

Преобразователь частоты векторный общепромышленного применения

Control L620

Руководство по эксплуатации

Предисловие

Благодарим Вас за использование преобразователей серии L620!

В преобразователях рассматриваемой серии используются новейшие технологии в области векторного управления тока, обеспечивающие достижение номинального крутящего момента на выходе при низкой скорости и почти бесшумный устойчивый ход. Они отличаются многообразием режимов регулирования, имеют до 36 усовершенствованных функций защиты и сигнализации, обеспечивают непрерывный мониторинг и оперативную подстройку множества параметров, обладают встроенным интерфейсом связи RS-485, гибким управлением, что удовлетворяет различные потребности конечных пользователей.

Преобразователи данной серии подходят для эксплуатации в большинстве электрических приводов, в том числе используемых при производстве бумаги, текстиля, продуктов питания, цемента, а также в полиграфическом, красильном оборудовании, машинах для литья пластмасс и в других отраслях промышленности. Как частотные регуляторы оборотов электродвигателя, преобразователи данных серий способны адаптироваться к изменениям нагрузки в достаточно широком диапазоне, обладают устойчивым ходом, высокой точностью и достаточной надежностью. Они могут улучшить коэффициент мощности и производительность, а также могут использоваться в качестве энергосберегающих устройств.

В случае возникновения в процессе эксплуатации каких-либо неустранимых ошибок, пожалуйста, свяжитесь с местными представителями компании или с компанией напрямую.

Для обеспечения безупречной и безопасной эксплуатации изделия, пожалуйста, внимательно прочтите руководство пользователя перед началом работы с преобразователем и храните его в надлежащем месте для дальнейшего применения.

Информация, содержащаяся в настоящем руководстве, может быть изменена без предварительного уведомления.

Для обеспечения вашей безопасности и увеличения срока службы оборудования перед началом монтажа, ввода в эксплуатацию и использования преобразователя настоятельно рекомендуем Вам ознакомиться с правилами техники безопасности и мерами предосторожности, изложенными в данном руководстве, а также со всеми предупреждающими знаками на преобразователе. При эксплуатации обращайте особое внимание на параметры нагрузки и указания, касающиеся безопасности.

СОДЕРЖАНИЕ

Глава	1 Контроль закупаемых изделий	5
1.1	Контроль при распаковке	5
1.2	Паспортная табличка преобразователя	5
1.3	Правила наименования	6
Глава	2 Установка и подключение	7
2.1	Требования к месту и процедуре монтажа	7
2.1.1	Место установки	7
2.1.2	Температура окружающей среды	8
2.1.3	Меры предосторожности	8
2.2	Установка и положение при монтаже	8
2.3	Подключение силовых цепей	9
2.3.1	Конфигурация и подключение клемм силовых цепей	9
2.3.2	Процесс подключения силовых цепей	12
2.4	Подключение цепи управления	13
2.4.1	Назначение клемм цепей управления	13
2.4.2	Подключение клемм цепей управления	16
2.4.2.1	Подключение клеммы аналогового входа	16
2.4.2.2	Подключение клеммы аналогового выхода	16
2.4.2.3	Подключение последовательных интерфейсов	17
2.4.2.4	Подключение многофункциональной входной клеммы	18
2.4.2.5	Подключение релейных выходов ТА, ТВ, ТС	19
2.5	Подключение преобразователя для базового режима работы	20
2.6	Меры предосторожности при подключении	21
Глава	3 Эксплуатация	22
3.1	Работа с пультом управления	22
3.2	Раскладка кнопочной панели	23
3.2.1	Описание функций кнопочной панели	24
3.2.2	Описание индикаторов	25
3.2.3	Последовательность действий при работе с клавиатурой	26
3.3	Выбор режима команды «ХОД»	27
3.4	Пробная эксплуатация	28
3.4.1	Режим работы инвертора	28
3.4.2	Операция подачи напряжения	
3.4.3	Первый пробный запуск	30

Глава	4	Параметры	31
Глава	5	Подробное описание параметров	67
Глава	6	Устранение неисправностей	184
6.1	Уст	ранение неисправностей	184
6.2	Инд	цикация предупреждений и их пояснение	188
6.3	Неи	справности двигателя и меры по их устранению	189
Глава	7	Периферийное оборудование	191
7.1	Схе	ма соединений периферийного оборудования	191
7.2		ікции периферийного оборудования	
7.2.1	Дро	оссель переменного тока	193
7.2.2	Тор	мозной модуль и тормозной резистор	193
Глава	8	Техническое обслуживание	195
8.1	Про	рверка и техобслуживание	195
8.1.1	Еже	едневная проверка	195
8.1.2	Пер	иодическое техническое обслуживание	196
8.1.3		улярно заменяемые элементы	
8.2	Хра	нение	198
Прило	же	ние А. Габаритные и монтажные размеры	199
Прило	же	ние Б. Технические параметры	202
Прило	же	ние В. Использование коммуникационного	
интер	фе	йса MODBUS	206
Прило	же	ние Г. Установочные размеры клавишной	
-		держателя	218
Г.1	Кла	- Івишная панель	218
Г.2	Дер	жатель клавишной панели	219
Прило	же	ние Д. Гарантийный талон на инвертор	212

ОПАСНО!

- Оборудование находится под опасным напряжением. Эксплуатация с нарушением требований настоящего руководства может представлять опасность для жизни или привести к травме. Монтаж привода должен осуществлять только квалифицированный персонал.
- Отключите питание, прежде чем приступать к осмотру или монтажу. Не прикасайтесь к платам
 инвертора или внутренним деталям, пока не погаснет индикатор заряда, или подождите не менее
 пяти минут после отключения питания. Необходимо использовать измерительные приборы, чтобы
 убедиться в отсутствии заряда в конденсаторе. В противном случае присутствует риск поражения
 электрическим током.
- Не подсоединяйте источник электропитания переменного тока к выходным клеммам U, V, W инвертора. При работе с инвертором клемма заземления должна быть надлежащим образом заземлена, согласно условиям правил IEC по электробезопасности.

ПРЕДОСТЕРЕЖЕНИЕ!

- Несанкционированная модификация внутренних электрических соединений или использование вспомогательного оборудования, проданного или рекомендованного непроверенным производителем, могут привести к пожару, поражению электрическим током или травме.
- Заряды статического электричества, накапливающиеся на теле человека, могут привести к серьезным повреждениям полевого транзистора МОП и других чувствительных элементов. До тех пор, пока не приняты меры защиты от статических разрядов, не прикасайтесь к внутренним платам инвертора, БТИЗ и т. д.

ПРЕДУПРЕЖДЕНИЕ!

- Знаки и наклейки должны быть читаемыми. Утраченные или стертые знаки следует заменить.
- Храните руководство в легкодоступном месте и ознакомьте с руководством пользователей, работающих с инвертором.

Все права защищены. Информация, содержащаяся в настоящем руководстве, может быть изменена без предварительного уведомления. В случае возникновения проблем или вопросов, связанных с использованием наших изделий, свяжитесь с нашими представителями или с нами напрямую. Любые предложения по улучшению качества приветствуются.

Глава 1 Контроль закупаемых изделий

1.1 Контроль при распаковке

Все преобразователи прошли испытания и строгий контроль перед поставкой. После распаковки проверьте изделие на предмет повреждений при транспортировке, на соответствие полученной модели заказу и на наличие знака о прохождении контроля качества. При наличии каких-либо проблем свяжитесь с поставщиком.

1.2 Паспортная табличка преобразователя

На правой нижней стенке преобразователя расположена паспортная табличка, содержащая данные о маркировке и номинальном значении. На примере модели L620.

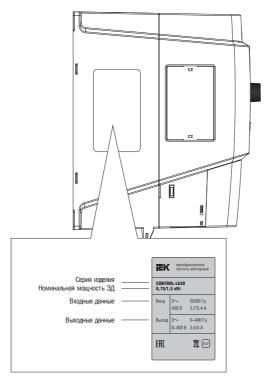
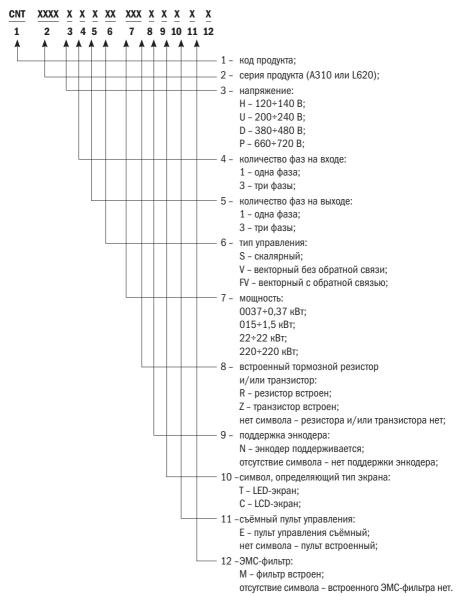



Рисунок 1.1 - Паспортная табличка инвертора

1.3 Правила наименования

Правила наименования изделия показаны ниже.

Глава 2 Установка и подключение

2.1 Требования к месту и процедуре монтажа

ВНИМАНИЕ

- Не переносите преобразователь за крышку. Крышка не выдержит вес преобразователя, это создаст риск падения устройства.
- Устанавливайте преобразователь на поверхность, которая может выдержать его вес, в противном случае существует риск падения устройства.
- Не устанавливайте преобразователь в месте, где на него могут протечь водопроводные трубы.
- Не допускайте попадания посторонних предметов в корпус преобразователя, в противном случае возникает опасность пожара или повреждения.
- Не приступайте к работе с преобразователем, не убедившись, что он правильно собран, в противном случае существует опасность пожара или травмы.
- Не устанавливайте преобразователь в месте, где на него будет попадать прямой солнечный свет.
 В противном случае есть риск повреждения.
- Не заворачивайте контакты РВ, + и –, в противном случае возникает опасность пожара или повреждения преобразователя.
- Наконечник кабеля должен быть прочно присоединен к основным клеммам.
- Не подавайте напряжение питания (220 В переменного тока) к клеммам управления, за исключением клемм ТА, ТВ, ТС.

Установите преобразователь согласно нижеизложенным инструкциям и поддерживайте соответствующие условия.

2.1.1 Место установки

Место установки должно отвечать следующим требованиям:

- Хорошая вентиляция.
- Температура окружающей среды: от -10 до +40 °C. Если температура выше допустимого значения 40 °C, необходимо установить систему искусственной вентиляции.
- Влажность должна быть не более 95 %, не допускайте появления конденсата и попадания дождевой влаги.
- Не устанавливайте преобразователь на деревянную или другую легковоспламеняющуюся поверхность.
- Избегайте попадания прямых солнечных лучей.
- Строго запрещается установка преобразователя в местах, где могут находиться легковоспламеняющиеся, взрывоопасные, агрессивные газы или жидкости.
- Устанавливайте преобразователь в месте, защищенном от пыли, металлического порошка, агрессивных или горючих газов.
- Поверхность для установки должна быть твердой и не подверженной вибрации.

- Не допускайте воздействия электромагнитного излучения, изолируйте источник излучения.
- Следует учитывать снижение номинальных значений преобразователя в случае его установки
 на высоте более чем 1000 м над уровнем моря. Это происходит по причине снижения охлаждающей
 способности преобразователя из-за разреженного воздуха. Ухудшение на 6 % каждые 100 м
 над отметкой 1000 м.

2.1.2 Температура окружающей среды

Для увеличения эксплуатационной надёжности преобразователя убедитесь в том, чтобы место установки было хорошо вентилируемым. При установке преобразователя в шкафу должен быть установлен вентилятор или кондиционер, чтобы поддерживать температуру окружающей среды ниже 40 °C.

2.1.3 Меры предосторожности

В ходе монтажа установите экран, чтобы избежать попадания металлических частиц в корпус; после окончания монтажа экран уберите.

Если температура окружающей среды превысила 40 °С или повышена температура внутри корпуса, снимите защитное покрытие. В противном случае необходимо понизить мощность инвертора. После снятия защитного покрытия убедитесь в том, что в корпус не попали мелкие частицы.

2.2 Установка и положение при монтаже

Все преобразователи этой серии оборудованы вентиляторами для принудительного охлаждения. Для эффективного охлаждения преобразователь должен быть установлен в вертикальном положении; оставьте достаточно свободного пространства вокруг, как показано на рисунке 2.1.

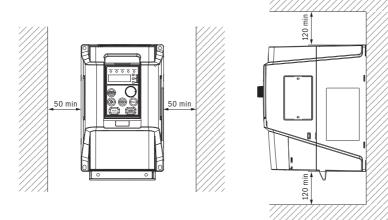


Рисунок 2.1 – Установка и положение при монтаже

2.3 Подключение силовых цепей

2.3.1 Конфигурация и подключение клемм силовых цепей

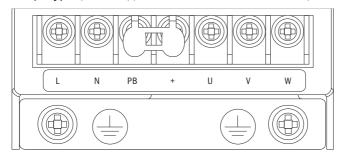


Рисунок 2.2 - Подключение клемм силовых цепей 1РН 220 В 0,4-0,75 кВт

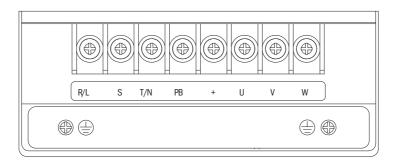


Рисунок 2.3 – Подключение клемм силовых цепей 1PH 220 В $1,5 \div 2,2$ кВт и 3PH 380 В $0,75 \div 2,2$ кВт Примечание: модели 220 В находятся в разработке.

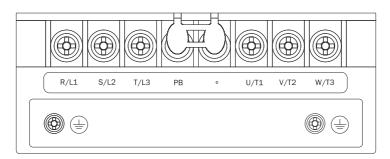


Рисунок 2.4 - Подключение клемм силовых цепей 3PH 380 B 0,75÷2,2 кВт

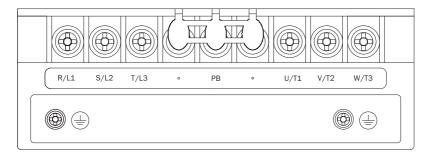


Рисунок 2.5 - Подключение клемм силовых цепей 3PH 380 B 4÷7,5 кВт

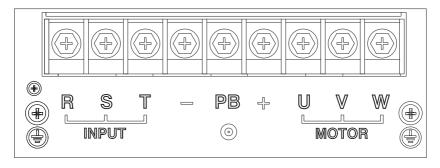


Рисунок 2.6 - Подключение клемм силовых цепей 3PH 380 В 11÷15 кВт

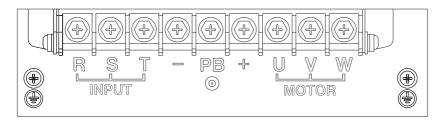


Рисунок 2.7 - Подключение клемм силовых цепей 18,5÷30 кВт

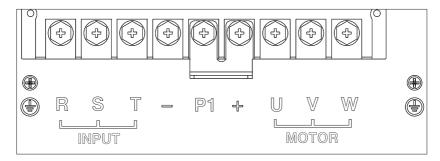


Рисунок 2.8 - Подключение клемм силовых цепей 37÷500 кВт

Таблица 2.1 - Расшифровка клемм силовой цепи

Клеммы	Наименование клеммы и назначение
R, S, T	Подключение питания 380 АС
+, PB	Клеммы для подключения внешнего тормозного резистора
_	Выходная клемма отрицательной шины постоянного тока
U, V, W	Клеммы подключения электродвигателя
PE	Защитные клеммы заземления

2.3.2 Процесс подключения силовых цепей

Не подключайте кабель, подающий питание, к клеммам подключения электродвигателя. В противном случае компоненты преобразователя будут повреждены. Не заземляйте выходные клеммы. Провода не должны касаться шкафа или быть накоротко замкнуты. В противном случае преобразователь будет поврежден.

Клемма заземления РЕ должна быть заземлена. Никогда не подключайте провод заземления к электросварочному аппарату или оборудованию питания. Используйте провод заземления с сечением, установленным техническими стандартами для электрического оборудования, и устанавливайте его настолько близко к точке заземления, насколько это возможно. В случае одновременного использования двух и более инверторов, следите за тем, чтобы провод заземления не образовывал петлю. Правильный и неправильный способы заземления показаны на рисунке 2.9.

Рисунок 2.9 - Способ подключения заземления

ПРИМЕЧАНИЯ

- Нейтральный проводник электродвигателя, соединенный по схеме звезда, не может быть заземлен.
- Если конденсатор или варистор для увеличения коэффициента мощности установлены на выходной стороне, то при выходной волне ШИМ-сигнала преобразователя это может привести к автоматическому отключению или повреждению частей, поэтому удалите их.

При установке на выходе преобразователя контактора или другого коммутирующего оборудования, убедитесь, что они не будут отключаться во время работы преобразователя. В противном случае преобразователь может быть повреждён.

2.4 Подключение цепи управления

2.4.1 Назначение клемм цепей управления

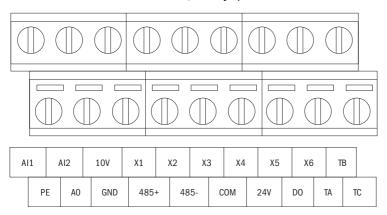


Рисунок 2.10 - Конфигурация клемм платы управления

Чтобы избежать влияния помех и ослабления сигнала управления, длина кабеля цепи управления должна быть не более 50 м и находиться на расстоянии более 30 см от кабеля электропитания. Не допускайте запараллеливания провода в цепи управления и провода питания. Попробуйте использовать экранированную витую пару (STP) для согласования аналогового входного и выходного сигнала.

Таблица 2.2 - Назначение клемм цепей управления

Тип	Клеммы	Название	Функция	Параметры
Аналоговые входа	Al1	Аналоговый вход 1	Ввод напряжения/тока. Напряжение/ток выбираются с помощью переключателя SW1. Диапазон заводских настроек входного напряжения представлен в инструкции, код функции P4.00—P4.05	Диапазон входных сигналов Al1 0÷10 В или 0/4÷20 мА. Входное сопротивление 30 кОм во время подачи сигнала напряжения. Входное сопротивление 250 Ом во время подачи сигнала тока. Базовое заземление: GND
	AI2	Аналоговый вход 2	Ввод напряжения. Диапазон заводских настроек входного напряжения представлен в инструкции, код функции P4.06—P4.10	Диапазон входного сигнала Al2 0÷10 В. (входное сопротивление 30 кОм). Клемма заземления: GND
Аналоговый выход	AO	Аналоговый выход	Обеспечивает аналоговый выход по напряжению и току, представляет собой 14 типов сигналов. Представлены в инструкции, код функции P4.21	Диапазон выходного напряжения: 0÷10 В, 0 и 4÷20 мА. Базовое заземление: GND

Тип	Клеммы	Название	Функция	Параметры
фейс	485+	RS-485 интер- фейс связи	485 дифференциальных сигналов положительной клеммы	Стандартный RS-485 интерфейс связи. Не изолирован от GND. Используйте витые
Интерфейс	485-		485 дифференциальных сигналов отрицательной клеммы	пары или экранированный кабель
	X1	Многофункцио- нальная входная	Дискретный вход	Оптоэлектронный изоляционный вход
	X2	клемма 1 Многофункцио- нальная входная клемма 2	Подробную информацию смотрите в главе 4 «Управление клеммами ввода/вывода» (группа РЗ)	Входное сопротивление R = 3,9 кОм Максимальная входная частота 50 кГц Диапазон входного напряжения: 0÷30 В
	ХЗ	Многофункцио- нальная входная клемма 3		Базовое заземление: СОМ
	X4	Многофункцио- нальная входная клемма 4	Вход X4 может использоваться как дискретный вход (аналогично X1-X3). Может быть запрограммирована	Оптоэлектронный изоляционный вход Входное сопротивление R = 3,9 кОм
			как высокочастотный импульсный входной порт. Подробную информацию смотрите в главе 4 «Управление клеммами ввода/вывода» (группа РЗ)	Максимальная входная частота 50 кГц Диапазон входного напряжения: 0÷30 В Базовое заземление: СОМ
	X5	Многофункцио- нальная входная клемма 5	Вход х5 может использоваться как дискретный вход (аналогично X1-X3). Может быть запрограммирована как высокочастотный импульсный входной порт. Подробную информацию смотрите в главе 4 «Управление клеммами ввода/вывода» (группа Р3)	Оптоэлектронный изоляционный вход Входное сопротивление R = 3,9 кОм Максимальная входная частота 50 кГц Диапазон входного напряжения: 0÷30 В Базовое заземление: COM
Дискретные входы	Х6	Многофункцио- нальная входная клемма 6	Вход X6 может использоваться как дискретный вход (аналогично X1-X3). Может быть запрограммирована как высокочастотный импульсный входной порт. Подробную информацию смотрите в главе 4 «Управление клеммами ввода/вывода» (группа РЗ)	Оптоэлектронный изоляционный вход Входное сопротивление R = 3,9 кОм Максимальная входная частота 50 кГц Диапазон входного напряжения: 0÷30 В Базовое заземление: СОМ
Дискретный выход	DO	Выход с открытым коллектором	Может быть запрограммирован как импульсный выход. Подробную информацию смотрите в главе 4 «Управление клеммами ввода/ вывода» (группа РЗ)	Оптоэлектронный изолированный выход с открытым коллектором Диапазон рабочего напряжения: 0 В÷26 В Максимальный выходной ток: 50 мА Диапазон выходной частоты: 0÷50 кГц Базовое заземление: COM

Тип	Клеммы	Название	Функция	Параметры
Релейный выход	TA	Релейный выход	Может быть запрограммирован как многофункциональный	TA-TB: H3; TA-TC: HO.
	ТВ		релейный выход. Подробную информацию смотрите	Нагрузочная способность контакта 250 BAC/2 A (COS φ = 1,0)
Релей	TC		в главе 4 «Управление клеммами ввода/вывода» (группа РЗ)	250 BAC/1 A (COS φ = 0,4) 30 BDC/1 A
	10B	+10 В напря- жение питания	Обеспечивает +10 В напряжение питания (относительно GND)	Максимальный выходной ток 20 мА. Напряжение холостого хода может быть до 12 В
Мощность	24B	+24 В напря- жение питания	Обеспечивает +24 В напряжение питания извне (общая клемма СОМ)	Максимальный выходной ток 100 мА
	GND	+10 В базовое заземление	Базовое заземление для аналогового сигнала и +10 В к напряжению питания	Внутри изолирован от СОМ для +10 B, AI1, и AO1
	СОМ	+24 В общее клемма	Используется с дискретными входами	Изолирован от GND
	PE	Заземление экрана	Используется для заземления экранов сигнальных проводов	Изнутри подключен к клемме РЕ силовой цепи

2.4.2 Подключение клемм цепей управления

2.4.2.1 Подключение клеммы аналогового входа

Клеммы Al1 принимают вход аналогового сигнала, двухрядный переключатель SW1 выбирает входное напряжение $(0 \div 10 \text{ B})$ или входной ток $(0 \div 20 \text{ мA})$. Подключение клемм показано на рисунке 2.11.

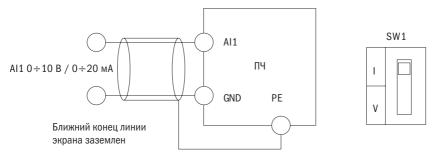


Рисунок 2.11 - Схема соединений клемм аналогового входа

2.4.2.2 Подключение клеммы аналогового выхода

Клемма аналогового выхода AO1 служит для подключения внешнего аналогового устройства и может индицировать множество физических величин. Подключение клемм показано на рисунке 2.12.

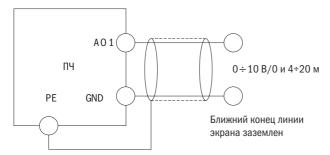


Рисунок 2.12 - Схема соединений клемм аналогового выхода

РЕКОМЕНДАЦИИ:

- 1) При выборе команды «I» отобразится ток, при «В» напряжение.
- Аналоговый входной и выходной сигналы могут быть легко нарушены внешними воздействиями, поэтому для подключения используйте максимально короткие экранированные кабели.

2.4.2.3 Подключение последовательных интерфейсов

В данной версии преобразователей предусмотрен последовательный интерфейс RS485 с возможностью формирования системы управления задающим и ведомым манипуляторами. Главный компьютер (персональный компьютер или ПЛК) может использоваться для контроля в режиме реального времени, дистанционного управления, автоматического контроля и других более сложных операций с преобразователями в сети.

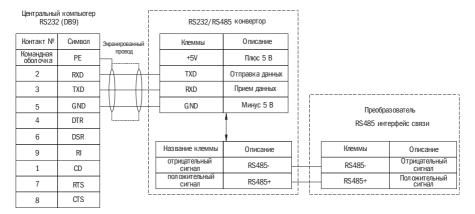
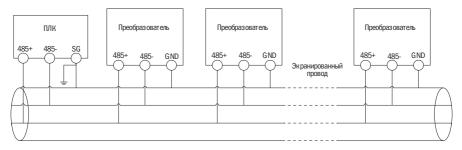
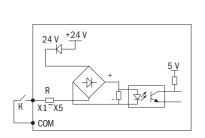


Рисунок 2.13 - Подключение главного компьютера к интерфейсу преобразователя

Когда несколько преобразователей соединены в одной RS485 системе, при коммуникации может создаваться больше помех, и через последовательную шину RS485 может быть соединено максимум 31 устройство. Особое внимание следует уделить монтажу проводки. Коммуникационная шина должна монтироваться экранированными кабелями с витыми парами. Рекомендуется следующий способ подключения:




Рисунок 2.14 - Рекомендуемая схема (все преобразователи и электродвигатели должны быть хорошо заземлены), если ПЛК находится в коммуникации с несколькими преобразователями

В качестве главного компьютера могут быть ПК или ПЛК, а в качестве подчиненной машины — преобразователь данной серии. В случае использования ПК в качестве главного компьютера, установите шинный адаптер RS232/RS485 между шиной и компьютером. Если используется ПЛК, соедините между собой клемму RS485 подчиненной машины и клемму RS485 главного компьютера.

При формировании преобразователями соединения шины RS485 двухрядный переключатель SW2 соответствующего сопротивления на панели управления данной серии на двух концах шины должен быть переключен в положение «включено» (ON).

2.4.2.4 Подключение многофункциональной входной клеммы

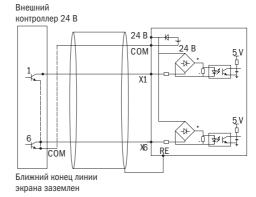


Рисунок 2.15 - Схема подключения многофункциональных входов

Подключите многофункциональную выходную клемму.

 Для работы многофункциональных выходных клемм DO в качестве дискретных выходов может использоваться внутренний источник питания 24 В, а произвести подключение можно способом, показанным на рисунке 2.15.

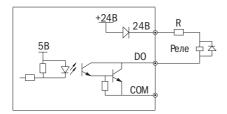


Рисунок 2.16 - Метод подключения вкл./выкл. выхода 1 многофункциональных выходных клемм

 Для работы многофункциональных выходных клемм DO в качестве дискретных выходов может использоваться внешний источник питания 9÷30 В, а произвести подключение можно способом, показанным на рисунке 2.16.

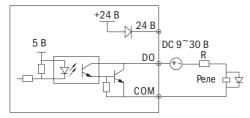


Рисунок 2.17 - Метод подключения вкл./выкл. выхода 2 многофункциональных выходных клемм

2.4.2.5 Подключение релейных выходов ТА, ТВ, ТС

Для переключения индуктивных нагрузок рекомендуется установить поглощающую цепь перенапряжения, например, поглощающую цепь RC, тензорезистор или ограничительный диод (обращайте внимание на полярность диода при его использовании для электромагнитной цепи постоянного тока) и т. д. Компоненты поглощающей цепи должны быть установлены как можно ближе к обоим концам реле или контактора.

РЕКОМЕНДАЦИИ

- Не замыкайте накоротко клеммы 24В и СОМ, в противном случае плата управления может быть повреждена.
- 2. Для подключения клемм управления используйте многожильный экранированный кабель.
- 3. При использовании экранированных кабелей конец защитного слоя, ближе всего расположенный к преобразователю, должен быть заземлен.
- Провода цепи управления должны располагаться на расстоянии более 30 см от силовых цепей
 и высоковольтных кабелей. Сигнальные провода должны располагаться перпендикулярно силовым
 кабелям, чтобы свести к минимуму помехи.

Интерфейс подключения пульта управления на плате управления оснащён портами RJ-45.

Пользователи могут менять размер удлинительного кабеля клавиатуры на свое усмотрение. Но длина кабеля не должна превышать $1\,\mathrm{m}$, иначе это может привести к нарушению нормальной работы.

Для соединения клавиатуры с панелью управления используются стандартные кабели Cat-5e. Интерфейс RJ-45 использует прямое подключение, а само соединение происходит согласно условиям стандарта EIA/TIA568B. Пользователи могут сами подключать соединительный кабель клавиатуры.

2.5 Подключение преобразователя для базового режима работы

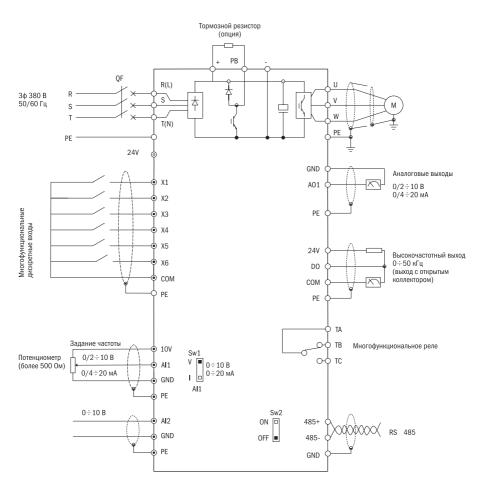


Рисунок 2.18 - Схема соединений платы управления

2.6 Меры предосторожности при подключении

- Перед тем как снимать или заменять электродвигатель, убедитесь, что входное напряжение питания преобразователя отключено.
- Если установлено внешнее оборудование (тормозное устройство, фильтр, реактор), проверьте его изоляционное сопротивление для заземления и убедитесь, что значение превысило 5 МОм.
- Помимо экранирования кабелей входного сигнала и измерителя частоты, убедитесь в том, что они размещены не параллельно к кабелю силовых цепей и как можно дальше от него.
- Во избежание ошибок в работе из-за помех, для цепи управления используйте витые экранированные кабели, при этом расстояние не должно превышать 50 м.
- Убедитесь, что защитные слои экранированных кабелей не соприкасаются с другими кабелями или корпусами оборудования, в противном случае используйте изоляционную ленту.
- Выдерживаемое кабелями напряжение должно соответствовать классу напряжения преобразователя.
- Во избежание несчастных случаев убедитесь, что клемма цепи управления «PE» и клемма силовой цепи «PE» заземлены, заземляющий кабель не может быть использован для другого оборудования. Длина заземляющего кабеля силовой цепи должна быть в полтора раза больше длины кабеля силовой цепи. После завершения монтажа убедитесь в отсутствии в корпусе преобразователя компонентов, использованных при монтаже, проверьте прочность крепления болтов, убедитесь, что оголенный кабель клемм замкнут накоротко к другим клеммам.

Глава З Эксплуатация

ОПАСНОСТЬ

- Подавайте электропитание только при закрытой передней панели. Пока преобразователь находится под напряжением, не открывайте переднюю панель, в противном случае есть риск поражения электрическим током.
- Держитесь подальше от механизма. В противном случае существует опасность получения травмы в случае внезапного включения преобразователя.

ПРЕДУПРЕЖДЕНИЕ

- Во время использования тормозного резистора его температура может повыситься из-за высокого напряжения на концах. Не прикасайтесь к тормозному резистору во избежание удара электрическим током или ожога.
- Перед началом работы с преобразователем ещё раз убедитесь, что соблюдены все меры предосторожности при работе с электродвигателем и механизмом в целом.
- 3. Не проводите измерений на преобразователе во врем работы, это может привести к повреждению оборудования.
- Все параметры преобразователя были предварительно заданы производителем. Не изменяйте заданные параметры, если этого не требуется.

3.1 Работа с пультом управления

Внешние размеры пультов разных по мощности преобразователей могут отличаться. Однако у всех одинаковая раскладка кнопочной панели и светодиодный дисплей. Их функции и управление также не отличаются. Каждый пульт оснащен 4-разрядным светодиодным дисплеем со светодиодными индикаторами, цифровым кодирующим устройством и клавишами. С ее помощью пользователь может выполнять настройку функций, ход и остановку преобразователя, текущий контроль состояния.

3.2 Раскладка кнопочной панели

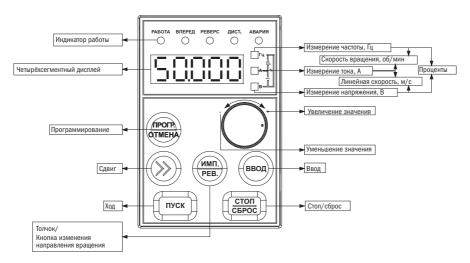


Рисунок 3.1 - Раскладка клавиатуры и название элементов

В верхней части пульта расположены пять индикаторов состояния: РАБОТА, ВПЕРЕД, РЕВЕРС, ДИСТ. и АВАРИЯ. Индикатор РАБОТА загорается, если инвертор работает; ВПЕРЕД загорается при направлении движения вперед, РЕВЕРС — при движении в обратном направлении. Индикатор ДИСТ. загорается, если инвертор не управляется клавиатурой. Индикатор АВАРИЯ загорается при возникновении неисправностей. Подробную информацию смотрите в таблице 3.1. В режиме контроля состояния на дисплее будет отображаться состояние контролируемых объектов. При неправильном функционировании отобразится ошибка отказа или ошибка предупреждения, если нарушен ход работы преобразователя. При нормальном состоянии будет отображаться объект, выбранный группой параметров ПК. Подробную информацию смотрите в описании групп ПК.

