HS-3/R AUTOMATIC TOOL CHANGER SPECIFICATIONS

Tool Storage Capacity	38
Maximum Tool Length (referenced from gage line)	$600 \mathrm{~mm}(23.6 \mathrm{in})$
Maximum Tool Diameter	$250 \mathrm{~mm}(9.8 \mathrm{in})$
Maximum Tool Diameter with Adjacent Tool Pockets Filled	$125 \mathrm{~mm}(4.9 \mathrm{in})$
Maximum Tool Weight	$36 \mathrm{~kg}(79.4 \mathrm{lb})$
Maximum Tool Moment (referenced from gage line)	$300 \mathrm{~kg}-\mathrm{cm}(260 \mathrm{lbf}-\mathrm{in})$
Tool Pot Chain Pitch	$130 \mathrm{~mm}(5.12 \mathrm{in})$
Tool Taper	$\mathrm{CAT50}$
Pull Stud Type	MAS P50T 45°
Hydraulic Pressure	$50 \mathrm{kgf} / \mathrm{cm} 2(711 \mathrm{lbf} / \mathrm{in} 2)$
Hydraulic Flow-rate	$30 \mathrm{I} / \mathrm{min}(8 \mathrm{gal} / \mathrm{min})$

INITIAL SET-UP PROCEDURE

THIS SECTION ASSUMES THE MORI TOOL CHANGER ANCHORS have been installed in the shop floor and that the HORIZONTAL MILL HAS BEEN PROPERLY LEVELED AND ANCHORED. DO NOT ATTACH THE MORI TOOL CHANGER TO THE BASE OF THE MILLING MACHINE PRIOR TO LEVELING THE MACHINE. IF NECESSARY REFER TO THE HS-3/R OPERATORS MANUAL FOR INSTRUCTIONS ON HOW TO INSTALL THE TOOL CHANGER ANCHORS.

1. Temporarily block the tool changer up on its base plate and install the six leveling blocks on the bottom of the base plate, Figure 1.
2. Verify that the four main leveling screws (the large hollow screws located at all four corners) and the four intermediate leveling screws (the hex head bolts located on each of the four sides of the base plate) are adjusted so that they are flush with the bottom of the tool changer's base plate, Figure 1.
3. Lift the tool changer with the arm mechanism facing towards the front of the HS-3/R. Move the tool changer over the top of the pre-installed anchor bolts and lower it such that the hollow leveling screws slide over the anchor bolts.
4. An alignment bracket is used to provide the initial "rough" alignment of the tool changer to the horizontal mill. Attach the alignment bracket to the base of the tool changer using three M16 X 60 mm metric socket head cap screws (Haas P/N 40-0039), Figure 2. Install, but do not tighten the screws at this time. In addition, it may be necessary to move the tool changer's base plate a small amount to bring the alignment bracket into its proper position.
5. Place a bubble level on the tool changer's base and using the four main leveling screws (the large 60 mm hex screws located in the corners of the base plate) bring the tool changer base plate into level. During this leveling procedure, verify that the height of the slots on the vertical face of the alignment bracket are at the same elevation as the threaded holes in the pad located on the side of the milling machine's base, Figure 2. If necessary, re-adjust the leveling screws to bring the alignment bracket to the proper elevation.
6. When the tool changer is level and the four slotted holes in the alignment bracket are lined up with the threaded holes in the pad, attach the alignment bracket to the base of the mill using four $3 / 8-16 \times 1 \frac{1}{4}$ socket head cap screws. Finish attaching the bracket by tightening the three M16 cap screws.
7. Next, thread the four intermediate leveling bolts (the four bolts with 30 mm hex heads located near the center of each side of the base plate) down until they just touch the leveling blocks. Further tighten the bolts approximately another $1 / 8$ turn past this point to insure these screws are each sharing some portions of the load.
8. Complete the base plate installation by installing the nuts and washers onto the threaded ends of the tool changer anchor bolts and tightening to $230 \mathrm{ft}-\mathrm{lb}$. Note that these are metric threads and nuts.
9. Remove the two yellow shipping brackets located on the tool changer's arm assembly, Figure 3.
10. Install the tool changer guard around the tool changer and make the following electrical connections:
a) Connect the remote control box cable to the tool changer junction box.
b) Route and connect the cables from the tool changer junction box to the connectors located on the side of the machine's control box.

INSTALLING THE HYDRAULIC POWER UNIT

HYDRAULIC POWER UNIT SPECIFICATIONS

MAXIMUM PRESSURE 1000 PSI
MAXIMUM FLOWRATE @ 1800 RPM
10.5 GPM

RESERVOIR VOLUME
20 GAL.
PRESSURE HOSE (Haas P/N 52-0008)
RETURN HOSE (Haas P/N 52-0000)
$1 / 2$ JICF X $1 / 2$ JICF X $84^{\prime \prime}$ L

