

ПРЕОБРАЗОВАТЕЛЬ ЧАСТОТЫ ERMAN E-9PF

КАРТА РАСШИРЕНИЯ RS-485

Руководство по эксплуатации

ВВЕДЕНИЕ

Настоящее Руководство по эксплуатации содержит рекомендации и требования к установке, подключению и настройке карты расширения RS-485 для преобразователей частоты ERMAN серии E-9PF, а также описание используемого коммуникационного протокола. Пожалуйста, внимательно прочитайте настоящее Руководство перед тем, как работать с преобразователем и сохраните его для дальнейшего использования.

В случае возникновения вопросов по монтажу, настройке или эксплуатации преобразователей частоты и карт расширения, пожалуйста, обращайтесь к организации — поставщику оборудования:

ООО «Конструкторское бюро «АГАВА» 620026 Екатеринбург, ул. Бажова, 174 +7 (343) 262-92-78 (87, 76)

СОДЕРЖАНИЕ

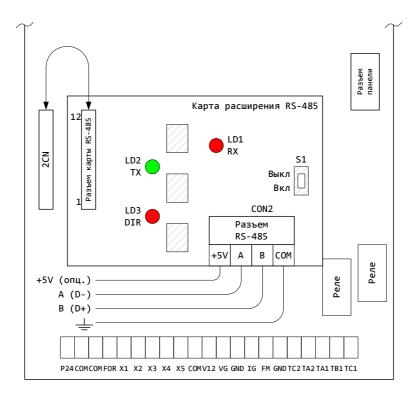
1 Общие положения	3
2 Подключение	3
3 Настройка	5
3.1 Параметры порта	5
3.2 Режим управления	6
3.3 Дополнительные параметры	6
4 Протокол MODBUS	7
4.1 Чтение параметров	8
4.2 Запись параметров	9
4.3 Диагностика	9
4.4 Контрольная сумма CRC-16	10
5 Адреса регистров MODBUS	10
5.1 Регистры управления (чтение/запись)	10
5.2 Регистры состояния (чтение)	11
5.3 Дополнительные регистры (мультизапись)	14
5.4 Регистры параметров (чтение/запись)	15
6 Примеры команд	18

1 ОБЩИЕ ПОЛОЖЕНИЯ

Карта расширения RS-485 используется для сопряжения преобразователей частоты ERMAN серии E-9PF (далее ПЧ) с оборудованием промышленной автоматизации и диспетчеризации по интерфейсу RS-485 с протоколом MODBUS RTU. ПЧ является ведомым устройством MODBUS («slave») и должен управляться ведущим устройством («master»), в качестве которого может использоваться ПЛК, персональный компьютер или иное оборудование с соответствующим программным обеспечением и аппаратным портом RS-485. На шине MODBUS должно быть не более 31 ведомого устройства, включая ПЧ.

Интерфейс RS-485 гальванически изолирован от силовых цепей ПЧ.

2 ПОДКЛЮЧЕНИЕ



Опасно! Высокое напряжение! Отключите ПЧ от сети и дождитесь разряда силовых конденсаторов (10 минут). Используйте индикаторы напряжения.

Электронные компоненты чувствительны к электростатическим разрядам! Используйте антистатические браслеты и инструмент, чтобы не допустить выхода их из строя.

Открутите винты и снимите лицевую крышку ПЧ вместе с панелью управления, вынув соединительный кабель из панели управления. Открутите четыре винта крепления платы управления ПЧ и аккуратно снимите ее. Установите пластиковые держатели карты расширения RS-485 в соответствующие отверстия платы управления и зафиксируйте их пластиковыми гайками. Установите карту расширения RS-485 на держатели, как показано на рисунке ниже и притяните винтами. Подключите карту расширения RS-485 к разъему 2CN платы управления, используя прилагаемый кабель. Обратите внимание, разъемы имеют ключи от неправильного подключения. Затем подключите интерфейсный кабель RS-485 к клеммнику карты расширения, соблюдая полярность. Соберите ПЧ в обратной последовательности.

