.0820	45	2.083	#3-56			4.305		.2720	1	6.909	^{5/} 16 ⁻²⁴
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		72			.0860	44	2.184		.1719	¹¹ / ₆₄	4.366		.2770	J	7.036	
.0292 69 0.742 .0938 ³ / ₃₂ 2.381 .1800 15 4.572 .2900 L 7.366 .0310 68 0.787 .0960 41 2.438 .1820 14 4.623 #12-28 .2950 M 7.493					.0890	43	2.261	#4-40			4.394		.2810			
.0310 68 0.787 .0960 41 2.438 .1820 14 4.623 #12-28 .2950 M 7.493		70						#4-48	.1770	16	4.496	#12-24	.2813	9 _{/32}	7.144	^{5/} 16 ⁻ 32
					.0938	3 _{/32}			.1800	15	4.572		.2900	L	7.366	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												#12-28	.2950			
	.0313	1 _{/32}	0.794		.0980	40	2.489		.1850	13	4.699		.2969	¹⁹ / ₆₄	7.541	


Tap drill sizes above based on approximately 75% full thread Tap # Sizes #0 = .060 #1 = .073 #2 = .086 #3 = .099 #4 = .112

Tap # x .013 + .060 = Thread # 0D

Tap drill sizes above based on approximately 75% full thread Tap # Sizes #5 = .125 #6 = .138 #8 = .164 #10 = .190 #12 = .216 Tap # x .013 + .060 = Thread # 0D

1	Decimal	Drill		Тар	Decima			Тар	Тар	Approx.	Approx.	
1	Equiv.	Size	mm	Sizes	Equiv.	Size	mm	Sizes	Thread Size	inside Dia.	outside Dia.	Tap Drill
	.3020	N	7.671		.5625	⁹ /16	14.288	⁵ / ₈ -18				
	.3125	^{5/} 16	7.938	³ / ₈ -16	.5781	37 _{/64}	14.684	5/ ₈ -24	¹ / ₈ – 27	1/4	3 _{/8}	11/ ₃₂
	.3160	0	8.026	-	.5938	19 _{/32}	15.081	-	¹ / ₄ – 18	3 _{/8}	17 _{/32}	⁷ /16
	.3230	Р	8.204		.6094	³⁹ / ₆₄	15.478	¹¹ / ₁₆ -12	³ / ₈ – 18	1/2	¹¹ / ₁₆	³⁷ / ₆₄
	.3281	²¹ / ₆₄	8.334		.6250	5 _{/8}	15.875		$\frac{1}{2} - 14$	5/8	¹³ /16	²³ / ₃₂
	.3320	Q	8.433	³ /8-24	.6406	⁴¹ / ₆₄	16.272	¹¹ / ₁₆ -20 • ¹¹ / ₁₆ -24	3/4 - 14	¹³ /16	1	⁵⁹ / ₆₄
	.3390	R	8.611		.6563	21/ ₃₂	16.669	³ / ₄ -10	$1 - 11^{1/2}$		15/	
	.3438	11 _{/32}	8.731	³ /8-32	.6719	⁴³ /64	17.066		-	1 ¹ / ₁₆	1 ⁵ / ₁₆	1 ⁵ /32
	.3480	S	8.839		.6875	¹¹ /16	17.462	³ / ₄ -16	$11/_4 - 111/_2$	1 ³ /8	1 ⁵ /8	1 ¹ / ₂
	.3580	Т	9.093		.7031	⁴⁵ / ₆₄	17.859	³ / ₄ -20	$1^{1}/_{2} - 11^{1}/_{2}$	1 ⁵ /8	1 ⁷ /8	1 ⁴⁷ / ₆₄
	.3594	²³ / ₆₄	9.128		.7188	23/ ₃₂	18.256		2 – 11 ¹ / ₂	2 ¹ / ₁₆	2 ³ /8	2 ⁷ /32
	.3680	U	9.347	⁷ / ₁₆ -14	.7344	47 _{/64}	18.653	¹³ / ₁₆ -12	$2^{1}/_{2} - 8$	2 ⁹ /16	2 ⁷ /8	2 ⁵ /8
	.3750	³ /8	9.525		.7500	3 _{/4}	19.050	¹³ / ₁₆ -16	-		-	-
	.3770	V	9.576		.7656	⁴⁹ / ₆₄	19.447	¹³ / ₁₆ -20 • ⁷ / ₈ -9	Pipe sizes are gene	rally determined by	, the inside diameter	or of the nine. The
	.3860	W	9.804	_	.7813	²⁵ / ₃₂	19.844	_	chart above gives no			
	.3906	²⁵ / ₆₄	9.922	⁷ / ₁₆ -20	.7969	⁵¹ / ₆₄	20.241	⁷ / ₈ -14	0			ions of commonly
	.3970	Х	10.084	_	.8125	^{13/} 16	20.637	_	used sizes of stand	lard threaded pipe.		
	.4040	Y	10.262	⁷ / ₁₆ -28	.8281	⁵³ /64	21.034	⁷ / ₈ -20				
	.4063	¹³ / ₃₂	10.319		.8438	27/32	21.431					
	.4130	Z	10.490		.8594	⁵⁵ / ₆₄	21.828	¹⁵ / ₁₆ -12				
	.4219	²⁷ / ₆₄	10.716	¹ / ₂ -13	.8750	7/8	22.225	¹⁵ / ₁₆ -16 • 1.0-8				
	.4375	⁷ /16	11.113		.8906	57 _{/64}	22.622	¹⁵ / ₁₆ -20				
	.4531	²⁹ / ₆₄	11.509	1/2-20	.9063	²⁹ /32	23.019					
	.4688	¹⁵ /32	11.906	1/2-28	.9219	⁵⁹ / ₆₄	23.416	1.0-12				
	.4844	³¹ / ₆₄	12.303	⁹ / ₁₆ -12	.9375	¹⁵ /16	23.813					
	.5000	1 _{/2}	12.700	⁹ / ₁₆ -18	.9531	61 _{/64}	24.209	1.0-20				
	.5156	³³ / ₆₄	13.097	⁹ / ₁₆ -24	.9688	31 _{/32}	24.606					
	.5313	17 _{/32}	13.494	⁵ / ₈ -11	.9844	⁶³ / ₆₄	25.003					
	.5469	³⁵ / ₆₄	13.891		1.000	1	25.400					

Tap drill sizes above based on approximately 75% full thread A decimal equivalent chart can be displayed on a Haas control by pressing the HELP/CALC

button, and then selecting the Drill Table tab. Use the jog handle or cursor keys to scroll through the chart.

Spindle Command: You can stop or start the spindle with CW or CCW (FWD and REV on a lathe) any time you're at a Single Block stop or a Feed Hold. When you restart the program with CYCLE START, the spindle will be turned back on to the previously defined speed.