В режиме программирования отображаются три меню: группа функций, коды функций и значения функциональных параметров. Под меню группы функций отображается группа функций от «-PO-» до «-PF-»; под меню коды функций отображаются соответствующие коды функций в группе. Под параметрами, отображенными в меню функций, будут показаны значения параметров.

3.2.1 Описание функций кнопочной панели

На панели преобразователя расположены 7 клавиш. Функция каждой из клавиш указана в таблице 3.1.

Таблица 3.1 - Меню кнопочной панели

Кнопка	Название	Функция
TPOTP OTMEHA	ПРОГР./ОТМЕНА	Войти или выйти из режима программирования. В режиме контроля нажмите клавиши Прог./Отмена, чтобы переключиться в режим программирования. Сначала войдите в группу функций, нажмите клавишу ВВОД, чтобы ввести код функции, а затем функциональные параметры. При нажатии Прог./Отмена будет осуществлен выход из функциональных параметров к кодам функций, затем к группе функций, дальше в меню контроля состояния. Выход осуществляется шаг за шагом, как описано; в случае отказа преобразователя можно переключиться в режим отображения отказов или в меню группы функций. Для того чтобы подать сигнал тревоги, переключитесь в аварийное состояние и в меню группы функций.
Ввод	ВВОД	Вход в подменю или сохранение параметров в процессе настройки параметров.
Цифровой шифратор	Увеличить (по часовой стрелке)	Позволяет увеличить номер группы функций, номер кода функции или значение кода функции. В режиме настойки параметров мигание индикатора указывает на изменение цифры. Если повернуть кнопку по часовой стрелке, значение кода функции увеличится; в режиме отображения могут быть увеличены заданная дискретная частота, заданная скорость ПИД или дискретная установка аналогового ПИД.
	Уменьшить (против часовой стрелки)	Позволяет уменьшить номер группы функций, номер кода функции или значение кода функции. В режиме настройки параметров мигание индикатора указывает на изменение бит. Если повернуть кнопку против часовой стрелки, значение кода функции уменьшится; в режиме отображения могут быть уменьшены заданная дискретная частота, заданная скорость ПИД или дискретная установка аналогового ПИД.
	Переход	В режиме редактирования может быть выбрано значение из заданных данных. В режиме контроля отображенные параметры могут быть переключены.
имп.	P2.51 = 0	ПЕРЕСКОК: в режиме клавиатуры нажмите эту клавишу, чтобы войти в режим работы ПЕРЕСКОК.
	P2.51 = 1	Клавиша переключателя направления. Нажмите эту клавишу, чтобы изменить направление вращения. Более подробную информацию смотрите в P0.08.
пуск	ПУСК	В режиме управления клавиатурой клавиша используется, чтобы запустить преобразователь: будет дана команда ПУСК.
СТОП	СТОП/СБРОС	В режиме управления клавиатурой клавиша используется для останова преобразователя. Устранить ошибку и вернуться к нормальному состоянию при отказе.

3.2.2 Описание индикаторов

На пульте преобразователя расположено 4 цифры, 3 индикатора единиц измерения, 5 индикаторов состояния. Светодиодный дисплей может отображать контролируемый объект, значения функциональных параметров, код ошибки и код предупреждения. Из трех индикаторов единиц измерения возможны восемь комбинаций, каждая комбинация соответствует одной единице измерения. Комбинации и соответствующие им единицы измерения показаны на рисунке 3.2.

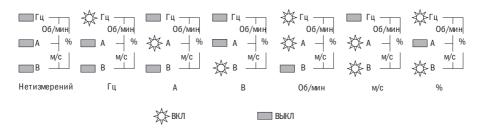


Рисунок 3.2 Таблица 3.2 - Описание индикаторов состояния

Индикатор	Состояние	Состояние преобразователя согласно индикатору
РАБОТА — рабочее	Выключен	Остановлен
состояние	Включен	Работает
	Мерцает	Работает при частоте, близкой к нулю
ВПЕРЕД	Выключен	Обратное вращение или останов движения
	Нормально работает	Стабильное вращение вперед
	Частое мерцание	Разгон и замедление вращения вперед
	Медленное мерцание	Скоро остановится, направление прямое
PEBEPC	Выключен	Вращение вперед или останов движения
	Нормально работает	Стабильное обратное вращение
	Частое мерцание	Разгон и замедление обратного вращения
	Медленное мерцание	Скоро остановится, направление обратное
АВАРИЯ — индикатор отказа	Выключен	Нормальное состояние
	Мерцает	Отказ
ДИСТ. — индикатор (специ-	Выключен	Состояние клавиатуры управления
ально для клавиатуры	Включен	Состояние клеммы управления
управления)	Мерџает	Состояние последовательного интерфейса

3.2.3 Последовательность действий при работе с клавиатурой

Ниже показаны примеры управления преобразователем с помощью клавиатуры.

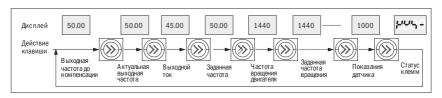


Рисунок 3.3 - Работа индикации параметров в состоянии ПУСК/СТОП

Регулировка частоты при обычном ходе (пример: изменение заданной частоты с 50,00 Гц на 40,00 Гц):

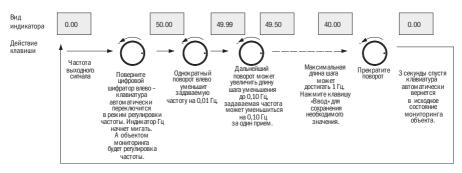


Рисунок 3.4 - Блок-Рисунок задания частоты

Этот метод используется для настройки параметров частоты, при этом начальное состояние дисплея может быть любым.

Если экран контроля используется для задания скорости и дискретной установки аналогового ПИД, эти параметры могут быть изменены и отображены напрямую при поворачивании кнопки.

Задание параметров кода функции (пример изменения времени разгона толчкового хода, кода функции P2.01 от 6,0 с до 3,2 с):

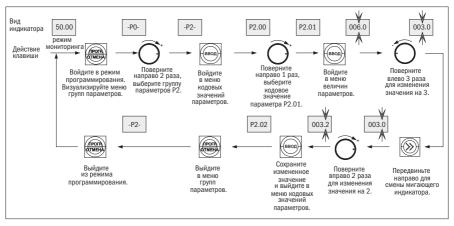


Рисунок 3.5 - Блок-схема настройки параметров

В трёхуровневом меню режимов нет мерцающей цифры для параметра, обозначающего, что код функции не может быть изменен, а возможные причины следующие:

- Изменение значения запрещено, потому что параметр является фактически измеренным значением, записью о текущем состоянии работы или зафиксированным значением.
- Параметр функции не может быть изменен во время работы инвертора. Однако он может быть изменен в состоянии остановки. Следовательно, для изменения значения сначала отключите инвертор.
- Параметры двигателя защищены. Если значения параметра функции PF.01 = 1 или 2, параметры запрещено изменять. Данная функция защиты параметров предусмотрена для того, чтобы избежать ошибок в работе. Для того чтобы изменить защищенные параметры, измените значение кода функции PF.01 на 0, при таком значении все параметры могут быть изменены.

3.3 Выбор режима команды «ХОД»

Режимы команды «ХОД» определяют режимы работы и останова инвертора. У инвертора есть три режима работы команды «ХОД»:

- Задание команды «ХОД» с помощью клавиатуры: нажмите клавишу ПУСК, СТОП, ИМП (Р2.51 = 1).
- Задание команды «ХОД» с помощью клеммы схемы управления: с использованием дискретных входов по 2-проводной схеме или 3-проводной схеме (см. настройки дискретных входов).
- Задание команды «ХОД» с помощью последовательного интерфейса: используйте ПК или ПЛК для останова и задания движения инвертора.
- Измените РО.07 для переключения режимов регулирования. По умолчанию установлен режим управления клавиатурой (значение РО.07 по умолчанию 0), если необходимо перейти в режим терминального управления, измените значение на 1 или 2. Если нужно, чтобы клавиши СТОП/СБРОС были активны в режиме терминального управления, задайте значение 2.

Если необходимо управление инвертором с помощью ПК или последовательного интерфейса ПЛК, измените значение РО.07 на 3 или 4.

Если индикатор ДИСТ светится, это говорит о том, что инвертор управляется с помощью клавиатуры. Если индикатор ДИСТ. светится, это говорит о том, что инвертор управляется с помощью клемм.

Если индикатор мерцает, это говорит о том, что инвертор управляется с помощью последовательного интерфейса.

3.4 Пробная эксплуатация

3.4.1 Режим работы инвертора

У данной серии инверторов есть пять режимов работы: работа с помощью команды ИМП. (ТОЛЧОК), работа с помощью замкнутого цикла ПИД, работа в программном режиме ПЛК и обычный режим работы.

- Работа с помощью команды ИМП. (ТОЛЧОК): когда инвертор получает команду ТОЛЧОК (например, нажмите клавишу «ИМП», Р2.51 = 0) в состоянии останова, инвертор начнет движение на толчковой частоте, заданной кодом функции Р2.00 — Р2.02.
- Работа с помощью замкнутого цикла ПИД: если выбран режим работы с помощью замкнутого цикла ПИД (РО.03 = 11), инвертор будет работать в указанном режиме. Другими словами, он перейдет в настройку ПИД, как и связь ПИД и обратная связь ПИД (см. группа параметров Р7).
- Работа в программном режиме ПЛК: при выборе функции ПЛК (Р0.03 = 10) инвертор выберет режим работы с помощью ПЛК и будет работать на основании режима работы, заданного по умолчанию (см. описание группы, код функции Р5). Работа в программном режиме ПЛК может быть приостановлена с помощью функции 43 многофункциональной клеммы (см. глава 4, функции Р3); режим останова ПЛК может быть сброшен с помощью функции 44 (см. глава 4, функции Р3).
- Режим «обычная работа», также известен как простой метод работы с разомкнутым контуром, включает в себя 7 вариантов: дискретная установка с помощью клавиатуры, клемма Al1, импульсный вход, последовательный интерфейс, многоступенчатое переключение скорости и клемма больше/меньше, компенсация скольжения и др.

3.4.2 Операция подачи напряжения

Выполняйте технические требования для подключения преобразователя, указанные в настоящем руководстве. После монтажа проводки и проверки напряжения питания подайте питание на преобразователь частоты. Когда индикатор показывает выходную частоту, инвертор приведен в исходное положение.

Если клавиатура подключена неправильно, дисплей также не будет работать правильно. Клавиатуру необходимо переподключить. Процесс подачи напряжения представлен на рисунке 3.6.

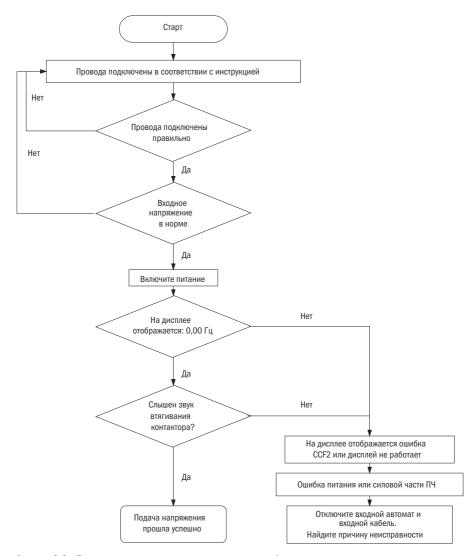


Рисунок 3.6 - Процесс подачи входного напряжения на преобразователь

3.4.3 Первый пробный запуск

Выполняйте первый пробный запуск следующим способом:

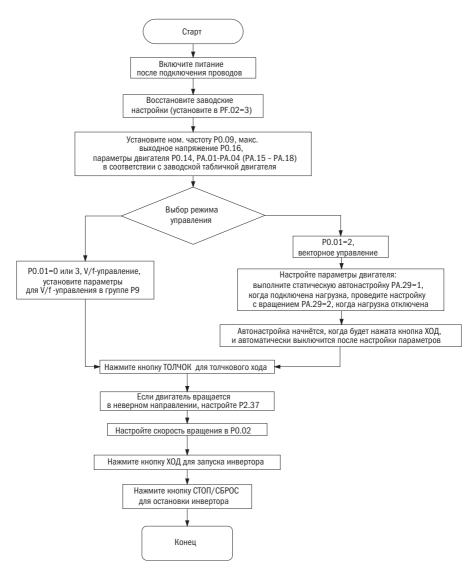


Рисунок 3.7 - Процесс функционирования первого пробного запуска инвертора

Глава 4 Параметры

ПРИМЕЧАНИЯ

- «О» означает, что параметры могут быть изменены как в ходе работы инвертора, так и после его остановки.
- «×» означает, что параметры не могут быть изменены в ходе работы инвертора.
- «*» означает, что данные не могут быть изменены, т. к. значение параметров фактически измерено либо значение зафиксировано.
- «-» означает, что параметры могут быть заданы только производителем и не могут быть изменены пользователями.

РО: Основная функция (зависит от модели)

Код функции	Параметр	Диапазон настроек	Заводская установка	Знак модифи- кации	Адрес протокола Modbus
P0.00	Режим отобра- жения меню	0: Стандартное меню 1: Меню режима проверки	0	0	0100
P0.01	Режим регули- рования	0: Скалярный V/f 1: Резерв 2: Векторное управление без ОС (SVC) 3: Раздельное управление V/f частоты/напряжения	0	×	0101
P0.02	Дискретная установка частоты	0,00 Гц-макс. частота	0,00 Гц	0	0102
P0.03	Источник установки частоты 1	О: Нет 1: Дискретная установка частоты, настройка дискретной кнопки 2: Клемма Al1 5: Импульсный вход 6: Настройка интерфейса связи 8: Многоступенчатое переключение скорости 9: Клемма БОЛЬШЕ/МЕНЬШЕ (UP/DOWN) 10: Программно-временное управление (PLC) 11: ПИД 3/4/7: Резерв Когда источник частоты в диапазоне 0÷7, цифровые входы работают в режиме ступенчатой скорости согласно настройкам	1	×	0103
P0.04	Источник установки частоты 2	0÷8 согласуется с Р0.03 Величина компенсации отклонения крутящего момента Данный источник частоты не поддерживает механизм выбора по приоритету клеммы переключения скорости	0	×	0104

Код функции	Параметр	Диапазон настроек	Заводская установка	Знак модифи- кации	Адрес протокола Modbus
P0.05	Комбинация установок частоты	О: Установка частоты источником 1 1: Установка частоты источником 2 2: Мин. (частота источника 1, частота источника 2) 3: Макс. (частота источника 1, частота источника 2) 4: Частота источника 1 + частота источника 2 5: Частота источника 1 - частота источника 2 6: Частота источника 1 * частота источника 2 7: Частота источника 1 / частота источника 2 8: Частота источника 1 - частота источника 2 9: Частота источника 2 * (максимальная выходная частота частота источника 1) / максимальная выходная частота	0	×	0105
P0.06	Комбинация установок частоты 2	Аналогично РО.05. Работает после задания параметра для клеммы FC и активации этой клеммы.	0	×	0106
P0.07	Канал задания команды управления	0: Управление клавиатурой 1: Цифровой вход режим 1 (клавиша СТОП неактивна) 2: Цифровой вход режим 2 (клавиша СТОП включена) 3: Последовательный интерфейс 1 (клавиша СТОП неактивна) 4: Последовательный интерфейс 2 (клавиша СТОП включена) 5: Цифровой вход режим 3 (клавиши СТОП и ПЕРЕСКОК неактивны)	0	0	0107
P0.08	Установка направления клавиатуры	О: Вращение вперед 1: Обратное вращение	0	0	0108
P0.09	Основная частота	Режим низкой частоты 0,10÷400,0 Гц, режим высокой частоты (резерв): 0,1÷1000 Гц	50,00 Гц	×	0109
P0.10	Максимальная выходная частота	Режим низкой частоты: макс. [50,00 Гц, верхний предел частоты, дискретная установка частоты, многоступенчатая частота, частота скачка] — 400,0 Гц, режим высокой частоты (резерв): макс. [50,0 Гц, верхний предел частоты, дискретная установка частоты, многоступенчатая частота, частота скачка] — 1000 Гц	50,00 Гц	×	010A
P0.11	Источник задания верх- него предела частоты	0: Дискретная установка 1: Клемма Al1 2: Клемма Al2 3: Резерв 4: Импульсный вход 5: Настройка интерфейса связи	0	×	010B

Код функции	Параметр	Диапазон настроек	Заводская установка	Знак модифи- кации	Адрес протокола Modbus
P0.12	Задание верхнего предела частоты	Макс. [нижний предел частоты, толчковая частота, регулирование больше/меньше данной амплитуды, порог перехода в режим ожидания] — максимальная частота	50,00 Гц	0	010C
P0.13	Смещение верхнего пре- дела частоты	0,00 Гц — верхний предел частоты	0,00 Гц	0	010D
P0.14	Номинальное напряжение двигателя	60÷480 B	Номи- нальное напряжение	×	010E
P0.15	Нижний предел частоты	0,00 Гц — верхний предел частоты	0,00 Гц	0	010F
P0.16	Максимальное выходное напряжение	60÷480 B	Номи- нальное напряжение	×	0110
P0.17	Диапазон настройки кнопок клави- атуры	0: Интегральное регулирование кнопок клавиатуры (1÷250) * (0,01 Гц 1 об/мин)	0	×	0111
P0.18	Время разгона 1	0,1÷3600 c	22 кВт и ниже: 6,0 с Другие: 20,0 с	0	0112
P0.19	Время замедления 1	0.1÷3600 c	22 кВт и ниже: 6,0 с Другие: 20,0 с	0	0113

Р1: Контроль пуска-останова

Код функции	Параметр	Диапазон настроек	Заводская установка	Знак модифи- кации	Адрес протокола Modbus
P1.00	Режим пуска	О: Старт с пусковой частоты 1: Вначале торможение (возбуждение), затем старт при пусковой частоте 2: Отслеживание скорости вращения (с ОС по скорости) 3: Поиск скорости (программно) Примечание: процесс запуска состоит из включения, восстановления электроснабжения после мгновенного останова, сброса внешней ошибки и всей процедуры запуска после торможения выбегом	0	0	0200
P1.01	Частота при пуске	0,10÷60,00 Гц	0,50 Гц	0	0201
P1.02	Время удержания пусковой частоты	0,0÷10,0 c	0,0 c	0	0202
P1.03	Ток торможения при пуске	0÷100,0 % от номинального тока двигателя. Активен только при режиме регулирования напряжения/частоты, допустимый верхний предел определяется меньшим из значений из 80 % от номинального тока инвертора и полным номинальным током двигателя; в режиме векторного регулирования ток зада- ется параметром Р8.00 (козффициент компен- сации тока предвозбуждения); если указанное значение менее 100 %, приведите его к 100 %	0.0 %	0	0203
P1.04	Время удержания торможения постоянным током	0,0÷30,0 c	0,1 c	0	0204
P1.05	Стартовая частота	0,00 — максимальная частота	0,00 Гц	×	0205
P1.06	Время удержания стартовой частоты	0,0÷3600,0 c	0,0 с	×	0206
P1.07	Режим разгона и замедления	0: Линейный 1: S-образный 2: (Резерв) 3: (Резерв)	0	0	0207
P1.08	Время старта при S-образном режиме	10,0÷50,0 % (время разгона и замедления) P1.08 + P1.09 ≤ 90 %	20,0 %	0	0208
P1.09	Время возрастания при S-образном режиме	10,0÷80,0 % (время разгона и замедления) P1.08 + P1.09 ≤ 90 %	60,0 %	0	0209
P1.10	Режим останова	0: Торможение до останова 1: Свободный останов 2: Торможение + торможение постоянным током	0	×	020A

Код функции	Параметр	Диапазон настроек	Заводская установка	Знак модифи- кации	Адрес протокола Modbus
P1.11	Частота при останове торможения постоянным током	0,00 — мин. (50,00 Гц, верхний предел частоты)	1,00 Гц	0	020B
P1.12	Время ожидания перед остановом торможения постоянным током	0,00÷10,00 c	0,00 c	0	020C
P1.13	Источник задания тока торможения при останове	О: Дискретная установка 1: Клемма Al1 2: Клемма Al2 3: Резерв 4: Импульсный вход 5: Параметр канала связи номинального тока двигателя принимается за 100 % ток	0	0	020D
P1.14	Дискретная установка тока торможения при останове	0,0÷100,0 % от номинального тока двигателя	0,0 %	0	020E
P1.15	Время тормо- жения постоян- ного тока при останове	0,0÷30,0 c	0,0 с	0	020F
P1.16	Поддерживаемая частота при останове	0,00 — максимальная частота	0,00 Гц	×	0210
P1.17	Время задержки при останове	0,0÷3600,0 c	0,0 c	×	0211
P1.18	Выбор режима торможения	О: Не используйте торможение 1: Используйте торможение электроэнергией 2: Используйте торможение магнитным потоком 3: Используйте торможение электроэнергией и торможение магнитным потоком	3	×	0212
P1.19	Затраты при торможении электроэнергией	30,0 % — 100,0 % Примечание: функция активна для моделей 15 кВт и ниже моделей этой серии; автоматически добавлено динамическое торможение при замедлении	100,0 %	×	0213
P1.20	Обработка при свободном расцеплении	О: Сообщите об ошибке Uu1 при свободном расцеплении 1: Подайте предупреждение Uu во время свободного расцепления, после подайте ошибку Uu1 2: Подайте предупреждение Uu при свободном расцеплении	0	×	0214
P1.21	Время свобод- ного расцепления	0,5÷10,0 c	Зависит от модели	×	0215

Код функции	Параметр	Диапазон настроек	Заводская установка	Знак модифи- кации	Адрес протокола Modbus
P1.22	Выбор действия после предупреж- дения	0: Бездействие 1: Замедлить ход	0	0	0216
P1.23	Скорость торможения при замедлении хода	0,00 Гц/с — максимальная частота / в секунду	10,00 Гц/с	0	0217

Р2: Вспомогательный пуск

Код функции	Параметр	Диапазон настроек	Заводская установка	Знак модифи- кации	Адрес протокола Modbus
P2.00	Толчковая частота	0,10 Гц — верхний предел частоты	5,00 Гц	0	0300
P2.01	Время разгона для толчковой частоты	0,1÷3600 c	22 кВт и ниже: 6,0 с Другие: 20,0 с	0	0301
P2.02	Время тормо- жения для толч- ковой частоты	0,0÷3600 с Примечание: если время торможения равно нулю, предусмотрен режим торможения выбегом	22 кВт и ниже: 6,0 с Другие: 20,0 с	0	0302
P2.03	Время переключения между прямым и обратным ходом	0,0÷3600,0 c	0,0 c	0	0303
P2.04	Режим обработки нижнего предела частоты	О: Движение на нижней предельной частоте 1: Работа при О-ой частоте 2: Остановка 3: Резерв	0	×	0304
P2.05	Установка откло- нения частоты	0,00÷2,50 Гц	0,10 Гц	0	0305
P2.06	Выбор настройки несущей частоты	О: Ручная настройка 1: Настраивается автоматически в зависимости от нагрузки и температуры инвертора. Несущая частота при режиме векторного регулирования или при отсутствии автоматической настройки	1	0	0306
P2.07	Несущая частота	Зависит от модели	Зависит от модели	×	0307
P2.08	Нижний предел несущей частоты	1,0 кГц — Р2.07	1,0 кГц	×	0308
P2.09	Частота скачка 1	0,00 — максимальная частота	0,00 Гц	×	0309
P2.10	Частота скачка 2	0,00 — максимальная частота	0,00 Гц	×	030A
P2.11	Частота скачка 3	0,00 — максимальная частота	0,00 Гц	×	030B
P2.12	Амплитуда частоты скачка	0,00÷15,00 Гц	0,00 Гц	×	030C

Код функции	Параметр	Диапазон настроек	Заводская установка	Знак модифи- кации	Адрес протокола Modbus
P2.13	Многоступенчатая частота 1	0,00 — максимальная частота	5,00 Гц	0	030D
P2.14	Многоступенчатая частота 2		8,00 Гц		030E
P2.15	Многоступенчатая частота 3		10,00 Гц		030F
P2.16	Многоступенчатая частота 4		15,00 Гц		0310
P2.17	Многоступенчатая частота 5		18,00 Гц		0311
P2.18	Многоступенчатая частота 6		20,00 Гц		0312
P2.19	Многоступенчатая частота 7		25,00 Гц		0313
P2.20	Многоступенчатая частота 8		28,00 Гц		0314
P2.21	Многоступенчатая частота 9		30,00 Гц		0315
P2.22	Многоступенчатая частота 10		35,00 Гц		0316
P2.23	Многоступенчатая частота 11		38,00 Гц		0317
P2.24	Многоступенчатая частота 12		40,00 Гц		0318
P2.25	Многоступенчатая частота 13		45,00 Гц		0319
P2.26	Многоступенчатая частота 14		48,00 Гц		031A
P2.27	Многоступенчатая частота 15		50,00 Гц		031B
P2.28	Время разгона 2	0,1÷3600 c	22 кВт и	0	031C
P2.29	Время замед- ления 2		ниже: 6,0 с Другие:		031D
P2.30	Время разгона 3		20,0 с		031E
P2.31	Время замед- ления 3				031F
P2.32	Время разгона 4				0320
P2.33	Время замед- ления 4				0321
P2.34	Время замед- ления при ава- рийном останове	0,1÷3600 c	22 кВт и ниже: 3,0 с Другие: 10,0 с	0	0322
P2.35	Коэффициент времени разгона и замедления	0: 1 pas 1: 10 pas 2: 0,1 pas	0	×	0323

Код функции	Параметр	Диапазон настроек	Заводская установка	Знак модифи- кации	Адрес протокола Modbus
P2.36	Режим регу- лирования охлаждающего вентилятора	0: Режим автостопа 1: Включение после подачи напряжения	0	×	0324
P2.37	Направление электрических соединений двигателя	О: Прямая последовательность 1: Обратная последовательность	0	×	0325
P2.38	Выбор направ- ления, проти- воположного обратному	0: Обратное вращение включено 1: Обратное вращение отключено	0	×	0326
P2.39	Резерв	_	_	*	0327
P2.40	Резерв	-	_	*	0328
P2.41	Резерв	_	_	*	0329
P2.42	Резерв	-	_	*	032A
P2.43	Резерв	-	_	*	032B
P2.51	Выбор функции клавиши ИМП	0: Клавиша ИМП 1: ВПЕРЁД/НАЗАД клавиша	0	×	0333
P2.52	Активация клавиш БОЛЬШЕ/ МЕНЬШЕ (UP/DN)	0: Не работает 1: Активация	0	×	0334
P2.53	Выбор режима низкой/высокой частоты (резерв)	0: Низкая частота (0,00÷400,0 Гц) 1: Высокая частота (0,0 Гц÷1000 Гц)	0	×	0335
P2.54	Предел частоты обратного направления	0,00 Гц — максимальная частота Примечание: 0,00 Гц — предела нет	0,00 Гц	0	0336

Р3: Управление клеммами ввода/вывода

Код функции	Параметр	Диапазон настроек	Заводская установка	Знак модифи- кации	Адрес протокола Modbus
P3.00	Режим актив- ности клеммы	0: Замкнуты — активна 1: Разомкнуты — активна (нормально разомкнута / нормально замкнута не имеет отношения к этой функции)	0	×	0400
P3.01	Функции клеммы X1	О: NULL Не установлено 1: FWD Ход вперёд 2: REV Обратный ход 3: RUN Движение 4: F/R Направление вращения 5: HLD Самоудерживающийся 6: RST Сброс 7: FC Выбор комбинации установок частоты 8: Толчок вперёд 9: Толчок назад 10: Больше 11: Меньше 12: Больше/меньше сброс 13: FRE Торможение выбегом 14: Вынужденная остановка (в зависимости от времени торможения во время аварийного останова) 15: Процесс останова торможения постоянным током 16: Запрет разгона/замедления	1	×	0401
P3.02	Функции клеммы X2	17: Запрещение движения инвертора 18: \$1 Многоступенчатое переключение скорости 1 19: \$2 Многоступенчатое переключение скорости 2 20: \$3 Многоступенчатое переключение скорости 2 21: \$4 Многоступенчатое переключение скорости 4 22: \$5 Многоступенчатое переключение скорости 4 22: \$5 Многоступенчатое переключение скорости 5 23: \$6 Многоступенчатое переключение скорости 6 24: \$7 Многоступенчатое переключение скорости 7 25 Переключение управления на терминальное управление 2 26: \$\$1 Многоступенчатое переключение скорости 27: \$\$2 Многоступенчатое переключение скорости 28: \$\$3 Многоступенчатое переключение скорости 29: \$\$4 Многоступенчатое переключение скорости 30: \$\$1 Время разгона/замедления 1 31: \$\$12 Время разгона/замедления 2 32: \$\$3 Время разгона/замедления 3 33: \$\$14 Время разгона/замедления 4 34: \$\$11 Время разгона/замедления 3 35: \$\$12 Время разгона/замедления 3 36: Вынужденная остановка нормально замкнут	2	×	0402

Код функции	Параметр	Диапазон настроек	Заводская установка	Знак модифи- кации	Адрес протокола Modbus
P3.03	Функции клеммы ХЗ	(продолж.) 37: ЕНО Внешний отказ нормально разомкнут 38: ЕН1 Внешний отказ нормально замкнут 39: ЕІО Внешнее прерывание нормально разомкнут 40: ЕІ1 Внешнее прерывание нормально замкнут 41: Торможение постоянным током 42: Пуск работы ПЛК 43: Приостановка работы ПЛК 44: Сброс статуса останова ПЛК	37	×	0403
P3.04	Функции клеммы X4	48: Переключение режимов скорости / крутя- щего момента 49: Вход синхросигналов привода 50: Входной сигнал счетного триггера 51: Сброс данных счетчика 53: Выбор режима блока синхронизации 74: Управление выходными клеммами 77: Выходной сигнал ПИД принудительно переведен в ноль 78: Сброс времени интегрирования ПИД 79: Канал сигнала переключения к клавиатуре 45/46/52/54~73/75/76: Резерв	0	×	0404
P3.05	Функции клеммы X5	0÷79: Так же 80: PUL Импульсный вход 81: Однофазный импульс тахометра. Или вход А двухфазного тахометра	0	×	0405
P3.06	Функции клеммы X6	0÷79: Так же 80: PUL Импульсный вход 81: Однофазный импульс тахометра	0	×	0406
P3.07	Резерв	-	-	*	0407
P3.08	Резерв	-	-	*	0408
P3.09	Резерв	-	_	*	0409
P3.10	Резерв	-	_	*	040A
P3.11	Резерв	_	_	*	040B
P3.12	Резерв	_	_	*	040C
P3.13	Время фильтра X клеммы	0,002÷1,000 c	0,010 c	0	040D
P3.14	Резерв	-	_	*	040E
P3.15	Настройка режима работы	О: Двухпроводной режим работы 1 1: Двухпроводной режим работы 2 2: Трехпроводной режим работы 1 — функция самоблокировки (присоедините любую из X1 — X6 клемм) 3: Трехпроводной режим работы 2 — функция самоблокировки (присоедините любую из X1 — X6 клемм)	0	×	040F

Код функции	Параметр	Диапазон настроек	Заводская установка	Знак модифи- кации	Адрес протокола Modbus
P3.16	Скорость переключения клеммы БОЛЬШЕ/ МЕНЬШЕ	0,01÷99,99 Гц/с	1,00 Гц/с	0	0410
P3.17	Задание ампли- туды функции БОЛЬШЕ/ МЕНЬШЕ	0.00 — верхний предел частоты	10,00 Гц	×	0411
P3.18	Выбор памяти для дискретной частоты БОЛЬШЕ/ МЕНЬШЕ	О: Заданная установка БОЛЬШЕ/МЕНЬШЕ — сброс к О после получения сигнала СТОП 1: Заданная установка БОЛЬШЕ/МЕНЬШЕ — не производить сброс к О после получения сигнала СТОП, который не будет сохранен после отключения 2: Заданная установка БОЛЬШЕ/МЕНЬШЕ — не производить сброс к О после получения сигнала СТОП, который будет сохранен после отключения. Если для РО.ОЗ присвоено значение 1, РО.О2 будет сохранен при отключении 1, РО.О2 будет сохранен при отключении	2	×	0412

Код функции	Параметр	Диапазон настроек	Заводская установка	Знак модифи- кации	Адрес протокола Modbus
P3.19	Назначение клеммы DO	0: NULL Не установлено 1: RUN Работа 2: FAR Поступление частоты 3: FDT Обнаружение частоты 4: FDTH Достижение верхнего предела частоты 5: FDTH Достижение верхнего предела частоты 5: FDTH Достижение нижнего предела частоты 7: Инвертор работает при нулевой скорости 8: Индикация о завершении простых операций ПЛК 9: Индикация завершения цикла ПЛК 10: Завершение подготовки к работе (RDY) 11: Движение по инерции до останова 12: Автоматический повторный старт 13: Поступление сигнала синхронизации 14: Вычисление выходного сигнала поступления 15: Задание поступления сигнала о продолжительности работы 16: Обнаружение поступления сигнала о крутящем моменте 17: СL ограничение тока 18: Срыв при перенапряжении 19: Авария преобразователя 20: Останов внешней ошибки (EXT) 21: Останов, Uu1 пониженное напряжение 23: Предварительное оповещение о перегрузке 0LP2 24: Неправильное функционирование аналогового сигнала 1 25: Неправильное функционирование аналогового сигнала 2 29: Находится в режиме ожидания 30: Нулевая скорость 33: Фактическое направление вращения 35: Сигнал определения недогрузки (ULP) 36: Многоступенчатая скорость 37: Сигнал управления 6/22/25/26/27/28/31/32/34: Резерв	0	×	0413
P3.20	Резерв	_	_	*	0414
P3.21	Резерв	-	_	*	0415
P3.22	Резерв	_	-	*	0416
P3.23	Резерв	-	_	*	0417
P3.24	Реле 1 Выбор функции выходов (ТА/ ТВ/ТС)	0÷37: то же, что и РЗ.19	19	×	0418
P3.25	Резерв		_	*	0419