Назначение светодиодов и контактов разъема CON2:

LD1 (красный)	RX	Мигает при приеме данных по шине RS-485.	
LD2 (зеленый)	TX	Мигает при передаче данных по шине RS-485.	
LD3 (красный)	DIR Направление передачи. Горит, если ПЧ находится в режиме приема.		
+5V	Вход/выход +5 В, 50 мА. Может быть не подключен.		
A	(D-)	Контакты шины RS-485. LD1 горит постоянно, если провода перепутаны местами.	
В	(D+)		
COM	Общий провод шины RS-485.		

Тумблер S1 подключает терминирующий резистор 100 Ом. Включите, если ПЧ является последним устройством на шине RS-485.

3 НАСТРОЙКА

3.1 ПАРАМЕТРЫ ПОРТА

Для установления связи по последовательному порту настройте параметры ПЧ **P106~P108** согласно конфигурации master-устройства. После настройки параметров порта можно изменять параметры ПЧ, получать данные телеметрии о состоянии ПЧ и привода, производить сброс ошибок и управлять дискретными выходами ПЧ.

P106 Адрес устройства MODBUS	0~31 [31]

Параметр **P106** назначает ПЧ адрес на шине MODBUS от 0 до 31 в шестнадцатеричном формате. Slave-устройства не должны использовать одинаковые адреса на шине MODBUS. Нулевой адрес является широковещательным.

Р107 Скорость передачи данных 0~2 [2]
--

0: 2400 бит/с.

1: 4800 бит/с.

2: 9600 бит/с.

Р108 Контроль четности данных 0~2 [1]	
--	--

0: Без проверки четности.

1: Проверка четности, EVEN.

2: Проверка нечетности, ODD.

Примечания:

- Параметры должны настраиваться в режиме остановки ПЧ. Изменения вступают в силу после повторной подачи сетевого электропитания ПЧ.
- ПЧ использует фиксированный формат передачи данных: 8 бит, 1 стоп-бит.
- Если после настройки параметров не удается установить связь с ПЧ, возможно, перепутаны провода D+ и D- шины RS-485. Поменяйте их местами.

3.2 РЕЖИМ УПРАВЛЕНИЯ

Для того, чтобы запускать, останавливать и изменять частоту ПЧ с помощью команд по последовательному порту настройте параметр **P002** равным 4,5,6,7 или 8.

Р002 Способ управления ПЧ

0~8 [2]

- 4: Пуск/Стоп с панели управления, задание частоты по RS-485.
- 5: Пуск/Стоп с дискретных входов, задание частоты по RS-485.
- 6: Пуск/Стоп и задание частоты по RS-485.
- 7: Пуск/Стоп по RS-485, задание частоты с панели управления.
- 8: Пуск/Стоп по RS-485, задание частоты с линейных входов VG, IG.

3.3 ДОПОЛНИТЕЛЬНЫЕ ПАРАМЕТРЫ

P103 Таймаут связи по порту RS-485	0~1 [1]

- 0: Без контроля таймаутов связи.
- 1: С контролем таймаутов связи. Если интервал между смежными посылками master-устройства превысит 2 с, канал связи считается отказавшим и ПЧ выполняет назначенное при отказе действие.

Р104 Действие при отказе связи по порту RS-485	0~3 [1]

- 0: Штатная остановка путем снижения частоты с временем замедления 1.
- 1: Аварийная остановка ПЧ, двигатель останавливается на выбеге.
- 2: Аварийная остановка ПЧ путем снижения частоты с временем замедления 2.
- 3: Продолжение работы ПЧ с текущей частотой, включается выход аварии.

Примечания:

- При определении отказа канала связи по таймауту ПЧ отображает ошибку «СЕ» («Сотиписаtion Error»). Ошибка «СЕ» не может быть сброшена при отсутствии связи по интерфейсу RS-485. Для сброса ошибки «СЕ» ПЧ должен получить произвольную команду MODBUS (например, выполнить корректное чтение регистра), а затем в течение 2 с получить команду сброса ошибки.