MILLIMETER TO INCH CHART 0.01 - 12.5

mm	Inch	mm	Inch	mm	Inch	mm	Inch	mm	Inch	mm	Inch	mm	Inch	mm	Inch
0.01	.0004	2.6	.1024	6.0	.2362	9.4	.3701	12.6	.4961	15.9	.6260	19.2	.7559	22.5	.8858
0.02	.0008	2.7	.1063	6.1	.2402	9.5	.3740	12.7	.5000	16.0	.6299	19.3	.7598	22.6	.8898
0.03	.0012	2.8	.1102	6.2	.2441	9.6	.3780	12.8	.5039	16.1	.6339	19.4	.7638	22.7	.8937
0.04	.0016	2.9	.1142	6.3	.2480	9.7	.3819	12.9	.5079	16.2	.6378	19.5	.7677	22.8	.8976
0.05	.0020	3.0	.1181	6.4	.2520	9.8	.3858	13.0	.5118	16.3	.6417	19.6	.7717	22.9	.9016
0.06	.0024	3.1	.1220	6.5	.2559	9.9	.3898	13.1	.5157	16.4	.6457	19.7	.7756	23.0	.9055
0.07	.0028	3.2	.1260	6.6	.2598	10.0	.3937	13.2	.5197	16.5	.6496	19.8	.7795	23.1	.9094
0.08	.0032	3.3	.1299	6.7	.2638	10.1	.3976	13.3	.5236	16.6	.6535	19.9	.7835	23.2	.9134
0.09	.0035	3.4	.1339	6.8	.2677	10.2	.4016	13.4	.5276	16.7	.6575	20.0	.7874	23.3	.9173
0.1	.0039	3.5	.1378	6.9	.2717	10.3	.4055	13.5	.5315	16.8	.6614	20.1	.7913	23.4	.9213
0.2	.0079	3.6	.1417	7.0	.2756	10.4	.4094	13.6	.5354	16.9	.6654	20.2	.7953	23.5	.9252
0.3	.0118	3.7	.1457	7.1	.2795	10.5	.4134	13.7	.5394	17.0	.6693		.7992		.9291
0.4	.0157	3.8	.1496	7.2	.2835	10.6	.4173	13.8	.5433	17.1	.6732		.8031		.9331
0.5	.0197	3.9	.1535	7.3	.2874	10.7	.4213	13.9	.5472	17.2	.6772	20.5	.8071	1	.9370
0.6	.0236	4.0	.1575	7.4	.2913	10.8	.4252	14.0	.5512	17.3	.6811	20.6	.8110		.9409
0.7	.0276	4.1	.1614	7.5	.2953	10.9	.4291	14.1	.5551	17.4	.6850	20.7	.8150	1	.9449
0.8	.0315	4.2	.1654	7.6	.2992	11.0	.4331	14.2	.5591	17.5	.6890	20.8	.8189	24.1	.9488
0.9	.0354	4.3	.1693	7.7	.3031	11.1	.4370	14.3	.5630	17.6	.6929	20.9	.8228	1	.9528
1.0	.0394	4.4	.1732	7.8	.3071	11.2	.4409	14.4	.5669	17.7	.6968	21.0	.8268	24.3	.9567
1.1	.0433	4.5	.1772	7.9	.3110	11.3	.4449	14.5	.5709	17.8	.7008	21.0	.8307	24.4	.9606
1.2	.0472	4.6	.1811	8.0	.3150	11.4	.4488	14.6	.5748	17.9	.7047	21.2	.8346	24.5	.9646
1.3	.0512	4.7	.1850	8.1	.3189	11.5	.4528	14.7	.5787	18.0	.7087	21.2	.8386	24.6	.9685
1.4	.0551	4.8	.1890	8.2	.3228	11.6	.4567	14.8	.5827	18.1	.7126	21.0	.8425	24.7	.9724
1.5	.0591	4.9	.1929	8.3	.3268	11.7	.4606	14.0	.5866	18.2	.7165	21.4	.8465	1	.9764
1.6	.0630	5.0	.1969	8.4	.3307	11.8	.4646	15.0	.5906	18.3	.7205	21.6	.8504		.9803
1.7	.0669	5.1	.2008	8.5	.3346	11.9	.4685	15.1	.5945	18.4	.7244	21.0	.8543		.9843
1.8	.0709	5.2	.2047	8.6	.3386	12.0	.4724	15.2	.5984	18.5	.7283	21.7	.8583	25.0	.9882
1.9	.0748	5.3	.2087	8.7	.3425	12.1	.4764	15.2	.6024	18.6	.7283	21.8	.8583		.9882
2.0	.0787	5.4	.2126	8.8	.3465	12.2	.4803			1					.9921
2.1	.0827	5.5	.2165	8.9	.3504	12.3	.4843	15.4	.6063	18.7 18.8	.7362 .7402	22.0	.8661		
2.2	.0866	5.6	.2205	9.0	.3543	12.4	.4882	15.5	.6102			22.1	.8701	25.4	1.0
2.3	.0906	5.7	.2244	9.1	.3583	12.5	.4921	15.6	.6142	18.9	.7441	22.2	.8740		
2.4	.0945	5.8	.2283	9.2	.3622			15.7	.6181	19.0	.7480		.8780		
2.5	.0984	5.9	.2323	9.3	.3661			15.8	.6220	19.1	.7520	22.4	.8819		

Setting 9 on a Haas allows you to change between inch and millimeter dimensioning.

When in EDIT or MEM mode, you can select and display another program from Memory quickly by entering the program number (Onnnnn) and pressing the down arrow key.

Тар	MM	Drill Dia.	Тар	MM	Drill Dia.	Metric	Thd. Pitch	Threads	Basic	
Sizes	Tap Drill	in Inches	Sizes	Tap Drill	in Inches	Thd. F	itch in Inches	Per In.	Height	
M1 x 0.25	0.75	.0295	M14 x 2	12.00	.4724	. 25	. 00984	101.6002	. 00639	
M1.1 x 0.25	0.85	.0335	M14 x 1.5	12.50	.4921	. 30	. 01181	84.6668	. 00767	
M1.2 x 0.25	0.95	.0374	M16 x 2	14.00	.5512	. 35	. 01378	72.5716	. 00895	
M1.4 x 0.3	1.10	.0433	M16 x 1.5	14.50	.5709	. 40	. 01575	63.5001	. 01023	
M1.6 x 0.35	1.25	.0492	M18 x 2.5	15.50	.6102	1.10		0010001	. 0.020	
M1.8 x 0.35	1.45	.0571	M18 x 1.5	16.50	.6496	. 45	. 01772	56.4446	. 01151	
M2 x 0.4	1.60	.0630	M20 x 2.5	17.50	.6890	. 50	. 01969	50.8001	. 01279	
M2.2 x 0.45	1.75	.0689	M20 x 1.5	18.50	.7283	. 60	. 02362	42.3334	. 01534	
M2.5 x 0.45	2.05	.0807	M22 x 2.5	19.50	.7677	. 70	. 02756	36.2858	. 01790	
M3 x 0.5	2.50	.0984	M22 x 1.5	20.50	.8071					
M3.5 x 0.6	2.90	.1142	M24 x 3	21.00	.8268	. 75	. 02953	33.8667	.01918	
M4 x 0.7	3.30	.1299	M24 x 2	22.00	.8661	. 80	. 03150	31.7501	.02046	
M4.5 x 0.75	3.70	.1457	M27 x 3	24.00	.9449	. 90	. 03543	28.2228	. 02301	
M5 x 0.8	4.20	.1654	M27 x 2	25.00	.9843	1.00	. 03937	25.4000	.02557	
M6 x 1	5.00	.1969	M30 x 3.5	26.50	1.0433					
M7 x 1	6.00	.2362	M30 x 2	28.00	1.1024	1.25	. 04921	20.3200	. 03196	
M8 x 1.25	6.75	.2657	M33 x 3.5	29.50	1.1614	1.50	. 05906	16.9334	. 03836	
M8 x 1	7.00	.2756	M33 x 2	31.00	1.2205	1.75	. 06890	14.5143	. 04475	
M10 x 1.5	8.50	.3346	M36 x 4	32.00	1.2598	2.00	. 07874	12.7000	. 05114	
M10 x 1.25	8.75	.3445	M36 x 3	33.00	1.2992					
M12 x 1.75	10.20	.4016	M39 x 4	35.00	1.3780	2.50	. 09843	10.1600	. 06393	
M12 x 1.25	10.80	.4252	M39 x 3	36.00	1.4173	3.00	. 11811	8.4667	. 07671	
						3.50	. 13780	7.2572	. 08950	
						4.00	. 15748	6.3500	. 10229	
						4.50	. 17717	5.6445	. 11508	
						5.00	. 19685	5.0800	. 12785	
						6.00	. 23622	4.2333	. 15344	