Код функции	Параметр	Диапазон настроек	Заводская установка	Знак модифи- кации	Адрес протокола Modbus
P3.26	Диапазон обнаружения сигнала поступления частоты	0,00÷10,00 Гц	2,50 Гц	0	041A
P3.27	FDT уровень	0,00 — максимальная частота	50,00 Гц	0	041B
P3.28	FDT запазды- вание	0,00÷10,00 Гц	1,00 Гц	0	041C
P3.29	Верхний предел времени задержки выхода сигнала посту- пления частоты	0,0÷100,0 c	0,0 с	0	041D
P3.30	Нижний предел времени задержки выхода сигнала посту- пления частоты	0,0÷100,0 c	0,0 с	0	041E
P3.31	Настройка определения кру- тящего момента	0,0÷200,0 %	100,0 %	0	041F
P3.32	Настройка вычис- ления сигнала о поступлении	0÷9999	0	0	0420
P3.33	Настройка вход- ного сигнала о синхронизации	0,0÷6553,0	0,0	0	0421
P3.34	Продолжитель- ность работы по умолчанию	0÷65530 ч	65530 ч	×	0422
P3.35	Настойка опреде- ления недогрузки	0,0÷200,0 %	10,0 %	0	0423
P3.36	Время задержки определения недогрузки	0,0÷100,0 c	5,0 с	0	0424

Р4: Аналоговый и импульсный вход, выходные клеммы

Код функции	Параметр	Диапазон настроек	Заводская установка	Знак модифи- кации	Адрес протокола Modbus
P4.00	Выбор режима нелинейного аналогового входа	0: Отсутствует 1: Al1 2: Al2 3: Импульс	0	×	0500
P4.01	Минимальное значение анало- гового входа AI1	0,00 — P4.03	0,00 B	0	0501
P4.02	Соответствующая физическая величина для минимального значения входа Al1	-100,0 % - 100,0 %	0,0 %	0	0502
P4.03	Максимальное значение анало- гового входа AI1	P4.01 – 11,00 B	10,00 B	0	0503
P4.04	Соответствующая физическая величина для максимального значения входа Al1	-100,0 % — 100,0 %	100,0 %	0	0504
P4.05	Постоянная времени фильтра для входа Al1	0,01÷50,00 c	0,05 с	0	0505
P4.06	Значение нели- нейного анало- гового входного сигнала AI2	0,00 – P4.08	0,00 B	0	0506
P4.07	Физическая величина, соответствующая значению нелинейного аналогового входного сигнала Al2	-100,0 % — 100,0 %	0,0 %	0	0507
P4.08	Значение нели- нейного анало- гового входного сигнала AI2	P4.06 – 11,00 B	10,00 B	0	0508
P4.09	Физическая величина, соответствующая значению нелинейного аналогового входного сигнала Al2	-100,0 % — 100,0 %	100,0 %	0	0509
P4.10	Постоянная времени фильтра для входа AI1	0,01÷50,00 c	0,05 с	0	050A

Код функции	Параметр	Диапазон настроек	Заводская установка	Знак модифи- кации	Адрес протокола Modbus
P4.11	Минимальное значение импуль- сного сигнала	0,00 – P4.13	0,00 кГц	0	050B
P4.12	Физическая величина, соответствующая минимальному значению импульсного сигнала	-100,0 % — 100,0 %	0,0 %	0	050C
P4.13	Максимальное значение импуль- сного входа	Р4.11 — 50,00 кГц	50,00 кГц	0	050D
P4.14	Физическая величина, соответствующая максималь- ному значению импульсного входа	-100,0 % - 100,0 %	100,0 %	0	050E
P4.15	Резерв	_	-	*	050F
P4.16	Резерв	-	-	*	0510
P4.17	Резерв	_	-	*	0511
P4.18	Резерв	_	_	*	0512
P4.19	Резерв	_	_	*	0513
P4.20	Резерв	_	_	*	0514
P4.21	Определение функции АО1	О: Не определено 1: Выходной ток (0+2 крата от номинального тока инвертора) 2: Выходное напряжение (0 — максимальное напряжение) 3: Задание ПИД (0+10 В) 4: Обратная связь ПИД (0+10 В) 5: Калибровочный сигнал 5 В 6: Выходной крутящий момент (0+2 крата от номинального крутящего момента инвертора) 7: Выходная мощность (0+2 крата от номинальной выходной мощности инвертора) 8: Напряжение шины (0+1000 В) 9: АІ1 (0+10 В / 4+20 мА) 10: АІ1 (0+10 В) 11: Резерв 12: Выходная частота перед компенсацией (0 — максимальная частота) 13: Выходная частота после компенсации (0 — максимальная частота) 14: Скорость движения (0+2 крата от номинальной скорости)	0	×	0515

Код функции	Параметр	Диапазон настроек	Заводская установка	Знак модифи- кации	Адрес протокола Modbus
P4.22	Определение функции AO2	Аналогично P4.21	_	*	0516
P4.23	Резерв	-	-	*	0517
P4.24	DO выход	0÷14: То же, что и Р4.21	0	×	0518
P4.25	Выбор выходного диапазона AO1	0: 0÷10 B/ 0-20 MA 1: 2÷10 B/ 4-20 MA	0	0	0519
P4.26	Резерв	-	-	*	051A
P4.27	Резерв	-	_	*	051B
P4.28	AO1 AYX	-10,00÷10,00	1,00	0	051C
P4.29	Резерв	-	-	*	051D
P4.30	Резерв	_	-	*	051E
P4.31	Отклонение АО1	-100,0 % — 100,0 %	0,0 %	0	051F
P4.32	Резерв	-	_	*	0520
P4.33	Резерв	-	-	*	0521
P4.34	Максимальная выходная частота DO	Минимальная выходная частота DO — 50,00 кГц	10,00 кГц	0	0522
P4.35	Минимальная выходная частота DO	0,08 кГц — DO максимальная выходная частота	0,00 кГц	0	0523

Р5: ПЛК

Код функции	Параметр	Диапазон настроек	Заводская установка	Знак модифи- кации	Адрес протокола Modbus
P5.00	Рабочий режим ПЛК	0: Единичный цикл 1 1: Единичный цикл 2 (поддержание конечного значения) 2: Непрерывный цикл	2	×	0600
P5.01	Выбор режима повторного запуска ПЛК	О: Начало движения с первого шага 1: Продолжает движение при ступенчатой частоте в момент прерывания 2: Продолжает движение при рабочей частоте в момент прерывания	0	×	0601
P5.02	Выбор режима записей об отказах питания ПЛК	О: Не сохраняется 1: Сохраняется. Записи о текущем состоянии работы будут автоматически удалены при задании О значения параметра	0	×	0602
P5.03	Выбор единиц измерения вре- мени работы ПЛК	0: с 1: мин	0	×	0603
P5.04	Время работы ПЛК Т1	0,1÷3600	10,0	0	0604

Код функции	Параметр	Диапазон настроек	Заводская установка	Знак модифи- кации	Адрес протокола Modbus
P5.05	Время работы ПЛК Т2	0,0÷3600	10,0	0	0605
P5.06	Время работы ПЛК ТЗ		10,0	0	0606
P5.07	Время работы ПЛК Т4		10,0	0	0607
P5.08	Время работы ПЛК Т5	0,0÷3600	10,0	0	0608
P5.09	Время работы ПЛК Т6		10,0	0	0609
P5.10	Время работы ПЛК Т7		10,0	0	060A
P5.11	Время работы ПЛК Т8		10,0	0	060B
P5.12	Время работы ПЛК Т9		10,0	0	060C
P5.13	Время работы ПЛК Т10		10,0	0	060D
P5.14	Время работы ПЛК Т11		10,0	0	060E
P5.15	Время работы ПЛК Т12		10,0	0	060F
P5.16	Время работы ПЛК Т13		10,0	0	0610
P5.17	Время работы ПЛК Т14		10,0	0	0611
P5.18	Время работы ПЛК Т15		10,0	0	0612

Код функции	Параметр	Диапазон настроек	Заводская установка	Знак модифи- кации	Адрес протокола Modbus
P5.19	Шаг Т1, рабочая установка ПЛК	1 F/r – 4 F/r	1F	0	0613
P5.20	Шаг Т2, рабочая установка ПЛК		1F	0	0614
P5.21	Шаг ТЗ, рабочая установка ПЛК		1F	0	0615
P5.22	Шаг Т4, рабочая установка ПЛК		1F	0	0616
P5.23	Шаг Т5, рабочая установка ПЛК		1F	0	0617
P5.24	Шаг Т6, рабочая установка ПЛК		1F	0	0618
P5.25	Шаг Т7, рабочая установка ПЛК		1F	0	0619
P5.26	Шаг Т8, рабочая установка ПЛК		1F	0	061A
P5.27	Шаг Т9, рабочая установка ПЛК		1F	0	061B
P5.28	Шаг Т10, рабочая установка ПЛК		1F	0	061C
P5.29	Шаг Т11, рабочая установка ПЛК		1F	0	061D
P5.30	Шаг Т12, рабочая установка ПЛК		1F	0	061E
P5.31	Шаг Т13, рабочая установка ПЛК		1F	0	061F
P5.32	Шаг Т14, рабочая установка ПЛК		1F	0	0620
P5.33	Шаг Т15, рабочая установка ПЛК		1F	0	0621
P5.34	Удаление рабочих записей ПЛК	О: Не удалено 1: Удалено Р5.34. После удаления автоматически восстанавливается до 0	0	×	0622
P5.35	Запись рабочих шагов ПЛК	0÷15	0	*	0623
P5.36	Продолжитель- ность текущего шага	0,0+3600	0,0	*	0624

Р7: ПИД-регулирование

Код функции	Параметр	Диапазон настроек	Заводская установка	Знак модифи- кации	Адрес протокола Modbus
P7.00	Источник установки ПИД 1	О: Цифровая установка ПИД 1: Клемма Аl1 2: Клемма Al2 3: Резерв 4: Импульсный вход 5: Последовательный интерфейс	0	×	0800
P7.01	Источник уста- новки ПИД 2	0÷5: Аналогично	0	×	0801
P7.02	Комбинация ПИД установок	О: Установка ПИД только источником 1 1: Установка ПИД только источником 2 2: Мин. (установка ПИД источником 1, установка ПИД источником 1, установка ПИД источником 1, установка ПИД источником 1, установка ПИД источником 2 4: Установка ПИД источником 1 + установка ПИД источником 2 5: Установка ПИД источником 1 - установка ПИД источником 2 6: Установка ПИД источником 1 * установка ПИД источником 2 7: Установка ПИД источником 1/ установка ПИД источником 2	0	×	0802
P7.03	Источник обратной связи ПИД 1	1: Клемма Al1 2: Клемма Al2 3: Резерв 4: Импульсный вход 5: Последовательный интерфейс	0	×	0803
P7.04	Источник обратной связи ПИД 2	0: Резерв 1+5: Аналогично	0	×	0804
P7.05	голования обратной связи ПИД	О: Установка обратной связи ПИД только источником 1 1: Установка обратной связи ПИД только источником 2 2: Мин. (установка обратной связи ПИД источником 1, установка обратной связи ПИД источником 2) 3: Макс. (установка обратной связи ПИД источником 1, установка обратной связи ПИД источником 1, установка обратной связи ПИД источником 2) 4: Установка обратной связи ПИД источником 2 5: Установка обратной связи ПИД источником 1 — установка обратной связи ПИД источником 1	0	×	0805
P7.06	Задание ПИД	-1000,0÷1000,0, с условием ограничения диапа- зона установок аналогового ПИД	0,0	0	0806

Код функции	Параметр	Диапазон настроек	Заводская установка	Знак модифи- кации	Адрес протокола Modbus
P7.07	Диапазон настроек задания ПИД	1,0+1000,0	100,0	0	0807
P7.08	Дискретная установка ПИД скорости	0÷24000 об/мин	0 об/мин	0	0808
P7.09	Пропорцио- нальный коэффи- циент усиления 1	0,1÷30,0	1,0	0	0809
P7.10	Время интегриро- вания ПИД 1	0,00÷100,0 c	3,00 с	0	080A
P7.11	Время дифферен- цирования ПИД	0,00÷1,00 c	0,00 с	0	080B
P7.12	Частота переклю- чений 1	0,00 — частота переключений 2	5,00 Гц	0	080C
P7.13	Пропорцио- нальный коэффи- циент усиления 2	0,1÷30,0	1,0	0	080D
P7.14	Время интегриро- вания ПИД 2	0,00÷100,0 c	3,00 с	0	080E
P7.15	Время дифференцирования ПИД 2	0,00÷1,00 c	0,00 с	0	080F
P7.16	Частота переклю- чений 2	Частота переключений 1 — максимальная частота	20,00 Гц	0	0810
P7.17	Выбор дифференциального объекта	0: Дифференцирование обратной связи 1: Дифференцирование отклонений	0	×	0811
P7.18	Ограничение интегральной амплитуды ПИД интегрирования	0,0 % — 100,0 % Максимальная выходная частота 100 %	100 %	0	0812
P7.19	Ограничение дифференци- альной ампли- туды ПИД	0,0 % — 100,0 % Максимальная выходная частота 100 %	5,0 %	0	0813
P7.20	Ограничение выходной ампли- туды ПИД	0,0 % — 100,0 % Максимальная выходная частота 100 %	100,0 %	0	0814
P7.21	Постоянная вре- мени задержки ПИД	0,0÷25,00 c	0,00 с	0	0815
P7.22	Допустимая погрешность	0,0÷999,9	0,0	0	0816
P7.23	Регулировочные характеристики ПИД	О: Положительное срабатывание 1: Отрицательное срабатывание	0	×	0817

Код функции	Параметр	Диапазон настроек	Заводская установка	Знак модифи- кации	Адрес протокола Modbus
P7.24	Выбор интегрального регулирования	О: Прекратить интегральное управление, если частота достигла верхнего или нижнего предела 1: Продолжить интегральное управление, если частота достигла верхнего или нижнего предела	0	×	0818
P7.25	Выбор режима ожидания	0: Отключение 1: Включение	0	×	0819
P7.26	Время задержки режима ожи- дания	0÷999 c	120 с	0	081A
P7.27	Порог перехода в режим ожи- дания	0: Верхний предел частоты	20,00 Гц	0	081B
P7.28	Порог перехода в активный режим	0,0÷100	80%	0	081C
P7.29	Коэффициент подачи в прямом направлении ПИД	0,5000÷1,024	1,000	0	081D
P7.30	Выбор режима работы КР режима и мед- ленного старта в пределах диапазона погрешности	Единицы: 0: Режим КР отключён в пределах погрешности 1: Динамичный КР в пределах погрешности 2: Фиксированный КР в пределах погрешности Десятки: 0: Функция медленного старта отключена 1: Использовать медленный старт 1 2: Использовать медленный старт 2	00	0	081E
P7.31	КР нижний предел	0,01÷2,55	0.06	0	081F
P7.32	Значение КР при режиме медленного старта	0,01+30,00	0.10	0	0820
P7.33	Время медлен- ного старта	0,01÷999,9 c	10.0c	0	0821
P7.34	Задержка выхода из режима ожи- дания	0÷120	10	0	0822
P7.35	Выбор инверсии выхода PID	0: Запрещена 1: Разрешена	0	×	0823

Р8: Параметры векторного регулирования

Код функции	Параметр	Диапазон настроек	Заводская установка	Знак модифи- кации	Адрес протокола Modbus
P8.00	Количество ком- пенсации тока предварительного намагничивания	0,0÷500,0 % 100,0 % соответствуют холостому току двигателя; время отклика указано в Р1.04. Фактический верхний предел определяется меньшим из значений 80 % номинального тока инвертора и номинального тока двигателя	100,0 %	0	0900
P8.01	Пропорцио- нальный коэф- фициент усиления контура регулирования скорости 1	0,1÷30,0	2,0	0	0901
P8.02	Время интегрирования контура регулирования скорости 1	0,001÷10,000 c	Зависит от модели	0	0902
P8.03	Частота переключения контура регулирования скорости 1	0,00 Гц — частота переключения контура регулирования скорости 2	20,00 Гц	0	0903
P8.04	Пропорцио- нальный коэф- фициент усиления контура регулирования скорости 2	0,1÷30,0	1,0	0	0904
P8.05	Время интегрирования контура регулирования скорости 2	0,001÷10,000 c	Зависит от модели	0	0905
P8.06	Частота переклю- чений контура регулирования скорости 2	Частота переключений контура регулирования скорости 1 — максимальная частота	80,00 Гц	0	0906
P8.07	СТОП время фильтрации	0,000 c÷0,100 c	0,001 c	0	0907
P8.08	Измерение времени фильтро- вания контура регулирования скорости	1,0÷20,0 MC	0	0	0908
P8.09	Коэффициент прямой обратной связи контура регулирования скорости	0,5000+1,024	0,9	×	0909

Код функции	Параметр	Диапазон настроек	Заводская установка	Знак модифи- кации	Адрес протокола Modbus
P8.10	Режим регулирования крутящего момента	О: Работа в режиме регулирования скорости 1: Работа в режиме регулирования крутящего момента 2: Работа в режиме моментного двигателя	0	0	090A
P8.11	Источник установки крутящего момента привода	О: Дискретная установка 1: Аl1 2: Al2 3: Резерв 4: Импульсный вход 5: Последовательный интерфейс	0	×	090B
P8.12	Верхний предел крутящего момента привода	HD: 0,0 – 200,0 % ND: 0,0 – 150,0 %	160 % 130 %	0	090C
P8.13	Верхний предел тормозящего момента	HD: 0,0 – 200,0 % ND: 0,0 – 150,0 %	160 % 130 %	0	090D
P8.14	Индекс команды компенсации скольжения	0,0 % – 200,0 %	102,4 %	0	090E
P8.15	Резерв	-	_	*	090F
P8.16	Резерв	-	_	*	0910
P8.17	Расчетная компенсация скольжения при минимальной скорости	50,0 % — 200,0 %	117,0 %	0	0911
P8.18	Расчетная компенсация скольжения при максимальной скорости	50,0 % — 200,0 %	117,0 %	0	0912
P8.19	Резерв	_	_	0	0913
P8.20	Резерв	_	-	0	0914
P8.21	Резерв	_	-	0	0915
P8.22	Резерв	_	-	0	0916
P8.23	Повышение крутящего момента при нулевой скорости	0,0÷50,0 %	0,0 %	0	0917
P8.24	Порог перехода при нулевой скорости	0÷20 % (максимальная частота)	5 %	0	0918

Код функции	Параметр	Диапазон настроек	Заводская установка	Знак модифи- кации	Адрес протокола Modbus
P8.25	Источник установки тормо- зящего момента	О: Совпадает с конечным значением крутящего момента привода, рассчитанного в P8.11 1: Al1 2: Al2 3: Резерв 4: Импульсный вход 5: Последовательный интерфейс	0	×	0919
P8.26	Высокоско- ростное допол- нение крутящего момента	40,0 % — 160,0 %	100,0 %	0	091A
P8.27	Значение высо- коскоростного дополнения кру- тящего момента	0: Рабочая частота 1: Линейная скорость (резерв) 2: Момент инерции нагрузки	0	0	091B
P8.28	Время пред- варительного возбуждения	0,05÷3,00 c	0,10 c	0	091C

Р9: Параметры V/F-регулирования

Код функции	Параметр	Диапазон настроек	Заводская установка	Знак модифи- кации	Адрес протокола Modbus
P9.00	Настройка кривой V/F	0: Постоянный крутящий момент (0) 1: Переменный момент 1 (2,0) 2: Переменный момент 2 (1,5) 3: Пониженный момент 3 (1,2) 4: V/F-кривая задается пользователем (определена в Р9.01 — Р9.06 код функции)	0	×	0A00
P9.01	Частота V/F F1	0,0 - P9.03	10,00 Гц	×	0A01
P9.02	V1 напряжение V/F	0,0÷100,0 %	20,0 %	×	0A02
P9.03	Частота V/F F2	P9.01 – P9.05	25,00 Гц	×	0A03
P9.04	V2 напряжение V/F	0,0÷100,0 %	50,0 %	×	0A04
P9.05	Частота V/F F3	P9.03 – P0.09	40,00 Гц	×	0A05
P9.06	V3 напряжение V/F	0÷100,0 %	80,0 %	×	0A06
P9.07	Повышение кру- тящего момента	0,0: Автоматическое повышение крутящего момента 0,1÷30,0 %: повышение вручную	0,0 %	0	0A07
P9.08	Предельная частота ручного увеличения крутящего момента	0,00÷50,00 Гц	16,67 Гц	0	0A08
P9.09	Коэффициент компенсации скольжения	0,0÷250,0 % (номинальное значение крутящего момента 100 %)	0,0 %	0	0A09
P9.10	Постоянная времени компенсации скольжения	0,01÷2,55 c	0,20 с	0	OAOA
P9.11	Выбор режима регулирования с низким энерго-потреблением	О: Режим регулирования с низким энергопотре- блением выключен 1: Режим регулирования с низким энергопотре- блением включен	0	×	OAOB
P9.12	Коэффициент усиления энерго- эффективности	0,00÷655,3	Зависит от модели	×	OAOC
P9.13	Нижний предел напряжения при низком энер- гопотреблении (50 Гц)	0÷120 %	50 %	×	OAOD
P9.14	Нижний предел напряжения при низком энергопо- треблении (5 Гц)	0+25 %	12 %	×	OA0E
P9.15	Время средней мощности	(1÷200) * (25 мс)	5	×	0A0F

Код функции	Параметр	Диапазон настроек	Заводская установка	Знак модифи- кации	Адрес протокола Modbus
P9.16	Функция AVR	О: Неактивна 1: Всегда включена 2: Неактивна только при торможении	2	×	0A10
P9.17	Выбор режима перемодуляции	0: Не работает 1: Работает	0	×	0A11
P9.18	Контроль частоты (распределение нагрузки)	0,00÷10,00 Гц	0,00 Гц	0	0A12
P9.19	Источник отклонения выходного напряжения	О: Дискретная установка 1: Аl1 2: Al2 3: Резерв 4: Импульсный вход 5: Настройка интерфейса связи Максимальное выходное напряжение 100 %. Работает только при режиме разделения V/F	0	×	0A13
P9.20	Отклонение выходного напря- жения	0,0 % - 100,0 %	0,0 %	0	0A14
P9.21	Коэффициент подавления колебаний	0+100	0	0	0A15

РА: Параметры двигателя

Код функции	Параметр	Диапазон настроек	Заводская установка	Знак модифи- кации	Адрес протокола Modbus
PA.00	Выбор двигателя	0: Двигатель 1 1: Двигатель 2	0	×	0B00
PA.01	Количество полюсов двига- теля 1	2÷56	4	×	0B01
PA.02	Номинальная мощность двига- теля 1	0,4÷999,9 кВт	Зависит от модели	×	0B02
PA.03	Номинальная скорость двига- теля 1	0÷24000 об/мин		0	0B03
PA.04	Номинальный ток двигателя 1	0,1÷999,9 A		×	0B04

Код функции	Параметр	Диапазон настроек	Заводская установка	Знак модифи- кации	Адрес протокола Modbus
PA.05	Ток холостого хода IO двигателя 1	0,1+999,9 A	Зависит от модели	×	0B05
PA.06	Сопротивление обмотки статора R1 двигателя 1	0,001÷65,000 OM	-	0	0B06
PA.07	Индукция рассеяния L1 двигателя 1	0,1+2000,0 мГн		0	OB07
PA.08	Сопротивление ротора R2 двигателя 1	0,001÷65,000 OM	-	0	0B08
PA.09	Сопротивление взаимной индукции Lm двигателя 1	0,1÷2000,0 мГн		0	0B09
PA.10	Коэффициент магнитного насыщения двигателя 1	0,0 % — 100,0 %		0	OBOA
PA.11	Коэффициент магнитного насыщения 2 двигателя 1	0,0 % - 100,0 %		0	0B0B
PA.12	Коэффициент магнитного насыщения 3 двигателя 1	0,0 % - 100,0 %		0	OBOC
PA.13	Коэффициент магнитного насыщения 4 двигателя 1	0,0 % - 100,0 %		0	OCOD
PA.14	Коэффициент магнитного насыщения 5 двигателя 1	0,0 % — 100,0 %		0	OB0E
PA.15	Количество полюсов двигателя 2	2÷56	4	×	0B0F
PA.16	Номинальная мощность двигателя 2	0,4÷999,9 кВт	Зависит от модели	×	0B10
PA.17	Номинальная скорость двигателя 2	0÷24000 об/мин		0	0B11
PA.18	Номинальный ток двигателя 2	0,1÷999,9 A		×	0B12

Код функции	Параметр	Диапазон настроек	Заводская установка	Знак модифи- кации	Адрес протокола Modbus
PA.19	Ток холостого хода IO двигателя 2	0,1÷999,9 A	Зависит от модели	×	
PA.20	Сопротивление обмотки статора R1 двигателя 2	0,001÷65,000 OM		0	OB14
PA.21	Индукция рассеяния L1 двигателя 2	0,1÷2000,0 мГн		0	OB15
PA.22	Сопротивление ротора R2 двигателя 2	0,001÷65,000 OM		0	OB16
PA.23	Сопротивление взаимной индукции Lm двигателя 2	0,1÷2000,0 мГн		0	0B17
PA.24	Коэффициент магнитного насыщения 1 двигателя 2	0,0 % - 100,0 %		0	0B18
PA.25	Коэффициент магнитного насыщения 2 двигателя 2	0,0 % — 100,0 %		0	0B19
PA.26	Коэффициент магнитного насыщения 3 двигателя 2	0,0 % – 100,0 %		0	OB1A
PA.27	Коэффициент магнитного насыщения 4 двигателя 2	0,0 % – 100,0 %		0	OB1B
PA.28	Коэффициент магнитного насыщения 5 двигателя 2	0,0 % — 100,0 %		0	OB1C
PA.29	Настройка пара- метров двигателя	О: Нет настройки 1: Статическая настройка параметров 2: Настройка параметров с вращением	0	×	OB1D
PA.30	Информация о ходе настройки параметров	_	-	*	OB1E

Pb: Связь по протоколу Modbus

Код функции	Параметр	Диапазон настроек	Заводская установка	Знак модифи- кации	Адрес протокола Modbus
Pb.00	Выбор скорости передачи инфор- мации	0: 1200 6/c 1: 2400 6/c 2: 4800 6/c 3: 9600 6/c 4: 19200 6/c 5: 38400 6/c	3	×	0000
Pb.01	Локальный адрес	0÷31	1	×	0C01
Pb.02	Формат передаваемых данных	0: 1-8-1-E, RTU 1: 1-8-1-0, RTU 2: 1-8-1-N, RTU 3: 1-7-1-E, ASCII 4: 1-7-1-0, ASCII 5: 1-7-2-N, ASCII 6: 1-8-1-E, ASCII 7: 1-8-1-0, ASCII В: 1-8-2-N, ASCII	0	×	0002
Pb.03	Время опреде- ления задержки передачи	0,0÷100,0 с 0: Не обнаружено задержек Другое: время определения задержки	0,0 c	0	0003
Pb.04	Время задержки отклика	0÷500 мс	5 мс	×	0C04
Pb.05	Резерв	-	-	×	0C05
Pb.06	Выбор режима сохранения в EEPROM	0: Не сохранять напрямую в EEPROM 1: Сохранять напрямую в EEPROM	0	×	0006
Pb.07	ССF6 обработка отказа	О: Продолжение без сообщения об отказе 1: Сообщение об отказе и автоматическое отключение	0	×	0007
Pb.08	Управление откликом	0: Нормальный отклик 1: Нет отклика при записи инструкции	0	0	0008

РС: Управление дисплеем

Код функции	Параметр	Диапазон настроек	Заводская установка	Знак модифи- кации	Адрес протокола Modbus
PC.00	Резерв	_	_	*	0D00
PC.01	Выходная частота (Гц) (перед компенсацией)	0: Не отображается 1: Отображается	1	0	0D01
PC.02	Выходная частота (Гц) (рабочая)	0: Не отображается 1: Отображается	0	0	0D02
PC.03	Выходной ток (А)	0: Не отображается 1: Отображается	1	0	0D03
PC.04	Заданная частота (Гц, мерцание)	0: Не отображается 1: Отображается	1	0	0D04
PC.05	Рабочая скорость об/мин	0: Не отображается 1: Отображается	1	0	0D05

59

Код функции	Параметр	Диапазон настроек	Заводская установка	Знак модифи- кации	Адрес протокола Modbus
PC.06	Заданная ско- рость (об/мин, мерцание)	0: Не отображается 1: Отображается	0	0	0D06
PC.07	Линейной скорости, м/с	0: Не отображается 1: Отображается	0	0	0D07
PC.08	Задание линейной ско- рости, м/с	0: Не отображается 1: Отображается	0	0	0D08
PC.09	Выходная мощ- ность (кВт)	0: Не отображается 1: Отображается	0	0	0D09
PC.10	Выходной крутящий момент (%)	0: Не отображается 1: Отображается	0	0	ODOA
PC.11	Выходное напря- жение (B)	0: Не отображается 1: Отображается	1	0	0D0B
PC.12	Напряжение шины (B)	0: Не отображается 1: Отображается	0	0	0D0C
PC.13	AI1 (V)	0: Не отображается 1: Отображается	0	0	0D0D
PC.14	AI2 (V)	0: Не отображается 1: Отображается	0	0	0D0E
PC.15	Резерв	_	_	*	0D0F
PC.16	Обратная связь ПИД (%)	0: Не отображается 1: Отображается	0	0	0D10
PC.17	Подача анало- гового ПИД (%, мерцание)	О: Не отображается 1: Отображается	0	0	0D11
PC.18	Внешнее зна- чение счетчика	0: Не отображается 1: Отображается	0	0	0D12
PC.19	Состояние клеммы	0: Не отображается 1: Отображается	0	0	0D13
PC.20	Резерв	-	_	*	0D14
PC.21	Выбор режима отображения питания	1+20	1	0	0D15
PC.22	Коэффициент отображения скорости	0,1+999,9% Механическая скорость = измеренная скорость * PC.22 (PG) Механическая скорость = 120 * рабочая частота / кол-во полюсов двигателя * PC.22 (без PG) Заданная скорость = заданная скорость ПИД * PC.22 (PG) Заданная скорость = 120 * заданная частота / кол-во полюсов двигателя * PC.22 (без PG) Примечание: не влияет на фактическую скорость	100,0 %	0	0D16

Код функции	Параметр	Диапазон настроек	Заводская установка	Знак модифи- кации	Адрес протокола Modbus
PC.23	Коэффициент линейной ско- рости	0,1÷999,9% Линейная скорость = рабочая частота * PC.23 (без PG) Линейная скорость = механическая скорость * PC.23 (PG) Заданная линейная скорость = рабочая частота * PC.23 (без PG) Заданная линейная скорость = заданная скорость * PC.23 (PG) Примечание: не влияет на фактическую скорость	100,0 %	0	0D17

Pd: Параметры защиты и отказа

Код функции	Параметр	Диапазон настроек	Заводская установка	Знак модифи- кации	Адрес протокола Modbus
Pd.00	Выбор режима защиты двигателя от перегрузки	О: Без защиты 1: Обычный двигатель (с компенсацией на низкой скорости) 2: Двигатель с переменной частотой (без компенсации на низкой скорости) 3: Сенсорная защита (срабатывает мгновенно при превышении порога)	1	×	0E00
Pd.01	Защитный порог двигателя 1	0,0÷10,0 B	10,0 B	×	0E01
Pd.02	Канал входа датчика защиты двигателя 1	0: Клемма Al1 1: Клемма Al2 2: Резерв 3: Импульсный вход 4: Настройка интерфейса связи	0	×	0E02
Pd.03	Защитный порог двигателя 2	0,0÷10,0 B	10,0 B	×	0E03
Pd.04	Канал входа сенсора защиты двигателя 2	0: Клемма Al1 1: Клемма Al2 2: Резерв 3: Импульсный вход 4: Настройка интерфейса связи	0	×	0E04
Pd.05	Значение защиты электротеплового реле	20÷110 %	100 %	0	0E05
Pd.06	Уровень обнаружения предварительного оповещения о перегрузке	20,0÷200,0 %	160,0 %	×	0E06