Р105 Единица задания и отображения частоты	0~3 [0]	
--	---------	--

- 0: Частота задается и отображается в десятых долях Γ ц. Значение 502 соответствует частоте 50,2 Γ ц.
- 1: Частота задается и отображается в сотых долях Γ ц. Значение 5025 соответствует частоте 50,25 Γ ц.
- 2: Частота задается по шкале от 0 до 30000, где 30000 соответствует 100% от установленной максимальной выходной частоты.
- 3: Частота задается и отображается в десятых долях процента от установленной максимальной выходной частоты. Значение 502 соответствует 50,2%.

4 ПРОТОКОЛ MODBUS

ПЧ серии E-9PF используют протокол, соответствующий MODBUS Application Protocol V1.1. ПЧ используют стандартные команды MODBUS 0x03 Read Holding Registers для чтения параметров, 0x10 Write Multiple Registers для записи параметров и подачи команд управления и 0x08 Diagnostics для определения состояния шины MODBUS.

Команды MODBUS, используемые ПЧ:

	Команда MODBUS	Назначение Чтение параметров управления и телеметрии (до 8 регистров подряд)	
ſ	0x03		
ſ	0x08	Диагностика	
ſ	0x10	0х10 Запись параметров управления (до 8 регистров подряд)	

Если команда завершилась с ошибкой, ПЧ возвращает код и причину ошибки. Код ошибки является суммой кода команды MODBUS и числа 0х80. Причины ошибки могут быть следующими:

Код причины ошибки	Причина	
0x01	Неверная команда MODBUS	
0x02	Неверный адрес регистра	
0x03	Неверная длина данных (свыше 8 регистров подряд)	
0x21	Значение параметра вне диапазона	
0x22	Параметр не может быть записан (ПЧ запущен или отображает ошибку)	
0x23	Параметр не может быть записан (низкое напряжение сети)	
0x24	Устройство занято, попробуйте позже (при записи параметров)	

ПЧ не отвечает на команды в следующих случаях:

- отказ канала связи (ошибка контроля четности или превышение времени ожидания);
- команда адресована другому устройству;
- пауза между смежными посылками в шине MODBUS менее 24 символов;
- команда имеет неверную длину данных.

Интервал между окончанием приема ПЧ команды и передачей ответа составляет 24 символа при установленной скорости передачи в шине MODBUS. Минимальный интервал между ответом ПЧ и следующей командой также должен составлять 24 символа. Пожалуйста, настройте программное обеспечение master-устройства на соответствующие интервалы ожидания перед повторным запросом.

4.1 ЧТЕНИЕ ПАРАМЕТРОВ

Формат команды чтения параметров:

Поле протокола	Длина поля, байт	Диапазон значений
Адрес устройства	1	0~31, 0 является широковещательным
Код функции	1	0x03
Начальный адрес	2	0x0001~0x016C
Количество регистров	2	0x0001~0x0008
Контрольная сумма	2	CRC-16

Формат ответа:

Поле протокола	Длина поля, байт	Диапазон значений
Адрес устройства	1	0~31, 0 является широковещательным
Код функции	1	0x03
Длина чтения, байт	1	Количество регистров х2
Считанное значение	Количество регистров х2	Значение регистров
Контрольная сумма 2		CRC-16

4.2 ЗАПИСЬ ПАРАМЕТРОВ

Формат команды записи параметра:

Поле протокола	Длина поля, байт	Диапазон значений
Адрес устройства	1	0~31, 0 является широковещательным
Код функции	1	0x10
Начальный адрес	2	0x0001~0x016C
Количество регистров	2	0x0001~0x0008
Длина записи, байт	1	Количество регистров х2
Значение параметра	Количество регистров x2	0x0000~0xFFFF
Контрольная сумма	2	CRC-16

Формат ответа:

Поле протокола	Длина поля, байт	Диапазон значений
Адрес устройства	1	0~31, 0 является широковещательным
Код функции	1	0x10
Начальный адрес	2	0x0001~0x016C
Количество регистров	2	0x0000~0x0008
Контрольная сумма	2	CRC-16

4.3 ДИАГНОСТИКА

Формат команды диагностики:

Поле протокола Длина поля, байт		Диапазон значений
Адрес устройства	1	0~31, 0 является широковещательным
Код функции	1	0x08
Код подфункции	2	0x0000~0x0030
Команда	2	0x0000~0xFFFF
Контрольная сумма	2	CRC-16

Формат ответа:

Поле протокола	Длина поля, байт	Диапазон значений
Адрес устройства	1	0~31, 0 является широковещательным
Код функции	1	0x08
Код подфункции	2	0x0000~0x0030
Ответ	2	0x0000~0xFFFF
Контрольная сумма	2	CRC-16

4.4 КОНТРОЛЬНАЯ СУММА CRC-16

ПЧ серии E-9PF используют для проверки целостности данных контрольную сумму CRC-16, определенную спецификацией MODBUS. Полином для расчета CRC равен 0хA001. Несовпадение контрольной суммы считается отказом канала связи.

5 АДРЕСА РЕГИСТРОВ MODBUS

5.1 РЕГИСТРЫ УПРАВЛЕНИЯ (ЧТЕНИЕ/ЗАПИСЬ)

Адрес	Описание			
	Реги	Регистр управления ПЧ		
	Бит 0	1: Активна команда ПУСК	Управление запуском и остановкой	
	рит О	0: Активна команда СТОП	у правление запуском и остановкои	
	Бит 1	1: Вращение НАЗАД	Virgor round housen round promoting	
	рит т	0: Вращение ВПЕРЕД	Управление направлением вращения	
	Бит 2	1: Внешняя авария ЕF0	Подача сигнала внешней аварии	
	Вит 2	0: Действие не производится	подача сигнала внешней аварии	
	Бит 3	1: Сброс аварии	Сброс состояния аварии ПЧ	
0x0001	рит 3	0: Действие не производится	Сорос состояния аварии 11-1	
0x0001	Бит 4	1: Замкнуть вход Х2		
	Dи1 4	0: Разомкнуть вход Х2		
	Бит 5	1: Замкнуть вход ХЗ		
	БИТ Э	0: Разомкнуть вход ХЗ	Выполняется действие, назначенное	
	Бит 6	1: Замкнуть вход Х4	дискретному входу	
	рит о	0: Разомкнуть вход Х4		
	Бит 7	1: Замкнуть вход X5		
	БИТ /	0: Разомкнуть вход Х5		
	Бит 8~15	Зарезервировано		
0x0002	Реги	стр задания частоты (единица изм	ерения задается Р105)	
0x0003				
0x0008	Зарезервировано			
	Реги	стр управления выходами ПЧ		
	Бит 0	1: Замкнуть релейный выход (контакты TA1-TC1, P040 = 15)		
0x0009	טווע ט	0: Разомкнуть релейный выход		
UNUUUJ	Бит 1	1: Замкнуть дискретный выход (контакты TA2-TC2, P041 = 15)		
		0: Разомкнуть дискретный выход	-	
	Бит 2~15	Зарезервировано		

Зарезервированные биты следует устанавливать равными «0».

5.2 РЕГИСТРЫ СОСТОЯНИЯ (ЧТЕНИЕ)