Tap drill sizes based on 77% full metric thread

 $\label{eq:metric tap and drill sizes} \mbox{ can be displayed on a Haas control by pressing the HELP/ CALC button twice, and then selecting the Drill Table tab.}$

Clearing Current Commands Values: On a Haas, the values in the CURNT COMDS display pages for Tool Life, Tool Load, and Timer registers can be cleared by cursor-selecting the one you wish to clear and pressing ORIGIN. To clear everything in a column, cursor to the top of that column (onto the title) and press ORIGIN.

Code	Description	Group	Code	Description	Group
G00*	Rapid Motion Positioning	01	G54*	Select Work Coordinate System #1	12
G01	Linear Interpolation Motion	01	G55	Select Work Coordinate System #2	12
G02	Circular Interpolation Motion CW	01	G56	Select Work Coordinate System #3	12
G03	Circular Interpolation Motion CCW	01	G57	Select Work Coordinate System #4	12
G04	Dwell	00	G58	Select Work Coordinate System #5	12
G09	Exact Stop	00	G59	Select Work Coordinate System #6	12
G10	Set Offsets	00	G60	Uni-Directional Positioning	00
G12	Circular Pocket Milling CW	00	G61	Exact Stop Mode	15
G13	Circular Pocket Milling CCW	00	G64*	G61 Cancel	15
G17*	XY Plane Selection	02	G65	Macro Subroutine Call Option	00
G18	XZ Plane Selection	02	G68	Rotation	16
G19	YZ Plane Selection	02	G69*	Cancel G68 Rotation	16
G20	Select Inches	06	G70	Bolt Hole Circle	00
G21	Select Metric	06	G71	Bolt Hole Arc	00
G28	Return To Machine Zero Point	00	G72	Bolt Holes Along an Angle	00
G29	Return From Reference Point	00	G73	High-Speed Peck Drilling Canned Cycle	09
G31	Feed Until Skip	00	G74	Reverse Tap Canned Cycle	09
G35	Automatic Tool Diameter Measurement	00	G76	Fine Boring Canned Cycle	09
G36	Automatic Work Offset Measurement	00	G77	Back Bore Canned Cycle	09
G37	Automatic Tool Offset Measurement	00	G80*	Canned Cycle Cancel	09
G40*	Cutter Compensation Cancel	07	G81	Drill Canned Cycle	09
G41	2D Cutter Compensation Left	07	G82	Spot Drill Canned Cycle	09
G42	2D Cutter Compensation Right	07	G83	Normal Peck Drilling Canned Cycle	09
G43	Tool Length Compensation + (Add)	08	G84	Tapping Canned Cycle	09
G44	Tool Length Compensation - (Subtract)	08	G85	Boring Canned Cycle	09
G47	Text Engraving	00	G86	Bore and Stop Canned Cycle	09
G49*	G43/G44/G143 Cancel	08	G87	Bore In and Manual Retract Canned Cycle	09
G50*	Cancel Scaling	11	G88	Bore In, Dwell, Manual Retract Canned Cycle	09
G51	Scaling	11	G89	Bore In, Dwell, Bore Out Canned Cycle	09
G52	Set Work Coordinate System	00 or 12	G90*	Absolute Position Command	03
G53	Non-Modal Machine Coordinate Selection	00	G91	Incremental Position Command	03
	* default		,	* default	

Complete descriptions of all Haas G- and M-codes are available from the Haas website (www.HaasCNC.com). From the Haas home page, click on Resource Center, and then select Manuals & Documentation > G- and M-Codes.

In the Offset display on a Haas, you can zero all offsets at once by pressing ORIGIN, and following the simple on-screen commands. You can't undo this.

Code	Description	Group
G92	Set Work Coordinate Systems Shift Value	00
G93	Inverse Time Feed Mode	05
G94*	Feed Per Minute Mode	05
G95	Feed per Revolution	05
G98*	Canned Cycle Initial Point Return	10
G99	Canned Cycle R Plane Return	10
G100	Cancel Mirror Image	00
G101	Enable Mirror Image	00
G102	Programmable Output to RS-232	00
G103	Limit Block Buffering	00
G107	Cylindrical Mapping	00
G110-G129	Coordinate System #7 - #26	12
G136	Automatic Work Offset Center Measurement	00
G141	3D+ Cutter Compensation	07
G143	5-Axis Tool Length Compensation +	08
G150	General Purpose Pocket Milling	00
G153	5-Axis High Speed Peck Drilling Canned Cycle	09
G154	Select Work Coordinates P1-P99	12
G155	5-Axis Reverse Tap Canned Cycle	09
G161	5-Axis Drill Canned Cycle	09
G162	5-Axis Spot Drill Canned Cycle	09
G163	5-Axis Normal Peck Drilling Canned Cycle	09
G164	5-Axis Tapping Canned Cycle	09
G165	5-Axis Boring Canned Cycle	09

Description	Group
5-Axis Bore and Stop Canned Cycle 5-Axis Bore and Dwell Canned Cycle CCW Non-Vertical Rigid Tap CW Non-Vertical Rigid Tap	09 09 00 00

Setting the Smoothness Level

Dynamic Work Offset (DWO)

Tool Center Point Control (TCPC)

Cancel Dynamic Work Offset (DWO)

Get Program From PST

You can edit programs on a Haas while a program is running, using Background (BG) Edit. When running a program in MEM mode from the Program display, hit the EDIT button until the Background Editor pane appears on the right side of the screen. Press SELECT PROG to see a list of Memory programs you can BG Edit. Changes will take effect the next time the program is opened. You can select entire blocks of code to edit/copy/delete by pressing F2 on the first and last lines you want to highlight, and then using the INSERT. ALTER, DELETE, and UNDO commands. If you need to press the Cycle Start button for an MOO/MO1 while you're editing, just hit the MEM botton to return to the active program. For older controls (mill software 15.xx and lathe software 8.xx and earlier), you can access BG Edit by entering the number of the program you want to edit (Onnnnn) and pressing F4.