61

Код функции	Параметр	Диапазон настроек	Заводская установка	Знак модифи- кации	Адрес протокола Modbus
Pd.07	Время обнаружения предварительного оповещения о перегрузке	0,0÷60,0 c	60,0 c	×	0E07
Pd.08	Ограничение амплитуды тока	О: Не работает 1: Работает во время разгона и торможения, не работает при работе на постоянной скорости 2: Работает всегда 3: Снижение рабочей скорости при превышении тока	1	0	0E08
Pd.09	Уровень ограничения амплитуды тока	30÷180 %	160 %	0	0E09
Pd.10	Выбор режима остановки от перенапря- жения	О: Запрещено (рекомендовано при подключении тормозного резистора) 1: Разрешено	1	×	OEOA
Pd.11	Точка остановки при перенапря- жении	110,0÷150,0 % от напряжения шины	140 %	×	ОЕОВ
Pd.12	Критерий опре- деления обрыва входной фазы	1÷100 %	100 %	×	OEOC
Pd.13	Время опреде- ления выходной фазы	2÷255 c	10 c	×	OEOD
Pd.14	Уровень опре- деления обрыва входной фазы	0÷100 %	1 %	×	OEOE
Pd.15	Время опреде- ления обрыва выходной фазы	0,0÷20,0 c	2,0 с	×	0E0F
Pd.16	Резерв	-	_	*	0E10
Pd.17	AE1 выбор ава- рийного сигнала	0: Не отображать предупреждение 1: Отображать предупреждение	0	×	0E11
Pd.18	Кол-во автомати- ческих сбросов	0÷10,0 означает отсутствие автоматического сброса. Только у трех отказов есть функция автоматического сброса	0	×	0E12
Pd.19	Временной интервал сброса	2,0÷20,0 c	5,0 c	×	0E13
Pd.20	Время под- тверждения перед замедле- нием скорости при перегрузке по току	0÷200 мс	50 мс	×	0E14

Код функции	Параметр	Диапазон настроек	Заводская установка	Знак модифи- кации	Адрес протокола Modbus
Pd.21	Защита ПУСКА при включении питания	0: Без защиты 1: Защитный порог	0	×	0E15
Pd.22	Защита ПУСКА при переклю- чении источника управления	О: Продолжение движения 1: Остановка, повторный пуск после получения новой команды запуска	0	×	0E16
Pd.23	Резерв	-	-	×	0E17
Pd.24	Резерв	_	-	×	0E18
Pd.25	Резерв	_	_	0	0E19
Pd.26	Резерв	_	-	0	0E1A
Pd.27	Резерв	_	-	0	0E1B
Pd.28	Резерв	_	-	0	0E1C
Pd.29	Резерв	_	-	0	0E1D
Pd.30	Резерв	_	_	0	0E1E
Pd.31	Резерв	_	-	0	0E1F
Pd.32	Резерв	_	-	0	0E20
Pd.33	Предельная точка тока в ПО	100,0 % – 300,0 %	Зависит от модели	0	0E21
Pd.34	Ограничитель тока аппаратного обеспечения (для 30 кВт и ниже недоступно)	0: Запрещено 1: Разрешено	1	0	0E22

РЕ: Запись протокола работы

Код функции	Параметр	Диапазон настроек	Заводская установка	Знак модифи- кации	Адрес протокола Modbus
PE.00	Выбор режима отображения отказа	0÷30	1	0	OFOO
PE.01	Тип отказа	О: Нулевой 1: Uu1, понижение напряжения шины 2: Uu2, понижение напряжения цепи управления 3: Uu3, слабый заряд цепи 4: OC1, перегрузка по току при разгоне 5: OC2, перегрузка по току при торможении 6: OC3, перегрузка по току при постоянной скорости 7: Ou1, перенапряжение при разгоне 8: Ou2, перенапряжение при разгоне 8: Ou2, перенапряжение при постоянной скорости 10: GF, заземление 11: OH1, перегрузка двигателя 12: OL1, перегрузка двигателя 13: OL2, перегрузка инвертора 14: SC, короткое замыкание нагрузки 15: EF0, внешний отказ от последовательного интерфейса 16: EF1, внешний отказ клемм 17: SP1, обрыв входной фазы или дисбаланс 18: SP0, обрыв входной фазы или дисбаланс 19: CCF1, отказ контура управления 9) Сигнал между инвертором и клавиатурой не может быть установлен в течение 5 с после включения питания 20: CCF2, отказ контура управления 6) После подключения инвертора к клавиатуре отказ передачи сигнала сохраняется дольше 2 секунд 21: CCF3, отказ EEPROM 22: CCF4, исключение передачи AD 23: CCF5, отказ RAM 24: CCF6, нарушена работа CPU 25: PCE, ошибка воспроизведения названия параметра 26: Резерв 27: HE, отказ обнаружения холловского тока 28: De, отказ обнаружения сокращения на заданную длину 29: Ошибка подпитки сигнала 30: OH3, перегрев выпрямителя		*	0F01
PE.02	Выходная частота при отказе	0 — верхний предел частоты			

64

Код функции	Параметр	Диапазон настроек	Заводская установка	Знак модифи- кации	Адрес протокола Modbus
PE.03	Заданная частота при отказе	0 — верхний предел частоты	0,00 Гц	*	0F03
PE.04	Выходной ток при отказе	0÷2 от номинального тока	0,0 A	*	0F04
PE.05	Напряжение шины при ошибке	0÷1000 Гц	0 B	*	0F05
PE.06	Рабочие условия при отказе	0: StP, стоп 1: Асс, разгон 2: dEc, замедление 3: con, постоянная скорость	StP	*	0F06
PE.07	Общее время работы под напряжением при отказе	0÷65530 ч	0 ч	*	0F07
PE.08	IGBT, температура при отказе	0,0÷200,0 °C	0,0 °C	*	0F08
PE.09	Резерв	-	_	*	0F09
PE.10	Общее время работы	0÷65530 ч	0 ч	*	0F0A
PE.11	Общее время включения	0÷65530 ч	0 ч	*	0F0B
PE.12	Общее потре- бление электроэ- нергии (МВт*ч)	0÷9999 МВт-ч	0 МВт*ч	*	OFOC
PE.13	Общее потре- бление электроэ- нергии (кВт*ч)	0÷999 кВт-ч	0 кВт*ч	*	OFOD
PE.14	IGBT, температура	0,0÷200,0 °C	0,0 °C	*	0F0E

РF: Защита параметров и информация об идентификации изделия

Код функции	Параметр	Диапазон настроек	Заводская установка	Знак модифи- кации	Адрес протокола Modbus
PF.00	Пароль пользо- вателя	0: Нет пароля Другое: защита пароля	0	0	1000
PF.01	Защита параметров от записи	0: Разрешено переписать любой параметр 1: Кроме заданной частоты (Р0.02) и кода данной функции (РF.01), остальные коды функции могут быть переписаны 2: Кроме данного кода функции, все остальные могут быть переписаны	0	0	1001
PF.02	Сброс настроек	О: Нет 1: Удаление записей об авариях 2: Восстановление настроек по умолчанию (кроме записи/пароли/параметры двигателя) 3: Восстановление настроек по умолчанию (кроме записи/пароли)	0	×	1002

Код функции	Параметр	Диапазон настроек	Заводская установка	Знак модифи- кации	Адрес протокола Modbus
PF.03	Резерв	-	-	*	1003
PF.04	Выбор режима применения	0: HD (постоянный момент) 1: ND (переменный момент, насосы и вентиляторы)	0	×	1004
PF.05	Резерв	-	-	*	1005
PF.06	Резерв	-	-	*	1006
PF.07	Резерв	-	-	*	1007
PF.08	Резерв	_	-	*	1008
PF.09	Серийный номер изделия	0÷9999		*	1009
PF.10	Номер версии программного обеспечения	0,00÷99,99		*	100A
PF.11	Нестандартная версия и серийный номер	0,000÷9,999		*	100B
PF.12	Идентификаци- онный номер программного обеспечения	0+9999		*	100C

Глава 5 Подробное описание параметров

РО Базовые параметры

РО.00 РЕЖИМ ОТОБРАЖЕНИЯ МЕНЮ

Nº	Наименование функции	Настройки	По умолчанию
P0.00	Режим отображения меню	0÷1	0

0: Обычное меню

1: Режим редактирования параметров

ПРИМЕЧАНИЕ

Когда РО.00 выставлен на 1, дисплей переходит в режим редактирования параметров. В этом режиме можно просматривать и изменять каждый редактируемый код параметра поворотом регулятора настроек. Остальные, нередактируемые, коды параметров не будут отображаться до тех пор, пока настройка вновь не будет изменена на 0.

• РО.01 РЕЖИМ РЕГУЛИРОВАНИЯ

Nº	Наименование функции	Настройки	По умолчанию
P0.01	Режим регулирования	0÷3	0

0: V/F-регулирование

1: Резерв

2: Векторное управление без обратной связи (SVC)

3: Раздельное V/F-регулирование

ПРИМЕЧАНИЯ

- V/F-регулирование: необходимо выбирать этот режим регулирования при использовании одного преобразователя переменного тока для управления более чем одним двигателем, или если параметры двигателей не могут быть настроены автоматически или каким-либо другим способом.
- Векторное регулирование без применения датчиков: при этом режиме не требуется датчик скорости, этот режим может быть использован в стандартных ситуациях, когда требуется высокая производительность при регулируемой частоте вращения.
- Раздельное V/F-регулирование: этот режим регулирования может быть использован в тех случаях, когда требуется раздельное регулирование частоты и напряжения.

COBET:

При выборе векторного режима регулирования без обратной связи, если двигатель по умолчанию не является обычным 4-полюсным асинхронным двигателем, необходимо сначала корректно задать параметры согласно заводской табличке, а после осуществить автонастройку параметров двигателя, чтобы выйти на точные параметры двигателя. Для достижения оптимальной регулируемой производительности советуем провести настройку параметров согласно заводской табличке и автоподстройку параметров до первого пуска двигателя; это необходимо, помимо прочего, чтобы правильно задать соответствующие параметры векторного регулирования. Подробности изложены в описании параметров векторного регулирования группы Р8. Следует отметить, что, как правило, при этом режиме регулирования один преобразователь применяется для управления только одним двигателем, и класс мощности преобразователя частоты не должен слишком отличаться от класса мощности двигателя, разница может составлять максимум на один класс больше или меньше номинальной мощности преобразователя. В противном случае это приведет к снижению точности регулирования или нарушениям в работе электродвигателя.

РО.02 ЦИФРОВОЙ РЕЖИМ ЗАДАНИЯ ЧАСТОТЫ

Nº	Наименование функции	Настройки	По умолчанию
P0.02	Цифровой режим задания частоты	0,00 Гц — максимальное	0,00 Гц
		значение частоты	

ПРИМЕЧАНИЕ

Когда код параметра P0.03 или P0.04 = 1, этот код параметра активируется при цифровой настройке значения команды частоты с кнопочной панели. Он определяет значение частоты настройки преобразователя частоты.

COBET:

Значение РО.02, измененное через кнопочную панель цифрового энкодера, сразу становится активным. Если нажать клавишу «ВВОД», значение будет сохранено во внутреннюю энергонезависимую память EEPROM инвертора и не будет потеряно даже в случае отключения питания преобразователя. Когда значение РО.03 выставлено на 1: если значение РЗ.18 выставлено на 2, то измененное через кнопочную панель цифрового энкодера значение РО.02 будет сохранено при отключении питания. В противном случае измененное значение не будет сохранено.

• РО.03 ИСТОЧНИК ЗАДАНИЯ КОМАНДЫ ЧАСТОТЫ 1

Nº	Наименование функции	Настройки	По умолчанию
P0.03	Источник задания команды частоты 1	0÷11	1

0: Неактивно

- 1: Цифровая настройка частоты с ручной подстройкой цифровым регулятором настроек
- 2: Клемма АІ1
- 3: Клемма АІ2
- 4: Резерв
- 5: Импульсный вход
- 6: Последовательный обмен данными

- 7: Резерв
- 8: Многоскоростной режим скорости
- 9: Терминал УВЕЛИЧИТЬ/УМЕНЬШИТЬ
- 10: Программируемый логический контроллер (ПЛК)
- 11: ПИД
- РО.04 ИСТОЧНИК ЗАДАНИЯ КОМАНДЫ ЧАСТОТЫ 2

Nº	Наименование функции	Настройки	По умолчанию
P0.04	Источник задания команды частоты 2	0÷9	0

- 0: Значение «Ноль»
- 1: Цифровая настройка частоты с ручной подстройкой цифровым регулятором настроек
- 2: Клемма АІ1
- 3: Клемма АІ2
- 4: Резерв
- 5: Импульсный вход
- 6: Последовательный обмен данными
- 7: Резерв
- 8: Многоскоростной режим скорости
- 9: Компенсация отклонения величины крутящего момента

ПРИМЕЧАНИЯ

- Если значение P0.03 выставлено на 1, то в процессе настройки через пульт управления панель в режиме текущего контроля настройки частоты могут быть изменены с помощью цифрового регулятора настроек на пульте управления; когда настройка частоты производится через P0.02 в режиме текущего контроля, значение P0.02 можно регулировать с помощью регулятора кнопочной панели.
- Аналоговые входные сигналы передаются через клемму Al1. При использовании клеммы Al1 выходная частота может быть скорректирована через сигнал напряжения величиной 0÷10 В или сигнал тока величиной 0÷20 мА. Тип сигнала выбирается с помощью соответствующего DIP-переключателя на блоке управления приводом. Подробное описание можно найти в разделе 2.4 «Подключение шепи управления».
- Соотношение между амплитудами входных сигналов, поступающих через клемму Al1 и импульсный вход, и их частоты программируются. Подробности изложены в описании параметров группы P4.
- При настройке режима последовательного обмена данными пользователь может подключить последовательный порт связи к ПК или ПЛК. Таким образом, настройка частоты преобразователя частоты регулируется в режиме обмена данными.
- Когда значение РО.ОЗ выставлено на 9, см. описание группы РЗ БОЛЬШЕ/МЕНЬШЕ.
- Когда значение РО.04 выставлено на 9, величина компенсации составляет половину от значения соответствующей частоты скольжения для разности заданного крутящего момента и фактического крутящего момента.

РО.05 КОМБИНИРОВАННОЕ ЗАДАНИЕ ЧАСТОТЫ 1

Nº	Наименование функции	Настройки	По умолчанию
P0.05	Комбинированное задание частоты 1	0÷9	0

• РО.06 КОМБИНИРОВАННОЕ ЗАДАНИЕ ЧАСТОТЫ 2

Nº	Наименование функции	Настройки	По умолчанию
P0.06	Комбинированное задание частоты 2	0÷9	0

- 0: Задание значения частоты только от источника 1
- 1: Задание значения частоты только от источника 2
- 2: Мин. (задание значения частоты от источника 1, задание значения частоты от источника 2)
- 3: Макс. (задание значения частоты от источника 1, задание значения частоты от источника 2)
- 4: Задание значения частоты от источника 1+ задание значения частоты от источника 2
- 5: Задание значения частоты от источника 1 задание значения частоты от источника 2
- 6: Задание значения частоты от источника 1 * задание значения частоты от источника 2
- 7: Задание значения частоты от источника 1 / задание значения частоты от источника 2
- 8: Задание значения частоты от источника 1 задание значения частоты от источника 2
- 9: Задание значения частоты от источника 2 * (максимальная выходная частота + задание значения частоты от источника 1) / максимальная выходная частота

ПРИМЕЧАНИЯ

- Задание значения частоты от источника 1 настройка частоты на основе источника задания частоты 1, соответствующего P0.03.
- Задание значения частоты от источника 2 настройка частоты на основе источника задания частоты 2, соответствующего P0.04.
- Конечное значение частоты задается соответствующей комбинацией задания частоты от источника 1 и задания частоты от источника 2.
- При заданном и активированном значении параметра FC клеммы (см. РЗ.01 РЗ.11) результирующая комбинации задания частоты 2, соответствующая РО.06, является текущей заданной частотой; если значение параметра клеммы не задано, либо задано, но не активировано, то результатом комбинации задания частоты 1, соответствующей РО.05, является текущая заданная частота. Пользователи по собственному усмотрению могут переключаться между двумя различными комбинациями настройки частоты. Если задан режим комбинации 6 или 7, то значение, заданное от источника задания частоты 2, больше не представляет частоту, и вместо этого будет использоваться в качестве коэффициента по его абсолютной величине.

• РО.07 ИСТОЧНИК КОМАНД УПРАВЛЕНИЯ

Nº	Наименование функции	Настройки	По умолчанию
P0.07	Набор команд управления	0÷5	0

0: Управление с помощью пульта управления

1: Цифровой вход режим 1 (команда СТОП не принята)

- 2: Цифровой вход режим 2 (команда СТОП принята)
- 3: Последовательный обмен данными 1 (команда СТОП не принята)
- 4: Последовательный обмен данными 2 (команда СТОП принята)
- 5: Цифровой вход режим 3 (команды СТОП и ТОЛЧКОВЫЙ ХОД не приняты) ПРИМЕЧАНИЯ
- В режиме управления пультом пользовательское управление пуском и остановом преобразователя частоты реализуется непосредственно через клавиши ПУСК и СТОП на пульте.
- В режиме управления через цифровые входы должен вначале задать параметры многофункциональных цифровых входов для активации команд ПУСК, ВПЕРЕД/НАЗАД, ВПЕРЕД, НАЗАД, ПАУЗА и т. д. (см. РЗ.01 РЗ.11), а затем через клеммы управлять пуском и остановом преобразователя.
- В режиме последовательного обмена данными пользователь подключается через последовательный порт связи к ПК или ПЛК. Команды ПУСК, ОСТАНОВ, ПРЯМОЙ ХОД и РЕВЕРС преобразователя частоты подаются в режиме обмена данными.
- При рабочей клавише СТОП пользователь может остановить преобразователь клавишей СТОП на пульте, которая используется для аварийного останова. Когда клавиша СТОП заблокирована, пользователь может остановить преобразователь только через режим управления набором данных.
- Когда значение РО.07 выставлено на 5, клавиши СТОП и ТОЛЧКОВЫЙ ХОД на кнопочной панели заблокированы; при заблокированной клавише ТОЛЧКОВЫЙ ХОД ввод команды ТОЛЧКОВЫЙ ХОД на кнопочной панели невозможен и пользователь может запустить толчковую подачу только через клемму.
- В режимах управления через кнопочную панель и клеммы действия с параметрами чтения/записи игнорируются.

• РО.08 НАСТРОЙКИ НАПРАВЛЕНИЯ ХОДА НА КНОПОЧНОЙ ПАНЕЛИ

Nº	Наименование функции	Настройки	По умолчанию
P0.08	Настройки направления хода на кнопочной панели	0, 1	0

0: Прямой ход

1: Реверс

ПРИМЕЧАНИЯ

- Нажатие клавиши ТОЛЧКОВЫЙ ХОД (Р2.51 = 1) будет переключать направление хода и изменит значение параметра РО.08. Такое изменение направления хода временно.
- Только изменив значение параметра P0.08 и нажав BBOД, чтобы сохранить значение, можно обеспечить постоянное сохранение направления хода через кнопочную панель. Приоритетность задания направления хода: настройка через цифровой вход обладает наивысшим приоритетом, потом следует обмен данными, самый низкий приоритет у кнопочной панели. Низший приоритет вступает в силу при отмене высшего.

P0.09 OCHOBHAЯ ЧАСТОТА

Nº	Наименование функции	Настройки	По умолчанию
P0.09	Основная частота	Низкочастотный режим:	Низкочастотный режим:
		0,10÷400,0 Гц	50,00 Гц
		Высокочастотный режим	Высокочастотный режим
		(резервный): 0,1÷1000 Гц	(резервный): 50,0 Гц

• РО.10 МАКСИМАЛЬНАЯ ВЫХОДНАЯ ЧАСТОТА

Nº	Наименование функции	Настройки	По умолчанию
P0.10	Максимальная выходная частота	Низкочастотный режим: макс.	Низкочастотный режим:
		[50,00 Гц, верхнее пороговое	50,00 Гц
		значение частоты, заданная частота,	Высокочастотный режим
		многоступенчатый режим регу-	(резервный): 50,0 Гц
		лировки частоты, частота скачка]	
		— 400,0 Гц	
		Высокочастотный режим	
		(резервный): макс. [50,0 Гц,	
		верхнее пороговое значение	
		частоты, заданная частота, много-	
		ступенчатый режим регулировки	
		частоты, частота скачка] — 1000 Гц	

- Основная частота F_{BASE} представляет собой минимальную выходную частоту, когда выходное напряжение преобразователя частоты равно номинальному напряжению U_n. Используется в качестве ориентира при управлении частотой. Как правило, номинальная частота двигателя используется в качестве значения параметра основной частоты. В общем случае величина F_{BASE} выбирается в соответствии с номинальной частотой двигателя. В особых случаях она может быть установлена в соответствии с эксплуатационными требованиями, но при этом следует соблюдать соответствие V/F-характеристике нагрузки двигателя и заводским параметрам на выходе двигателя, как показано на рис. 5.1.
- Максимальная частота F_{мах} является максимально допустимой частотой на выходе преобразователя.
 Если уставка превышает номинальное значение для привода, это может привести к повреждению двигателя и механического оборудования.

Рисунок 5.1 - Соотношение между выходной частотой и выходным напряжением

РО.11 ИСТОЧНИК ЗАДАНИЯ ВЕРХНЕГО ПРЕДЕЛА ЧАСТОТЫ

Nº	Наименование функции	Настройки	По умолчанию
P0.11	Источник задания верхнего предела частоты	0÷5	0

0: Цифровая настройка

1: Клемма АІ1

2: Клемма АІ2

3: Резерв

4: Импульсный вход

5: Настройка режима обмена данными

ПРИМЕЧАНИЕ При ненулевых зн

Б При ненулевых значениях параметров диапазон регулировки верхнего предела частоты от 0 до значения P0.12 верхнего предела частоты.

• РО.12 ЗАДАНИЕ ВЕРХНЕГО ПРЕДЕЛА ЧАСТОТЫ

Nº	Наименование функции	Настройки	По умолчанию
P0.12	Задание верхнего предела частоты	макс. нижней предел	50,00 Гц
		частоты, частота толч-	
		кового хода, заданная	
		амплитуда увеличить/	
		уменьшить, порог пере-	
		хода в ждущий режим —	
		максимальное значение	
		частоты	

• РО.13 СМЕЩЕНИЕ ВЕРХНЕГО ПРЕДЕЛА ЧАСТОТЫ

Nº	Наименование функции	Настройки	По умолчанию
P0.13	Смещение верхнего предела частоты	0,00 — верхний предел	0,00 Гц
		частоты	

• РО.14 НОМИНАЛЬНОЕ НАПРЯЖЕНИЕ ДВИГАТЕЛЯ

Nº	Наименование функции	Настройки	По умолчанию
P0.14	Номинальное напряжение двигателя	60÷480 B	номинальное напряжение

• РО.15 НИЖНИЙ ПРЕДЕЛ ЧАСТОТЫ

Nº	Наименование функции	Настройки	По умолчанию
P0.15	Нижний предел частоты	0,00 — верхний предел	0,00 Гц
		частоты	

РО.16 МАКСИМАЛЬНОЕ ВЫХОДНОЕ НАПРЯЖЕНИЕ

Nº	Наименование функции	Настройки	По умолчанию
P0.16	Максимальное выходное напряжение	60÷480 B	номинальное напряжение

ПРИМЕЧАНИЯ

- Верхний предел частоты представляет собой максимальную частоту, при которой возможен прямой
 и обратный ход преобразователя, а нижний предел частоты есть минимальная частота, при которой
 возможна работа преобразователя. Задайте верхний и нижний пределы частоты и одновременно
 убедитесь, что значение выходной частоты не выходит за пределы этих пороговых значений. Эта
 функция обычно используется, чтобы гарантировать работу двигателя на допустимой частоте во избежание отказов механических компонентов системы или преобразователя в случае неправильной
 эксплуатации или непредвиденных причин. Это особенно применимо к обстоятельствам, препятствующим эксплуатации двигателя на низких или сверхвысоких скоростях (см. Р2.04).
- Смещение верхнего предела частоты: когда верхний предел частоты задается посредством аналоговой операции, этот параметр используется в качестве моделирующего сдвига. Значение Р0.12 является эталонным. Конечное значение верхнего предела частоты представляет собой сумму величин частоты смещения и заданной величины предела частоты (Р0.12). Когда верхний предел частоты представляет собой цифровой параметр, сумма величин смещения и Р0.12 представляет собой конечное значение предела частоты.
- Максимальное выходное напряжение представляет собой соответствующее значение напряжения при выдаче основной частоты на выходе преобразователя. Как правило, номинальное входное напряжение указано на заводской табличке двигателя.

• РО.17 НАСТРОЙКА ШАГА РЕГУЛЯТОРА ПУЛЬТА УПРАВЛЕНИЯ

Nº	Наименование функции	Настройки	По умолчанию
P0.17	Настройка шага регулятора пульта управления	0÷250 * (0,01 Гц	0
		1 об/мин)	

- Этот параметр активен только в случае регулировки частоты в режиме онлайн и настройки скорости в режиме текущего контроля.
- Когда код параметра выставлен на 0, а работа с регулятором настроек кнопочной панели является неотъемлемой частью режима регулирования, это означает, что в процессе непрерывного вращения регулятора и поддержания скорости вращения размерность шага регулировки постепенно возрастает с 1 до 10, с 10 до 100 и вплоть до 100 (максимум).
- Когда значение кода параметра не равно 0, это соответствует режиму фиксированного ступенчатого
 регулирования. Заданное значение соответствует изменению заданной частоты или скорости при
 вращении регулятора на одно деление таким образом, что величина корректировки установленной
 частоты или скорости при вращении регулятора на один оборот составляет (Р0.17 * 30) * (0,01 Гц
 или 1 об/мин).
- Когда регулировке подвергается значение частоты, единицей размерности P0.17 является 0,01 Гц; при корректировке скорости в нормальном режиме эксплуатации единицей размерности P0.17 является величина, равная (6 / (5 * количество полюсов двигателя)) об/мин, а в дискретном режиме ПИД-регулятора единицей размерности P0.17 выступает 1 об/мин.

ПРИМЕР:

В обычном режиме работы при повороте регулятора на пульте управления на один оборот в диапазоне регулирования частоты, когда P0.17 = 100, значение заданной частоты увеличивается или уменьшается на 30,00 Гц, скорость увеличивается или уменьшается на 900 оборотов в минуту, а при P0.17 = 10 заданные частота и скорость увеличиваются или уменьшаются на 3,00 Гц и 90 оборотов в минуту соответственно. В дискретном режиме ПИД-регулятора при повороте регулятора на кнопочной панели на один оборот, когда P0.17 = 10, скорость увеличивается или уменьшается на 300 оборотов в минуту.

P0.18 BPEMЯ РАЗГОНА 1

Nº	Наименование функции	Настройки	По умолчанию
P0.18	Время разгона 1	0,1÷ 3600 c	6,0 c / 20,0 c

P0.19 BPEMЯ ЗАМЕДЛЕНИЯ 1

Nº	Наименование функции	Настройки	По умолчанию
P0.19	Время замедления 1	0,1÷ 3600 c	6,0 c / 20,0 c

ПРИМЕЧАНИЯ

- Время разгона: время, за которое скорость преобразователя возрастает от нуля до максимальной частоты. Время торможения: время, за которое преобразователь замедляется с максимальной частоты до нулевой скорости.
- Эта серия преобразователей частоты выделяет четыре группы значений времени для разгона
 и замедления (информацию об остальных см. в разделах Р2.28 Р2.33). Пользователь может задавать
 различные «наборы» для времени разгона и замедления через внешние клеммы согласно его потребностям или может выбрать другое время разгона и торможения в режиме работы программы ПЛК.
- По умолчанию единицей размерности разгона и замедления выступает секунда. Время разгона и торможения может быть уменьшено или увеличено в 10 раз изменением множителя времени разгона и торможения P2.35.

Р1 Способы пуска и останова

P1.00 РЕЖИМ ЗАПУСКА

Nº	Наименование функции	Настройки	По умолчанию
P1.00	Режим команды ПУСК	0÷2	0

0: Пуск с частоты пуска

- 1: Изначальное торможение (возбуждение), а затем пуск с частоты пуска
- 2: Отслеживание скорости вращения (поиск частоты)

- Пуск с частоты пуска: означает ускорение с частотой пуска и разгон до заданной частоты в соответствии с заводскими установками времени разгона.
- Изначальное торможение (возбуждение) с последующим пуском с частоты пуска: преобразователь
 использует силу торможения постоянным током, чтобы сначала создать нагрузку, а потом произвести пуск, согласно рис. 5.1.

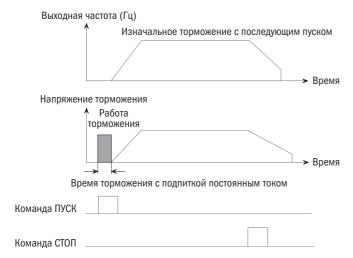


Рисунок 5.2 - Изначальное торможение (возбуждение) с последующим пуском с частоты пуска

- Режим пуска 1 соответствует малой инерционной нагрузке при прямом или обратном ходе двигателя, когда сам преобразователь находится в состоянии останова, например, нагрузке вентилятора.
 Параметры постоянного тока торможения см. в разделах Р1.03 и Р1.04.
- Поиск скорости вращения: вначале определяется скорость работы двигателя, а затем производится пуск с этой скорости, двигатель разгоняется до заданной частоты в зависимости от времени разгона/замедления с выполнением плавного пуска электродвигателя, как показано на рисунке 5.3. Этот режим подходит для двигателей с большой инерционной нагрузкой.

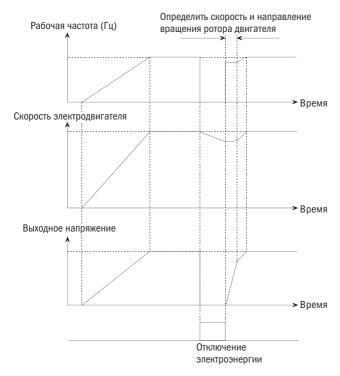


Рисунок 5.3 - Перезапуск с поиском скорости вращения

 Процесс запуска включает в себя первоначальную подачу электроэнергии, восстановление питания (рекуперацию), сброс внешней критической ошибки и перезапуск после остановки по инерции.

СОВЕТЫ

Функция поиска скорости вращения доступна, когда преобразователь оснащен аналого-цифровым преобразователем или картой отслеживания скорости.

P1.01 ЧАСТОТА ПУСКА

Nº	Наименование функции	Настройки	По умолчанию
P1.01	Частота пуска	0,10÷60,00 Гц	0,50 Гц

Р1.02 ВРЕМЯ УДЕРЖАНИЯ ЧАСТОТЫ ПУСКА

Nº	Наименование функции	Настройки	По умолчанию
P1.02	Время удержания частоты пуска	0,0÷10,0 c	0,0 c

ПРИМЕЧАНИЕ

Частота пуска является начальным значением частоты, при котором возможен пуск преобразователя; см. кривую «Частота пуска» на рисунке 5.3; время удержания частоты пуска есть время, в течение которого преобразователь работает на частоте пуска, см. интервал на шкале времени t1, как показано на рисунке 5.3.

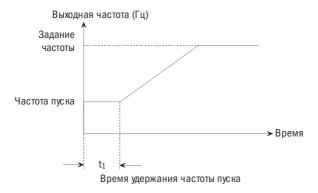


Рисунок 5.4 – Частота пуска и время удержания частоты пуска

СОВЕТЫ

- 1. Частота пуска не ограничена нижним пределом частоты.
- Если значение заданной частоты меньше величины частоты пуска во время разгона, преобразователь будет работать при нулевой скорости.

• Р1.03 ВЕЛИЧИНА ВОЗБУЖДЕНИЯ ПОСТОЯННЫМ ТОКОМ ПРИ ПУСКЕ

Nº	Наименование функции	Настройки	По умолчанию
P1.03	Величина возбуждения постоянным током	в зависимости от модели	0,0 %
	при пуске		

• Р1.04 ВРЕМЯ ВОЗБУЖДЕНИЯ ПОСТОЯННЫМ ТОКОМ ПРИ ПУСКЕ

Nº	Наименование функции	Настройки	По умолчанию
P1.04	Время возбуждения постоянным током при пуске	0,0÷30,0 c	0,1 c

ПРИМЕЧАНИЯ

- Параметры P1.03 и P1.04 доступны только при задании значения параметра P1.00 = 1 (выбор режима команды ПУСК 1), как показано на рисунке 5.1.
- В режиме V/F-регулирования 100,0 % значения соответствуют номинальному току двигателя;
 в векторном режиме величина возбуждения постоянным током при пуске определяется величиной коэффициента компенсации тока предвозбуждения P8.00 (100,0 % значения соответствуют величине тока холостого хода двигателя).
- Заданное верхнее граничное значение возбуждения постоянным током при пуске равно меньшей из величин 80 % от номинального тока преобразователя и полного номинального тока двигателя.
- Когда величина возбуждения постоянным током при пуске равна 0,0, торможение постоянным током отсутствует.

COBET

Когда номинальная мощность двигателя меньше соответствующего значения для преобразователя частоты, советуем задать этот параметр (P1.03) в соответствии с формулой: номинальный ток двигателя (A) / номинальный ток преобразователя (A) \times 100 %.

Р1.05 ЧАСТОТА ПУСКА

Nº	Наименование функции	Настройки	По умолчанию
P1.05	Предварительная частота пуска	0,0 — максимальное	0,00 Гц
		значение частоты	

• Р1.06 ВРЕМЯ УДЕРЖАНИЯ ПРЕДВАРИТЕЛЬНОЙ ЧАСТОТЫ ПУСКА

Nº	Наименование функции	Настройки	По умолчанию
P1.06	Время удержания предварительной частоты пуска	0,0÷3600 c	0,0 c

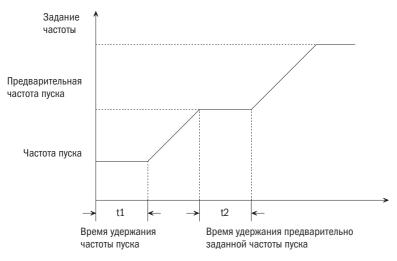


Рисунок 5.5 - Предварительно заданная частота пуска и время удержания предварительно заданной частоты пуска

ПОЯСНЕНИЕ

Когда предварительно заданная частота пуска меньше, чем частота пуска, или больше, чем эталонная частота, либо время удержания предварительно заданной частоты пуска равно 0, значение предварительно заданной частоты пуска недействительно.