INITIAL SET-UP OF HYDRAULIC POWER UNIT

1. Check the level of the hydraulic fluid in the reservoir by inspecting the sight gage located on the side of the reservoir. If necessary, add hydraulic fluid (DTE 25) to the reservoir until the level reaches the top of the sight gage.
2. Connect the pressure and return hoses from the hydraulic power unit (HPU) to the tool changer. The pressure hose connects the pump outlet to the middle port on the tool changer manifold; the return hose connects the bottom port on the tool changer manifold to the filter inlet on the hydraulic power unit, Figure 4. NOTE: IF THE HPU IS TO BE OPERATED FOR THE FIRST TIME, SKIP TO STEP 7 FOR INITIAL ADJUSTMENT OF THE HYDRAULIC SYSTEM'S PRESSURE AND FLOW SETTINGS.
3. Connect the supply air-line ($1 / 4$ " plastic hose) from the machine's air-lube panel to the upper fitting on the tool changer manifold.
4. Connect the power cord from the hydraulic power unit's motor to the power connection located on the side of the milling machine's control box.
5. Check the rotation direction of the hydraulic power unit's motor using the following procedure:
a) Remove the orange inspection from the bell housing located between the motor and the hydraulic pump, Figure 5.
b) Power-up the HS-3/R but DO NOT CLEAR THE ALARMS UNTIL THE NEXT STEP.
c) With an observer watching the coupling inside the inspection window, push the <RESET> button on the keypad and immediately push the <E-STOP> button. This will jog the motor on the hydraulic power unit.
d) Note the rotational direction of the power unit's motor and compare with the directional arrow located on the front of the hydraulic pump's casing.
e) If the rotation matches the rotation of the directional arrow the machine is correctly wired. If the rotation does not match then the phasing of the machine's power must be changed by reversing any two of the incoming three wires of the machine's power wiring.
f) If it was necessary to re-wire the machine, re-check and verify that the motor is rotating in the correct direction.
6. When it has been verified that the motor is rotating in the correct direction, turn the hydraulic power unit on by powering-up the machine and clearing the alarms. NOTE: THE HYDRAULIC POWER UNIT OPERATES ANY TIME THE MACHINE IS POWERED-UP AND THE ALARMS ARE CLEARED.
7. When the pump is to be operated for the first time, the discharge side of the pump should be in a no-load state. This is accomplished by connecting the pump's discharge (pressure) hose directly to the inlet of the return filter connection.

The motor should be started and stopped 5 to 6 times to bleed any air from inside the pump. After verifying that the pump is discharging oil by feeling the discharge hose or cracking one of the hose's fittings, the pump should be operated for at least 10 minutes without any load to remove any remaining air in the circuit.
8. To adjust the hydraulic system's flowrate perform the following steps:
a) The flowrate is adjusted with the hydraulic power unit operating in a no-load state.
b) Install a hydraulic service flowmeter rated for 1 to 15 gpm in-line with the hose connecting the pump discharge to the filter inlet of the hydraulic power unit, Figure 6.
c) Power-up the hydraulic power unit and adjust the pump's discharge flowrate by turning the flow adjustment screw (the horizontally oriented screw with lock-nut), Figure 7, clockwise to decrease the flowrate and counter-clockwise to increase the flowrate. The correct flowrate for operation of the ATC 38 tool changer is 8 gpm . Note that it may be necessary to first adjust the pump's "open system" discharge pressure to achieve 8 gpm . This is done by adjusting the vertically oriented screw. Approximately 300 to 375 psi will be the maximum achievable pressure when in the "open system" operating mode.
9. After the flowrate has been adjusted, reconnect the hydraulic hoses as described in Step 2.
10. Power-up the machine and check the pressure gage on the HPU to verify that the system pressure is in the range of 700 to 750 psi . This is the "blocked system" pressure.

If necessary this pressure can be adjusted by turning the pressure adjusting screw (the vertically oriented screw with lock-nut), Figure 7, on the pump in a clockwise direction to increase pressure and counter-clockwise to decrease pressure.
11. The tool changer is now fully connected and ready for alignment.

> NOTE: FINAL ALIGNMENT OF THE TOOL CHANGER TO THE MACHINE'S SPINDLE MUST BE PERFORMED BEFORE THE TOOL CHANGER CAN BE USED TO CHANGE TOOLS.

TOOL CHANGER OPERATION

The ATC 38 tool changer is a hydraulically powered unit that operates in a sequential manner. That is, each of four arm functions must fully complete its motion before the next function is allowed to begin. For example, the arm must complete its slide-left function before the arm is allowed to perform its push-out function. In operation the system verifies that the arm or other component has made it to its desired final position before it will allow the next function to begin.

Table 1., SEQUENCE OF ATC OPERATION, provides a step-by-step "snap-shot" of each sequence of the tool changer's automatic operation beginning with the tool changer in its HOME position. This automatic sequence must also be used for manual operation of the tool changer.

OVERVIEW: TOOL CHANGER RECOVERY

The tool changer recovery mode is used to manually move the tool changer's arm and carriage into either its HOME position (describe below) or into its alignment position. The tool changer has a total of 13 separate functions that can be operated from the control panel or the remote control box located on the tool changer's cage guard. The tool changer recovery mode (accessed through the use of the <TOOL CHANGE RESTORE> button on the keypad) provides direct access to 10 of the tool changer's functions. There are 8 functions that can be controlled from the first tool changer recovery screen. These are listed on the TOOL CHANGER RECOVERY screen and are controlled by using the cursor buttons. These functions are:

TABLE 1. SEQUENCE OF ATC OPERATION

1. START AT INITIAL/ HOME POSITION	 2. SLIDE LEFT	3. ARM OUT
 4. SLIDE RIGHT	5. ARM IN	 6. SWING TO SPINDLE
 7. SWING TO SPINDLE W/ SLIDE LEFT	8. SWING TO SPINDLE COMPLETE	9. SLIDE TO SPINDLE