Code G166 G169 G174 G184 G187

G188

G234

G254

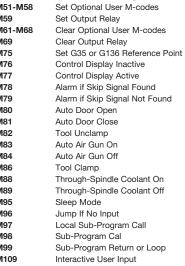
G255

To Zero the POS-OPER Display: This display is used for reference only. Each axis can be zeroed out independently, to then show its position relative to where you selected to zero that axis. To zero out a specific axis, press HAND JOG, and then press POSIT. When you Handle Jog the X, Y, or Z axis and then press ORIGIN, the axis that is selected will be zeroed. Or, you can press an X, Y, or Z letter key and then ORIGIN to zero that axis display. You can also press the X, Y, or Z key and enter a number (X2.125), then press ORIGIN to enter the number in that axis display.

00

00

08


23

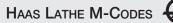
23

M00	Stop Program	M49	Set Status of Pallet
M01	Optional Program Stop	M50	Execute Pallet Change
M02	Program End	M51-M58	Set Optional User M-coo
M03	Spindle Commands	M59	Set Output Relay
M04	Spindle Commands	M61-M68	Clear Optional User M-c
M05	Spindle Commands	M69	Clear Output Relay
M06	Tool Change	M75	Set G35 or G136 Refere
M07	Shower Coolant On	M76	Control Display Inactive
M08	Coolant On	M77	Control Display Active
M09	Coolant Off	M78	Alarm if Skip Signal Four
M10	Engage 4th Axis Brake	M79	Alarm if Skip Signal Not
M11	Release 4th Axis Brake	M80	Auto Door Open
M12	Engage 5th Axis Brake	M81	Auto Door Close
M13	Release 5th Axis Brake	M82	Tool Unclamp
M16	Tool Change	M83	Auto Air Gun On
M17	Unclamp APC Pallet and Open APC Door	M84	Auto Air Gun Off
M18	Clamp APC Pallet and Close Door	M86	Tool Clamp
M19	Orient Spindle	M88	Through-Spindle Coolan
M21-M28	Optional User M Function with M-Fin	M89	Through-Spindle Coolan
M30	Program End and Reset	M95	Sleep Mode
M31	Chip Conveyor Forward	M96	Jump If No Input
M33	Chip Conveyor Stop	M97	Local Sub-Program Call
M34	Coolant Increment	M98	Sub-Program Cal
M35	Coolant Decrement	M99	Sub-Program Return or
M36	Pallet Part Ready	M109	Interactive User Input
M39	Rotate Tool Turret		
M41	Low Gear Override		
M42	High Gear Override		
M46	Jump if Pallet Loaded		
M48	Check Validity of Current Program		

When Setting 32 on a Haas machine is set to IGNORE, then all commands for turning coolant on or off will be ignored. The coolant can still be turned on and off manually with the COOLNT button.

Jog Keys: You can select an axis for jogging on a Haas by entering the axis letter on the input line and then pressing the HANDLE JOG button.

Code	Description	Group	Code	Description	Group
G00*	Rapid Motion Positioning	01	G59	Coordinate System #6 FANUC	12
G01	Linear Interpolation Motion	01	G61	Exact Stop Modal	15
G02	CW Circular Interpolation Motion	01	G64*	Exact Stop Cancel G61	15
G03	CCW Circular Interpolation Motion	01	G65	Macro Subroutine Call Option	00
G04	Dwell	00	G70	Finishing Cycle	00
G09	Exact Stop	00	G71	O.D./I.D. Stock Removal Cycle	00
G10	Set Offsets	00	G72	End Face Stock Removal Cycle	00
G14	Secondary Spindle Swap	17	G73	Irregular Path Stock Removal Cycle	00
G15	Secondary Spindle Cancel	17	G74	End Face Grooving Cycle	00
G17	XY Plane Selection	00	G75	O.D./I.D. Grooving Cycle	00
G18*	XZ Plane Selection	02	G76	Threading Cycle, Multiple Pass	00
G19	YZ Plane Selection	02	G80*	Canned Cycle Cancel	09
G20	Select Inches	06	G81	Drill Canned Cycle	09
G21	Select Metric	06	G82	Spot Drill Canned Cycle	09
G28	Return To Machine Zero Point	00	G83	Normal Peck Drilling Canned Cycle	09
G29	Return From Reference Point	00	G84	Tapping Canned Cycle	09
G31	Skip Function	00	G85	Boring Canned Cycle	09
G32	Thread Cutting	01	G86	Bore and Stop Canned Cycle	09
G40*	Tool Nose Compensation Cancel	07	G87	Bore and Manual Retract Canned Cycle	09
G41	Tool Nose Compensation (TNC) Left	07	G88	Bore and Dwell and Manual Retract Canned Cycle	09
G42	Tool Nose Compensation (TNC) Right	07	G89	Bore and Dwell Canned Cycle	09
G50	Set Global coordinate Offset FANUC, YASNAC	00	G90	O.D./I.D. Turning Cycle	01
G51	Cancel Offset (YASNAC)	00	G92	Threading Cycle	01
G52	Set Local Coordinate System FANUC	00	G94	End Facing Cycle	01
G53	Machine Coordinate Selection	00	G95	Live Tooling Rigid Tap (Face)	09
G54*	Coordinate System #1 FANUC	12	G96	Constant Surface Speed On	13
G55	Coordinate System #2 FANUC	12	G97*	Constant Surface Speed Off	13
G56	Coordinate System #3 FANUC	12	G98	Feed Per Minute	10
G57	Coordinate System #4 FANUC	12	G99*	Feed Per Revolution	10
G58	Coordinate System #5 FANUC	12	G100	Disable Mirror Image	00
	* default			* default	



Complete descriptions of all Haas G- and M-codes are available from the Haas website (www.HaasCNC.com). From the Haas home page, click on Resource Center, and then select Manuals & Documentation > G- and M-Codes.

Setting 22 on a Haas, Can Cycle Delta Z, defines the distance above the previous peck that a tool will rapid back to during a mill and lathe G83 peck drill or the amount it pulls back in a G74 and G75 lathe grooving cycle. It also defines the distance the tool retracts to break the chip in a mill G73 peck drill canned cycle.

Code	Description	Group			
G101	Enable Mirror Image	00	N	/100	Stop Program
G102	Programmable Output to RS-232	00	N	/101	Stop Program
G103	Limit Block Lookahead	00	N	/102	Program End
G105	Servo Bar Command	09	N	/103	Spindle On Fwd
G110	Coordinate System #7	12	N	/104	Spindle On Rev
G111	Coordinate System #8	12	N	105	Spindle Stop
G112	XY to XC interpretation	04	N	108	Coolant On
G113	Cancel G112	04	N	/109	Coolant Off
G114-G129	Coordinate System #9 - #24	12	N	/110	Chuck Clamp
G154	Select Work Coordinates P1-99	12	N	/111	Chuck Unclamp
G159	Background Pickup / Part Return		N	/12	Auto Jet Air Blast On (Optional)
G160	APL Axis Command Mode Only		N	/113	Auto Jet Air Blast Off (Optional)
G161	APL Axis Command Mode Off			/114	Main Spindle Brake On (Optional C-Axis)
G184	Reverse Tapping Canned Cycle For Left Hand Threads	09		/15	Main Spindle Brake Off (Optional C-Axis)
G186	Reverse Live Tool Rigid Tap (For Left Hand Threads)	10		/17	Turret Rotation Fwd
G187	Accuracy Control	00		/118	Turret Rotation Rev
G195	Forward Live Tool Radial Tapping (Diameter)	00		/19	Orient Spindle (Optional)
G196	Reverse Live Tool Radial Tapping (Diameter)	00		/121	Tailstock Advance (Optional)
G198	Disengage Synchronous Spindle Control	00		122	Tailstock Retract (Optional)
G199	Engage Synchronous Spindle Control	00		123	Chamfer Out of Thread On
G200	Index on the Fly	00		124	Chamfer Out of Thread Off
G211	Manual Tool Setting			/130	End of Program and Reset
G212	Auto Tool Setting			/131	Chip Auger Forward (Optional)
G241	Radial Drill Canned Cycle	09		//33	Chip Auger Stop (Optional)
G242	Radial Spot Drill Canned Cycle	09		/136	Parts Catcher On (Optional)
G243	Radial Normal Peck Drilling Canned Cycle	09		137	Parts Catcher Off (Optional)
G245	Radial Boring Canned Cycle	09		138	Spindle Speed Variation On
G246	Radial Bore and Stop Canned Cycle	09		139	Spindle Speed Variation Off
G247	Radial Bore and Manual Retract Canned Cycle	09		//41	Low Gear (Optional)
G248	Radial Bore and Dwell and Manual Retract Canned Cyc		N	142	High Gear (Optional)
G249	Radial Bore and Dwell Canned Cycle	09			