• Р1.07 РЕЖИМ РАЗГОНА/ЗАМЕДЛЕНИЯ

Nº	Наименование функции	Настройки	По умолчанию
P1.07	Режим разгона/замедления	0÷3	0

0: Линейный

1: S-образный профиль


2: Резерв

3: Резерв

ПРИМЕЧАНИЯ

• Линейный режим разгона/замедления используется при обычных нагрузках: значение выходной частоты увеличивается или уменьшается с постоянной скоростью, как показано на рисунке 5.6.

Заданное время разгона Заданное время замедления

Рисунок 5.6 - Линейный режим разгона/замедления

• Изменение выходной частоты в соответствии с графиком S-образного профиля происходит медленно в начальной фазе разгона или в конечной — замедления с целью снижения шумности работы механизма, а также вибрации и ударного тока при пуске и останове. Этот режим подходит для нагрузок, сопровождающихся уменьшением величины крутящего момента при больших значениях частоты, например тех, что возникают при работе ленточного конвейера.

Рабочая частота (Гц)

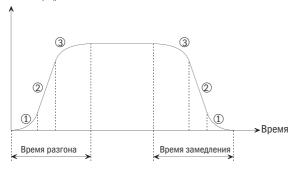


Рисунок 5.7 - Режим разгона/замедления в соответствии с графиком S-образного профиля

ВРЕМЯ ПУСКА ПО ГРАФИКУ S-ОБРАЗНОГО ПРОФИЛЯ P1.08

Nº	Наименование функции	Настройки	По умолчанию
P1.08	Время пуска по графику S-образного профиля	10,0÷50,0 %	20,0 %

Р1.09 ПРОДОЛЖИТЕЛЬНОСТЬ ВОСХОДЯЩЕЙ ФАЗЫ S-ОБРАЗНОГО ПРОФИЛЯ

Nº	Наименование функции	Настройки	По умолчанию
P1.09	Продолжительность восходящей фазы S-образного	10,0÷80,0 %	60,0 %
	профиля		

ПРИМЕЧАНИЯ

- Параметры P1.08 и P1.09 активны только тогда, когда динамика процесса разгона/замедления соответствует графику S-образного профиля (P1.07 = 1) и P1.08 + P1.09 ≤ 90 %.
- Начальная фаза S-образного профиля показана на рисунке 5.6 как 1, когда наблюдается рост выходной частоты от нулевого значения.
- Динамика роста S-профиля показана на рисунке 5.6 как 2, где изменение скорости выходной частоты постоянно.
- Заключительная фаза S-профиля показана на рисунке 5.6 как 3, когда скорость выходной частоты уменьшается до нуля.

COBET

Режим S-профиля разгона/замедления подходит для перемещаемых грузов при операциях с подъемниками и конвейерными лентами.

P1.10 РЕЖИМ ОСТАНОВА

Nº	Наименование функции	Настройки	По умолчанию
P1.10	Режим останова	0÷2	0

0: Замедление до останова

1: Движение по инерции до останова

2: Замедление + торможение постоянным током

ПРИМЕЧАНИЯ

- Замедление до останова: после прохождения команды СТОП преобразователь понижает выходную частоту в течение времени замедления и останавливается при достижении значения 0.
- Движение по инерции до останова: после прохождения команды СТОП преобразователь незамедлительно отключает инвертор, а торможение происходит в зависимости от инерции нагрузки и сил трения.
- Замедление + торможение постоянным током: после прохождения команды СТОП преобразователь
 понижает выходную частоту в течение времени замедления и начинает торможение постоянным
 током, когда значение выходной частоты становится равным предустановленной величине частоты
 торможения. Подробное описание содержится в примечаниях P1.11 P1.15 в части торможения
 постоянным током.

• Р1.11 ЧАСТОТА ТОРМОЖЕНИЯ ПОСТОЯННЫМ ТОКОМ НА ОСТАНОВ

Nº	Наименование функции	Настройки	По умолчанию
P1.11	Частота включения торможения постоянным током	0,00 — мин. (50,00 Гц, верхнее поро-	1,00 Гц
		говое значение частоты)	

Р1.12 ВРЕМЯ ЗАДЕРЖКИ ТОРМОЖЕНИЯ ПОСТОЯННЫМ ТОКОМ

Nº	Наименование функции	Настройки	По умолчанию
P1.12	Время задержки торможения постоянным током	0,00÷10,00 c	0,00 c
	на останов		

• Р1.13 ИСТОЧНИК ЗАДАНИЯ ПАРАМЕТРОВ ТОРМОЖЕНИЯ ПОСТОЯННЫМ ТОКОМ

Nº	Наименование функции	Настройки	По умолчанию
P1.13	Источник задания параметров торможения	0÷5	0
	постоянным током		

0: Цифровые настройки

- 1: Клемма АІ1
- 2: Клемма АІ2
- 3: Резерв
- 4: Импульсный вход
- 5: Настройки режима обмена данными

Р1.14 ЦИФРОВАЯ НАСТРОЙКА ТОРМОЖЕНИЯ ПОСТОЯННЫМ ТОКОМ

Nº	Наименование функции	Настройки	По умолчанию
P1.14	Цифровая настройка торможения постоянным	в зависимости от модели	0,0 %
	током		

• Р1.15 ВРЕМЯ ТОРМОЖЕНИЯ ПОСТОЯННЫМ ТОКОМ

Nº	Наименование функции	Настройки	По умолчанию
P1.15	Время торможения постоянным током	0,0÷30,0 c	0,0 c

- В режиме торможения постоянным током на электродвигатель подается постоянный ток для быстрого останова и поддержания состояния покоя ротора в интервале действия этого режима.
- Если в процессе замедления на останов или в «мертвой зоне» действия режима ВПЕРЕД/РЕВЕРС произойдет переключение на обратный ход, значение параметра P1.11 может быть соответствующим образом увеличено или уменьшено.

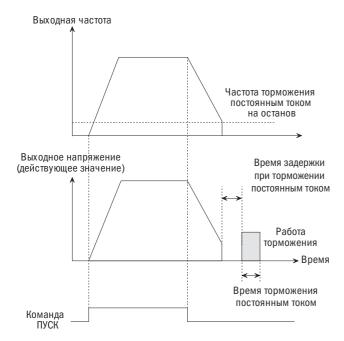


Рисунок 5.8 - Торможение постоянным током

- Частота включения торможения постоянным током это частота, при которой начинается торможение постоянным током, когда преобразователь находится в состоянии замедления. В процессе постоянного замедления скорости, если значение выходной частоты равно или меньше частоты торможения постоянным током, это вызовет срабатывание функции торможения постоянным током.
- Верхнее граничное значение возбуждения постоянным током равно меньшей из величин 80 % от номинального тока преобразователя и полного номинального тока двигателя.
- Когда величина возбуждения постоянным током не равна 0,0, торможение постоянным током отключено.
- Время торможения постоянным током соответствует текущему времени удержания постоянного тока торможения. Этот показатель не может быть слишком большим, так как это может привести к перегреву преобразователя частоты. Если время торможения равно нулю, то режим торможения постоянным током не работает.

СОВЕТЫ

- Эта функция запускается после того, как преобразователь получил команду на останов. Как правило, она используется, чтобы увеличить точность настроек останова, а не для замедления торможением в обычном режиме работы.
- При необходимости более быстрого останова необходимо использовать устройства торможения или подключить к преобразователю тормозной резистор для рекуперации энергии торможения в него.

Р1.16 ЧАСТОТА УДЕРЖАНИЯ ОСТАНОВА

Nº	Наименование функции	Настройки	По умолчанию
P1.16	Частота удержания останова	0,00 Гц — максимальное	0,00 Гц
		значение частоты	

Р1.17 ВРЕМЯ УДЕРЖАНИЯ ОСТАНОВА

Nº	Наименование функции	Настройки	По умолчанию
P1.17	Время удержания останова	0÷3600 c [0,0 c]	0,0 c

ПРИМЕЧАНИЯ

- Частота удержания останова: если останов обеспечивается нажатием клавиши СТОП или любым другим обычным способом останова, рабочая частота сначала упадет до частоты удержания останова, а затем до 0.
- Когда время удержания останова равно 0 или текущая настройка частоты удержания больше, чем значение рабочей частоты, функция удержания останова не работает.

Р1.18 ВЫБОР СПОСОБА ТОРМОЖЕНИЯ

Nº	Наименование функции	Настройки	По умолчанию
P1.18	Выбор способа торможения	0÷3	3

- 0: Торможение не используется
- 1: Включено торможение в режиме энергопотребления
- 2: Используется торможение магнитным потоком

3: Используется торможение в режиме энергопотребления и торможение магнитным потоком

СОВЕТЫ

В тех случаях, когда момент инерции нагрузки невелик и нет никаких особых требований по времени замедления, может быть использовано торможение магнитным потоком без подключения тормозного резистора; в то время как в других случаях, когда величина инерции вращения велика и требуется быстрый останов, рекомендуется устанавливать значения параметра на 1 или 3 и выбирать соответствующее значение единицы динамического торможения, задействовав тормозной резистор. Модели до 15 кВт оснащены встроенным модулем торможения.

• Р1.19 ИСПОЛЬЗОВАНИЕ ТОРМОЖЕНИЯ В РЕЖИМЕ ЭНЕРГОПОТРЕБЛЕНИЯ

Nº	Наименование функции	Настройки	По умолчанию
P1.19	Использование торможения в режиме энергопо-	30,0 % - 100,0 %	100,0 %
	требления		

- Чем больше заданное значение, тем лучший эффект торможения будет получен, но и нагрев тормозного резистора будет больше. Таким образом, при установке этого параметра следует иметь в виду сопротивление и мощность тормозного резистора и выбрать подходящий способ использования для достижения оптимального соотношения между скоростью торможения и недопущением перегрева тормозного резистора.
- Значение рабочего напряжения при торможении в режиме энергопотребления соотносится с точкой

срыва при перенапряжении (Pd.11). Для моделей входного сигнала напряжением 380 В значение рабочего напряжения при торможении в режиме энергопотребления примерно на 52 В ниже, чем точка срыва при перенапряжении (при этом рабочая точка по умолчанию равна 700 В); для моделей входного сигнала напряжением 220 В значение рабочего напряжения при торможении в режиме энергопотребления примерно на 23 В ниже, чем точка срыва при перенапряжении (при этом рабочая точка по умолчанию равна 350 В). Подробную информацию можно найти в описании Pd.11.

Р1.20 ДЕЙСТВИЕ ПРИ ОШИБКЕ Uu

Nº	Наименование функции	Настройки	По умолчанию
P1.20	Действие при ошибке Uu	0÷3	3

0: Сообщение о критической ошибке Uu1

1: Выдача сигнала предупреждения Uu в течение времени обработки ошибки и выдача сообщения о критической ошибке Uu1 после

2: Выдача сигнала предупреждения Uu

Р1.21 ВРЕМЯ РАБОТЫ В РЕЖИМЕ ОШИБКИ Uu

Nº	Наименование функции	Настройки	По умолчанию
P1.21	Время работы в режиме ошибки Uu	0,5÷10,0 c	в зависимости от модели

Р1.22 ПОРЯДОК ДЕЙСТВИЙ ПОСЛЕ ВЫДАЧИ СИГНАЛА ПРЕДУПРЕЖДЕНИЯ ОБ ОШИБКЕ Uu

Nº	Наименование функции	Настройки	По умолчанию
P1.22	Порядок действий после выдачи сигнала преду-	0, 1	0
	преждения в режиме управления со свободным		
	расцеплением контактов		

0: Не предпринимать никаких действий

1: Переход на более медленный режим работы ЭД

• Р1.23 ИНТЕНСИВНОСТЬ ТОРМОЖЕНИЯ ВО ВРЕМЯ ЗАМЕДЛЕНИЯ ХОДА

Nº	Наименование функции	Настройки	По умолчанию
P1.23	Интенсивность торможения во время замедления	0,10 Гц/с — макси-	10,00 Гц/с
		мальное значение	
		частоты	

- Если во время останова значение напряжения опустится до минимального, будет выдан только сигнал предупреждения Uu и в это время двигатель не может быть запущен. Смотрите рисунок 5.8.
- Если значение напряжения станет минимальным во время хода, будет выдан сигнал предупреждения Uu или сообщение о критической ошибке Uu1, как показано на рисунке 5.8; при этом выдача сигнала предупреждения Uu сопровождается блокировкой импульса, и преобразователь будет работать с частотой 0 Гц. После восстановления напряжения сигнал Uu будет отменен; при выдаче сообщения о критической ошибке Uu1 преобразователь будет остановлен; если напряжение

- продолжает падать до величины 300 В и ниже, запись об этом не вносится в протокол критических ошибок и сообщение о критической ошибке не будет выведено, так как регистрация критической ошибки Uu1 будет произведена после восстановления напряжения.
- Когда параметр Р1.22 выставлен на 1, преобразователь будет замедляться в соответствии с Р1.23 во время выдачи сигнала предупреждения при свободном расцеплении. Если питание в сети будет восстановлено во время торможения, значение частоты должно восстановиться до величины заданной частоты в течение заданного времени разгона.

Питание 1 ВКЛЮЧЕНО	_		ВКЛЮЧЕНО	
	ВЫКЛЮ	ЧЕНО		
Обработка команды О ХОД	Время работы в режиме управления со свободным расцеплением контактов			
	Uu1	Uu1	Uu1	Зарегистрировано
Обработка команды 1 ХОД	Uu			0
	Нулевая скорость	Uu1	Uu1	Зарегистрировано
Обработка команды 2 ХОД	Uu	Uu		Не зарегистрировано
	Нулевая скорость	Нулевая скорость		

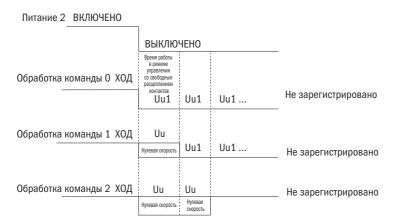


Рисунок 5.9 - Рисунок работы с пониженным напряжением

Р2 Дополнительные параметры

Р2.00 ЧАСТОТА ТОЛЧКОВОГО ХОДА

Nº	Наименование функции	Настройки	По умолчанию
P2.00	Частота толчкового хода	0,10 — верхнее поро-	5,00 Гц
		говое значение частоты	

Р2.01 ВРЕМЯ РАЗГОНА В ТОЛЧКОВОМ РЕЖИМЕ

Nº	Наименование функции	Настройки	По умолчанию
P2.01	Время разгона в толчковом режиме	0,1÷3600 c	6,0/20,0 c

P2.02 ВРЕМЯ ЗАМЕДЛЕНИЯ В ТОЛЧКОВОМ РЕЖИМЕ

Nº	Наименование функции	Настройки	По умолчанию
P2.02	Время замедления в толчковом режиме	0,1÷3600 c	6,0/20,0 c

ПРИМЕЧАНИЕ

Настройки P2.00 — P2.02 определяют соответствующие параметры толчкового режима.

Как показано на рисунке 5.9, величина t1 характеризует время разгона в толчковом режиме, а t3 — время замедления в толчковом режиме; t2 характеризует время работы в режиме толчкового хода, а параметр P2.00 есть частота толчкового хода.

Фактическое время разгона в толчковом режиме (t1) можно определить по нижеприведенной формуле. То же относится ко времени замедления в толчковом режиме (t3).

Режим останова при толчковом ходе зависит от значения P2.02. Если параметр P2.02 выставлен не на 0, двигатель остановится в режиме останова 0 (замедление до останова); если параметр P2.02 равен 0, двигатель остановится выбегом.

$$t_1 = \frac{P2.00x P2.01}{P0.10}$$

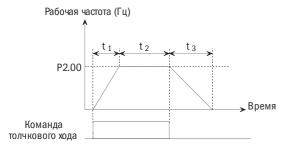


Рисунок 5.10 - Описание параметров толчкового режима

пояснения:

1. В режиме толчкового хода преобразователь начинает работу в соответствии с режимом пуска 0. Единицей времени ускорения/замедления является секунда.

- 2. Если время замедления в толчковом режиме = 0, это означает работу по инерции до останова, но при толчковом режиме происходит срабатывание на клемму команды торможения постоянным током; при этом время замедления соответствует режиму параметра 4 для P2.33.
- 3. Толчковый режим можно регулировать с помощью кнопочной панели или клемм.

• Р2.03 ВРЕМЯ ПЕРЕКЛЮЧЕНИЯ МЕЖДУ ПРЯМЫМ ХОДОМ И РЕВЕРСОМ

Nº	Наименование функции	Настройки	По умолчанию
P2.03	Время переключения между прямым ходом и	0,0÷3600 c	0,0 c
	реверсом		

ПРИМЕЧАНИЕ

Время переключения соответствует времени перехода на нулевой частоте, когда в преобразователе происходит переключение направления вращения, как показано на рисунке 5.11 (см. t1).

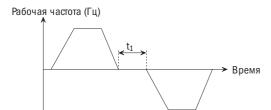


Рисунок 5.11 - Время переключения между командами ПРЯМОЙ ХОД/РЕВЕРС

• Р2.04 РЕЖИМ РАБОТЫ НА НИЖНЕМ ПРЕДЕЛЕ ЧАСТОТЫ

Nº	Наименование функции	Настройки	По умолчанию
P2.04	Режим работы на нижнем пределе частоты	0÷3	0

0: Работа на нижнем пределе частоты

1: Работа при нулевой частоте

2: Останов

3: Резерв

ПРИМЕЧАНИЯ

 Вариант 0: когда значение заданной частоты ниже, чем нижний предел частоты, преобразователь будет работать на частоте нижнего предела частоты вместо заданной частоты, как показано на рисунке 5.12.

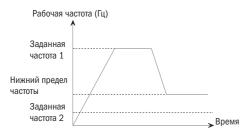


Рисунок 5.12 - Работа при нижнем пределе частоты

 Вариант 1 (работа на нулевой частоте): если заданная частота ниже, чем нижний предел частоты, преобразователь будет работать на частоте нижнего предела, а затем на нулевой частоте по истечении времени задержки на P3.30, как показано на рисунке 5.13.

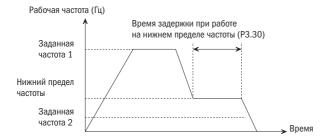


Рисунок 5.13 - Работа на нулевой частоте

При активации функции сна и переходе преобразователя в режим сна, вне зависимости от выставленного значения P2.04 (0 или 1), преобразователь будет работать при нулевой частоте.

• Р2.05 НАСТРОЙКА ОТКЛОНЕНИЯ ЧАСТОТЫ

Nº	Наименование функции	Настройки	По умолчанию
P2.05	Настройки отклонения частоты	0,00÷2,50 Гц	0,10 Гц

ПРИМЕЧАНИЕ

Предотвращает колебания частоты при моделирующих (аналоговых) настройках, ведущие к резким колебаниям выходной частоты. Если источником задания частоты выступает клемма АI или импульсный вход, эта настройка срабатывает только в случае изменения заданной частоты, когда диапазон изменений превышает заданный диапазон.

Р2.06 ВЫБОР СПОСОБА ПОДСТРОЙКИ НЕСУЩЕЙ ЧАСТОТЫ

Nº	Наименование функции	Настройки	По умолчанию
P2.06	Выбор способа подстройки несущей частоты	0, 1	0

0: Автонастройка отключена

1: Автоматическая корректировка согласно величине нагрузки и температуре преобразователя ПРИМЕЧАНИЯ

- Несущая частота жестко привязана к значению параметра P2.07 в режиме векторного управления или при отсутствии автоматической регулировки.
- Вариант 1: при этом варианте корректировка несущей частоты возможна через автоматически назначаемые значения нагрузки и температуры преобразователя таким образом, чтобы регулировать ширину частотного спектра шумов двигателя или снизить вероятность выдачи предупреждающего сигнала о перегреве преобразователя.

Р2.07 НЕСУШАЯ ЧАСТОТА

Nº	Наименование функции	Настройки	По умолчанию
P2.07	Несущая частота	в зависимости от модели	в зависимости от модели

Р2.08 НИЖНЕЕ ПОРОГОВОЕ ЗНАЧЕНИЕ НЕСУЩЕЙ ЧАСТОТЫ

Nº	Наименование функции	Настройки	По умолчанию
P2.08	Нижнее пороговое значение несущей частоты	Д1,0 — Р2.07	1,0 кГц

ПРИМЕЧАНИЯ

- Для получения более точных настроек управления рекомендуем, чтобы соотношение несущей частоты и максимальной рабочей частоты преобразователя составляло не менее 36.
- Для уменьшения шумности рекомендуем выбирать более высокое значение несущей частоты; при отсутствии потребности в бесшумной работе преобразователя можно выбрать более низкое значение несущей частоты для снижения потерь в преобразователе и интенсивности радиочастотного излучения.
- Если используемое значение несущей частоты превышает заводские параметры, это приведет к понижению величины непрерывного рабочего тока преобразователя.

P2.09 YACTOTA CKAYKA 1

Nº	Наименование функции	Настройки	По умолчанию
P2.09	Частота скачка 1	0,00 — максимальное	0,00 Гц
		значение частоты	

Nº	Наименование функции	Настройки	По умолчанию
P2.10	Частота скачка 2	0,00 — максимальное	0,00 Гц
		значение частоты	

Nº	Наименование функции	Настройки	По умолчанию
P2.11	Частота скачка 3	0,00 — максимальное	0,00 Гц
		значение частоты	

• Р2.12 ПОЛОСА ПРОПУСКАНИЯ ЧАСТОТ СКАЧКА 3

Nº	Наименование функции	Настройки	По умолчанию
P2.12	Полоса пропускания частот скачка 3	0÷ 15,00 Гц	0,00 Гц

ПРИМЕЧАНИЯ

Для того чтобы при настройке частоты преобразователя избежать прохождения точки резонансной частоты для механической нагрузки, заданная частота преобразователя может быть выставлена так, чтобы колебаться вокруг некоего значения частоты. Рабочая частота, соответствующая резонансной частоте, равна значению частоты скачка, как показано на рисунке 5.14.

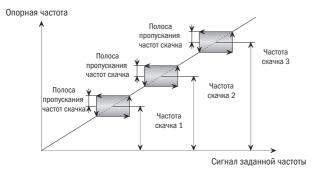


Рисунок 5.14 - Частота скачка

Через настройки преобразователя можно задать значения трех точек частоты скачка, причем полоса пропускания частот скачка может как перекрывать, так и включать эти значения. В случае перекрытия диапазон расширяется. Когда все три значения частоты скачка выставлены на 0,00 Гц, функция скачка будет отключена.

• Р2.13 ЗНАЧЕНИЕ ЧАСТОТЫ ПРИ МНОГОСТУПЕНЧАТОМ РЕЖИМЕ 1

Nº	Наименование функции	Настройки	По умолчанию
P2.13	Значение частоты при многоступенчатом режиме 1	0,00 — максимальное	5,00 Гц
		значение частоты	

• Р2.14 ЗНАЧЕНИЕ ЧАСТОТЫ ПРИ МНОГОСТУПЕНЧАТОМ РЕЖИМЕ 2

Nº	Наименование функции	Настройки	По умолчанию
P2.14	Значение частоты при многоступенчатом режиме 2	0,00 — максимальное	8,00 Гц
		значение частоты	

• Р2.15 ЗНАЧЕНИЕ ЧАСТОТЫ ПРИ МНОГОСТУПЕНЧАТОМ РЕЖИМЕ 3

Nº	Наименование функции	Настройки	По умолчанию
P2.15	Значение частоты при многоступенчатом режиме 3	0,00 — максимальное	10,00 Гц
		значение частоты	

• Р2.16 ЗНАЧЕНИЕ ЧАСТОТЫ ПРИ МНОГОСТУПЕНЧАТОМ РЕЖИМЕ 4

Nº	Наименование функции	Настройки	По умолчанию
P2.16	Значение частоты при многоступенчатом режиме 4	0,00 — максимальное	15,00 Гц
		значение частоты	

• Р2.17 ЗНАЧЕНИЕ ЧАСТОТЫ ПРИ МНОГОСТУПЕНЧАТОМ РЕЖИМЕ 5

Nº	Наименование функции	Настройки	По умолчанию
P2.17	Значение частоты при многоступенчатом режиме 5	0,00 — максимальное	18,00 Гц
		значение частоты	

• Р2.18 ЗНАЧЕНИЕ ЧАСТОТЫ ПРИ МНОГОСТУПЕНЧАТОМ РЕЖИМЕ 6

Nº	Наименование функции	Настройки	По умолчанию
P2.18	Значение частоты при многоступенчатом режиме 6	0,00 — максимальное	20,00 Гц
		значение частоты	

• Р2.19 ЗНАЧЕНИЕ ЧАСТОТЫ ПРИ МНОГОСТУПЕНЧАТОМ РЕЖИМЕ 7

Nº	Наименование функции	Настройки	По умолчанию
P2.19	Значение частоты при многоступенчатом режиме 7	0,00 — максимальное	25,00 Гц
		значение частоты	

• Р2.20 ЗНАЧЕНИЕ ЧАСТОТЫ ПРИ МНОГОСТУПЕНЧАТОМ РЕЖИМЕ 8

Nº	Наименование функции	Настройки	По умолчанию
P2.20	Значение частоты при многоступенчатом режиме 8	0,00 — максимальное	28,00 Гц
		значение частоты	

• Р2.21 ЗНАЧЕНИЕ ЧАСТОТЫ ПРИ МНОГОСТУПЕНЧАТОМ РЕЖИМЕ 9

Nº	Наименование функции	Настройки	По умолчанию
P2.21	Значение частоты при многоступенчатом режиме 9	0,00 — максимальное	30,00 Гц
		значение частоты	

• Р2.22 ЗНАЧЕНИЕ ЧАСТОТЫ ПРИ МНОГОСТУПЕНЧАТОМ РЕЖИМЕ 10

Nº	Наименование функции	Настройки	По умолчанию
P2.22	Значение частоты при многоступенчатом режиме	0,00 — максимальное	35,00 Гц
	10	значение частоты	

• Р2.23 ЗНАЧЕНИЕ ЧАСТОТЫ ПРИ МНОГОСТУПЕНЧАТОМ РЕЖИМЕ 11

Nº	Наименование функции	Настройки	По умолчанию
P2.23	Значение частоты при многоступенчатом режиме	0,00 — максимальное	38,00 Гц
	11	значение частоты	

• Р2.24 ЗНАЧЕНИЕ ЧАСТОТЫ ПРИ МНОГОСТУПЕНЧАТОМ РЕЖИМЕ 12

Nº	Наименование функции	Настройки	По умолчанию
P2.24	Значение частоты при многоступенчатом режиме	0,00 — максимальное	40,00 Гц
	12	значение частоты	

• Р2.25 ЗНАЧЕНИЕ ЧАСТОТЫ ПРИ МНОГОСТУПЕНЧАТОМ РЕЖИМЕ 13

Nº	Наименование функции	Настройки	По умолчанию
P2.25	Значение частоты при многоступенчатом режиме	0,00 — максимальное	45,00 Гц
	13	значение частоты	

• Р2.26 ЗНАЧЕНИЕ ЧАСТОТЫ ПРИ МНОГОСТУПЕНЧАТОМ РЕЖИМЕ 14

Nº	Наименование функции	Настройки	По умолчанию
P2.26	Значение частоты при многоступенчатом режиме	0,00 — максимальное	48,00 Гц
	14	значение частоты	

• Р2.27 ЗНАЧЕНИЕ ЧАСТОТЫ ПРИ МНОГОСТУПЕНЧАТОМ РЕЖИМЕ 15

Nº	Наименование функции	Настройки	По умолчанию
P2.27	Значение частоты при многоступенчатом режиме	0,00 — максимальное	50,00 Гц
	15	значение частоты	

ПРИМЕЧАНИЕ

Задайте соответствующее значение частоты при многоступенчатом режиме задания скорости и обычной работе программируемого логического контроллера (ПЛК).

• **P2.28** ВРЕМЯ РАЗГОНА 2

Nº	Наименование функции	Настройки	По умолчанию
P2.28	Время разгона 2	0,1÷3600 c	6,0/20,0 c

• **P2.29** ВРЕМЯ ЗАМЕДЛЕНИЯ 2

Nº	Наименование функции	Настройки	По умолчанию
P2.29	Время замедления 2	0,1÷3600 c	6,0/20,0 c

P2.30 BPEMЯ РАЗГОНА 3

Nº	Наименование функции	Настройки	По умолчанию
P1.18	Выбор способа торможения	0,1÷3600 c	6,0/20,0 c

93

P2.31 BPEMЯ ЗАМЕДЛЕНИЯ З

Nº	Наименование функции	Настройки	По умолчанию
P2.31	Время замедления 3	0,1÷3600 c	6,0/20,0 c

Р2.32 ВРЕМЯ РАЗГОНА 4

Nº	Наименование функции	Настройки	По умолчанию
P2.32	Время разгона 4	0,1÷3600 c	6,0/20,0 c

P2.33 BPEMЯ ЗАМЕДЛЕНИЯ 4

Nº	Наименование функции	Настройки	По умолчанию
P2.33	Время замедления 4	0,1÷3600 c	6,0/20,0 c

• Р2.34 ВРЕМЯ ЗАМЕДЛЕНИЯ ПРИ АВАРИЙНОМ ОСТАНОВЕ

Nº	Наименование функции	Настройки	По умолчанию
P2.34	Время замедления при аварийном останове	0,1÷3600 c	3,0/10,0 c

ПРИМЕЧАНИЯ

- Определите значения параметров времени разгона и замедления 2, 3 и 4 соответственно (время разгона и замедления 1 определяется значениями настроек P0.18 и P0.19). Время разгона и замедления во время работы преобразователя определяется через параметры P3.01 P3.05 цифровым входом; если они отключены, то принимается время разгона и замедления 1. Когда через клемму проходит команда принудительного останова или в ситуации аварийного останова, замедление выполняется в течение времени замедления при аварийном останове (P2.34). Параметры времени при разгоне и замедлении в режимах ПЛК и толчкового хода не могут быть заданы через внешние клеммы, а выбираются по заданным параметрам.
- В случаях принудительного или аварийного останова преобразователь должен быть остановлен за время замедления при аварийном останове P2.34 и во время действия режима останова (P1.10).
- Единицей времени разгона и замедления по умолчанию является секунда; при этом время разгона и замедления может быть уменьшено или увеличено в 10 раз путем настройки параметра Р2.35.

• Р2.35 МНОЖИТЕЛЬ ШКАЛЫ ВРЕМЕНИ РАЗГОНА И ЗАМЕДЛЕНИЯ

Nº	Наименование функции	Настройки	По умолчанию
P2.35	Множитель шкалы времени разгона и замедления	0÷2	0

0: Кратность 1

1: Кратность 10

2: Кратность 0,1

ПРИМЕЧАНИЕ

Фактическое время разгона и замедления равно времени разгона и замедления, умноженному на значение множителя шкалы времени разгона и замедления.

Р2.36 РЕЖИМ РАБОТЫ ВЕНТИЛЯТОРА ОХЛАЖДЕНИЯ

Nº	Наименование функции	Настройки	По умолчанию
P2.36	Режим регулировки вентилятора охлаждения	0, 1	0

0: Автоматический останов

1: Вентилятор продолжает работать после включения электропитания

ПРИМЕЧАНИЯ

- Режим автоматического отключения:
 - вентилятор продолжает работать во время работы преобразователя, внутренняя программа определения температуры запускается автоматически через 3 минуты после прекращения работы преобразователя. Работа и остановка вентилятора зависят от значения температуры модуля. Если температура модуля ниже 50 °C, вентилятор остановится. В противном случае вентилятор автоматически отключается через 30 минут.
- Вентилятор работает после включения питания:
 вентилятор продолжает работать после включения преобразователя.

• Р2.37 ПОСЛЕДОВАТЕЛЬНОСТЬ ЧЕРЕДОВАНИЯ ФАЗ ЭЛЕКТРОДВИГАТЕЛЯ

Nº	Наименование функции	Настройки	По умолчанию
P2.37	Последовательность чередования фаз	0, 1	0

0: Прямая последовательность

1: Обратная последовательность

ПРИМЕЧАНИЕ

Прямая последовательность на выходе преобразователя, задающая направление вращения, может оказаться несовместимой с фактическим положительным направлением вращения ротора двигателя. Пользователь может изменить последовательность фаз на входе линии двигателя или изменить код функции для настройки направления вращения электродвигателя.

Р2.38 ЗАПРЕТ РЕВЕРСА

Nº	Наименование функции	Настройки	По умолчанию
P2.38	ЗАПРЕТ РЕВЕРСА	0, 1	0

0: Реверс разрешён

1: Реверс запрещён

- При значении параметра, равному 0, функция реверса отключена.
- Когда пульт управления настроен на реверс, преобразователь частоты будет работать на нулевой частоте.
- Когда режим обратного толчкового хода активирован через цифровой вход, преобразователь не будет работать.
- При подаче команды ХОД на цифровой вход при включённом реверсе преобразователь не будет работать.