Адрес	Описание		
	Состояние ПЧ		
	Γ 0	1: ПЧ запущен	
	Бит 0	0: ПЧ остановлен	
	- 1	1: Обратное направление вращения	
	Бит 1	0: Прямое направление вращения	
		1: ПЧ готов	
	Бит 2	0: ПЧ не готов	
		1: Сигнал сброса активен	
0x0020	Бит 3	0: Сигнал сброса неактивен	
		1: Ошибка установки данных	
	Бит 4	0: Нет ошибки	
		1: Релейный выход активен (ТА1-ТС1 замкнуты)	
	Бит 5	0: Релейный выход не активен	
		1: Дискретный выход активен (ТА2-ТС2 замкнуты)	
	Бит 6	0: Дискретный выход не активен	
	Бит 7~15	Зарезервировано	
		^ ^ ^	
	прич	нина аварии OC (перегрузка по току)	
	Бит 0	GF (неисправность заземления)	
	DITO	SC (короткое замыкание нагрузки)	
	Бит 1	OU, перегрузка по напряжению	
	Бит 2	OL2, перегрузка ПЧ	
	Бит 3	ОН1, перегрев ПЧ	
	Бит 4	Зарезервировано	
	Бит 5	PUF, сгорел предохранитель	
	Бит 6	RH, перегрев тормозного резистора	
0x0021	Бит 7	EF, EF0, внешний сигнал аварии	
	Бит 8	СРГ, отказ платы управления ПЧ	
		OL1 (перегрузка двигателя)	
	Бит 9	OL3 (перегрузка по крутящему моменту)	
	Бит 10	Зарезервировано	
	Бит 11	UV, пониженное напряжение питания	
	Бит 12	UV1 (низкое напряжение силовой цепи)	
		UV2 (низкое напряжение цепи управления)	
		UV3 (низкое напряжение питания процессора)	
	Бит 13	SPO (обрыв фазы двигателя) SPI (обрыв фазы питания)	
	Бит 14,15	Зарезервировано	
	אוו 14,13	Эарсэсроировано	

Адрес	Описание		
	Сост	ояние интерфейса RS-485	
	Бит 0	Происходит запись данных	
0x0022	Бит 1~2	Зарезервировано	
	Бит 3	Ошибка в порядке старший/младший байт	
	Бит 4	Данные вне диапазона допустимых значений параметра	
	Бит 5~15	Зарезервировано	
0x0023	Теку	щая уставка частоты (единица измерения задается Р105)	
0x0024	Теку	щая выходная частота (единица измерения задается Р105)	
0x0025 0x0026	Зарезервир	оовано	
0x0027	Выхо	одной ток ПЧ (в десятых долях ампера)	
0x0028	Выхо	одное напряжение ПЧ (в вольтах)	
0x0029	Зарезервир	оовано	
	Сост	ояние внешних дискретных входов ПЧ	
	Бит 0	1: Дискретный вход FOR активен (FOR-COM замкнуты)	
	DH1 U	0: Дискретный вход FOR не активен	
	Бит 1	1: Дискретный вход X1 активен (X1-COM замкнуты)	
	рит т	0: Дискретный вход X1 не активен	
	Бит 2	1: Дискретный вход Х2 активен (Х2-СОМ замкнуты)	
0x002A	DHI Z	0: Дискретный вход Х2 не активен	
UXUUZA	Бит 3	1: Дискретный вход ХЗ активен (ХЗ-СОМ замкнуты)	
		0: Дискретный вход Х3 не активен	
	Бит 4	1: Дискретный вход Х4 активен (Х4-СОМ замкнуты)	
		0: Дискретный вход Х4 не активен	
	Fur 5	1: Дискретный вход Х5 активен (Х5-СОМ замкнуты)	
	Бит 5	0: Дискретный вход Х5 не активен	
	Бит 6~15	Зарезервировано	
0x002B	Сост	ояние ПЧ	
	Бит 0	1: ПЧ запущен	
	DMI U	0: ПЧ остановлен	
	Бит 1	1: Нулевая частота	
	рит 1	0: Ненулевая частота	
	Бит 2	1: Пороговая частота достигнута	
	Д ИТ 2	0: Пороговая частота не достигнута	
	Бит 3	1: Заданная частота достигнута	
	рит 3	0: Заданная частота не достигнута	
	Бит 4	1: Достигнут порог частоты 1	
		0: Порог частоты 1 не достигнут	
	Бит 5	1: Достигнут порог частоты 2	
		0: Порог частоты 2 не достигнут	