Transferring Simple Calculations: In the Haas Calculator display, the number in the simple calculator box (upper left corner) can be transferred to any cursor-selected data line on the page in either EDIT or MDI. Cursor to the register to which you wish to transfer the calculator number, and press F3.

On a Haas, you can use the DIST-TO-GO screen to quickly zero out the Position display for a reference move. When in Handle Jog mode and in the Position display, press any other operation mode key (EDIT, MEM, etc.), and then go back to Handle Jog. This will zero out all axes on the DIST-TO-GO display, and begin showing the distance moved.

)
nal)
·

On a Haas, it's easy to **transfer a program from MDI** and save it to your list of programs. In the MDI display, make sure that the cursor is at the beginning of the MDI program. Enter a program number (Onnnnn) that's not being used. Then press ALTER and this will transfer the MDI data into your **List of Programs** under that program number.

To Rapid an Axis Home: You can rapid *all* axes to machine zero by pressing the HOME G28 key. You can also send just one axis (X, Y, Z, A, or B) to machine zero in rapid motion. Enter the letter X, Y, Z, A, or B, then press HOME G28 and that axis alone will rapid home. *CAUTION!* There is no warning to alert you of any possible collision!

°C = Degrees Celsius
DIA = Diameter
\mathbf{d} = Depth of Cut
F = Feed in Inches or mm Per Minute (F)
°F = Degrees Fahrenheit
FPR = Feed Per Revolution (F)
FPT = Feed Per Tooth
IPM = Inches Per Minute
IPR = Inches Per Revolution
L = Length of Cut
MRR = Metal Removal Rate (cubic in./min.)
RPM = Revolutions Per Minute
SFM = Surface Feed Per Minute
SMPM = Surface Meters Per Minute
MMPR = Millimeters Per Revolution
T = Number of Teeth in a Cutter
TCm = Time Cutting in Minutes
TCs = Time Cutting in Seconds
TPI = Threads Per Inch
W = Width of Cut

 Cutting Speed (surface feet/min.)
 Co

 SFM = 0.262 x DIA x RPM
 IP

 Revolutions Per Minute
 Co

 RPM = 3.82 x SFM ÷ DIA
 SM

 Feed Rate (in/min.)
 Co

 IPM = FPT x T x RPM
 MI

 Feed Par Revolution
 Dis

 FPR = IPM ÷ RPM
 L =

 Feed Par Tooth (in)
 Tin

FPT = IPM \div (RPM x T)

Metal Removal Rate $MRR = W \times d \times F$

Converting IPR to IPM IPM = IPR x RPM Converting IPM to IPR IPR = IPM ÷ RPM

Converting SFM to SMPM $SMPM = SFM \times .3048$

Converting IPR to MMPR **MMPR** = IPR x 25.40

Distance over Time (in minutes) $L = IPM \times TCm$

Time Cutting over Distance (Mill) (minutes) $TCm = L \div IPM$

Time Cutting over Distance (Mill) (seconds) $TCs = L \div IPM \times 60$

Time Cutting over Distance (Lathe) (seconds) $TCs = L \div (IPR \times RPM) \times 60$

INCH METRIC CONVERSION

mm x 0.03937 = in.	in. x 25.4 = mm
m x 39.37 = in.	in. x 0.0254 = m
m x 3.2808 = ft	ft x 0.3048 = m
m x 1.0936 = yd	yd x 0.9144 = m
km x 0.621 = mi	mi x 1.6093 = km
Celsius to Fahrenheit (°C x 1.8) + 32 = °F	Fahrenheit to Celsius (°F - 32) ÷ 1.8 = °C

Chip Conveyor - The chip conveyor on a Haas can be turned on or off when a program is running, either manually using the control keys or in the program using M-codes. The M-code equivalent to CHIP FWD is M31, and CHIP STOP is M33. You can set the Conveyor Cycle time (in minutes) with Setting 114, and the Conveyor On-Time (in minutes) with Setting 115.

Setting 36 PROGRAM RESTART: When it is ON, you are able to start a program from the middle of a tool sequence. You cursor to the line on which you want to start and press CYCLE START. It will scan the entire program to ensure the tools, offsets, G codes, and axes positions are set correctly before starting and continuing at the block where the cursor is positioned. Although you can leave this setting ON all the time, it may cause the machine to perform certain activities unnecessarily, so it's best to turn it OFF when you're done using it.

INCH TAPS

Ton Drill Size (inch) The	Throad Diamotor	0.01299 x % of Full Thread
Tap Drill Size (inch) = Thr	ead Diameter	Number of TPI

% of Full Thread (inch) = Number of TPI x Major DIA of Thread – Drilled DIA

IPM (Mill Tapping Feed Rate) = RPM ÷ TPI

IPR (Lathe Threading) = 1 ÷ TPI

Form Tap Drill Size = Basic Tap DIA $-\frac{0.0068 \times \% \text{ of Full Thread}}{\text{Number of TPI}}$

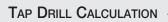
Recommended 65% form thread:

Form Tap Drill Size = Basic Tap DIA $-\frac{0.442}{\text{Number of TPI}}$

METRIC TAPS

Tap Drill Size (metric) = Thread Diameter (mm) - $\frac{\% \text{ of Full Thread x MM Pitch}}{147.06}$

% of Full Thread (metric) = $\frac{147.06}{MM \text{ Pitch}} \times [\text{Thread DIA (mm)} - \text{Drilled Hole DIA (mm)}]$


SMPM = RPM x Metric Pitch

Recommended 65% form thread:

Form Tap Drill Size (metric) = Basic Tap DIA - (.75 x pitch (in metric) x .65)

Memory Lock Keyswitch: This is a Haas machine feature that prevents operators from editing or deleting programs, and from altering settings. Since the keyswitch locks the settings, it also allows you to lock areas within the settings. Settings 7 locks parameters; Parameters 57, 209, and 278 lock other features. Setting 8 locks all programs. Setting 23 locks 09xxx programs. Setting 119 locks offsets. Setting 120 locks macro variables. In order to edit or change these areas, the keyswitch must be unlocked and its setting turned off.