TABLE 1. SEQUENCE OF ATC OPERATION

10. ARM OUT

TABLE 1. SEQUENCE OF ATC OPERATION

TABLE 2MANUAL TOOL CHANGER OPERATION FROM THE CONTROL PANEL			
$\begin{aligned} & \text { FUNCTION } \\ & \text { NO. } \end{aligned}$	BUTTON NAM	E/CONTROL KEY	OPERATION
1	HOME BUTTON	<HOME>	SWING ARM TOWARDS SPINDLE
2	PAGE DOWN	<PAGE DOWN>	SWING ARM TOWARDS MAGAZINE
3	UP ARROW	$<^{\wedge}$ >	PULL ARM IN
4	DOWN ARROW	<V>	PUSH ARM OUT
5	END BUTTON	<END>	ROTATE ARM COUNTER-CLOCKWISE *
6	PAGE UP BUTTO	O <PAGE UP>	ROTATE ARM CLOCKWISE*
7	LEFT ARROW	<<>	SLIDE ARM TO LEFT *
8	RIGHT ARROW	<>>	SLIDE ARM TO RIGHT *

[^0]In addition, as the tool changer recovery screens are paged through, the tool changer door can be opened and closed (functions 9 and 10). When required the tool changer recovery sequence will state that the door must be opened or closed using the " O " or " C " buttons on the alpha keypad.

MABLE 3 MANUAL TOOL CHANGER OPERATION FROM THE CONTROL PANEL		
FUNCTION NO.	CONTROL KEY	
9	<O> OPERATION	
10	$<C>$	OPENS TOOL CHANGER DOOR

The final three functions are accessed from the remote control box located on the tool changer's cage guard:

TABLE 4		
MANUAL TOOL CHANGER OPERATION		
REMOTE CONTROL PANEL, TOOL CHANGER CAGE GUARD		

TOOL CHANGER ALIGNMENT PROCEDURE

1. To begin the alignment procedure of the tool changer perform the following steps:
a) Press <POWER ON> button.
b) Go to the PARAMETERS screen and set Parameters \#211 (Y-axis) and \#64 (Z-axis) to zero.
c) Press <ZERO RETURN> and <AUTO ALL AXIS> buttons.
d) Press <MDI> button then press <ORIENT SPINDLE> button.
e) Press <TOOL CHANGER RESTORE> button.

At this point the machine will ask the operator to verify the locations of any tools and the status of the tool changer door. When the conditions asked for on the screen are met press $<\boldsymbol{Y}>$, this will simultaneously open the tool changer door and to move the next screen.

This screen gives a warning that tools may fall during the following process. The operator is asked to press $<Y>$ to continue the process.

The new screen states:
PRESS A TO ATTEMPT AUTO RECOVERY
PRESS M TO GO TO MANUAL RECOVERY
Press <M> to go into manual recovery mode.
The next screen states:
$A=A r m$
M= Magazine
O=Open Door
C= Close Door
Press $<\mathbf{M}>$ on the keypad to home the tool changer magazine. After the magazine has reached its home position press $<\mathbf{A}>$ to go to the control screen for the tool changer's arm functions.

The next screen states:
Hydraulic tool changer bump arm
Using arrow keys attempt to move the arm into its home position
Pressing the cursor keys described in Table 2 will move the tool changer's arm and carriage.

NOTE: THE TOOL CHANGER'S ARM AND CARRIAGE ASSEMBLY WILL "JERK" AND "SHAKE" WHEN IT IS OPERATED MANUALLY BY USING THE CONTROL PANEL KEYS. BECAUSE THE MOTION IS SOMEWHAT ERRATIC, THE SAFETY OF PERSONNEL AND EQUIPMENT SHOULD BE TAKEN INTO CONSIDERATION WHEN OPERATING IN THIS MODE.

!!!SAFETY WARNING!!!

WHEN OPERATED IN THE MANUAL MODE IT IS POSSIBLE TO MOVE THE TOOL CHANGER'S ARM AND CARRIAGE INTO A POSITION THAT MAY DAMAGE THE TOOL CHANGER AND/OR THE HORIZONTAL MILL. BEFORE MANUALLY OPERATING THE TOOL CHANGER THE MACHINE OPERATOR MUST FULLY UNDERSTAND THE MOTION OF THE TOOL CHANGER'S ARM AND CARRIAGE DURING A NORMAL TOOL CHANGE CYCLE.

MOST IMPORTANTLY DO NOT ATTEMPT TO SWING THE TOOL CHANGER ARM TOWARDS THE SPINDLE UNLESS THE PHRASE "ARM HOME" IS DISPLAYED ON THE TC RECOVER SCREEN.
2. The next step in the alignment procedure is to move the tool changer's arm to its HOME position by using the cursor buttons described in Table 2. The HOME position is defined as:
a) The arm is fully rotated towards the magazine, using the $<$ PAGE DOWN $>$ button.
b) The arm is fully pulled in, using the $<^{\boldsymbol{\wedge}}>$ up arrow button.
c) The arm is rotated fully clockwise or fully counter-clockwise, using the <END> button or the <PAGE UP> button until the arm is in a horizontal position.
d) The arm is moved fully to the right, using the <>> right arrow button.

When the tool changer arm has been moved into its HOME position the control panel screen will display a highlighted line that states ARM HOME. Prior to reaching the HOME position the display screen will be blank in this area. As a check, when the arm is in the HOME position, the cam follower located on the bottom of the slide mechanism will be in-line with the cam slot on the guide plate.

By using the cursor keys and the messages displayed on the TOOL RECOVERY screen, move the tool changer's arm into its HOME position. The tool changer's arm and carriage must be moved to their full limit of travel to achieve the HOME position. Even when it appears that the full limit of travel has been reached, push the button several more times to ensure that, in fact, the full limit of travel has been reached.
3. A three-piece alignment tool is available as an aid for aligning the tool changer's arm to the machine's spindle, Figure 8 . Using the $<$ TOOL RELEASE> button install the taper section of the alignment tool, Figure 9, into the machine's spindle. Next, insert the flanged end of the alignment tool, Figure 10, into the gripper claws of the arm.
4. Before performing this step, verify that the spindle and column are at their zero limits of Y and Z travel.