Адрес	Описание		
	Γ (1: ПЧ прошел инициализацию и готов к работе	
	Бит б	0: ПЧ инициализируется	
	Even 7	1: Низкое напряжение цепи постоянного тока	
	Бит 7	0: Напряжение цепи постоянного тока в норме	
	Бит 8	1: Выход ПЧ отключен	
	риго	0: Выход ПЧ не отключен	
	Бит 9	1: Задание частоты производится не по RS-485	
	Вит Э	0: Задание частоты производится по RS-485	
	Бит 10	1: Пуск/стоп ПЧ производится не по RS-485	
	Бит то	0: Пуск/стоп ПЧ производится по RS-485	
	Бит 11	1: Обнаружено превышение крутящего момента	
	рит 11	0: Крутящий момент в норме	
	Бит 12	1: Команда уставки частоты потеряна	
	БИТ 12	0: Канал задания частоты в норме	
	Бит 13	Зарезервировано	
	Бит 14	1: Возникла аварийная ситуация, требуется вмешательство оператора	
	DИТ 14	0: Аварийных ситуаций нет	
	Бит 15	1: Возникла ошибка таймаута связи по порту RS-485	
	Бит 13	0: Ошибок нет	
0x002C	Зарезервир	оовано	
	Состояние дискретных выходов		
	Бит 0	1: Релейный выход активен (ТА1-ТС1 замкнуты)	
0x002D	Бит О	0: Релейный выход не активен	
0X002D	Fur 1	1: Дискретный выход активен (ТА2-ТС2 замкнуты)	
	Бит 1	0: Дискретный выход не активен	
	Бит 2~15	Зарезервировано	
0x002E	Зарезервировано		
0x0030			
0x0030	Напряжение цепи постоянного тока (в вольтах)		
0x0031	11411	yamenne demi nocionimoro roma (p pompius)	
	Зарезервировано		
0x003C			

	Причина отказа связи по последовательному порту	
	Бит 0	Ошибка CRC
	Бит 1	Неправильная длина данных
	Бит 2	Зарезервировано
0x003D	Бит 3	Ошибка контроля четности
	Бит 4	Ошибка переполнения
	Бит 5	Неправильный формат пакета MODBUS
	Бит 6	Таймаут связи
	Бит 7~15	Зарезервировано

Примечание:

- Содержимое регистра 0x003D сохраняется до подачи сигнала сброса ошибок.

5.3 ДОПОЛНИТЕЛЬНЫЕ РЕГИСТРЫ (МУЛЬТИЗАПИСЬ)

ПЧ имеет два дополнительных регистра, доступных для записи посредством широковещательных команд MODBUS. Таким образом, возможен одновременный пуск и задание частоты для нескольких ПЧ, управляемых по одной шине MODBUS.

Адрес	Описание		
	Реги	стр управления ПЧ	
	Бит О	1: Активна команда ПУСК	Управление запуском и остановкой
	рит О	0: Активна команда СТОП	з правление запуском и остановкои
	Бит 1	1: Вращение НАЗАД	Управление направлением вращения
	рит 1	0: Вращение ВПЕРЕД	у правление направлением вращения
0x0001	Бит 2~3	Зарезервировано	
	Бит 4	1: Внешняя авария ЕF0	 Сигнал внешней аварии
		0: Действие не производится	Сигнал внешней аварии
	Бит 5	1: Сброс аварии	 Сброс состояния аварии ПЧ
		0: Действие не производится	Сорос состояния аварии 11-1
	Бит 6~15	Зарезервировано	
0x0002	Регистр задания частоты (в масштабе от 0 до 30000)		

5.4 РЕГИСТРЫ ПАРАМЕТРОВ (ЧТЕНИЕ/ЗАПИСЬ)

Регистры параметров ПЧ расположены в адресном пространстве MODBUS от 0x0101 до 0x016C согласно карте адресов.