FIND TAP DRILL SIZES ON ANY BASIC SIZE THREAD

for an Approximate 75% Thread

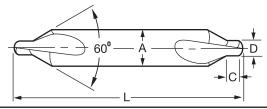
NC/NF INCH & ISO METRIC

Major dia. less thread pitch = Tap drill size

Note: thread pitch = 1.0 inch divided by threads per inch (TPI)

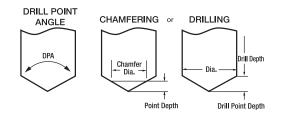
Inch Example: (1 ÷ 16 = .0625) 3/8 - **16** = .375 - **.0625** = .3125 tap drill

Metric Example: M10 - **1.5** = 10 - **1.5** = M8.5 tap drill



Tool Life Management: In the CURNT COMDS display on a Haas you can PAGE DOWN to the Tool Life Management page. On this page, the Tool Usage register indexes by one every time that tool is called up in the spindle. You enter the number of times you want that tool to be used in the Alarm column. When the Usage number for that tool reaches the number of uses in the Alarm column, it will stop the machine with an alarm. This will help you monitor tools to prevent them from breaking, and prevent parts being scrapped.

STANDARD 60° CENTERDRILL


Size	Body Dia (A)	Drill Dia (D)	Drill Length (C)	OAL (L)
00	1/8	0.025	0.030	1 1/8
0	1/8	1/32	0.038	1 1/8
1	1/8	3/64	3/64	1 1/4
2	3/16	5/64	5/64	1 7/8
3	1/4	7/64	7/64	2
4	5/16	1/8	1/8	2 1/8
5	7/16	3/16	3/16	2 3/4
6	1/2	7/32	7/32	3
7	5/8	1/4	1/4	3 1/4
8	3/4	5/16	5/16	3 1/2

To calculate drill tip depth for a chamfer diameter, or drill point depth for a required drilling depth:

Drill Point Angle (DPA)	Factor
60°	0.866 x Dia. = Point Depth
82°	0.575 x Dia. = Point Depth
90°	0.500 x Dia. = Point Depth
118°	0.300 x Dia. = Point Depth
120°	0.288 x Dia. = Point Depth
135°	0.207 x Dia. = Point Depth

Example: To calculate for a 118-degree drill tip depth, multiply the dia. by 0.3

i.e., 0.250 drill diameter x .3 = 0.075 drill tip depth

Setting 103: CYC START / FH SAME KEY. This is good to use when you're carefully running through a program on a Haas. When this setting is on, the CYCLE START button functions as the Feed Hold key as well. When CYCLE START is pressed and held in, the machine will run through the program; when it's released, the machine will stop in a Feed Hold. This gives you much better control when testing a new program. When you're done using this feature, turn it off. This setting can be changed while running a program. It cannot be on when Setting 104 is on; when one of these settings is turned on, the other will automatically turn off. Setting 104: JOG HANDL TO SNGL BLK. When Setting 104 is on and a program is running in MEM mode in the Program or Graphics display, pressing the SINGLE BLOCK key allows you to cycle through your program one line at a time, whether the machine is running or you're in Graphics. First press the CVCLE START button, and then each counterclockwise click of the jog handle will step you through the program line by line. Turning the handle clockwise will cause a Feed Hold. This setting can be changed while running a program. It cannot be on when Setting 103 is on; when one of these settings is turned on, the other will automatically turn off.

CONVERT MINUTES OF A DEGREE TO A DECIMAL:

Divide minutes by 60

degree minutes to convert:
divide minutes by 60:
bring down degrees:

30° 42' 42 ÷ 60 = 0.7 30.7°

CONVERT MINUTES AND SECONDS TO DECIMAL:

Divide seconds, then minutes by 60

degree minutes and seconds to convert:	30° 41' 15"
divide seconds by 60:	15 ÷ 60 = 0.25
divide decimal minutes by 60:	41.25 ÷ 60 = 0.6875
bring down degrees:	30.6875°

CONVERT A DECIMAL DEGREE TO MINUTES:

Multiply decimal by 60	
decimal degree to convert:	30.7°
multiply decimal degree by 60:	0.7 x 60 = 42'
bring down degrees:	30° 42'

CONVERT DECIMAL TO MINUTES AND SECONDS:

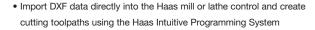
Multiply	decimal	by	60
----------	---------	----	----

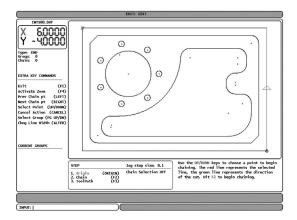
decimal degree to convert:
multiply the degree decimal by 60:
multiply decimal minutes by 60:
bring down degrees:

30.6875° 0.6875 x 60 = 41.25' 0.25 x 60 = 15" 30° 41' 15"

SELECT PROGRAM	When in the EDIT mode, pressing SELECT PROG will bring up the list of programs in the active (highlighted) window.
F2	Press F2 to begin SELECTING A PROGRAM BLOCK to be copied, moved, or deleted. Scroll down to last line of program block. Press either F2 or the WRITE/ENTER key to select block.
EDIT	Press EDIT to SWITCH BACK AND FORTH between the left and right sides of the Edit display when editing programs on both sides of the Advanced Editor.
INSERT	Press INSERT to copy a selected (highlighted) program block to the line after the one the cursor is on.
ALTER	PressALTER to move a selected (highlighted) program block to the line after the one the cursor is on.
DELETE	Press DELETE to delete a selected program block that is highlighted.
UNDO	Press UNDO to deselect a highlighted program block. UNDO will simply exit the block definition and return the cursor function back to normal. It will not undo any edits done in block edit.
F4	F4 will swap the inactive program for the active program in the Advanced Editor.
HELP	Displays help information.
F1	Press F1 to access the pop-up menu for easy access to editor functions: HELP, MODIFY, SEARCH, EDIT, and PROGRAM.
ERASE PROGRAM	The ERASE PROG key will bring up a program list (with the header "Delete Program From List") on the inactive side of the Edit display. You can then cursor to a program and delete it by pressing WRITE.

Duplicating a Program in LIST PROG: In the LIST PROG mode, you can duplicate an existing program by cursor-selecting the program number you wish to duplicate, typing in a new program number (Onnnn), and then pressing F2 (on older machines, press F1). You can also go to the Advanced Editor menu to duplicate a program, using the PROGRAM menu and the DUPLICATE ACTIVE PROGRAM item.


Advanced Editor Quick Cursor Arrow: You can call up a cursor arrow with which to scroll through your program quickly, line by line, when you're in the Advanced Editor. For the quick cursor arrow, press F2 once; then you can use the jog handle to scroll line by line through the program. To get out of this quick-cursor mode and remain where you are in the program, just press the UNDO key.



SAVING ENERGY MEANS SAVING MONEY

- · Auto Power-Off by setting the number of minutes of idle time after which the control will turn itself off
- Power-Off at M30 sets the control to start a 30-second timer that will turn off all power unless interrupted
- · Coolant pump shutoff setting
- · Screen saver delay setting
- LCD display shutoff setting
- · Conveyor shutoff setting
- · Servo and hydraulics shutoff setting

- · Simplifies programming of basic part features
- Program multi-tool processes in one simple step: Spot drill, drill & tap Drill for pocket entry and cut pocket Rough and finish lathe contours
- Automatic and manual chaining capability
- Program output is fully editable G-code

greener. innovation.