Press the <HOME> button to swing the tool changer arm into the machine enclosure. After the arm has rotated fully into the enclosure push the <>> (right arrow) button to slide the arm towards the center of the machine.

With the arm in this position, place a level on its top edge and verify that the arm is level. If it is not level re-adjust the leveling bolts on the base of the tool changer to bring the arm into level.
5. Handle-jog the spindle to bring the centerline of the bore of the tapered section of the alignment tool into rough alignment with the centerline of the bore of the flanged section of the alignment tool in the gripper claws. Move the column in the Z-axis direction to create a 0.005 " gap between the faces of the two halves of the alignment tool. If the two faces are not parallel, use the leveling screws on the base of the tool changer to bring the faces into a parallel condition.
6. To perform the final portion of the alignment procedure it is necessary to loosen the six clamp bolts that join the tool changer to its base plate and use the adjusting bolts located on the sides of the base plate to move the tool changer in the $+/-\mathrm{X}$-axis direction. Using the $+/-\mathrm{X}$-axis direction adjusting bolts and the Y -axis handle jog move the tool changer and the spindle to align the bores in the two halves of the alignment tool such that the alignment dowel can slide through both bores, Figure 11. Note that the alignment dowel has a small and a large diameter section. This is to enable a "course adjustment" and then a "fine adjustment" to be made.
7. Tighten the six clamp bolts on the tool changer base and verify that the alignment dowel still slides through the bores in the alignment tool halves.

SETTING THE TOOL CHANGE POSITION PARAMETERS

8. Without moving the tool changer arm, spindle or column from the position achieved in Step 7, do the following:
a) Go to the SETTINGS/GRAPH display screen by pressing the <SETNG/GRAPH> button.
b) Go to Setting \#7, PARAMETER LOCK and change it to OFF by pressing <>> (right arrow) button and then press the <WRITE/ENTER> button to save it in memory.
c) Go to the ALARMS display screen by pressing the <ALARM/MESGS> button. Type in DEBUG from the keypad and press the <WRITE/ENTER> button.
d) Move to the POSITION display screen by pressing the <POSIT> button. Press the <PAGE UP> button to move to the POS-RAW DAT screen.
e) Record the values shown in the ACTUAL column for the position of the Y and Z -axes.
f) Go back to the ALARMS screen, type in DEBUG and press the <WRITE/ENTER> button to exit the DEBUG mode.
g) Press the <E-STOP> button to allow parameters to be changed.
h) Go to the PARAMETERS display screen by pressing the <PARAM/DGNOS> button. Go to Parameter \#211, Y Tool Change Offset, on the "Y PARAM B" screen. Enter the number (with the correct sign) recorded from the POS-RAW DAT screen for the Y -axis and press the WRITE/ENTER button.

> NOTE: THESE PARAMETER NUMBERS ARE ENTERED WITHOUT A DECIMAL POINT AND MUST BE THE SAME SIGN AS THAT GIVEN ON THE POS-RAW DAT SCREEN. FOR EXAMPLE -0.7094 WOULD BE ENTERED AS -7094 AND 278.8854 WOULD BE ENTERED AS -2788854.
i) Go to Parameter \#64, Z Tool Change Offset, on the "Z PARAM B" screen. Enter the number (with the correct sign) recorded from the POS-RAW DAT screen for the Z-axis and press the WRITE/ENTER button.

NOTE: ENTERING A VALUE OTHER THAN ZERO FOR PARAMETER \#64
CREATES A NEW "ZERO" POSITION FOR THE MACHINE'S Z-AXIS WHICH IS FORWARD OF THE ZERO LIMIT FOR THE MACHINE. THUS, WHEN PROGRAMMING THE POSITION OF THE Z-AXIS IT IS POSSIBLE TO USE BOTH POSITIVE AND NEGATIVE VALUES FOR THE Z-AXIS POSITION.
j) Because of the new "ZERO" position for the machine the value for Parameter \#34, Z axis Maximum Travel must be adjusted to reflect the new "ZERO" position. To calculate the new value use the following formula: (Parameter \#33) $\times(Z$-axis travel distance $)-($ Parameter \#64 $)=$ (Parameter \#34), where:
(Parameter \#33) is Z-axis encoder steps per unit (unit = 1 inch)
(Z-axis travel distance) is the machine's total Z-axis travel in inches (60 in.)
(Parameter \#64) is the Z Tool Change Offset value in encoder steps
(Parameter \#34) is the Z-axis Maximum Travel in encoder steps
Example: (138718 steps/inch) $\times(60$ inches $)-(1052517$ steps $)=7270563$ steps Go to the "Z PARAM B" screen and enter this number for Parameter \#34.
k) Remove the E-STOP condition by pulling out the <E-STOP> button and press the <RESET> button twice to return to normal machine operation.
I) Push the <TOOL CHANGE RESTORE> button and gain access to manual control of the tool changer.
m) Using the tool change recovery cursor buttons, move the tool changer carriage out of the machine enclosure to its home position and remove the alignment tool from the spindle and the tool changer arm.
n) Complete the Tool Change Restore operation to close the tool changer door.
o) POWER OFF and then POWER ON the machine. Press the $<$ RESET $>$ button twice to clear any alarm messages and then verify that parameters \#211, \#64 and \#34 retain the correct offset values.
p) Push the <ATC FWD> button and visually verify that the tool changer is functioning properly and that the tool changer arm correctly positions itself for a tool change.
q) Install a tool in the spindle and perform a live tool change. Inspect the entire sequence of operations for the tool changer and verify that the tool changes are being made in a smooth and safe manner.