Адрес	Регистр	Описание	
0x0101	P001	Защита параметров ПЧ от изменения	
0x0102	P002	Режим управления ПЧ	
0x0103	P003	Номинальное напряжение сети	
0x0104	P004	Режим остановки ПЧ	
0x0105	P005	Направление вращения	
0x0106	P006	Запрет обратного вращения	
0x0107	P007	Запрет переключения LOCAL/REMOTE	
0x0108	P008	Действие клавиши STOP	
0x0109	P009	Запрет задания частоты с клавиатуры	
0x010A	P010	Выбор зависимости V/f	
0x010B	P011	Номинальное напряжение двигателя	
0x010C	P012	Максимальная частота ПЧ	
0x010D	P013	Максимальное напряжение V/f ПЧ	
0x010E	P014	Частота при Р013	
0x010F	P015	Промежуточная частота V/f ПЧ	
0x0110	P016	Напряжение при Р015	
0x0111	P017	Минимальная частота V/f ПЧ	
0x0112	P018	Напряжение при Р017	
0x0113	P019	Время разгона 1	
0x0114	P020	Время торможения 1	
0x0115	P021	Время разгона 2	
0x0116	P022	Время торможения 2	
0x0117	P023	Постоянная времени профиля разгона/торможения	
0x0118	P024	Режим индикации	
0x0119	P025	Уставка частоты 1	
0x011A	P026	Уставка частоты 2	
0x011B	P027	Уставка частоты 3	
0x011C	P028	Уставка частоты 4	
0x011D	P029	Частота толчка	
0x011E	P030	Верхний предел выходной частоты	
0x011F	P031	Нижний предел выходной частоты	
0x0120	P032	Номинальный ток двигателя	
0x0121	P033	Защита двигателя от перегрева	

Адрес	Регистр	Описание
0x0122	P034	Способ остановки при перегреве ПЧ
0x0123	P035	Функция дискретного входа X1
0x0124	P036	Функция дискретного входа X2
0x0125	P037	Функция дискретного входа X3
0x0126	P038	Функция дискретного входа X4
0x0127	P039	Функция дискретного входа X5
0x0128	P040	Функция релейного выхода ТА1/ТВ1/ТС1
0x0129	P041	Функция дискретного выхода ТА2/ТС2
0x012A	P042	Выбор линейного входа VG/IG
0x012B	P043	Тип входа IG
0x012C	P044	Сохранение частоты при отключении питания
0x012D	P045	Действие при потере сигнала уставки частоты
0x012E	P046	Усиление сигнала уставки частоты
0x012F	P047	Смещение нуля сигнала уставки частоты
0x0130	P048	Тип выхода FM
0x0131	P049	Усиление выходного сигнала FM
0x0132	P050	Частота модуляции
0x0133	P051	Действие при кратковременном пропадании питания
0x0134	P052	Уровень тока при поиске скорости
0x0135	P053	Минимальное системное время
0x0136	P054	Уровень снижения V/f при поиске скорости
0x0137	P055	Время восстановления при кратковременном пропадании питания
0x0138	P056	Количество попыток автоматического перезапуска после аварии
0x0139	P057	Состояние релейного/дискретного выхода аварии при перезапуске
0x013A	P058	Резонансная частота 1
0x013B	P059	Резонансная частота 2
0x013C	P060	Диапазон резонансных частот
0x013D	P061	Тип счетчика наработки ПЧ
0x013E	P062	Счетчик наработки ПЧ, часы
0x013F	P063	Счетчик наработки ПЧ, десятки тысяч часов
0x0140	P064	Уровень тока при торможении постоянным током
0x0141	P065	Время торможения постоянным током при остановке
0x0142	P066	Время торможения постоянным током при пуске
0x0143	P067	Величина компенсации крутящего момента
0x0144	P068	Сопротивление обмоток электродвигателя
0x0145	P069	Потери в металле
0x0146	P070	Предотвращение заклинивания при торможении
0x0147	P071	Предельный уровень тока при разгоне
0x0148	P072	Предельный уровень тока при вращении с постоянной скоростью