Р2.51 ВЫБОР ФУНКЦИИ КНОПК ИМП

Nº	Наименование функции	Настройки	По умолчанию
P2.51	Выбор функции кнопки JOG	0, 1	0

0: Толчковый режим (ИМП)

1: Режим хода (Вперёд/назад)

ПРИМЕЧАНИЯ

- Используется для задания толчкового режима на кнопочной панели.
- Когда значение параметра выставлено на 0, кнопка используется для работы в толчковом режиме при активированной функции текущего контроля, и при нажатии кнопки преобразователь будет выдавать частоту толчкового хода. Когда оно выставлено на 1, кнопка работает как переключатель направления хода (прямой/реверс) при активированной функции текущего контроля, и при нажатии кнопки преобразователь будет переключать направление вращения.

Р2.52 БЛОКИРОВКА КНОПОК БОЛЬШЕ/МЕНЬШЕ НА КНОПОЧНОЙ ПАНЕЛИ

Nº	Наименование функции	Настройки	По умолчанию
P2.52	Блокировка кнопок БОЛЬШЕ/МЕНЬШЕ на кнопочной панели	0, 1	0

0: Отключены

1: Подключены

ПРИМЕЧАНИЯ

- В случае отказа цифрового энкодера, параметру может быть присвоено значение 1, чтобы активировать кнопки БОЛЬШЕ/МЕНЬШЕ на кнопочной панели. При этом функция «БОЛЬШЕ» присваивается кнопке ИМП (толчковый режим), а функция «МЕНЬШЕ» — кнопке ПУСК.
- Эта функция может быть также активирована посредством комбинации клавиш: нажатием Сдвиг+ИМП в течение 5 с для активации кнопок БОЛЬШЕ/МЕНЬШЕ. Этим способом можно пользоваться только в том случае, если функциональная группа выводится на экран кнопочной панели и данные не сохраняются после отключения электропитания.

• Р2.53 ВЫБОР РЕЖИМА РАБОТЫ ПРИ ВЫСОКОЙ/НИЗКОЙ ЧАСТОТЕ (РЕЗЕРВ)

Nº	Наименование функции	Настройки	По умолчанию
P2.53	Выбор режима работы при высокой/низкой	0, 1	0
	частоте (резерв)		

0: Режим работы при низкой частоте (0,00÷400,00 Гц)

1: Режим работы при высокой частоте (0,0÷1000,0 Гц)

- Данный параметр используется для переключения между режимами высокой и низкой частоты, а именно для настройки размерности и диапазона частот, в том числе заданной частоты обмена данными и т. п.
- Когда значение выставлено на 0, единицей размерности заданной частоты будет 0,01 Гц и ее диапазон равен 0,00÷400,00 Гц, когда выставлено на 1, то единицей размерности заданной частоты будет 0,1 Гц и ее диапазон равен 0,0÷1000,0 Гц.

Р2.54 ПРЕДЕЛ ЧАСТОТЫ ПРИ РЕВЕРСЕ

Nº	Наименование функции	Настройки	По умолчанию
P2.54	Предел частоты при реверсе	0,00 Гц — максимальное	0,00 Гц
		значение частоты	

ПРИМЕЧАНИЕ

Данный параметр служит для настройки максимального значения рабочей частоты при вращении в направлении, противоположном заданному.

РЗ Цифровые входы и выходы

• РЗ.00 РЕЖИМ АКТИВАЦИИ ВХОДОВ

Nº	Наименование функции	Настройки	По умолчанию
P3.00	Режим активации входов	0, 1	0

0: Входы активны при замыкании

1: Входы активны при размыкании

ПРИМЕЧАНИЯ

- Цифровой вход активируется при его замыкании на клемму СОМ, если В РЗ.00 выставлено значение 0.
- Цифровой вход активируется при его размыкании с клеммой СОМ, если В РЗ.00 выставлено значение 1.
- Список функций не ограничен параметрами «нормально включенный» и «нормально отключенный».

РЗ.01 ФУНКЦИЯ ВХОДА X1

Nº	Наименование функции	Настройки	По умолчанию
P3.01	Функция входа X1	0÷79	1

Р3.02 ФУНКЦИЯ ВХОДА Х2

Nº	Наименование функции	Настройки	По умолчанию
P3.02	Функция входа Х2	0÷79	2

РЗ.03 ФУНКЦИЯ ВХОДА ХЗ

Nº	Наименование функции	Настройки	По умолчанию
P3.03	Функция входа ХЗ	0÷79	37

РЗ.04 ФУНКЦИЯ ВХОДА Х4

Nº	Наименование функции	Настройки	По умолчанию
P3.04	Функция входа Х4	0÷79	0

97

Р3.05 ФУНКЦИЯ ВХОДА Х5

Nº	Наименование функции	Настройки	По умолчанию
P3.05	Функция входа X5	0÷81	0

Р3.06 ФУНКЦИЯ ВХОДА Х6

Nº	Наименование функции	Настройки	По умолчанию
P3.05	Функция входа Х6	0÷81	0

ПРИМЕЧАНИЕ

Клеммы управления X1-X6 многофункциональны, и их индивидуальные функции могут быть назначены через значения параметров P3.01-P3.06. Допускается переназначение параметров. В случае повторно назначенных функциональных клемм подключение какой-либо из клемм означает, что данная функция будет активна.

Таблица 5.1 - Многофункциональное меню ввода

Настройка	Функция	Настройка	Функция
0	NULL: значение не задано	1	FWD: вперёд
2	REV: реверс	3	RUN: команда ПУСК
4	F/R: направление хода	5	HLD: самоудержание контакта
6	RST: c6poc	7	FC: выбор комбинации задания частоты
8	FJOG: прямой толчковый ход	9	RJOG: реверсный толчковый ход
10	Больше	11	Меньше
12	UP/DOWN Reset: сброс команды Больше/Меньше	13	FRE: останов двигателя выбегом
14	Принудительный останов (в соответствии с временем замедления при аварийном останове)	15	Останов торможением постоянным током
16	Запрет разгона/замедления	17	Запрет работы преобразователя
18	S1: многоскоростной режим 1	19	S2: многоскоростной режим 2
20	S3: многоскоростной режим 3	21	S4: многоскоростной режим 4
22	S5: многоскоростной режим 5	23	S6: многоскоростной режим 6
24	S7: многоскоростной режим 7	25	Переключение источника команд на клемму управления 2
26	SS1: многоскоростной режим	27	SS2: многоскоростной режим
28	SS3: многоскоростной режим	29	SS4: многоскоростной режим
30	Т1: время разгона/замедления 1	31	Т2: время разгона/замедления 2
32	ТЗ: время разгона/замедления З	33	Т4: время разгона/замедления 4
34	П1: время разгона/замедления	35	ТТ2: время разгона/замедления
36	Принудительный останов в режиме «нор- мально подключено»	37	EHO: внешняя критическая ошибка в режиме «нормально отключено»
38	EH1: внешняя критическая ошибка в режиме «нормально замкнуто»	39	EIO: внешний обрыв в режиме «нормально отключено»
40	EI1: внешний обрыв в режиме «нормально подключено»	41	Состояние останова при торможении постоянным током
42	Пуск ПЛК	43	Прерывание работы ПЛК
44	Сброс команды останов ПЛК	45	Резерв
46	Резерв	47	Запуск ПИД-регулятора

Настройка	Функция	Настройка	Функция
48	Переключение режимов скорость / крутящий момент	49	Вход синхросигналов привода
50	Счетчик входного сигнала триггера	51	Сброс счетчика
52	Резерв	53	Выбор блока синхронизации
54-73	Резерв	74	Управление клеммой выхода
75-76	Резерв	77	Принудительный сброс сигнала на выходе ПИД-регулятора до 0
78	Сброс времени ПИД-интеграла	79	Переключение источника команд управления на кнопочную панель
80	PUL: импульсный вход	81	Вход энкодера А или однофазный энкодер
82	Вход энкодера В		

ПРИМЕЧАНИЯ к функциям, перечисленным в таблице 5.1

0: NULL: значение не задано

Определяемая клемма является выключенной. Преобразователь не может определить ни состояние самой клеммы, ни ее отклик. Во избежание подобных ситуаций всегда назначайте клеммам, которые не используются, данное значения параметра.

1÷5: рабочие режимы

Обратитесь к разделу РЗ.15 за описанием настроек рабочих режимов.

6: RST: сброс

При возникновении критической ошибки преобразователь можно обнулить нажатием кнопки СТОП/СБРОС на кнопочной панели или через клемму, которой присвоена функция сброса. Активация этой функции через клемму в рабочем режиме приведет к остановке преобразователя в выбранном режиме останова. Функция СБРОС инициируется в фазе нарастания сигнала, в связи с чем к ней применим способ управления «отключил-включил-отключил», показанный на рисунке 5.15.

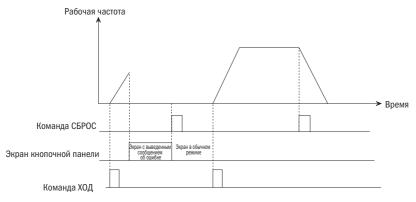


Рисунок 5.15 - Сброс сигнала на клемме

7: FC: выбор комбинации задания частоты

Параметры настройки частоты: если функция «FC: выбор комбинации задания частоты» активирована и принята, опорная частота определяется комбинацией настроек частоты 1 для P0.06; если же данная функциональная клемма отключена, опорная частота определяется комбинацией настроек частоты 1 для P0.05. В процессе работы преобразователя режим настроек частоты может переключаться через клемму FC для гибкого управления выходной частотой преобразователя.

8÷9: Рабочий сигнал толчкового хода (FJOG/RJOG)

Если параметру присвоено значение 8 или 9, клемма служит для выдачи команд прямого/реверсного толчкового хода (FJOG/RJOG). Когда преобразователь работает не в режиме команды ХОД (нулевая частота на выходе), то через эту клемму можно подать команды прямого или обратного (реверсного) толчкового хода, как показано на рисунке 5.16. Заданная функция толчкового хода клеммы не ограничивается описанным в разделе Источник настройки команд управления (РО.07). Значения частоты толчкового хода и времени разгона/замедления в режиме толчкового хода могут быть заданы через Р2.00 — Р2.02.

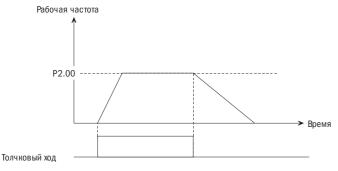


Рисунок 5.16 - Рабочий сигнал толчкового хода

10÷12: UP/DOWN: действия с командами «УВЕЛИЧИТЬ/УМЕНЬШИТЬ»

 Когда значение параметра РО.05 выставлено на 4, значение частоты соответствует сумме частот от источников 1 и 2.

В начале рабочего цикла и вне зависимости от того, подключены ли обе клеммы УВЕЛИЧИТЬ/ УМЕНЬШИТЬ или нет, значение опорной частоты будет соответствовать сумме начального значения «увеличить/уменьшить» и заданной частоты 2. Если какая-либо из клемм УВЕЛИЧИТЬ/УМЕНЬШИТЬ подключена, частота будет увеличиваться или уменьшаться пропорционально значению «увеличить/уменьшить» будет равен величине (частота источника 2 — P3.17) — (частота источника 2 + P3.17). Если функция клеммы УВЕЛИЧИТЬ/УМЕНЬШИТЬ не активирована, опорная частота «увеличить/уменьшить» будет постоянной. Если команда «увеличить/уменьшить» не принята, то нажатием кнопки СТОП можно сохранять / не сохранять значение «увеличить/уменьшить» в соответствии с выбором места хранения значений увеличить/уменьшить Р3.18. Но если функция «увеличить/уменьшить» активирована, при нажатии кнопки СТОП значение увеличить/уменьшить будет сохранено как начальное, как показано на рисунке 5.16.

 Когда значение параметра РО.05 не равно 4, частота настраивается на источник частоты 1, т.е. на клемму УВЕЛИЧИТЬ/УМЕНЬШИТЬ.

В начале рабочего цикла и вне зависимости от того, подключены ли обе клеммы УВЕЛИЧИТЬ/ УМЕНЬШИТЬ или нет, преобразователь начинает работу с первоначальной уставки «увеличить/ уменьшить» (при отрицательном значении преобразователь работает на нулевой частоте); если какая-либо из клемм УВЕЛИЧИТЬ/УМЕНЬШИТЬ активирована, то значение частоты регулируется через клемму УВЕЛИЧИТЬ/УМЕНЬШИТЬ, увеличиваясь или уменьшаясь в зависимости от текущей скорости соответственно аналогичному параметру клеммы УВЕЛИЧИТЬ/УМЕНЬШИТЬ (РЗ.16). Если клемма УВЕЛИЧИТЬ/УМЕНЬШИТЬ не активирована, значение частоты рабочего хода равно величине заданной частоты. Когда клемма УВЕЛИЧИТЬ/УМЕНЬШИТЬ не активирована, нажмите кнопку СТОП, сохраните текущую настройку частоты согласно данному значению «увеличить/уменьшить» способом, определенным кодом функции РЗ.18 со знаком «+». Когда клемма УВЕЛИЧИТЬ/УМЕНЬШИТЬ активирована, при нажатии кнопки СТОП значение «увеличить/уменьшить» будет сохранено как начальное, в соответствии с рисунком 5.17.

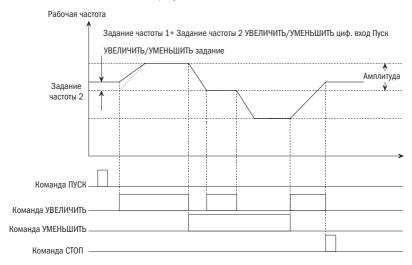


Рисунок 5.17 - Работа команд УВЕЛИЧИТЬ/УМЕНЬШИТЬ

13: Движение двигателя выбегом до остановки

Когда дискретный вход, определяющий данную функцию, активирован, то инвертор сразу же блокирует выход и выходит из режима работы. Команда «ХОД» срабатывает только после удаления данной команды. После определения функции, независимо от значений режима управления (Р0.07), функция активна и не зависит от ограничения режима отключения (Р1.10).

14: Экстренная остановка

Экстренная остановка при нормально замкнутом контакте (в соответствии со временем торможения при анормальной остановке).

Торможение и остановка в соответствии со временем торможения при экстренной остановке (Р2.34). Функция действует при условии ограничения режима отключения (Р1.10).

15: Процесс остановки торможением постоянным током

При выполнении торможения постоянным током в процессе остановки для наиболее точного позиционирования двигателя используйте контактную панель. Начальная частота торможения, время ожидания торможения, ток торможения определены P1.11 — P1.14; время торможения превышает время, определенное P1.15, и время эффективного действия контактной панели управления, указанное на рисунке 5.18.

Рисунок 5.18 - Торможение постоянным током

16: Запрет на ускорение/торможение

Двигатель работает при данной скорости без влияния на него внешнего сигнала (за исключением команды остановки СТОП).

17: Запрет на запуск инвертора

Когда дискретный вход активен, работающий инвертор начнет останавливаться, и в режиме ожидания инвертор запускать нельзя. Главным образом это применяется в ситуациях, где необходима защитная блокировка.

18÷24, 26÷29: Многоступенчатый скоростной режим

При управлении запуском/остановкой в многоступенчатом скоростном режиме можно использовать клавишную панель, команду контактной панели или последовательный интерфейс. S1-S7: Команда многоступенчатого скоростного режима используется, чтобы показать, что регулировка частоты инвертора является одним конкретным шагом от частоты многоступенчатого скоростного режима $S1 \times S7$ (P3.01-P3.11). Если активны два или более многоступенчатых скоростных режима, то контактная панель с меньшим количеством имеет преимущество. Команда многоступенчатого скоростного режима SS1-SS4, определенная посредством комбинации, используется для указания многоступенчатого скоростного режима и имеет до 15 скоростных ступеней. Данные указаны в таблице 5.2.

Выбранная частота Условные знаки SS4 SS3 Рабочая частота SS2 SS1 Установка частоты выкл вкл выкл выкл Ступень 1 выкл выкл ВКЛ выкл Ступень 2 выкл выкл вкл вкл Ступень 3 выкл ВКЛ выкл ВЫКЛ Ступень 4 выкл ВКЛ выкл ВКЛ Ступень 5 выкл ВКЛ ВКЛ выкл Ступень 6 выкл ВКЛ ВКЛ ВКЛ Ступень 7 ВКЛ выкл выкл выкл Ступень 8 ВКЛ выкл выкл ВКЛ Ступень 9 вкл выкл вкл выкл Ступень 10 SS1 ВКЛ выкл вкл ВКЛ Ступень 11 вкл вкл выкл выкл Ступень 12 SS вкл вкл выкл вкл Ступень 13 ВКЛ ВКЛ вкл выкл Ступень 14 SS ВКЛ ВКЛ ВКЛ ВКЛ Ступень 15 выкл выкл выкл выкл Общий рабочий режим SS4

Таблица 5.2 - Частотный многоступенчатый режим

Если из 4 дискретных входов одна или более не установлены, то по умолчанию отсутствие дискретного входа выдает команду ВЫКЛ. Допускается дублирующее определение. Если один из дискретных входов из одинаково запрограммированных, то данная функция активируется.

Если вы одновременно определите S1 — S7 и SS1 — SS4, то дискретные входы S1 — S7 здесь имеют приоритет.

25: Переключение командной линии на управление с контактной панели 2

При активации данной функции командная линия переключается на управление с контактной панели 2.

30÷35: Ускорение и торможение по умолчанию

T1 — T4: Индивидуальное определение времени ускорения и торможения во время режима работы. Если активированы два или более временных периода ускорения или торможения, то контактная панель с меньшим значением имеет преимущество.

TT1 — TT2: Комбинация, указывающая время ускорения и торможения во время режима работы. Значения указаны в таблице 5.3.

Таблица 5.3

T2	Π1	Выбранное время ускорения и торможения
выкл.	выкл.	Время ускорения и торможения 1
выкл.	вкл.	Время ускорения и торможения 2
вкл.	выкл.	Время ускорения и торможения 3
ВКЛ.	вкл.	Время ускорения и торможения 4

При одновременном определении T1-T4 и TT1-TT2, T1-T4 имеет преимущество.

37÷40: Нормально разомкнутый/замкнутый контакт сигнала ввнешней ошибки/внешнего прерывания

ЕНО — нормально разомкнутый контакт сигнала внешней неисправности / ЕН1 — нормально замкнутый контакт сигнала внешнего прерывания: данная функция служит для определения команды
внешней неисправности. Если значение установки составляет 37÷38, то сигнал неисправности
внешнего оборудования может быть подан через контактную панель. После того, как инвертор получает сигнал о неисправности, он сразу же блокирует выходной контакт и выводит на дисплей код
последней неисправности. После удаления сигнала внешней неисправности необходимо произвести сброс инвертора перед повторным запуском.

РЕКОМЕНДАЦИЯ

Нельзя производить сброс инвертора, если сигнал о внешней неисправности не был передан. P3.00 не влияет на EHO и EH1, как указано на рисунке 5.18.

• EIO — нормально разомкнутый контакт сигнала внешней неисправности / EI1 — нормально замкнутый контакт сигнала внешнего прерывания: во время работы инвертор блокирует свой выход на контактной панели и работает на нулевой скорости, когда получает сигнал о внешнем прерывании. После удаления сигнала инвертор запускается и входит в режим нормальной работы. Смотрите выше примечание о EHO и EH1. Схема указана на рисунке 5.19.

Рисунок 5.19 - Нормально разомкнутый / нормально замкнутый контакт

41: Режим торможения постоянным током в остановленном состоянии

Для осуществления торможения постоянным током в системе в состоянии остановки с целью предотвращения движения используется цифровой вход.

42÷44: Управление контактной панелью при помощи ПЛК

Запуск ПЛК в работу: простое действие ПЛК. Замените установку частоты 1 на ПЛК. Аналогичным является пуск сигнала запуска в работу ПИД-регулятора. При использовании источника 2 для установки частоты функция запуска ПЛК неактивна.

Пауза в работе ПЛК: когда цифровой вход активен, поставьте на паузу работу ПЛК, и инвертор будет работать на нулевой скорости; эта функция возобновит работу с точки остановки после отмены команды паузы. При нажатии кнопки «СТОП» ("STOP") во время работы контактной панели значения работающего счетчика программы сбрасываются, последующий запуск счетчика необходимо производить в режиме запуска. Если инвертор не работает в режиме работы ПЛК, то данная функция нецелесообразна.

Сброс состояния остановки ПЛК: состояние остановки в режиме работы ПЛК; когда функциональная контактная панель активна, то ступень работы, время работы, а также другие данные, зарегистрированные во время остановки ПЛК, удаляются.

47: Запуск в работу ПИД-регулятора

Работа ПИД-регулятора, замена установки частоты 1 на закрытый ПИД-контур. При использовании источника установки частоты 2 данная функция неактивна.

48: Переключение режимов скорость / крутящий момент

В режиме векторного управления работающие режимы скорость / крутящий момент определяются путем совместного действия установки Р8.10 и определения этой контактной панели. Например: когда Р8.10 равно 0 (режим скорости), в то время, когда контактная панель установлена на значение 48 и является действующей, режим работы автоматически переключается на режим крутящего момента.

49, 53: Ввод установки временной синхронизации

Если контактная панель определена как 49 и является действующей, инвертор начинает временную синхронизацию или обнуляет значение.

Если значение временной синхронизации достигает значения установки РЗ.33, инвертор прекращает синхронизацию, как указано на рисунке 5.20.

Если контактная панель определена как 53 и является действующей, то значение РЗ.33 определяется в минутах или в секундах.

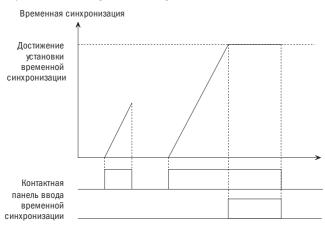


Рисунок 5.20 - Ввод установки временной синхронизации

50: Ввод сигнала счетного триггера

Данная контактная панель используется для ввода импульсного сигнала во внутренний счетчик инвертора. Наибольшая частота импульса составляет 200 Гц. Текущее значение счетчика может быть сохранено при отключении питания.

51: Сброс показаний счетчика

Данная контактная панель используется для обнуления значений. Функция контактной панели используется совместно с вводом сигнала счетного триггера.

74: Управление контактной панелью с выводами сигналов

Когда поступает входной сигнал на данный цифровой вход, то цифровой выход с функцией 36 активируется.

77: Выходной сигнал ПИД принудительно сбрасывается на 0

В течение времени ПИД-регулирования скорости, когда контактная панель активна, выходной сигнал принудительно настраивается на установленную скорость; в течение аналогового ПИД-регулирования, когда контактная панель активна, выходной сигнал принудительно настраивается на нулевую частоту.

78: Сброс времени интегрирования ПИД

В режиме работы ПИД главным образом осуществляется только ПИД-регулирование. Когда активируется цифровой вход, ПИД-регулятор переключается в режим пропорционального регулирования, а интегральный коэффициент устанавливается в 0.

79: Переключение командной линии на управление с пульта управления

Когда активирована данная функция, командная линия переключается на управление с пульта управления.

80: Импульсный вход

Частота входных импульсов может быть использована как заданная частота. Смотрите группу параметров Р4 для проверки отношения частоты импульсов и установки частоты.

81: Однофазный входной импульс измерения скорости

Функция контактной панели с однофазным входным импульсом счетчика числа оборотов со встроенной платой PG. Контактные панели с такой функцией подсоединяются к вводу импульса фазы A импульсного генератора или кодирующего устройства (PG) для получения обратной связи однофазного импульса по скорости или частоте вращения.

Р3.13 ВРЕМЯ ФИЛЬТРАЦИИ ЦИФРОВОГО ВХОДА

Nº	Наименование функции	Настройки	По умолчанию
P3.13	Время фильтрации сигнала цифрового входа	0,002 c - 1,000 c	0,010 c

ПОЯСНЕНИЕ

Постоянная величина времени прохождения сигнала через фильтр будет обеспечивать цифровую фильтрацию входного сигнала для предотвращения интерференции сигналов, которая может нарушить стабильную работу системы.

Если постоянная времени прохождения сигнала через фильтр слишком велика, то процесс управления стабилен, но реакция на управление медленная; если постоянная величина времени прохождения сигнала через фильтр слишком мала, то реакция на управление происходит быстро, но процесс управления может быть нестабилен. Если не выбрано оптимальное значение установки, вы можете соответствующим образом отрегулировать значение установки, учитывая нестабильность процесса или задержку реагирования при управлении.

РЗ.15 НАСТРОЙКА РЕЖИМА РАБОТЫ

Nº	Наименование функции	Настройки	По умолчанию
P3.15	Настройка режима работы	0÷3	0

- 0: Режим работы с двухпроводной схемой 1
- 1: Режим работы с двухпроводной схемой 2
- 2: Режим работы с трехпроводной схемой $1- \phi$ ункция самоудержания (используйте любой цифровой вход из X1-X6)
- 3: Режим работы с трехпроводной схемой 2- функция самоудержания (используйте любой цифровой вход из X1-X6)

ПРИМЕЧАНИЕ

Режимы работы с двухпроводной схемой 1 и 2, а также режим работы с трехпроводной схемой 1 и 2 целесообразны, когда режим управления командами инвертора (РО.07) выполняется через дискретные входы.

Режим работы с двухпроводной схемой 1

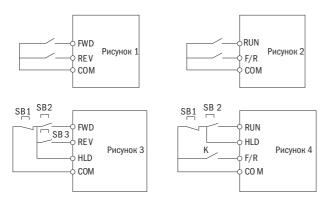
FWD, REV: Ход в установленном направлении. FWD обозначает ход вперед, а REV обозначает обратный ход. Вы можете управлять направлением вращения двигателя посредством переключения направления вперед и назад через цифровые входы; если функция REV включена и значение P2.38 настроено на 1 (включен запрет на обратный ход), то инвертор остановится. Если значение P2.38 настроено на 0 (отключен запрет на обратный ход), то инвертор будет вращаться в обратном направлении. Если функции FWD и REV одновременно включены или отключены, то инвертор остановится. Подключение проводов к контактной панели указано на рисунке 1.

Режим работы с двухпроводной схемой 2

В данном режиме используются оба терминала с функцией RUN (команда «ПУСК») и F/R (направление хода): если функция RUN включена, то инвертор запускается в работу. Если выбрана функция F/R, но она отключена, то инвертор будет вращаться вперед. Если выбрана и включена функция F/R, то инвертор будет вращаться в обратном направлении. Если функция F/R не выбрана, то направление хода определется по коду функции. Если функция RUN отключена, то инвертор остановится. Подключение проводов к клеммнику указано на рисунке 2.

Режим работы с трехпроводной схемой контактом 1

FWD, REV: Ход в установленном направлении. FWD обозначает ход вперед, а REV обозначает обратный ход. Вы можете управлять направлением вращения двигателя посредством переключения направления вперед и назад через цифровые входы. Если включена функция FWD, то инвертор будет вращаться вперед; если включена функция REV, то инвертор будет вращаться в обратном направлении. Если обе функции, FWD и REV, включены или отключены, то инвертор остановится.


Если функция HLD (удержание) включена, то сигналы FWD и REV будут находиться в режиме самоудержания. Если функция HLD (удержание) отключена, то инвертор выйдет из режима самоудержания и остановится. Подключение проводов к клеммнику указано на рисунке 3.

Режим работы с трехпроводной схемой 2

В данном режиме используются оба цифровых входа с функцией RUN (команда «ХОД») и F/R (направление хода): если включена функция RUN, то инвертор запускается. Если функция F/R выбрана, но отключена, то инвертор будет вращаться вперед. Если функция F/R выбрана и включена, то инвертор будет вращаться в обратном положении. Если функция F/R не выбрана, то направление вращения будет определено кодом функции. Если функция RUN отключена, то инвертор остановится. Если функция HLD (удержание) включена, то сигнал RUN (ход) будет находиться в режиме самоудержания. Если функция HLD (удержание) отключена, то инвертор выйдет из режима самоудержания и остановится. Подключение проводов к клеммнику показано на рисунке 4.

На рисунке 3 изображено следующее: SB1 — это кнопка остановки, SB2 — это кнопка запуска хода вперед. Нажмите кнопку SB2 или SB3 для запуска инвертора, а также нажмите SB2, SB3 для изменения направления хода. Нажмите кнопку B1 для остановки выходного сигнала инвертора.

На рисунке 4 изображено следующее: SB1 — это кнопка остановки, SB2 — это кнопка запуска, кнопка K — для выбора направления хода. Для запуска инвертора нажмите SB2. Для изменения направления хода нажмите K. Нажмите кнопку B1 для остановки инвертора.

РЗ.16 УВЕЛИЧЕНИЕ/УМЕНЬШЕНИЕ СКОРОСТИ

Nº	Наименование функции	Настройки	По умолчанию
P3.16	Увеличение/уменьшение скорости	0,01÷99,99 Гц/с	1,00 Гц/с

• РЗ.17 УВЕЛИЧЕНИЕ/УМЕНЬШЕНИЕ АМПЛИТУДЫ УСТАНОВКИ

Nº	Наименование функции	Настройки	По умолчанию
P3.05	Функция клеммы Х5	0,00 — верхний предел	
		частоты 10,00 Гц	

ПРИМЕЧАНИЕ

Увеличение/уменьшение скорости сигнала цифровых входов (UP/DN) используется для определения изменения установки частоты, измененной контактной панелью увеличить/уменьшить. Увеличение/уменьшение амплитуды установки (UP/DN) используется, чтобы определить, что значение частоты изменено посредством контактной панели UP/DN.

• РЗ.18 ВЫБОР СОХРАНЕНИЯ УСТАНОВКИ ЧАСТОТЫ УВЕЛИЧИТЬ/УМЕНЬШИТЬ

Nº	Наименование функции	Настройки	По умолчанию
P3.18	Выбор сохранения установки частоты (увеличить/	0÷2	2
	уменьшить)		

- 0: Установка увеличить/уменьшить сбрасывается на 0 после получения команды СТОП
- 1: Установка увеличить/уменьшить не сбрасывается на 0 после получения команды СТОП, установка не сохранится после отключения питания
- 2: Установка увеличить/уменьшить не сбрасывается на 0 после получения команды СТОП и сохранится после отключения питания; когда P0.03 установлен на 1, P0.02 сохранит значение после отключения питания.

ПРИМЕЧАНИЯ

- Режим работы увеличения/уменьшения скорости сигнала показан на рисунках 5.17, 5.18.
- Когда значение P0.03 установлено на 1 при установке частоты на клавишной панели: когда значение P3.18 установлено на 2, цифровая установка частоты (P0.02) устанавливает сохранение в режиме онлайн; когда значение P3.18 не установлено на 2, оно не сохранится после перебоя с питанием, для более подробной информации, пожалуйста, смотрите описание P0.02.

• РЗ.19 ОПРЕДЕЛЕНИЕ ФУНКЦИЙ ЦИФРОВОГО ВЫХОДА DO

Nº	Наименование функции	Настройки	По умолчанию
P3.19	Определение функций цифрового выхода DO	0÷37	0

• Р3.24 ВЫБОР ФУНКЦИИ ВЫХОДНОГО РЕЛЕ 1 (ТА/ТВ/ТС) Р3

Nº	Наименование функции	Настройки	По умолчанию
P3.24	Выбор функции выходного реле 1 (ТА/ТВ/ТС) РЗ	0÷37	19

Таблица 5.4 - Выходные значения многофункциональной контактной панели

-	Установка функции	Описание функции
0	NULL (ноль)	Выключено
1	RUN (ход)	Когда инвертор находится в режиме работы, цифровой выход активен
2	FAR, частота при приеме сигнала	Смотрите ширину частотного детектирования РЗ.26 при приеме сигнала
3	FDT, частотное детектиро- вание	Смотрите описание значения частотного детектирования и запаздывающей корреляции частотного детектирования РЗ.27, РЗ.28
4	FDTH, достигнут верхний предел частоты	Активируется при достижении верхнего предела частоты с задержкой
5	FDTL, достигнут нижний предел частоты	Активируется при достижении нижнего предела частоты с задержкой
6	Резерв	Резерв
7	Инвертор находится в режиме работы при нулевой скорости	Когда частота выходного сигнала инвертора равна 0, но инвертор находится в режиме работы, цифровой выход остается активным
8	Индикация завершения работы простого шага ПЛК	Когда ПЛК завершает работу простого текущего шага, цифровой выход активен (одиночный импульс шириной 500 мс)
9	Индикация завершения цикла ПЛК	Когда ПЛК с простым шагом завершает один рабочий цикл, цифровой выход активен (одиночный импульс шириной 500 мс)
10	Готовность преобразователя (RDY)	Когда инвертор остановлен и может быть запущен в любое время, цифровый выход активен (без неполадки, без запрета на ход, без прерывания, без сброса, без свободной остановки, без сигнализации Uu и т. д.)
11	Движение по инерции до останова	Во время движения по инерции до останова цифровой выход остается активным (одиночный импульсный сигнал шириной 500 мс)
12	Автоматический перезапуск	При перезапуске инвертора по причине автоматического сброса ввиду сбоя цифровой выход остается активным (одиночный импульсный сигнал шириной 500 мс)
13	Прием сигнала установки времени	Смотрите описание в разделе «Ввод установки временной синхронизации»
14	Выход приема сигнала со счетчика	После того, как сигнал со счетчика достигает значения установки, цифровой выход становится активным
15	Прием сигнала установки времени хода	Когда значение общего времени хода инвертора (РЕ.09) достигает значения установки времени хода (РЗ.34), выход контактной панели становится активным
16	Детектирование приема сигнала крутящего момента	Крутящий момент достигает значения установки, цифровой выход становится активным, и, когда значение составляет менее 80 % от значения установки, цифровой выход неактивен
17	СL, ограничение тока	Когда значение выходного тока достигает крайнего значения амплитуды тока (Pd.09), цифровой выход становится активным. Когда крайнее значение амплитуды тока менее 90 % от установки, цифровой выход неактивен
18	Защита от срыва по напряжению	Когда напряжение шины постоянного тока достигает установки защиты от срыва (Pd.11), цифровой выход или реле выдает активный сигнал; когда значение напряжения менее 95 % от значения установки защиты, то цифровой выход становится неактивным
19	Авария	При сбое в работе инвертора цифровой выход становится активным
20	Сигнал остановки при внешней неисправ- ности (EXT)	Когда инвертор останавливается при внешней неисправности, цифровой выход становится активным

	Установка функции	Описание функции
21	Uu1 Остановка ввиду низкого напряжения	Когда напряжение шины постоянного тока ниже установки низкого напряжения, цифровой выход становится активным
22	Резерв	Резерв
23	OLP2, предаварийный сигнал перегрузки	Когда выходной ток превышает значение срабатывания предаварийного сигнала инвертора, цифровой выход становится активным
24	Нарушение аналогового сигнала 1	Когда значение аналогового сигнала постоянно держится ниже минимального значения или выше максимального значения в течение 500 мс, цифровой выход становится активным
25	Резерв	Резерв
26	Резерв	Резерв
27	Резерв	Резерв
28	Резерв	Резерв
29	Неактивное состояние	Когда система неактивна, цифровой выход остается активным
30	Нулевая скорость	Когда частота выходного сигнала равна 0, цифровой выход становится активным
31	Резерв	Резерв
32	Резерв	Резерв
33	Фактическое направление вращения	Когда инвертор переключает направление вращения, выходной сигнал соответственно меняется
34	Резерв	Резерв
35	Сигнал детектирования недостаточной нагрузки (ULP)	При недостаточной нагрузке инвертора активируется сигнал детектирования недостаточной нагрузки
36	Многоступенчатый ско- ростной режим	Когда активен любой вход сигнала многоступенчатого скоростного режима на контактной панели, также активен и цифровой выход
37	Сигнал управления	Когда вход 74 контактной панели активен, то цифровой выход также активен

ПРИМЕЧАНИЕ

Преобразователь имеет два цифровых выхода (реле и транзисторный выход с открытым коллектором). Срабатывание этих выходов может быть настроено на различные функции, представленные в таблице выше.