ADJUSTING THE OPERATING SPEED OF THE ATC 38 HYDRAULIC TOOL CHANGER

The speed of the various functions on the ATC 38 tool changer can be adjusted. In general, the goal of adjusting the tool changer speed is to achieve a high operational speed (or low tool-to-tool change time) that does not cause undo deflection or vibration of the tool changer. In addition, consistency of motion must also be considered, that is, it is best to equalize the speed of reciprocal functions (rotate clockwise and counter-clockwise, slide left and slide right, etc.) to produce a consistent flow of motion as the tool changer operates.

NOTE: IT IS POSSIBLE TO CAUSE DAMAGE TO THE TOOL CHANGER IF THE SPEEDS ARE TOO HIGH. APPROACH THE ADJUSTMENT OF THE TOOL CHANGER'S SPEED WITH CAUTION.

1. The speed of the following nine functions on the ATC 38 tool changer can be adjusted:
I) Carousel speed
II) Carriage swing speed, toward carousel
III) Carriage swing speed, toward spindle
IV) Carriage slide speed, left direction
V) Carriage slide speed, right direction
VI) Arm speed, push-out
VII) Arm speed, pull-in
VIII) Arm rotation speed, clockwise
IX) Arm rotation speed, counter-clockwise

The Carousel speed and the Arm's pull-in/push-out speed are directly controlled by the flowrate of the hydraulic pump. Thus, increasing the flowrate will increase the speed of these functions and conversely decreasing the flowrate will decrease their speed. The speed of the other six functions are controlled by flow control valves located on the tool changer's valve manifold, Figure 12.
2. If it is necessary to adjust the speed of a function controlled by a valve perform the following:
a) Locate the valve that controls the function.
b) Loosen the lock-nut on the appropriate flow control valve.
c) Turn the flow control adjustment screw counter-clockwise to increase flow (increase speed), or turn the adjusting screw clockwise to decrease flow (speed). NOTE: MAKE ADJUSTMENTS IN $1 / 4$ TURN INCREMENTS AS SMALL ADJUSTMENTS CAN CAUSE LARGE CHANGES IN SPEED.
d) After completing the adjustment, tighten the adjustment screw lock-nut.

Figure 1

Figure 2a

Figure 2b

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

Figure 11

Figure 12

Maintenance Manual
 Of

ATC 38/50\#
For Haas Automation, Inc

Mori Machinery Corporation
 Okayama-Japan

1 Outline of the machine. 2
2 Specification. 2
2-1 Specification of tools
2-2 Specification of machine
3 Details of the machine 3
3-1 Magazine
3-2 Manual tool change of magazine
3-3 ATC changer unit
3-4 ATC arm
4 Alignment. 5
4-1 Alignment work for ATC arm and Spindle
4-2 Adjustment of dog for cancellation of arm mechanical-lock
5 Speed adjustment 7
6 Maintenance 7
6-1 Daily check
6-2 Lubrication
6-3 Tool pot chain tension
6-4 Parts list

Attached Drawings

1. ATC assembly 38

1M2098A

1. Magazine assembly 38
(1) Main drive assembly
(2) Tension assembly 38
(3) Tool release assembly 38
(4) Base assembly 38
(5) Cover assembly 38

1M2163A

1M2016A
2M0248A
2M0425A
1M2017A
1M2025A
2. Changer assembly
(1) Arm assembly
3. Valve assembly

1M2102A

Spare parts list

1 Outline of the machine
This machine is "ATC equipment" made for the purpose of changing spindle tools automatically.
This machine consists of magazine unit of which maximum capacity of tools are 38 tools (Tool dias. under 125 mm) and ATC changer unit, and is actuated by hydraulic system.
ATC magazine is Link chain system and contributes to shortening time for indexing tools by adopting clockwise and counterclockwise indexing function.
ATC arm is double arm type and contributes to the short tool change time as it grips the next tool from ATC magazine while machining.

2 Specification

2-1 Specification of tools

- Tool storage capacity : 38 Tools
- Tool shank : CAT50\#
- Pull stud MAS P50T-1 (45)
- Max. Tool diameter
: 125 mm (with adjacent tools)

60 Tel

2 it 5 withadjacont

- Max. Tool length $: 600 \mathrm{~mm}$
- Max. Tool weight $: 36.0 \mathrm{~kg}$ 804b: 300 veto $: 15.0 \mathrm{~kg}$ (Average tool weight)
- Max. Tool moment : 300 kg cm

2-2 Specification of machine

- Max. Tool capacity : 38 tools (On condition tool da. is under 125 mm)
- Tool pot chain pitch : 130 mm
- Tool selection : Clockwise and counterclockwise is possible.
- Drive system

iSp, max for collector

3
 Details of ATC
 3-1 Magazine

Hollow-pin type tool pot chain makes rotation by hydraulic motor (index motor) equipped with positioning function. Reduction gear ratio is $1 / 12$ when using drive sprocket (T12). (Motor shaft 1 rotation / 1 pot)
As this tool pot's pitch is 130 mm and guarded by polymeric resin, under no dispensing oil condition, smooth movement is possible.

3-2 Manual tool change of magazine
Pushing the pull stud from magazine side of the tool pot by air-cylinder does the function of tool pullout from the tool pot. Pull out the tool supporting with your hands on the tool, as the tool is pushed out with the movement of air-cylinder actuated by footswitch. Also the tool should be inserted into the tool pot confirming the direction of the tool key.