Адрес	Регистр	Описание
0x0149	P073	Максимальная частота сигнала FM
0x014A	P074	Определение перегрузки по крутящему моменту
0x014B	P075	Уровень перегрузки по крутящему моменту
0x014C	P076	Время определения перегрузки по крутящему моменту
0x014D	P077	Задержка запуска ПЧ
0x014E	P078	Задержка остановки ПЧ
0x014F	P079	Контроль перегрева тормозного резистора
0x0150	P080	Уровень определения обрыва фазы питания
0x0151	P081	Время определения обрыва фазы питания
0x0152	P082	Уровень определения обрыва фазы двигателя
0x0153	P083	Время определения обрыва фазы двигателя
0x0154	P084	Режим ПИД-регулирования
0x0155	P085	Калибровка обратной связи ПИД-регулятора
0x0156	P086	Пропорциональный коэффициент регулирования
0x0157	P087	Время интегрирования
0x0158	P088	Время дифференцирования
0x0159	P089	Сдвиг характеристики ПИД-регулятора
0x015A	P090	Верхний предел интегральной составляющей ПИД
0x015B	P091	Постоянная времени фильтра выходного сигнала ПИД
0x015C	P092	Определение потери обратной связи
0x015D	P093	Порог определения потери обратной связи
0x015E	P094	Задержка определения потери обратной связи
0x015F	P095	Режим энергосбережения
0x0160	P096	Коэффициент энергосбережения
0x0161	P097	Нижний предел напряжения энергосбережения при 60 Гц
0x0162	P098	Нижний предел напряжения энергосбережения при 6 Гц
0x0163	P099	Время усреднения мощности в режиме энергосбережения
0x0164	P100	Диапазон регулирования напряжения в режиме энергосбережения
0x0165	P101	Шаг автоподстройки напряжения при 100% выходного напряжения
0x0166	P102	Шаг автоподстройки напряжения при 5% выходного напряжения
0x0167	P103	Таймаут связи по порту RS-485
0x0168	P104	Действие при отказе связи по порту RS-485
0x0169	P105	Единица задания и отображения частоты
0x016A	P106	Адрес устройства MODBUS
0x016B	P107	Скорость передачи данных
0x016C	P108	Контроль четности данных

Подробное описание функций регистров приведено в Руководстве по эксплуатации ПЧ ERMAN серии E-9PF.

6 ПРИМЕРЫ КОМАНД

Ниже приводятся примеры команд чтения и записи в регистры ПЧ, а также диагностики состояния шины MODBUS. Обратите внимание, что длина и содержимое посылки могут изменяться в зависимости от команды и состояния ПЧ.

Пример 1. Считать регистры 0х68~0х6В с устройства с адресом 0х02:

Адрес	Функция	Адрес р	егистра	Кол-во р	егистров	CF	RC
0x02	0x03	0x00	0x68	0x00	0x04	0xC5	0xE6

Ответ ПЧ:

А прос Фу	Функция	Лини отрото бойт	Содера	жимое ре	гистра по	адресу	CF	OC.
Адрес	Функция Длина ответа, б	длина ответа, оаит	0x0068	0x0069	0x006A	0x006B	Cr	
0x02	0x03	0x08	0x022B	0x0000	0x0000	0x0000	0x80	0x48

Ответ ПЧ при ошибке:

Адрес	Функция	Код ошибки	CF	RC
0x02	0x83	0x03	0xF1	0x31

Пример 2. Записать данные в регистры 0х87~0х88 устройства с адресом 0х01:

Адрес	Функция	Функция Адрес		Кол-во		Кол-во	Д	Данные р		Данные регистра		oa	CRC	
		реги	стра	регис	стров	байт	0x0	0087	0x0	088	Cr			
0x01	0x10	0x00	0x87	0x00	0x02	0x04	0x00	0x0A	0x00	0x00	0x9A	0x2B		

Ответ ПЧ:

Адрес	Функция	Адрес р	егистра	Кол-во р	егистров	CI	RC
0x01	0x10	0x00	0x87	0x00	0x02	0xF1	0xE1

Ответ ПЧ при ошибке:

Ад	црес	Функция	Код ошибки	CR	RC
0x	k01	0x90	0x02	0xCD	0xC1

Пример 3. Команда диагностики:

Адрес	Функция	Подфункция	диагностики	Тестовые	данные	CR	RC.
0x01	0x08	0x00	0x00	0xA5	0x37	0xDA	0x8D

Ответ ПЧ:

Адрес	Функция	Подфункция	диагностики	Тестовые	е данные	CR	RC
0x01	0x08	0x00	0x00	0xA5	0x37	0xDA	0x8D

Ответ ПЧ при ошибке:

Адрес	Функция	Код ошибки	CF	RC
0x01	0x89	0x01	0x86	0x50