• РЗ.26 ШИРИНА ЧАСТОТНОГО ДЕТЕКТИРОВАНИЯ

Nº	Наименование функции	Настройки	По умолчанию
P3.26	Ширина частотного детектирования	0,00÷10,00 Гц	2,50 Гц

ПРИМЕЧАНИЕ

Параметр задаёт ширину частотного детектирования. Диапазон настройки: от 0 до $\pm 10,00$ Гц установки частоты. Когда частота выходного сигнала инвертора находится в пределах положительной и отрицательной ширины детектирования установки частоты, то соответствующий цифровой выход становится активным, как показано на рисунке 5.21.

Рисунок 5.21 - Рисунок детектирования частоты при приеме сигнала (FAR)

• **РЗ.27** УРОВЕНЬ ЧАСТОТНОГО ДЕТЕКТИРОВАНИЯ (FDT)

Nº	Наименование функции	Настройки	По умолчанию
P3.27	Уровень частотного детектирования (FDT)	0,00 — макс. частота	50,00 Гц

• **РЗ.28** ЗАПОЗДАНИЕ ЧАСТОТНОГО ДЕТЕКТИРОВАНИЯ (FDT)

Nº	Наименование функции	Настройки	По умолчанию
P3.28	Запоздание частотного детектирования (FDT)	0,00÷10,00 Гц	1,00 Гц

ПРИМЕЧАНИЕ

Когда частота выходного сигнала достигнет определенной установки частоты (порог детектирования частоты), то будет задействован соответствующий цифровой выход. Мы назвали эту функцию предварительной установкой уровня частотного детектирования (FDT). При падении частоты выходного сигнала сохраняется выходной сигнал соответствующего выхода до того момента, пока частота выходного сигнала не упадет до другого определенного значения ниже уровня FDT, что называется сбросом частоты (сброс частоты = уровень FDT1 — запоздание FDT1), как показано на рисунке 5.22.

Частота выходного сигнала

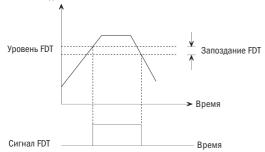


Рисунок 5.22 - Частотное детектирование FDT

• РЗ.29 ЗАДЕРЖКА СИГНАЛА ДОСТИЖЕНИЯ ВЕРХНЕГО ПРЕДЕЛА ЧАСТОТЫ

Nº	Наименование функции	Настройки	По умолчанию
P3.29	Задержка сигнала достижения верхнего предела	0,0÷100,0 c	0,0 c
	частоты		

РЗ.30 ЗАДЕРЖКА СИГНАЛА ДОСТИЖЕНИЯ НИЖНЕГО ПРЕДЕЛА ЧАСТОТЫ

Nº	Наименование функции	Настройки	По умолчанию
P3.30	Задержка сигнала достижения нижнего предела	0,0÷100,0 c	0,0 c
	частоты		

ПРИМЕЧАНИЕ

Эти две функции активируются при настройке выходного сигнала DO и реле 1 в опции P3.19 — P3.25 как «верхний предел частоты FDTH» или «нижний предел частоты FDTL».

Обычно эти две функции устанавливаются с целью предотвращения колебаний нагрузки и нестабильности сигнала при переключении между частотой в сети и переменной частотой инвертора при использовании многоступенчатых двигателей, как показано на рисунке 5.23.

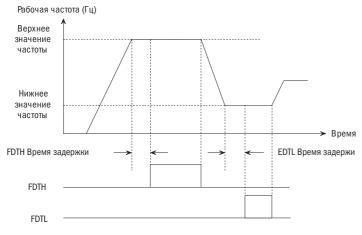


Рисунок 5.23 - Верхнее значение частоты принимаемого сигнала FDTH / нижнее значение частоты принимаемого сигнала FDTL

РЗ.31 УСТАНОВКА ДЕТЕКТИРОВАНИЯ КРУТЯЩЕГО МОМЕНТА

Nº	Наименование функции	Настройки	По умолчанию
P3.31	Установка детектирования крутящего момента	0,0÷200,0 %	100,0 %

ПРИМЕЧАНИЕ

Если крутящий момент двигателя равен или превышает эталонное значение детектирования крутящего момента, то задействуется цифровой выход. Если крутящий момент двигателя менее 80 % эталонного значения, то цифровой выход не задействуется, как показано на рисунке 5.24.

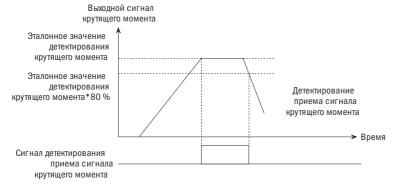


Рисунок 5.24 - Прием сигнала крутящего момента

• РЗ.32 УСТАНОВКА ПРИЕМА СИГНАЛА СЧЕТЧИКА

Nº	Наименование функции	Настройки	По умолчанию
P3.32	Установка приема сигнала счетчика	0÷9999	0

ПРИМЕЧАНИЕ

Если значение счетчика достигает значения, определенного РЗ.32, то задействуется цифровой выход, как показано на рисунке 5.25.

Рисунок 5.25 - Прием сигнала со значением счетчика

• РЗ.33 УСТАНОВКА ВРЕМЕНИ ПРИЕМА СИГНАЛА

Nº	Наименование функции	Настройки	По умолчанию
P3.33	Установка времени приема сигнала	0,0÷6553,0	0,0

ПРИМЕЧАНИЯ

- Когда значение времени равняется данному значению, цифровой выход активен, как показано на рисунке 5.20.
- Значение установки времени РЗ.33 определяется функциональной контактной панелью 53; суммарное время установки времени сбрасывается, когда функция дискретного входа 49 неактивна, в противном случае это значение остается.

• РЗ.34 ПРЕДВАРИТЕЛЬНАЯ УСТАНОВКА ВРЕМЕНИ РАБОТЫ

Nº	Наименование функции	Настройки	По умолчанию
P3.34	Предварительная установка времени работы	0÷65530 ч	65530 ч

ПРИМЕЧАНИЕ

Когда значение общего времени работы достигает предварительной установки времени работы (РЗ.26), задействуется цифровой выход.

• РЗ.35 УСТАНОВКА ДЕТЕКТИРОВАНИЯ НЕДОСТАТОЧНОЙ НАГРУЗКИ

Nº	Наименование функции	Настройки	По умолчанию
P3.35	Установка детектирования недостаточной нагрузки	0÷200,0 %	10,0 %

РЗ.36 ВРЕМЯ ЗАДЕРЖКИ ДЕТЕКТИРОВАНИЯ НЕДОСТАТОЧНОЙ НАГРУЗКИ НА ВЫХОДЕ КОНТАКТНОЙ ПАНЕЛИ

Nº	Наименование функции	Настройки	По умолчанию
P3.36	Время задержки детектирования недостаточной	0÷100,0 c	5,0 c
	нагрузки на выходе контактной панели		

ПРИМЕЧАНИЯ

РЗ.35 Установка детектирования недостаточной нагрузки 0÷200,0 % соответствует 0÷2 номинальным вращающим моментам. Когда фактическое значение выходного сигнала вращающего момента менее значения установки РЗ.35, контактная панель выводит сигнал по истечении времени запаздывания, определенного в РЗ.36, если установка детектирования недостаточного напряжения активна; когда значение крутящего момента превышает значение установки РЗ.35, то цифровой выход остается неактивным.

Р4 Функции аналоговых и импульсного входов/выходов

Р4.00 НЕЛИНЕЙНАЯ ОБРАБОТКА АНАЛОГОВОГО СИГНАЛА

Nº	Наименование функции	Настройки	По умолчанию
P4.00	Нелинейная обработка аналогового сигнала	0÷3	0

0: Ноль 1:АІ1

2: AI2 3: Импульс

ПРИМЕЧАНИЯ

- Если значение параметра равно 0, то для настройки входа Al1 используются параметры P4.01 P4.05, P4.06-P4.10 используются для настройки входа Al2, а для определения импульсных входов используются P4.11 — P4.15. Эти значения не связаны друг с другом и не взаимодействуют друг с другом.
- Если установка не равна 0, то это будет нелинейная обработка сигнала, все параметры от P4.01 до P4.15 определяются каналом, выбранным в P4.00. Время фильтрации также будет определяться установкой выбранного канала, и физические величины другого канала будут равны 0.
- Если значение установки Р4.00 равно 1 или 2, то будет выбран аналоговый входной сигнал, а возрастающие значения входного сигнала в этот канал по умолчанию будут следующими: 0,00 B, 2,00 B, 4,00 B, 6,00 B, 8,00 B, 10,00 B.
- Если значение установки равно 3, то будет выбран импульсный входной сигнал. Значения входного сигнала в этот канал по умолчанию будут следующими: 0,00 кГц, 10,00 кГц, 20,00 кГц, 30,00 кГц, 40,00 кГц и 50,00 кГц. Качественные физические значения по умолчанию будут иметь линейную зависимость.

РЕКОМЕНДАЦИИ

Только при изменении и сохранении значения P4.00 путем нажатия кнопки «ВВОД» ("ENTER") значения входного сигнала в канале могут быть заданы как значения по умолчанию.

P4.01 АІ1, МИНИМАЛЬНОЕ ЗНАЧЕНИЕ АНАЛОГОВОГО ВХОДНОГО СИГНАЛА

Nº	Наименование функции	Настройки	По умолчанию
P4.01	AI1, минимальное значение аналогового входного	0,0 - P4.03	0,00 B
	сигнала		Для токового сигнала
			0B = 0 mA

Р4.02 СООТВЕТСТВУЮЩАЯ ФИЗИЧЕСКАЯ ВЕЛИЧИНА Р4.02 МИНИМАЛЬНОГО ЗНАЧЕНИЯ АНАЛОГОВОГО ВХОДНОГО СИГНАЛА АІ1

Nº	Наименование функции	Настройки	По умолчанию
P4.02	Соответствующая физическая величина Р4.02	- 100,0 % - 100,0 %	0,0 %
	минимального значения аналогового входного		
	сигнала AI1		

Р4.03 АІ1. МАКСИМАЛЬНОЕ ЗНАЧЕНИЕ АНАЛОГОВОГО ВХОДНОГО СИГНАЛА

Nº	Наименование функции	Настройки	По умолчанию
P4.03	AI1, максимальное значение аналогового входного	P4.01 — 11,00 B	10,00 B
	сигнала		Для токового сигнала
			10B = 20mA

• P4.04 СООТВЕТСТВУЮЩАЯ ФИЗИЧЕСКАЯ ВЕЛИЧИНА Р4.03 МАКСИМАЛЬНОГО ЗНАЧЕНИЯ АНАЛОГОВОГО ВХОДНОГО СИГНАЛА А11

Nº	Наименование функции	Настройки	По умолчанию
P4.04	Соответствующая физическая величина Р4.02	- 100,0 % - 100,0 %	100,0 %
	максимального значения аналогового входного		
	сигнала AI1		

Р4.05 АІ1, ПОСТОЯННОЕ ЗНАЧЕНИЕ ВРЕМЕНИ ФИЛЬТРАЦИИ АНАЛОГОВОГО ВХОДНОГО СИГНАЛА

Nº	Наименование функции	Настройки	По умолчанию
P4.05	AI1, постоянное значение времени фильтрации	0,01÷50,00 c	0,05 c
	аналогового входного сигнала		

• Р4.06 АІ2, МИНИМАЛЬНОЕ ЗНАЧЕНИЕ АНАЛОГОВОГО ВХОДНОГО СИГНАЛА

Nº	Наименование функции	Настройки	По умолчанию
P4.06	AI2 минимальное значение	0,00 - P4.08	0,00 B

Р4.07 СООТВЕТСТВУЮЩАЯ ФИЗИЧЕСКАЯ ВЕЛИЧИНА ЗНАЧЕНИЯ Р4.06 АНАЛОГОВОГО ВХОДНОГО СИГНАЛА

Nº	Наименование функции	Настройки	По умолчанию
P4.07	Соответствующая физическая величина значения	- 100,0 % - 100,0 %	0,0 %
	Р4.06 аналогового входного сигнала		

Р4.08 AI2, МАКСИМАЛЬНОЕ ЗНАЧЕНИЕ АНАЛОГОВОГО ВХОДНОГО СИГНАЛА

Nº	Наименование функции	Настройки	По умолчанию
P4.08	AI2, максимальное значение	P4.06 - 11.00 B	10,00 B

• P4.09 СООТВЕТСТВУЮЩАЯ ФИЗИЧЕСКАЯ ВЕЛИЧИНА ЗНАЧЕНИЯ Р4.08 АНАЛОГОВОГО ВХОДНОГО СИГНАЛА

Nº	Наименование функции	Настройки	По умолчанию
P4.09	Соответствующая физическая величина значения	- 100,0 % - 100,0 %	100,0 %
	Р4.08 аналогового входного сигнала		

• Р4.11 МИНИМАЛЬНОЕ ЗНАЧЕНИЕ ВХОДНОГО ИМПУЛЬСНОГО СИГНАЛА

Nº	Наименование функции	Настройки	По умолчанию
P4.11	Минимальное значение входного импульсного	0,00 кГц — Р4.13	0,00 кГц
	сигнала (панель входного импульса)		

• P4.12 СООТВЕТСТВУЮЩАЯ ФИЗИЧЕСКАЯ ВЕЛИЧИНА МИНИМАЛЬНОГО ЗНАЧЕНИЯ ВХОДНОГО ИМПУЛЬСНОГО СИГНАЛА

Nº	Наименование функции	Настройки	По умолчанию
P4.12	Соответствующая физическая величина минималь-	- 100,0 % - 100,0 %	0,0 %
	ного значения входного импульсного сигнала		

Р4.13 МАКСИМАЛЬНОЕ ЗНАЧЕНИЕ ВХОДНОГО ИМПУЛЬСНОГО СИГНАЛА

Nº	Наименование функции	Настройки	По умолчанию
P4.13	Максимальное значение входного импульсного	Р4.11 — 50,00 кГц	50,00 кГц
	сигнала		

Р4.14 СООТВЕТСТВУЮЩАЯ ФИЗИЧЕСКАЯ ВЕЛИЧИНА МАКСИМАЛЬНОГО ЗНАЧЕНИЯ ВХОД-НОГО ИМПУЛЬСНОГО СИГНАЛА

Nº	Наименование функции	Настройки	По умолчанию
P4.14	Соответствующая физическая величина макси-	0,0÷100,0 %	100,0 %
	мального значения входного импульсного сигнала		

ПРИМЕЧАНИЕ 1 (значение Р4.00 установлено на 0)

- Мин./макс. значение аналогового входного сигнала является виртуальным мин./макс. значением входных сигналов. Если фактическая величина входного сигнала менее минимального значения установки, то минимальное значение будет принято как минимальное виртуальное значение аналогового входного сигнала. Если фактическая величина входного сигнала больше максимального значения установки, то максимальное значение будет принято как максимальное виртуальное значение аналогового входного сигнала.
- Физическая величина, соответствующая виртуальному значению аналогового входного сигнала:
 физическая величина может служить эталонным значением частоты, скорости вращения, давления
 и т л
- Инверторы этой серии имеют две группы аналоговых входных сигналов: входов Al1 и Al2, а также импульсный сигнал. Пользователи могут определить кривую входного/выходного сигнала для каждого канала.
- Входные сигналы Al1 могут представлять собой сигналы напряжения 0 ~ или сигналы тока 0÷20 мA, которые выбираются пользователем посредством переключения ПИД-регулирования на панель управления (переключатель SW1DIP находится в положении «V», что соответствует значению 0÷10 В, а в положении «I» он соответствует значению 0÷20 мA).
- Посредством установки P4.01 P4.04 и P4.11 P4.14 пользователи могут определить две линейные кривые характеристики. Положительная и отрицательная функции указаны на рисунке 5.26.

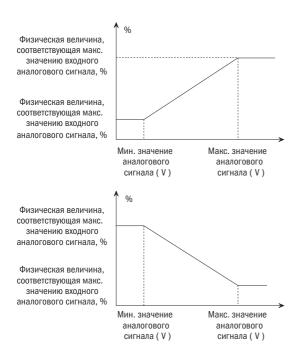


Рисунок 5.26 - Линейная кривая аналогового входного сигнала

ПРИМЕЧАНИЕ 2

• Когда значение P4.00 настроено на 1 или 3, то функции P4.01 — P4.04, P4.06 — P4.09 и P4.11 — P4.14 будут отличаться от тех, что указаны в примечании 1. Пользователь может определить собственные нелинейные кривые путем установки этих параметров, как показано на рисунке 5.27. В дополнение, выставленные значения в P4.01, P4.03, P4.06, P4.08, P4.11, P4.13 должны увеличиваться в соответствующем порядке.

Физическая величина, соответствующая значению входного аналогового сигнала, %

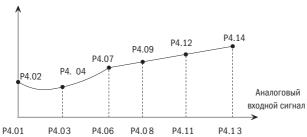


Рисунок 5.27 - Нелинейная кривая аналоговых входных сигналов

ПРИМЕЧАНИЕ 3

- Постоянная величина времени фильтрации входного сигнала используется для цифровой фильтрации входного сигнала во избежание помех.
- Чем больше значение постоянной величины времени фильтрации, тем выше уровень защиты и длиннее время ответа. И наоборот, чем ниже постоянная величина времени, тем короче время ответа и ниже уровень защиты. Если установка неясна, то вы можете отрегулировать значение установки в соответствии с состоянием контроля стабильности и времени задержки ответа.

• Р4.21 ОПРЕДЕЛЕНИЕ ФУНКЦИИ АО1

Nº	Наименование функции	Настройки	По умолчанию
P4.21	Определение функции АО1	0÷14	0

• **Р4.24** ОПРЕДЕЛЕНИЕ ФУНКЦИИ DO

Nº	Наименование функции	Настройки	По умолчанию
P4.24	Определение функции DO	0÷14	0

0: NULL (не активен)

1: Выходной ток (0÷2ІН)

2: Выходное напряжение (0 — макс. напряжение)

3: Уставка ПИД (0÷10 В)

4: Обратная связь ПИД (0÷10 В)

5: Сигнал калибровки (5 В)

6: Выходной сигнал крутящего момента (0÷2 раза от номинального крутящего момента двигателя)

7: Выходная мощность (0÷2 раза от номинальной мощности двигателя)

8: Напряжение шины (0÷1000 В)

9: AI1 (0÷10 B / 0÷20 MA)

10: AI2

11: Резерв

12: Выходная частота до компенсации (0 — макс. частота)

13: Выходная частота после компенсации (0 — макс. частота)

14: Текущая скорость (от 0 до 2 раз номинальной скорости)

ПРИМЕЧАНИЕ

Инверторы этой серии имеют 1 аналоговый выход. Выходной сигнал представляет собой аналоговое напряжение с полным диапазоном до 10 В или 0/4 – 20 мА постоянного тока. Выходной сигнал выбирается пользователями. Шкала диапазона может быть настроена в соответствии с текущими потребностями.

Р4.25 АО1, ВЫБОР ДИАПАЗОНА ВЫХОДНОГО СИГНАЛА

Nº	Наименование функции	Настройки	По умолчанию
P4.25	АО1, выбор диапазона выходного сигнала	0, 1	0

0: 0÷10 B/ 0-20 MA

1: 2÷10 B/ 4-20 MA

Р4.28 АО1, КОЭФФИЦИЕНТ УСИЛЕНИЯ

Nº	Наименование функции	Настройки	По умолчанию
P4.28	АО1, коэффициент усиления	-10,00÷10,00	1,00

ПРИМЕЧАНИЯ

- Выходные сигналы инвертора и система автоматики пользователя могут выдавать ошибки, и если пользователю необходимо проверить ошибку индикации автоматического оборудования или внести изменения в диапазон индикации, то для настройки можно определить коэффициенты усиления AO1.
- В целях исключения колебаний значений выходных сигналов во время настройки систему можно
 настроить на стандартные проверенные выходные сигналы (значения уставок Р4.21 до 5, для
 настройки коэффициента усиления АО* необходимо получить выходной сигнал постоянного тока
 5 В (50 % от полного диапазона)). При настройке АО1 введите код функции Р4.28, поворачивайте
 регулятор + или для настройки выходного сигнала на 5 В, настройка отреагирует сразу же после
 изменения кода функции Р4.28, затем сохраните изменения нажатием кнопки ввода «Enter».
- Если периферийное оборудование выдает крупные ошибки, необходимо подключить автоматическое оборудование для фактической калибровки.

P4.31 AO1, ОТКЛОНЕНИЕ

Nº	Наименование функции	Настройки	По умолчанию
P4.31	АО1, отклонение	-100 % - 100 %	0,0 %

ПРИМЕЧАНИЕ

Если отклонение представлено символом «b», то коэффициент усиления представлен символом «k», фактический выходной сигнал представлен символом «y», стандартный выходной сигнал представлен символом «x», фактический выходной сигнал получается следующим образом: y = kx +10 b; отклонение A01 на 100 % соответствует сигналу в 10 В. Стандартный выходной сигнал имеет значение от 0 до максимального значения соответствующего выходного аналогового сигнала, когда выходной сигнал имеет значение 0÷10 В. Главным образом, функция используется для корректировки нулевого сдвига аналогового выходного сигнала и отклонения амплитуды выходного сигнала. Она также может быть использована для построения любой необходимой кривой выходных сигналов. Например: если аналоговый выходной сигнал означает частоту хода и необходимо настроить сигнал на 8 В при частоте 0, а выходной сигнал настроить на 3 В при максимальной частоте, то коэффициент усиления необходимо настроить на «-0,50», а отклонение должно быть настроено на «80 %».

Р4.34 МАКС. ЧАСТОТА ВЫХОДНОГО СИГНАЛА DO

Nº	Наименование функции	Настройки	По умолчанию
P4.34	Макс. частота выходного сигнала DO	Р4.35 — 50,00 кГц	10,00 кГц

Р4.35 МИН. ЧАСТОТА ВЫХОДНОГО СИГНАЛА DO

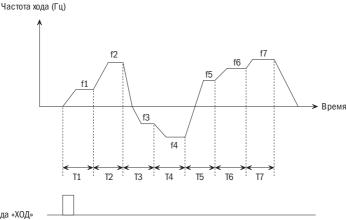
Nº	Наименование функции	Настройки	По умолчанию
P4.35	Мин. частота выходного сигнала DO	0,00 кГц — Р4.34	0,00 кГц

Р5 Рабочий режим ПЛК

• Р5.00 РЕЖИМ РАБОТЫ ПЛК

Nº	Наименование функции	Настройки	По умолчанию
P5.00	Режим работы ПЛК	0÷2	2

0: Одинарный цикл 1


1: Одинарный цикл 2 (удержание конечного значения)

2: Непрерывная работа

ПРИМЕЧАНИЯ

• Одинарный цикл 1

Инвертор автоматически останавливается после одного цикла работы и запускается после приема команды «ХОД» (RUN), как указано на рисунке 5.28.

Команда «ХОД»

Рисунок 5.28 - Режим остановки после одинарного цикла работы ПЛК

 Одинарный цикл 2 (удержание конечного значения)
 Инвертор будет удерживать рабочую частоту и направление вращения на последнем шаге после завершения одного цикла работы, как показано на рисунке 5.29.

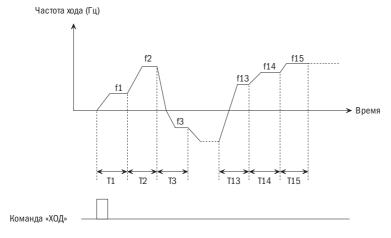


Рисунок 5.29 - Удержание частоты после завершения одинарного цикла

Непрерывная работа
 Инвертор начинает следующий цикл работы автоматически после завершения одного цикла работы
 ПЛК до получения команды остановки или до перебоя с питанием, как показано на рисунке 5.30.

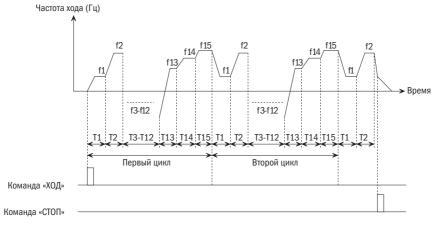


Рисунок 5.30 - Непрерывная работа ПЛК

P5.01 ВЫБОР РЕЖИМА ПЕРЕЗАПУСКА ПЛК

Nº	Наименование функции	Настройки	По умолчанию
P5.01	Выбор режима перезапуска ПЛК	0÷2	0

0: Перезапуск с первого шага

1: Продолжение работы с шага, когда инвертор остановлен

2: Продолжение хода при рабочей частоте, которая была установлена на момент прерывания ПРИМЕЧАНИЯ

- Перезапуск с первого шага
 Если инвертор останавливается во время работы ПЛК по причине приема команды остановки, неисправности или перебоя питания, он начнет работу с первого шага после перезапуска.
- Продолжение работы с шага, когда инвертор остановился
 Когда инвертор остановился во время работы ПЛК по причине получения команды остановки или
 неисправности, он зарегистрирует время работы и продолжит работу с того шага, когда произошла
 остановка. Инвертор перезапустится на частоте того же шага и отработает оставшееся время этого
 шага, как показано на рисунке 5.30.

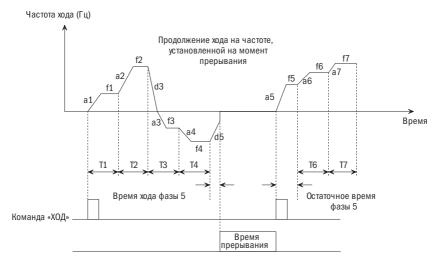


Рисунок 5.31 - Режим запуска ПЛК 1

Продолжение хода при рабочей частоте, которая была установлена на момент прерывания
Когда инвертор останавливается во время работы ПЛК, то инвертор автоматически регистрирует
не только время хода текущей фазы, но также и частоту хода на момент остановки. При перезапуске
инвертор восстановит частоту хода, бывшую на момент остановки, а затем продолжит работу
на оставшейся фазе, как показано на рисунке 5.31.

ПОЯСНЕНИЕ

Различие между вариантами 1 и 2 заключается в том, что при варианте 2 сохраняется частота хода, бывшая во время остановки, и инвертор продолжает работать с этой частоты.

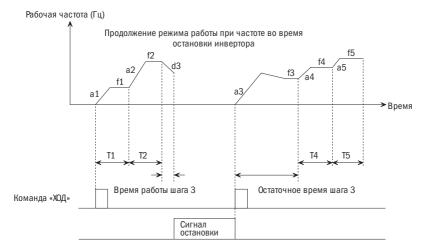


Рисунок 5.32 - Режим запуска ПЛК 2

• Р5.02 ВЫБОР РЕГИСТРАЦИИ ПЕРЕБОЯ ПИТАНИЯ ПЛК

Nº	Наименование функции	Настройки	По умолчанию
P5.02	Выбор регистрации перебоя питания ПЛК	0, 1	0

0: Без сохранения

1: С сохранением

ПРИМЕЧАНИЯ

• Без сохранения

Инвертор не сохраняет параметры рабочего статуса ПЛК при отключении питания и перезапускается с первого шага работы после включения питания.

• С сохранением

Инвертор регистрирует статус работы ПЛК на момент перебоя с питанием, включая шаг работы, рабочую частоту и время работы. Инвертор перезапустится в соответствии с параметрами, определенными P5.01, после возобновления подачи питания.

P5.03 ВЫБОР ЕДИНИЦЫ ВРЕМЕНИ РАБОТЫ ПЛК

Nº	Наименование функции	Настройки	По умолчанию
P5.03	Выбор единицы времени работы ПЛК	0, 1	0

0: Секунда

1: Минута

ПРИМЕЧАНИЕ

Эта единица времени действует только для определения времени работы ПЛК. Единица времени ускорения/торможения в режиме работы ПЛК выражена в секунде.

•	P5.04	DDEMI	РАБОТЫ	ППИ Т1
•	P5.U4	RPFINIA	PANUIN	плк п

Nº	Наименование функции	Настройки	По умолчанию
P5.04	Время работы ПЛК Т1	0,1÷3600	10,0

• **P5.05** ВРЕМЯ РАБОТЫ ПЛК Т2

Nº	Наименование функции	Настройки	По умолчанию
P5.05	Время работы ПЛК Т2	0,1÷3600	10,0

P5.06 ВРЕМЯ РАБОТЫ ПЛК ТЗ

Nº	Наименование функции	Настройки	По умолчанию
P5.06	Время работы ПЛК ТЗ	0,1÷3600	10,0

• **P5.07** ВРЕМЯ РАБОТЫ ПЛК Т4

Nº	Наименование функции	Настройки	По умолчанию
P5.07	Время работы ПЛК Т4	0,1÷3600	10,0

• **P5.08** ВРЕМЯ РАБОТЫ ПЛК Т5

Nº	Наименование функции	Настройки	По умолчанию
P5.08	Время работы ПЛК Т5	0,1÷3600	10,0

P5.09 ВРЕМЯ РАБОТЫ ПЛК Т6

Nº	Наименование функции	Настройки	По умолчанию
P5.09	Время работы ПЛК Т6	0,1÷3600	10,0

• **P5.10** ВРЕМЯ РАБОТЫ ПЛК Т7

Nº	Наименование функции	Настройки	По умолчанию
P5.10	Время работы ПЛК Т7	0,1÷3600	10,0

P5.11 BPEMЯ РАБОТЫ ПЛК Т8

Nº	Наименование функции	Настройки	По умолчанию
P5.11	Время работы ПЛК Т8	0,1÷3600	10,0

P5.12 BPEMЯ РАБОТЫ ПЛК Т9

Nº	Наименование функции	Настройки	По умолчанию
P5.12	Время работы ПЛК Т9	0,1÷3600	10,0

P5.13 BPEMЯ РАБОТЫ ПЛК Т10

Nº	Наименование функции	Настройки	По умолчанию
P5.13	Время работы ПЛК Т10	0,1÷3600	10,0

P5.14 ВРЕМЯ РАБОТЫ ПЛК Т11

Nº	Наименование функции	Настройки	По умолчанию
P5.14	Время работы ПЛК Т11	0,1÷3600	10,0

P5.15 ВРЕМЯ РАБОТЫ ПЛК Т12

Nº	Наименование функции	Настройки	По умолчанию
P5.15	Время работы ПЛК Т12	0,1÷3600	10,0

P5.16 BPEMЯ РАБОТЫ ПЛК Т13

Nº	Наименование функции	Настройки	По умолчанию
P5.16	Время работы ПЛК Т13	0,1÷3600	10,0

P5.17 ВРЕМЯ РАБОТЫ ПЛК Т14

Nº	Наименование функции	Настройки	По умолчанию
P5.17	Время работы ПЛК Т14	0,1÷3600	10,0

P5.18 ВРЕМЯ РАБОТЫ ПЛК Т15

Nº	Наименование функции	Настройки	По умолчанию
P5.18	Время работы ПЛК Т15	0,1÷3600	10,0

ПРИМЕЧАНИЕ

Время работы для каждого шага во время работы ПЛК изменяется от 0,0 до 3600 с (если значение P5.03 настроено на минуты, то единицей измерения будут минуты), время работы непрерывно и регулируемо. Когда время шага настроено на 0, скорость этого шага будет пропущена, и инвертор будет работать на скорости следующего шага.