3-3 ATC changer unit
Hydraulic unit drives ATC changer unit. As the movement of ATC changer unit is on the linear guide, smooth movement is possible. The movement is actuated by hydraulic motor and rack and pinion. At the end of the linear guide, this unit has shock absorbers which function not only shock absorbing but also as a mechanical stopper.
Arm rotation is 180 -degrees with rack movement by hydraulic cylinder. IN/OUT of arm is also actuated by hydraulic cylinder, and each cylinder's type is stated on the Electric parts list. Stroke adjustment except arm-out end position is possible by outside mechanical-stopper. This mechanical-stopper is indicated on DWG 1. Please refer to the DWG 1 while the alignment work is being done.

- Caution:

The 180 -degree rotation cannot be done while arm is $\mathbb{I N}$ due to the interference between dogs for mechanical-lock cancellation and arm. The 180 -degree rotation should be done under the condition of arm-OUT when changer is at the tool changing location with spindle.
Furthermore keep the following conditions.
Changer 90-degree rotation is made from:
MG side to spindle side: Changer must be at the right traverse end.
Spindle side to MG side: Changer must be at the left traverse end.

DWG. 1. Location of ATC Mechanical-Stopper
4sensar head switch reads

3-4 ATC Arm

The grippers of the arm have both mechanical lock function and hydraulic Lock function. Mechanical lock function is cancelled if the lock pin at the reverse side of the arm is pushed. As hydraulic lock is using hydraulic of arm-OUT, the lock functions at a time of movement of arm-OUT and is cancelled at a time of movement of arm-IN.
Refer to agenda " $4-2$ ", when needed, which explains the clearance and the way of adjustment between the arm and the dog for mechanical-lock cancellation.

- Caution:

As explained above, hydraulic lock is cancelled only at the movement of arm-IN.
In case solenoid valve is at the neutral position, hydraulic lock cannot be cancelled.

4 Alignment

4-1 Alignment work of ATC arm and Spindle
Alignment work of ATC arm and Spindle should be done as follows.
: Y, Z-axis direction is done at the spindle side.
: X -axis direction is with the movement of ATC magazine.
Parallel adjustment of X-Y axis plane and ATC arm (parallel between spindle nose and arm) should be done at ATC side. Alignment allowance and its way of alignment are indicated on

Chart 1.

Chart 1. Alignment allowance and its way

	Allowance	Way
X direction	± 0.1	ATC body movement
Y direction	± 0.1	Spindle Y -axis
Z direction	2 ± 0.1	Spindle Z -axis

DWG. 2. Alignment of Magazine

Movement of ATC body is done by jack bolt for adjustment of magazine up down and right-left indicated on DWG 3.Alignment of pot and arm has already been adjusted when the machine is delivered to HAAS AUTOMATION Inc, no need to re-alignment.

DWG. 3. Alignments

4-2 Adjustment of dog for cancellation of arm mechanical-lock.
The clearance between dog for arm-mechanical-lock and arm is indicated on DWG 4.
The dog adjustment has already been done when the machine is delivered to HAAS AUTOMATION Inc.
But in case you adjusted stopper-bolt for the adjustment of arm-IN end (Re-alignment of clearance between magazine gauge line and arm), re-alignment shall be necessary.
In case clearance is small, you need to grind the reverse side of dog and in case clearance is large, insert the shim beneath the dog.

DWG. 4 Clearance between dog for arm-mechanical-lock and arm

6 Maintenance

6-1 Check
(1) Magazine

- No unusual sound shall be heard from the magazine drive.
- No dust or cutting chips in the tool pot.
- No cutting chip and other contamination at the tool pot guide area.
(2) ATC arm
- Smooth movement of arm mechanical-lock pin
- Smooth movement of arm grippers
- Grippers of the arm do not have any damage
(3) ATC changer unit
- No noise while sliding
- Smooth movement of arm180 degree rotation
- Smooth movement of arm in/out
- Smooth movement of changer 90 degree rotation

Movement confirmation of each actuator shall be done by lead switch and proximity switch. Keep dust and/or oil away from the switches.
Lead switch, proximity switch, hydraulic cylinder and etc. are listed in "Electric parts list".

6-2 Lubrication

Refer to the following lubrication parts chart 2 and lubricate the oil to the parts of ATC according to the list. Be sure to confirm that the machine is stopped when you dispense oil.
Please refer to the lubrication parts listed also in the attached drawings.
Chart 2. Lubrication

Lubrication part	Lubricate way	Quantity	Term
Magazine drive gear	General grease lubricate	Proper quantity	6 months each
Arm shaft IN/OUT	Molybdenum grease lubricate	Proper quantity	6 months each
Tool pot	General grease lubricate	Proper quantity	6 months each
Rinear guide for changer slide	General grease lubricate	Proper quantity	1 year each

${ }^{c}$ der T

6-3 Tool pot chain tension

Tool pot chain tension should be checked regularly.
Although the tension of tool pot chain is adjusted at the shipment, after long years operation stretch of the chain, noise, trouble of the guide etc may arise and the alignment between arm and tool pot may get out of order.

- Please be careful that too tight tension of the tool pot chain shall cause abnormal wear.
Instruction of chain tension adjustment is as follow. Please refer to the attached drawing no. 2M0248A

Tension is located at lower/left area of the magazine (manual tool change side). Loosen the 4 paces of \#8 bolt with hole 12×50 from the front of the magazine. By doing this \#7 plate shall be movable. Then loosen the \#13 hexagon nut, tighten the \#12 hexagon bolt, move the plate, and adjust the tension of the tool pot chain. After the adjustment, please tighten the hexagon nut and 4 paces of bolt with hole. Tensioning will not change the indexed pot location, but please check the alignment between manual tool pushing cylinder and tool pot.