The Haas Wireless Intuitive Probing System (WIPS) – with optical transmission for part setting, tool setting and inspection – consists of the following elements:

- Spindle Probe Module (work probe)
- Tool Setter Module (tool probe)
- Intuitive Probing System Software

The Haas Wireless Intuitive Probing System makes probing easy to understand and use through simple language, a graphical interface and clear instructions.

- Records feedrate and spindle-speed override adjustments while the machine is in cycle
- Records coolant on/off and P-COOL position
- Records notes while in cycle for later use

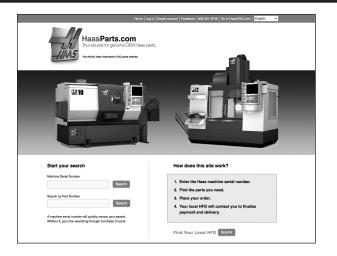
After the program is finished, one press of the F4 key will display the adjustments and show where they were made. When you choose to accept the changes, Program Optimizer will edit your program with the new speeds, feeds and notes, while displaying the original values in parentheses.

- · Simplifies editing for easy program alterations
- · Easy optimization of speeds and feeds

Additional information about the Haas Wireless Intuitive Probing System is available from the Haas website (www.HaasCNC.com). From the Haas home page, click on **Resource Center**, and then enter WIPS in the Search function. Additional information about the Program Optimizer is available from the Haas website (www.HaasCNC.com). From the Haas home page, click on **Resource Center**, and then enter Program Optimizer in the Search function.

Tool Load Management: Press the PAGE UP or PAGE DOWN key in CURNT COMDS to page to the Tool Load page. Spindle load condition can be defined for a particular tool, and the machine will stop if it reaches the spindle load limit defined for that tool. A tool overload condition can result in one of four actions by the control. The action is determined by Setting 84. ALARM will generate an alarm when overload occurs; FEED HOLD will stop with a Feed Hold when overload occurs; BEEP will sound an audible alarm when overload occurs; or AUTOFEED will automatically decrease the feedrate. This will also help you monitor tools.

Leaving Messages: You can enter a message in the MESGS display for the next operator, or for yourself. It will be the first display shown when you power up the machine, if there are no alarms other than the usual 102 SERVOS OFF alarm. If the machine was powered down using EMERGENCY STOP, the MESGS display will not show up when you turn the machine on again. Instead, the control will display the active alarm generated by the emergency stop. In this case, you would have to press the ALARW/MESGS key to view a message. It is not necessary to hit EMERGENCY STOP when you power down a Haas machine.



Frequently Asked Questions (FAQ)	
Search By AD Number	:
Routine Maintenance	:
"How To - Best Practices" & Expert Haa	as Help
General Information	:
Manuals & Documentation	:
Repairs & Service Shop	:
Drawings & Diagrams	:
Feedback	:

At the Resource Center, you'll find a library of valuable information – searchable by machine type and topic – like maintenance, how-to videos, manuals, simple repair procedures, and lots more. Go to HaasCNC.com and click on Resource Center.

At HaasParts.com, you can find typical service parts and maintenance items, like filters, bulbs, and lubricants – all with up-front pricing. Use your machine serial number to focus on only those parts that will fit. No need to look through hundreds of parts to find the ones that fit your machine – the HaasParts database takes care of it for you.

Send and Receive Offsets, Settings, Parameters, Macro Variables, Programs, and more to/from Disk. Offsets, settings, parameters, macro variables, ATM information, IPS information, alarm history, keystroke history, linear screw compensation, pallet information, and programs can be saved to a storage device. Press LIST PROG, then select the device to save to or load from. Press F4 and select the appropriate function, then press WRITE.

Send and Receive Offsets, Settings, Parameters, and Macro Variables to/from Disk. For controls using software versions M15.xx and L8.xx and older, offsets, settings, parameters, and macro variables can be saved to or loaded from a storage device. Press LIST PROG, select DESTINATION, and then select an OFSET, SETNG, PARAM, or Macro Variables (PAGE DOWN from CURNT COMDS) display page. Type in a file name, and then press F2 to write to, or F3 to read from disk.

January

4 11 18	M 5 12 19 26	6 13	W 7 14 21 28	T 8 15 22 29	F 2 9 16 23 30	S 3 10 17 24 31	S 1 8 15 22	M 2 9 16 23	T 3 10 17 24	W 4 11 18 25	T 5 12 19 26	F 6 13 20 27	S 7 14 21 28
			Apri	i						May	/		
S	М	Т	Apri W	Т	F	S 4	S	М	Т	May W	/ Т	F 1	S 2
S 5	М 6				F 3 10	S 4 11	S 3	м 4			·	F 1 8	S 2 9
5		Т	w 1	Т 2	3	4	Ľ		Т	W	Т	1	2
5 12	6	Т 7	W 1 8	Т 2 9 16	3 10	4 11 18	Ľ	4	Т 5	W 6	Т 7	1 8	2 9

			July	/		
S	М	Т	W	Т	F	S
			1	2	3	4
5	6	7	8	9	10	11
12	13	14	15	16	17	18
19	20	21	22 29	23	24	25
26	27	28	29	30	31	

		А	ugu	st				
S	М	Т	W	Т	F	S	S	М
2	3	4	5	6	7	8	6	7
9	10	11	12	13	14	15	13	14
16	17	18	19	20	21	22	20	21
23	24	25	26	27	28	29	27	28
30	31							

February

		0	ctok	ber				
S	М	Т	W	Т	F	S	S	Ν
				1	2	3	1	2
4	5	6	7	8	9	10	8	Ģ
11	12	13	14	15	16	17	15	1
18	19	20	21	22	23	24	22	2
25	26	27	28	29	30	31	29	3

		No	vem	ber			
S	М	Т	W	Т	F	S	8
1	2	3	4	5	6	7	
8	9	10	11	12	13	14	6
15	16	17	18	19	20	21	13
22	23	24	25	26	27	28	20
29	30						27

March									
S	М	Т	W	Т	F	S			
1	2	3	4	5	6	7			
8	9			12	13	14			
15	16	17	18	19	20	21			
22	23	24	25	26	27	28			
29	30	31							

	Мау								June	9		
Т	W	Т	F	S		S	М	Т	W	Т	F	S
			1	2			1	2	3	4	5	6
5	6	7	8	9		7	8	9	10	11	12	13
12	13	14	15	16		14	15	16	17	18	19	20
19	20	21	22	23		21	22	23	24	25	26	27
26	27	28	29	30		28	29	30				

	September									
S	М	Т	W	Т	F	S				
		1	2	3	4	5				
6	7	8	9	10	11	12				
13	14	15	16	17	18	19				
				24		26				
27	28	29	30							

		December									
S	S	М	Т	W	Т	F	S				
7			1	2	3	4	5				
4	6	7	8	9	10	11	12				
1	13	14	15	16	17	18	19				
8				23			26				
	27	28	29	30	31						