6-4 Parts list

In the attached parts list, following information is provided.

- Name of the parts
- Manufacturer of the parts


```
又TV8戸%0W%
```


Ifin ma	D, W, G NO		PART NAME \& DESCRIPTION		QUALITY	WICBT		${ }^{G}$		${ }^{6}$	
1	3M02710	1	Corner Roller			22.5	1				
2	4M06083		Shaft			6.2	1				
3			Socket Head Capscrew	12×40			4				
4			Retaining Ring	60			1				
5			Bearing	6212 ZZ			1				
6			Bearing	6213 ZZ			1				
7	3M04125		Plate			9.25	1				
8	,		Socket Head Capscrew	12×50			4				
9			Spring Washer	12			4				
10			Washer	12			4				
11	4M04262	1	Block			1.35	1				
12			Hex Bolt	16×200 \$200			1				
13			Hex Nut	16			3				
14			Washer	16			3				
15			Socket Head Capscrew	12×55			2				
16	4M04422		Pin			0.1	1				
17			Spring Pin	8×40			4				
18											
19											
20											

（11）

Iter ma	D．W，G NO	PART NAME \＆	DESCRIPTION	QUALITY						
1	4M05747	Plate			0.24	1	1			
2		Socket Head Capscrem	8×20			2	2			
3		Spring Washer	8			2	2			
4		Washer	8			2	2			
5	4M05751	Rod			0.15	1	1			
6		Set Bolt	10×25			1	1			
7		Air Cylinder	CDO2B50－15D－A73HS		0.4	1	1			
8		Socket Head Capscrew	6×45			4	4			
9		Joint	KQL06－02S				2			
10		Joint	KQL06－01S			2	2			
11		Sol．Cperated ditectional ralive	VFS1120－1D2－01－F		0.18	1				
12		Socket Head Capscrew	4×10			2	2			
13		Sirenser	AN 103－01			2	2			
14		Nipple	SRN02－010J			1	1			
15		Speed Controller	AS4000－02		0.22	1	1			
16		Joint	KQH06－02S			1	1			
17		Foot Switch	OFL－VG－SM2．K		1.7	1	1			
18		Sol．Operated disectional ralve	VFS1120－5D2－01－F		0.18		1			
19										
20										

1：Changer swing（MG＜－＞SP 90）

Changer assembly
Part No． 231 Hyd，Cylinder
－1）Cushion adjustment
The end of Magazine－＞Rod side
Spindle side $\quad \rightarrow \quad$ Head side
－2）Speed adjustment
Valbe assembly
（1M2102A）
It is done with the flow control valve under the valve for the changer swing．

2：Changer slide（Right＜－＞Left）
Changer assembly
（1M2164A－2／4）
Part No． 61 Hyd，Motor
－1）Cushion adjustment
It is done with the shock absorber of the partial number 95.
－2）Speed adjustment
Valbe assembly
（1M2102A）
It is done with the flow control valve under the valve for the changer slide．

3：Arm rotation
 （180CW－CCW）

Changer assembly
（1M2164A－2／4）
The hydraulic cylinder of the partial number 57.
－1）Cushion adjustment

CW side	－＞	Head side
CCW side	－＞	Rod side

－2）Speed adjustment
Valbe assembly
（1M2102A）
It is done with the flow control valve under the valve for the arm rotation．

4：A hydraulic motor is removed from the motor bracket．
The installation bolt 3－M6 flat head bolt of the hydraulic motor and the bracket is removed．

The installation bolt of the
 pinion gear．

5：A pinion gear and papeing metal fittings are removed．
The bolt of M6 at the tip of the hydraulic motor shaft is loosened，and a gear is removed． Hydraulic papeing metal fittings（two）are removed．

6：A pinion gear and papeing metal fittings are installed in the new hydraulic motor．
A gear is inserted in the tip of the hydraulic motor shaft，and the bolt of $M 6$ is wrung．
Hydraulic papeing metal fittings（two）are fastened．

7：A hydraulic motor is installed in the bracket．
A hydraulic motor is installed in the bracket with the installation bolt 3－M6 flat head bolt．

The condition which a changer unit from the top

fiping

9：A papeing to the hydraulic motor
Two papeings are installed in the hydraulic motor for the changer slide．

Attention：

Be sure to confirm whether you can set a papeing smoothly again if a hydraulic papeing doesn＇t hold a hydraulic motor．

Do the speed adjustment of each movement，and do movement confirmation by the M06 MDI operation．

Changer cam follower exchange process document

Hose is removed. Attention: Mark it surely.

1:It turn at 90 by the changer turn on the magazine side, and the power supply is cut off.

2:It is made the condition that a papeing to the hydraulic motor for the changer slide is loosened and that a changer is pushed by hand and which can be moved.

3:A changer is pushed by hand in the right direction, and stopped in the magazine end front.

4:A cam follower can be removed at the same time by removing the bracket installed under the changer body, too. A bracket removes 3-M10 screw.

5:The cam follower shaft which breaks in the bracket is removed first.

6:A looseness stop does with the M6 set screw in the cam follower shaft from the side.

7:If a shaft comes off, only a new shaft is thrust. Thrust it by using the wrench to the end.

8:A looseness stop is done with the M6 set screw from the side.

Use it if there is a screw lock (bond).
Put a hollow on the cam follower shaft a little in the drill of 4 mm , and then do a M6 set screw when there is no bond.

9:A cam follower is inserted into the shaft, and fixed with the external retaining ring.

10:A bracket is assembled under the changer body.
11:If work is completed, a hydraulic papeing is returned to

1：It confirms whether a cam follower is in the center of the groove under the condition on the changer 90 turn magazine side．

2：When a guide hits a cam follower，a stopper bolt at the end of 90 turn magazine is adjusted and adjusted in the center of the guide．

3：A turn spindle side is adjusted at 90 with the process which is the same as the item $1-2$, too．
4：90 turn movement is repeated by the manual operation，and a shock at each stroke end is confirmed．
5：It is adjusted with the cushion of the cylinder if a changer unit seems to bound in the turn direction at the stroke end．

6：It is adjusted with doing speed adjustment with the flow control valve of the cylinder hydraulic circuit and keeping a balance when bound can＇t be absorbed only with the cylinder cushion．

$$
\begin{array}{ll}
\text { slide } & : 1.0 \mathrm{sec} \text { (right,left) } \\
90 \text { turn } & : 1.4 \mathrm{sec} \text { (Magazine side, spindle side) }
\end{array}
$$

7：By the automatic operation，confirmation
Confirmation is done under the condition which makes one side（magazine side）of the arm have the tool of the maximum weight．

Shock absorber adjustment point document

This shock absorber can't be used as a stopper at the rod stroke end.
Set it up by the following point.

1. Set it on the position of 15 mm from the tip of the rod, and the end face of the stopper nut is to lock a shock absorber with the lock nut under the free condition.
2. Set up an absorption energy adjustment knob in the position of 強, and tighten a lock screw on the side of the shock absorber, and lock.
3. Turn an absorber itself, and adjust position adjustment at the end of the changer slide, and fix it with the lock nut.

Attention: It can't be adiusted with the stopper nut.

HS-3/R ATC 38 HYDRAULIC TOOL CHANGER SPARE PARTS

The HS-3/R horizontal milling machine is available with an optional 38 pocket tool changer supplied by the Mori Machine company (OPTION No.: SMTC50-H3, tool changer P/N: 30-0458, MORI 1M01964 (ATC 38)). This document lists the HAAS part numbers for the spare parts available for this tool changer and provides the physical location of these spare parts on the tool changer

ASSEMbLY NAME	ITEM NO.	PART NAME	HAAS PART NO.
MAGAZINE ASSEMBLY	1	PROXIMITY SWITCH (TOOL POCKET NO. 1 DETECT, POT COUNT)	93-0171
MAIN DRIVE ASSEMBLY	2	PROXIMITY SWITCH (INDEX LOCK PIN, ARM SLIDE LEFT/RIGHT/CENTER, ARM IN/OUT)	93-0172
	3	INDEX MOTOR, HYDRAULIC	93-0173
	35	SOLENOID OPERATED VALVE	93-0702
	36	SOLENOID OPERATED VALVE	93-0703
TOOL RELEASE ASSEMBLY	4	SOLENOID OPERATED VALVE	93-0174
	5	REED SWITCH, TOOL RELEASE CYLINDER	93-0175
ARM ASSEMBLY	6	ARM ASSEMBLY	93-0176
	7	GRIPPER CLAW "A", ANSI	93-0177
	8	GRIPPER CLAW "B", ANSI	93-0178
	9	LOCK PIN, GRIPPER CLAW	93-0179
	10	BUSHING, GRIPPER CLAW PIVOT PIN	93-0180
TOOL CHANGER SWING ASSEMBLY	11	SLIDE MOTOR, HYDRAULIC	93-0181
	12	SHOCK ABSORBER	93-0182
	13	STOPPER NUT, SHOCK ABSORBER	93-0183
	14	ROLLER FOLLOWER	93-0184
	15	SHAFT, ROLLER FOLLOWER	93-0185
	16	RETAINING RING, ROLLER FOLLOWER SHAFT, 14 mm	93-0186
	17	REED SWITCH (ARM ROT. CW/CCW, SWING ARM MAG./SPIN.)	93-0187
	18	HYDRAULIC HOSE, MOTOR, SLIDE RIGHT	93-0188
	19	HYDRAULIC HOSE, ARM IN	93-0189
	20	HYDRAULIC HOSE, ARM OUT	93-0190
	21	HYDRAULIC HOSE, ARM ROTATE CCW	93-0191
	22	HYDRAULIC HOSE, ARM ROTATE CW	93-0192
	23	HYDRAULIC HOSE, MOTOR, SLIDE LEFT	93-0193
	24	HYDRAULIC HOSE, ROTATE CYL., ROD END, 450 mm	93-0194
	25	HYDRAULIC HOSE, ROTATE CYL., CAP END, 625 mm	93-0195
HYDRAULIC VALVE ASSEMBLY	26	SOLENOID OPERATED VALVE, ARM SWING, IN/OUT, ROTATE	93-0196
	27	SOLENOID VALVE, CHANGER ARM SLIDE	93-0197
	28	SOLENOID, CHANGER ARM VALVES	93-0198
HYDRAULIC POWER UNIT	29	HYDRAULIC PUMP	93-0155
	30	AIR-OIL COOLER	93-0156
	31	DRIVE MOTOR	93-0157
	32	RETURN FILTER	93-0158
	33	HYDRAULIC HOSE, PRESSURE	52-0008
	34	HYDRAULIC HOSE, RETURN	52-0000

[^0]: *: As viewed from the magazine side of the tool changer.