		Ja	nua	iry		
S	М	Т	W	Т	F	S
					1	2
3	4	5	6	7	8	9
10	11	12	13	14	15	16
17	18	19	20 27	21	22	23
24	25	26	27	28	29	30
31						

S	М	Т	W	Т	F	S
	1	2	3	4	5	6
7	8	9		11		13
			17			
21	22	23	24	25	26	27
28	29					

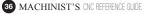
March									
S	М	Т		Т	F	S			
		1	2	3	4	5			
6	7	8	9	10	11	12			
13	14	15	16	10 17	18	19			
20	21	22	23	24 31	25	26			
27	28	29	30	31					

April										
S	М	Т	W	Т	F	S				
					1	2				
3	4	5	6	7	8	9				
10	11	12	13	7 14	15					
17	18	19	20	21 28	22	23				
24	25	26	27	28	29	30				

			May	1		
S			W			
1	2	3	4	5	6	7
8	9	10	11	12	13	14
15	16	17	18	19	20	2
22	23	24	25	26	27	28
29	30	31				

June								
S	М	Т	W	Т	F	S		
			1	2	3	4		
5	6	7	8	9	10	11		
				16				
19	20	21	22	23 30	24	25		
26	27	28	29	30				

July										
S	М	Т	W	Т	F	S				
					1	2				
3	4	5	6	7	8	9				
10		12	13		15	16				
17	18	19	20 27	21	22	23				
24	25	26	27	28	29	30				
31										


	August											
S	М	Т	W	Т	F	S						
	1	2	3	4	5	6						
7	8	9	10	11	12	13						
14	15	16	17	18	19	20						
21	22	23	24	25	26	27						
28	29	30	31									
1												

September									
S	М	Т	W	Т	F	S			
				1	2	3			
4	5	6	7	8	9	10			
11	12	13	14	15	16	17			
18	19	20	21	22	23	24			
25	26	27	28	29	30				
20	20		20	20	00				

		0	ctok	ber			
S	М	Т	W	Т	F	S	Г
						1	L
2	3	4	5	6	7	8	L
9	10	11	12	13	14	15	Ŀ
16	17	18	19	20	21	22	2
23	24	25	26	27	28	29	2
30	31						L

		No	vem	ber		
S	М	Т	W	Т	F	S
		1	2	3	4	5
6	7	8	9	10	11	12
13	14	15	16	17	18	19
20	21	22	23	24	25	26
27	28	29	30			

		De	cem	ber		
S	М	Т	W	Т	F	S
				1	2	3
4	5	6	7	8	9	10
11	12	13	14	15	16	17
18	19	20	14 21	22	23	24
25	26	27	28	29	30	31

January

1	S 1 15 22 29	M 9 16 23 30	T 3 10 17 24 31	W 4 11 18 25	T 5 12 19 26	F 6 13 20 27	S 7 14 21 28	S 5 12 19 26	M 6 13 20 27	T 7 14 21 28	W 1 8 15 22	T 2 9 16 23	F 3 10 17 24	S 4 11 18 25
	April									May	,			
				πpi	•			_			iviay	/		
Г	S	М	Т	W	Т	F	S	S	М	Т	W	Т	F	S
	S	М				F	S 1	S	M 1				F 5	S 6
	S 2	М 3				F 7	S 1 8	S 7	M 1 8	Т	W	Т	-	
			Т	W	Т		1	S 7 14	1	Т 2	W 3	Т 4	5	6
L	2	3	т 4	W 5	Т 6	7	1 8	7	1 8	T 2 9	W 3 10	Т 4 11	5 12	6 13
	2	3 10	T 4 11 18	W 5 12	Т 6 13	7 14	1 8 15	7 14	1 8 15	T 2 9 16 23	W 3 10 17	Т 4 11 18	5 12 19	6 13 20

	July									
S	М	Т	W	Т	F	S				
						1				
2	3	4	5	6	7	8				
9	10	11	12	13	14	15				
16	17		19		21	22				
23	24	25	26	27	28	29				
30	31									

	August								
S	М	Т	W	Т	F	S			
		1	2	3	4	5			
6	7	8	9	10	11	12			
13	14	15	9 16	17	18	19			
20	21	22	23	24	25	26			
27	28	29	30	31					

February

	September								
S	М	Т	W	Т	F	S			
					1	2			
3	4	5	6	7	8	9			
10	11	12	13	14		16			
17	18	19	20 27	21	22				
24	25	26	27	28	29	30			

March

1

19 20 21 22 23 24 25 26 27 28 29 30 31

June

SMTWTF

11 12 13 14 15 16

25 26 27 28 29 30

7

18 19 20 21 22 23 24

8 9

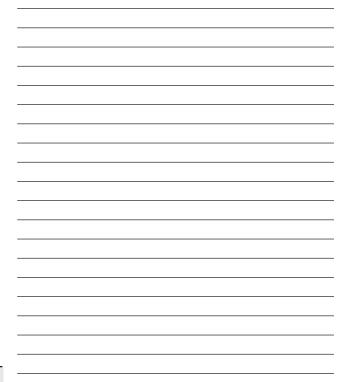
2 3

16 17

2 1

SMT W ΤF

5 6 7 8 9 10 11


12 **13** 14 15

4 5 6

October									J
S	М	Т	W	Т	F	S		S	
1	2	3	4	5	6	7			
8	9	10	11	12	13	14		5	
15	16	17	18	19	20	21		12	
22	23	24	25	26	27	28		19	
29	30	31						26	

November									
S	М	Т	W	Т	F	S		S	М
			1	2	3	4			
5	6	7	8	9	10	11		3	4
12	13	14	15	16	17	18		10	11
				23	24	25		17	18
26	27	28	29	30				24	25
								31	

	December									
S	Μ	Т	W	Т	F	S				
1					1	2				
3	4	5	6	7 14	8	9				
10	11	12	13	14	15					
17	18	19	20	21 28	22	23				
24	25	26	27	28	29	30				
31										

Haas Automation, Inc. USA

2800 Sturgis Road, Oxnard, CA 93030 P. 800-331-6746 I www.HaasCNC.com

Haas Automation, Europe

Mercuriusstraat 28, B-1930 Zaventem, Belgium P. ++32-2-522 99 05 I www.HaasCNC.com

Haas Automation, Asia

No. 96 Yi Wei Road, Building 67 Waigaoqiao F.T.Z., Shanghai, 200131, P.R.C P. ++86-21-3861 6666 I www.HaasCNC.com

Eleventh printing 2015. This book is copyrighted material. © 2015 by Haas Automation, Inc., USA. All rights reserved. May not be reproduced without written permission from publisher. Extra copies available by contacting your local HFO.

Haas Automation, Inc. USA

2800 Sturgis Road, Oxnard, CA 93030 P. 800-331-6746 I www.HaasCNC.com

Haas Automation, Europe

Mercuriusstraat 28, B-1930 Zaventem, Belgium P. ++32-2-522 99 05 I www.HaasCNC.com

Haas Automation, Asia

No. 96 Yi Wei Road, Building 67 Waigaoqiao F.T.Z., Shanghai, 200131, P.R.C P. ++86-21-3861 6666 I www.HaasCNC.com

Eleventh printing 2015. This book is copyrighted material. © 2015 by Haas Automation, Inc., USA. All rights reserved. May not be reproduced without written permission from publisher. Extra copies available by contacting your local HFO.