Р5.19 НАСТРОЙКА ШАГА РАБОТЫ ПЛК Т1

Nº	Наименование функции	Настройки	По умолчанию
P5.19	Настройка шага работы ПЛК Т1	1 F – 4 r	1

• Р5.20 НАСТРОЙКА ШАГА РАБОТЫ ПЛК Т2

Nº	Наименование функции	Настройки	По умолчанию
P5.20	Настройка шага работы ПЛК Т2	1 F – 4 r	1

•	P5.21	НАСТРОЙКА ШАГА РАБОТЫ ПЛК ТЗ	
•	P3.21	HACIPUNKA WATA PADUTDI IIJIK 13	

Nº	Наименование функции	Настройки	По умолчанию
P5.21	Настройка шага работы ПЛК ТЗ	1 F – 4 r	1

• Р5.22 НАСТРОЙКА ШАГА РАБОТЫ ПЛК Т4

Nº	Наименование функции	Настройки	По умолчанию
P5.22	Настройка шага работы ПЛК Т4	1 F – 4 r	1

• Р5.23 НАСТРОЙКА ШАГА РАБОТЫ ПЛК Т5

Nº	Наименование функции	Настройки	По умолчанию
P5.23	Настройка шага работы ПЛК Т5	1 F – 4 r	1

• Р5.24 НАСТРОЙКА ШАГА РАБОТЫ ПЛК Т6

Nº	Наименование функции	Настройки	По умолчанию
P5.24	Настройка шага работы ПЛК Т6	1 F – 4 r	1

• Р5.25 НАСТРОЙКА ШАГА РАБОТЫ ПЛК Т7

Nº	Наименование функции	Настройки	По умолчанию
P5.25	Настройка шага работы ПЛК Т7	1 F – 4 r	1

• Р5.26 НАСТРОЙКА ШАГА РАБОТЫ ПЛК Т8

Nº	Наименование функции	Настройки	По умолчанию
P5.26	Настройка шага работы ПЛК Т8	1 F – 4 r	1

• Р5.27 НАСТРОЙКА ШАГА РАБОТЫ ПЛК Т9

Nº	Наименование функции	Настройки	По умолчанию
P5.27	Настройка шага работы ПЛК Т9	1 F – 4 r	1

• Р5.28 НАСТРОЙКА ШАГА РАБОТЫ ПЛК Т10

Nº	Наименование функции	Настройки	По умолчанию
P5.28	Настройка шага работы ПЛК T10	1 F – 4 r	1

• Р5.29 НАСТРОЙКА ШАГА РАБОТЫ ПЛК Т11

Nº	Наименование функции	Настройки	По умолчанию
P5.29	Настройка шага работы ПЛК Т11	1 F – 4 r	1

• Р5.30 НАСТРОЙКА ШАГА РАБОТЫ ПЛК Т12

Nº	Наименование функции	Настройки	По умолчанию
P5.30	Настройка шага работы ПЛК Т12	1 F – 4 r	1

• Р5.31 НАСТРОЙКА ШАГА РАБОТЫ ПЛК Т13

Nº	Наименование функции	Настройки	По умолчанию
P5.31	Настройка шага работы ПЛК Т13	1 F – 4 r	1

P5.32 НАСТРОЙКА ШАГА РАБОТЫ ПЛК Т14

Nº	Наименование функции	Настройки	По умолчанию
P5.32	Настройка шага работы ПЛК Т14	1 F – 4 r	1

• Р5.33 НАСТРОЙКА ШАГА РАБОТЫ ПЛК Т15

Nº	Наименование функции	Настройки	По умолчанию
P5.33	Настройка шага работы ПЛК Т15	1 F – 4 r	1

ПРИМЕЧАНИЕ

Указание времени ускорения, торможения и направления хода инвертора на каждом шаге. Предусмотрено восемь комбинаций со значениями, указанными в таблице 5.5.

Таблица 5.5 - Описание установки программы работы ПЛК

Символ	Время ускорения/торможения		Направление
1F	Время ускорения/торможения 1	P0.18, P0.19	F: Вперед
1r			г: Назад
2F	Время ускорения/торможения 2	P2.28, P2.29	F: Вперед
2r			г: Назад
3F	Время ускорения/торможения 3	P2.30, P2.31	F: Вперед
3r			г: Назад
4F	Время ускорения/торможения 4	P2.32, P2.33	F: Вперед
4r			г: Назад

• Р5.34 УДАЛЕНИЕ ЗАПИСИ РАБОТЫ ПЛК

Nº	Наименование функции	Настройки	По умолчанию
P5.34	Удаление записи работы ПЛК	0, 1	0

• Р5.35 ЗАПИСЬ ШАГА РАБОТЫ ПЛК

Nº	Наименование функции	Настройки	По умолчанию
P5.35	Запись шага работы ПЛК	0÷15	0

P5.36 ВРЕМЯ РАБОТЫ ТЕКУЩЕГО ШАГА

Nº	Наименование функции	Настройки	По умолчанию
P5.36	Время работы текущего шага	0,0÷3600	0,0

ПРИМЕЧАНИЯ

- Регистрация шага работы ПЛК (Р5.35): регистрирует шаг, на котором в текущий момент работает ПЛК.
- Время работы текущего шага (Р5.36): регистрирует время работы шага, на котором в текущий момент работает ПЛК.
- Когда значение Р5.34 настроено на 1, запись о шагах работы ПЛК удаляется (Р5.35), и время работы этого шага (Р5.36). Р5.34 сбрасывается на 0 после удаления.

РЕКОМЕНДАЦИЯ

Вы можете запустить, поставить на паузу и произвести сброс значений рабочего режима ПЛК путем настройки внешней функции контактной панели, определенной в группе РЗ.

Р7 ПИД-регулирование

Р7.00 ИСТОЧНИК ЗАДАНИЯ ПИД 1

Nº	Наименование функции	Настройки	По умолчанию
P7.00	Источник задания ПИД 1	0÷5	0

Р7.01 ИСТОЧНИК ЗАДАНИЯ ПИД 2

Nº	Наименование функции	Настройки	По умолчанию
P7.01	Источник задания ПИД 2	0÷5	0

- 0: Цифровая настройка ПИД (задание вводится в параметре Р7.06)
- 1: Bxog Al1
- 2: Вход AI2
- 3: Резерв
- 4: Входной импульсный сигнал
- 5: MODBUS

• Р7.02 КОМБИНАЦИЯ ИСТОЧНИКОВ ЗАДАНИЯ ПИД

Nº	Наименование функции	Настройки	По умолчанию
P7.02	Комбинация источников задания ПИД	0÷7	0

- 0: Только источник задания 1
- 1: Только источник задания 2
- 2: Мин. (источник задания 1, источник задания 2)
- 3: Макс. (источник задания 1, источник задания 2)
- 4: Источник задания 1 + источник задания 2

- 5: Источник задания 1 источник задания 2
- 6: Источник задания 1 * источник задания 2
- 7: Источник задания 1 / источник задания 2

ПРИМЕЧАНИЯ

- Функция используется для определения способа передачи и прохождения задания ПИД. Это может быть цифровой сигнал (0 или 5) или аналоговый сигнал (1, 4). Задание цифровым сигналом более стабильно. Кривая аналогового сигнала может быть настроена посредством группы Р4.
- Когда установка цифрового сигнала ПИД выбрана в качестве конкретного источника, здесь могут быть два варианта, а именно: заданное цифровое значение аналогового ПИД-регулирования Р7.06 и заданная величина ПИД-регулирования Р7.08. Когда величина обратной связи представляет собой сигнал скорости, это режим скорости ПИД-регулирования, и Р7.08 представляет собой заданное цифровое значение ПИД-регулирования. Когда значение сигнала обратной связи представлено другими сигналами, это режим аналогового ПИД-регулирования, и Р7.06 представляет собой заданное цифровое значение ПИД-регулирования.
- Когда конкретным источником является Al1, необходимо установить сигнал напряжения или тока в качестве входного сигнала, как указано в разделе 2.4 «Подключение цепи управления».
- Когда конкретным источником является установка MODBUS, установка выполняется через серийный интерфейс RS-485. Если это аналоговый сигнал ПИД, то установка должна быть выполнена в соответствии с процентным содержанием. Если это ПИД-регулятор скорости вращения, то установка должна быть выполнена с учетом процентного содержания, соответствующего максимальной скорости вращения.

• Р7.03 ИСТОЧНИК ОБРАТНОЙ СВЯЗИ ПИД 1

Nº	Наименование функции	Настройки	По умолчанию
P7.03	Источник обратной связи ПИД 1	0÷5	0

• Р7.04 ИСТОЧНИК ОБРАТНОЙ СВЯЗИ ПИД 2

Nº	Наименование функции	Настройки	По умолчанию
P7.04	Источник обратной связи ПИД 2	0÷5	0

- 0: Источник обратной связи скорости (только источник 1)
- 1: Bxog AI1
- 2: Bxoд Al2
- 3: Резерв
- 4: Входной импульсный сигнал
- 5: MODBUS

Р7.05 КОМБИНАЦИЯ ОБРАТНОЙ СВЯЗИ ПИД

Nº	Наименование функции	Настройки	По умолчанию
P7.05	Комбинация обратной связи ПИД	0÷5	0

- 0: Только источник 1
- 1: Только источник 2
- 2: Мин. (обратная связь источника 1, обратная связь источника 2)
- 3: Макс. (обратная связь источника 1, обратная связь источника 2)
- 4: Обратная связь источника 1 + обратная связь источника 2
- 5: Обратная связь источника 1 обратная связь источника 2

ПРИМЕЧАНИЯ

- Функция используется для определения режима и канала входного сигнала обратной связи ПИД.
 О: для выбора ПИД-регулирования скорости вращения. Когда заданным значением является аналоговый сигнал, заданная скорость пропорционально преобразуется в макс. скорость вращения (скорость вращения соответствует максимальной частоте) по всему измерительному диапазону. Другое: для выбора аналогового сигнала ПИД.
- Описание аналогового входа Al1, входного импульсного сигнала и интерфейса такое же, как и описание источника установки.
- РG или однофазный входной сигнал скорости: использование ПИД-регулятора скорости кодирующего устройства импульсного сигнала PG. Значение X5 может быть определено как измерение скорости.

Р7.06 ЗАДАНИЕ ПИД

Nº	Наименование функции	Настройки	По умолчанию
P7.06	ЗАДАНИЕ ПИД	P7.07 — P7.07	0,0

Р7.07 ДИАПАЗОН ЗАДАНИЯ ПИД (Р7.06)

Nº	Наименование функции	Настройки	По умолчанию
P7.07	Заданный диапазон аналогового ПИД-регулиро-	Макс. (1,0, Р7.06)	100,0
	вания	- 1000	

ПРИМЕЧАНИЯ

- Задание ПИД вводится с помощью пульта управления.
- Для значения установки и обратной связи аналогового ПИД-регулирования это значение должно быть ориентиром и соответствовать фактической величине.

Р7.08 ЦИФРОВАЯ УСТАНОВКА ПИД-РЕГУЛИРОВАНИЯ СКОРОСТИ

Nº	Наименование функции	Настройки	По умолчанию
P7.08	Цифровая установка ПИД-регулирования скорости	0÷24000 об/мин	0 об/мин

ПРИМЕЧАНИЕ

При использовании обратной связи импульсного сигнала PG заданное значение скорости вращения будет настроено посредством клавишной панели. Когда заданный диапазон ПИД-регулирования скорости превысит значение 10000, он будет указан как 1000.

• Р7.09 ПРОПОРЦИОНАЛЬНЫЙ КОЭФФИЦИЕНТ УСИЛЕНИЯ ПИД-РЕГУЛИРОВАНИЯ 1

Nº	Наименование функции	Настройки	По умолчанию
P7.09	Пропорциональный коэффициент усиления	0,1÷30	1,0
	ПИД-регулирования 1		

• Р7.10 ВРЕМЯ ИНТЕГРИРОВАНИЯ ПИД 1

Nº	Наименование функции	Настройки	По умолчанию
P7.10	Время интегрирования ПИД 1	0,00÷100,0 c	3,00 с

Р7.11 ВРЕМЯ ДИФФЕРЕНЦИРОВАНИЯ ПИД 1

Nº	Наименование функции	Настройки	По умолчанию
P7.11	Время дифференцирования ПИД 1	0,00÷1,00 c	0,00 c

• Р7.12 ЧАСТОТА ПЕРЕКЛЮЧЕНИЯ 1

Nº	Наименование функции	Настройки	По умолчанию
P7.12	Частота переключения 1	0,00 — частота переклю-	5.00 Hz
		чения 2	

• Р7.13 ПРОПОРЦИОНАЛЬНЫЙ КОЭФФИЦИЕНТ УСИЛЕНИЯ ПИД-РЕГУЛИРОВАНИЯ 2

Nº	Наименование функции	Настройки	По умолчанию
P7.13	Пропорциональный коэффициент усиления	0,1÷30	1,0
	ПИД-регулирования 2		

• Р7.14 ВРЕМЯ ИНТЕГРИРОВАНИЯ ПИД 2

Nº	Наименование функции	Настройки	По умолчанию
P7.14	Время интегрирования ПИД 2	0,00÷100,0 c	3,00 c

• Р7.15 ВРЕМЯ ДИФФЕРЕНЦИРОВАНИЯ ПИД 2

Nº	Наименование функции	Настройки	По умолчанию
P7.15	Время дифференцирования ПИД 2	0,00÷1,00 c	0,00 c

Р7.16 ЧАСТОТА ПЕРЕКЛЮЧЕНИЯ 2

Nº	Наименование функции	Настройки	По умолчанию
P7.16	Частота переключения 2	частота переключения 1	20,00 Гц
		– макс. частота	

ПРИМЕЧАНИЯ

- Пропорциональный коэффициент усиления представляет собой параметр, определяющий степень
 реакции пропорционального действия на отклонение. Когда пропорциональный коэффициент
 усиления имеет большое значение, система будет чувствительной, и степень ответной реакции
 увеличится. Вместе с тем, если значение немного больше, то время колебания увеличится, и время
 настройки будет также увеличено; если значение будет слишком высоким, то система станет нестабильной, а если значение будет слишком низким, то система будет работать медленно, и ответная
 реакция будет действовать с запозданием.
- Время интегрирования используется для определения эффекта интегрирования. Когда время интегрирования слишком большое, ответная реакция будет медленной. Кроме этого, контроль внешних помех также будет менее эффективным. Если время интегрирования короткое, то интегрирование будет более интенсивным, будут исключены систематические ошибки, увеличится точность контроля системы, а время отклика уменьшится. Если время интегрирования будет слишком коротким, то возникнут колебания, и стабильность системы снизится.
- Дифференциал времени определяет эффект дифференциального действия. Когда значение дифференциала времени высокое, колебание, вызванное П-регулированием в случае отклонения, будет быстро ослаблено, и время настройки будет коротким. Вместе с тем, если значение дифференциала времени будет очень высоким, это, напротив, вызовет колебание. Если значение дифференциала времени будет низким, то колебание ослабится незначительно, и время настройки будет больше в случае отклонения. Время настройки может быть снижено только при соответствующем значении дифференциала времени.

• Р7.17 ВЫБОР ОБЪЕКТА ДИФФЕРЕНЦИАЦИИ

Nº	Наименование функции	Настройки	По умолчанию
P7.17	Выбор объекта дифференциации	0, 1	0

1: Дифференциация обратной связи

2: Отклонение дифференциации

• Р7.18 ОГРАНИЧЕНИЕ АМПЛИТУДЫ ИНТЕГРИРОВАННОГО КОЭФФИЦИЕНТА ПИД

Nº	Наименование функции	Настройки	По умолчанию
P7.18	Ограничение амплитуды интегрированного	0,0÷100,0 %	100 %
	коэффициента ПИД		

• Р7.19 ОГРАНИЧЕНИЕ АМПЛИТУДЫ ДИФФЕРЕНЦИАЛЬНОГО ПИД-РЕГУЛИРОВАНИЯ

Nº	Наименование функции	Настройки	По умолчанию
P7.19	Ограничение амплитуды дифференциального	0,0÷100,0 %	5,0 %
	коэффициента ПИД		

• Р7.20 ОГРАНИЧЕНИЕ АМПЛИТУДЫ ВЫХОДНОГО СИГНАЛА ПИД-РЕГУЛИРОВАНИЯ

Nº	Наименование функции	Настройки	По умолчанию
P7.20	Ограничение амплитуды выходного сигнала	0,0÷100,0 %	100,0 %
	ПИД-регулирования		

ПРИМЕЧАНИЕ

Все вышеуказанные ограничения основаны на 100 % максимальной частоте выходного сигнала.

P7.21 КОНСТАНТА ВРЕМЕНИ ЗАДЕРЖКИ ПИД-РЕГУЛИРОВАНИЯ

Nº	Наименование функции	Настройки	По умолчанию
P7.21	Константа времени задержки ПИД-регулирования	0,00÷25,00 c	0,00 c

ПРИМЕЧАНИЕ

Установка времени задержки выходного командного сигнала частоты ПИД-регулируемой частоты.

• Р7.22 ПРЕДЕЛ ПОГРЕШНОСТИ

Nº	Наименование функции	Настройки	По умолчанию
P7.22	Предел погрешности	0,0÷999,9	0,0

ПРИМЕЧАНИЯ

- Если разность между значениями передачи сигнала и обратной связи меньше значения предела погрешности, то ПИД-регулирование будет остановлено, и инвертор будет поддерживать существующий выходной сигнал, как показано на рисунке 5.32.
- Правильная настройка данного параметра необходима для обеспечения точности и стабильности выходного сигнала системы. Предел погрешности снижает точность регулирования системы, но улучшает стабильность системы во избежание нежелательных колебаний выходного сигнала.
- В случае аналогового ПИД-регулирования установкой предела погрешности является P7.22 в качестве абсолютного значения физической величины, которая должна совпадать с диапазоном.
 В случае ПИД-регулирования скорости установкой предела погрешности является P7.22 в качестве скорости вращения, как показано на рисунке 5.33.

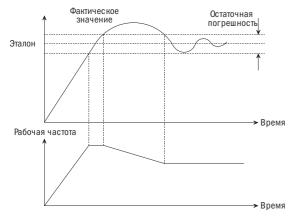


Рисунок 5.33 - Рисунок остаточной погрешности

Р7.23 ХАРАКТЕРИСТИКА НАСТРОЙКИ ПИД-РЕГУЛИРОВАНИЯ

Nº	Наименование функции	Настройки	По умолчанию
P7.23	Характеристика настройки ПИД-регулирования	0, 1	1

0: Положительное воздействие

1: Отрицательное воздействие

ПРИМЕЧАНИЯ

- Позитивное: при увеличении выходного сигнала ПИД-частота выходного сигнала возрастет, равно как и регулируемая физическая величина, такая как подача воды.
- Отрицательное: при увеличении выходного сигнала ПИД-частота выходного сигнала возрастет, но регулируемая физическая величина, такая как система заморозки, уменьшится.

Р7.24 РЕЖИМ ИНТЕГРАЛЬНОГО КОЭФФИЦИЕНТА

Nº	Наименование функции	Настройки	По умолчанию
P7.24	Режим интегрального коэффициента	0, 1	1

0: Когда частота достигнет верхнего или нижнего предельного значения, интегрированное регулирование будет остановлено

1: Когда частота достигнет верхнего или нижнего предельного значения, интегрированное регулирование будет продолжено

РЕКОМЕНДАЦИЯ

Значение 0 рекомендуется для системы, требующей быстрого ответного реагирования. Когда частота достигает верхнего или нижнего предельного значения, интегрированное регулирование будет остановлено.

Р7.25 РЕЖИМ СНА

Nº	Наименование функции	Настройки	По умолчанию
P7.25	Режим сна	0, 1	1

0: Выключен

1: Включен

пояснение

В случае ПИД-регулирования скорости вращения функция режима сна не предусмотрена.

• Р7.26 ЗАДЕРЖКА ПЕРЕХОДА В РЕЖИМ СНА

Nº	Наименование функции	Настройки	По умолчанию
P7.26	Задержка входа в режим сна	0÷999 c	120 c

• Р7.27 ЧАСТОТА ПЕРЕХОДА В РЕЖИМ СНА

Nº	Наименование функции	Настройки	По умолчанию
P7.27	Частота перехода в режим сна	0 — верхний предел	20,00 Гц
		частоты	

Р7.28 ПОРОГ ВЫХОДА ИЗ РЕЖИМА СНА

Nº	Наименование функции	Настройки	По умолчанию
P7.28	Порог выхода из режима сна	0,0÷100 %	80 %

ПРИМЕЧАНИЯ

- Функция используется для остановки насоса при нулевом расходе. В данном случае, если частота насоса ниже параметра частоты перехода в режим сна, то по истечении задержки перехода в режим сна насос остановится.
- Значение сигнала обратной связи по давлению должно быть снижено до значения порога выхода
 из режима сна для переключения в состояние активации. Затем насос будет запущен (как показано
 на рисунке 5.34). Диапазон настроек порогового значения соответствует процентному содержанию
 значения обратной связи аналогового ПИД-регулирования.

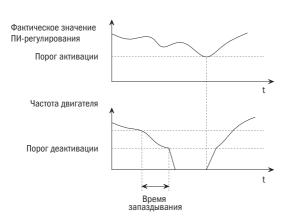


Рисунок 5.34 - Режимы перехода в режим сна и выхода из него

• Р7.29 КОЭФФИЦИЕНТ ПОЛОЖИТЕЛЬНОГО ФАКТИЧЕСКОГО ЗНАЧЕНИЯ ПИД

Nº	Наименование функции	Настройки	По умолчанию
P7.29	Коэффициент положительного фактического	0,5000÷1,024	1,000
	значения ПИД		

ПРИМЕЧАНИЕ

При значительном превышении настройки параметр можно снизить.

• Р7.30 ВЫБОР РАБОТЫ РЕЖИМА КР

Nº	Наименование функции	Настройки	По умолчанию
P7.30	Выбор работы режима КР и медленного старта	0,0÷22	0,0

Единицы:

- 0: Режим КР отключён в пределах погрешности
- 1: Динамичный КР в пределах погрешности
- 2: Фиксированный КР в пределах погрешности

Десятки:

- 0: Функция медленного старта отключена
- 1: Использовать медленный старт 1
- 2: Использовать медленный старт 2

Р7.31 КР НИЖНИЙ ПРЕДЕЛ

Nº	Наименование функции	Настройки	По умолчанию
P7.31	Нижний предел КР	0,01÷2,55	0,06

Р7.32 ЗНАЧЕНИЕ КР В РЕЖИМЕ МЕДЛЕННОГО СТАРТА

Nº	Наименование функции	Настройки	По умолчанию
P7.32	Значение КР в режиме медленного старта	0,01÷30.00	0,10

• Р7.33 ВРЕМЯ МЕДЛЕННОГО СТАРТА

Nº	Наименование функции	Настройки	По умолчанию
P7.33	Время медленного старта	0,01÷999,9	10

ПРИМЕЧАНИЕ

Единицы в параметре Р7.30.

Единицы:

- 0: Режим КР не работает в пределах погрешности
- 1: КР подбирается автоматически для стабильной работы, но не ниже Р7.31
- 2: Если погрешность меньше чем в P7.22 (установленный диапазон), то КР режим будет использовать значение из P7.31

Десятки:

- 0: Функция медленного старта выключена
- 1: Функция медленного старта включена и установлено значение в Р7.33. Во время медленного старта КР режим не работает
- 2: Функция медленного старта включена и настроены соответствующим образом параметры P7.32 и P7.33. Если перерегулирование слишком большое, то уменьшите значение в P7.32. Если реакция системы слишком медленная, то увеличьте значение в параметре P7.32

Р7.34 ЗАДЕРЖКА ВЫХОДА ИЗ РЕЖИМА ОЖИДАНИЯ

Nº	Наименование функции	Настройки	По умолчанию
P7.34	Задержка выхода из режима ожидания	0,0÷120	10

После перехода ПИД регулятором порога активации (Р7.28) преобразователь запустит двигатель по истечении времени Р7.34.

• Р7.35 ВЫБОР ИНВЕРСИИ ВЫХОДА ПИД

Nº	Наименование функции	Настройки	По умолчанию
P7.35	Выбор инверсии выхода ПИД	0÷1	0

0: Инверсия запрещена

1: Инверсия разрешена

При P7.35 = 1 преобразователь не будет давать команду на вращения двигателя в обратном направлении, если в P2.38 выбор режима реверса установлено 1 (запрет реверса).

Р8 Режим векторного управления

• Р8.00 ТОК КОМПЕНСАЦИИ ПРЕДВОЗБУЖДЕНИЯ

Nº	Наименование функции	Настройки	По умолчанию
P8.00	Ток компенсации предвозбуждения	0,0÷500,0 %	100,0 %

ПРИМЕЧАНИЕ

Значение в 100,0 % соответствует току холостого хода двигателя. Время работы настроено в P1.04. Фактическое верхнее значение является меньшим между 80 % значения номинального тока инвертора и номинальным током двигателя.

Р8.01 ПРОПОРЦИОНАЛЬНЫЙ КОЭФФИЦИЕНТ КОНТУРА СКОРОСТИ 1

Nº	Наименование функции	Настройки	По умолчанию
P8.01	Пропорциональный коэффициент контура скорости 1	0,1÷30,0	2,0

Р8.02 ВРЕМЯ ИНТЕГРИРОВАНИЯ КОНТУРА СКОРОСТИ 1

Nº	Наименование функции	Настройки	По умолчанию
P8.02	Время интегрирования контура скорости 1	0,001÷10,000 c	в зависимости от модели

Р8.03 ЧАСТОТА ПЕРЕКЛЮЧЕНИЯ 1

Nº	Наименование функции	Настройки	По умолчанию
P8.03	Частота переключения 1	0,00 Гц — частота пере-	10,00 Гц
		ключения 2	

Р8.04 ПРОПОРЦИОНАЛЬНЫЙ КОЭФФИЦИЕНТ КОНТУРА СКОРОСТИ 2

Nº	Наименование функции	Настройки	По умолчанию
P8.04	Пропорциональный коэффициент контура скорости 2	0,1÷30,0	1,0

Р8.05 ВРЕМЯ ИНТЕГРИРОВАНИЯ КОНТУРА СКОРОСТИ 2

Nº	Наименование функции	Настройки	По умолчанию
P8.05	Время интегрирования контура скорости	0,001÷10,000 c	в зависимости от модели

P8.06

ЧАСТОТА ПЕРЕКЛЮЧЕНИЯ 2

Nº	Наименование функции	Настройки	По умолчанию
P8.06	Частота переключения 2	частота переключения 1	80,00 Гц
		– максимальная частота	

ПРИМЕЧАНИЕ

 Значения Р8.01 и Р8.02 являются параметрами ПИ-регулирования, когда рабочая частота меньше частоты переключения 1 (Р8.03). Значения Р8.04 и Р8.05 являются параметрами ПИ-регулирования, когда рабочая частота больше частоты переключения 2 (Р8.06). Параметр ПИ между частотой переключения 1 и частотой переключения 2 является линейным при переключении двух групп параметров ПИ, как указано на рисунке 5.35.

Параметр ПИ

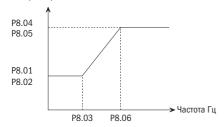


Рисунок 5.35 - Диаграмма параметров ПИ

- Вы можете настроить динамическую характеристику скорости векторного управления посредством настройки пропорционального коэффициента регулятора скорости и времени интегрирования.
 Увеличение пропорционального коэффициента или уменьшение времени интегрирования может увеличить динамическую характеристику скорости.
 Если значение пропорционального коэффициента слишком велико или значение времени интегри
 - если значение пропорционального коэффициента слишком велико или значение времени интегрирования слишком мало, то в системе возникают колебания.
- Предлагаемый метод регулирования: если заводские параметры не отвечают установленным требованиям, то необходимо произвести настройку с учетом заводских параметров. Сначала следует увеличить пропорциональный коэффициент, чтобы исключить колебания системы, затем необходимо уменьшить время интегрирования, обеспечить быстрый ответ системы и уменьшить превышение заданного значения.

РЕКОМЕНДАЦИЯ

Если параметр ПИ настроен неправильно, это может привести к сильному превышению заданного параметра скорости. В этом случае возможно возникновение неисправности из-за перегрузки по напряжению при превышении заданных параметров.

• Р8.07 ВРЕМЯ ФИЛЬТРАЦИИ КОНТУРА СКОРОСТИ ПРИ ОСТАНОВКЕ

Nº	Наименование функции	Настройки	По умолчанию
P8.07	Время фильтрации контура скорости при остановке	0,000 c÷0,100 c	0,030 c

пояснения

 В режиме векторного управления выходной сигнал регулятора контура скорости представляет собой текущую команду крутящего момента. Параметры используются для фильтра команды крутящего момента. В целом, эти параметры не требуют настройки. При большом колебании скорости соответственно может увеличиться время фильтрации. При вибрации двигателя необходимо соответствующим образом снизить этот параметр.

 Если постоянная величина времени фильтрации контура мала, то выходной сигнал крутящего момента инвертора может сильно измениться, но ответная реакция будет быстрой.

• Р8.08 ВРЕМЯ ФИЛЬТРАЦИИ КОНТУРА СКОРОСТИ

Nº	Наименование функции	Настройки	По умолчанию
P8.08	Время фильтрации контура скорости	1,0÷20,0 мс	1,0 мс

ПРИМЕЧАНИЕ

При высоком уровне шума работающей системы или при колебаниях системы, работающей на определенной скорости, параметр может быть соответственно увеличен.

Р8.09
 КОЭФФИЦИЕНТ ПРЯМОЙ СВЯЗИ КОНТУРА СКОРОСТИ

Nº	Наименование функции	Настройки	По умолчанию
P8.09	Коэффициент прямой связи контура скорости	0,500÷1,024	1,000

ПРИМЕЧАНИЕ

При значительном превышении параметра скорости его следует снизить соответствующим образом.

P8.10 РЕЖИМ УПРАВЛЕНИЯ КРУТЯЩИМ МОМЕНТОМ

Nº	Наименование функции	Настройки	По умолчанию
P8.10	Режим управления крутящим моментом	0÷2	0

- 0: Работа в соответствии с режимом управления контуром скорости
- 1: Работа в соответствии с режимом управления крутящим моментом
- 2: Работа в соответствии с режимом управления крутящим моментом моментного двигателя

ПРИМЕЧАНИЯ

- Если значение установки равно 0, то инвертор выдает выходной сигнал в соответствии с установленной частотой. Выходной сигнал крутящего момента автоматически совпадает с моментом нагрузки, но выходной сигнал крутящего момента ограничивается верхним значением крутящего момента. Когда момент нагрузки больше, чем верхнее значение установки крутящего момента, то выходной сигнал крутящего момента инвертора ограничен. Выходной сигнал частоты отличается от частоты установки.
- Когда значение установки равно 1, выходной сигнал инвертора будет соответствовать установленному значению крутящего момента. В этот момент выходная частота автоматически совпадает со скоростью под нагрузкой, но ограничена верхним значением частоты.
- Когда значение скорости под нагрузкой выше верхнего значения частоты, частота выходного сигнала инвертора будет ограничена. Выходной крутящий момент отличается от установки крутящего момента.
- В режиме управления крутящим моментом команда крутящего момента представляет собой верхнее значение установки крутящего момента, которое настраивается изначально. Посредством многофункциональной панели входных сигналов вы можете настраивать режимы крутящего момента и скорости. При управлении крутящим моментом выходной сигнал инвертора автоматически отслеживает изменения скорости под нагрузкой, но скорость изменения выходной частоты зависит от настройки времени ускорения и торможения. При необходимости повышения скорости отслеживания следует уменьшить время ускорения/торможения. Когда установка крутящего момента инвертора выше значения момента нагрузки, выходная частота инвертора увеличится. Когда выходная частота

инвертора достигает верхнего значения частоты, инвертор будет работать на верхнем значении частоты. Когда установка крутящего момента инвертора ниже значения момента нагрузки, выходная частота инвертора снизится, но она не будет ограничиваться нижним значением установки частоты.

• Когда значение установки равно 2, инвертор работает в режиме работы моментного двигателя. Основным элементом моментного двигателя является свойство мягкой механической остановки. При увеличении момента нагрузки скорость автоматически снижается.

P8.11 ИСТОЧНИК ЗАДАНИЯ ВЕРХНЕГО ПРЕДЕЛА МОМЕНТА

Nº	Наименование функции	Настройки	По умолчанию
P8.11	Источник задания крутящего момента	0÷5	0

0: Цифровая установка

- 1: Bxog AI1
- 2: Bxoд Al2
- 3: Резерв
- 4: Входной импульсный сигнал
- 5: MODBUS

P8.12 BEPXHEE 3HAYEHUE MOMEHTA

Nº	Наименование функции	Настройки	По умолчанию
P8.12	Верхнее значение момента	0,0÷300,0 %	160 %

• Р8.13 ВЕРХНЕЕ ЗНАЧЕНИЕ ТОРМОЗЯЩЕГО МОМЕНТА

Nº	Наименование функции	Настройки	По умолчанию
P8.13	Верхнее значение тормозящего момента	0,0÷300,0 %	160 %

ПРИМЕЧАНИЕ

Если произведена цифровая установка приводного крутящего момента, то установки P8.12 и P8.13 будут являться фактическими значениями крутящего момента.

• Р8.14 КОЭФФИЦИЕНТ КОМПЕНСАЦИИ СКОЛЬЖЕНИЯ

Nº	Наименование функции	Настройки	По умолчанию
P8.14	Коэффициент компенсации скольжения	0,0÷200,0 %	102,4 %

ПРИМЕЧАНИЕ

Посредством режима векторного управления параметр компенсирует команду крутящего момента. Значение выходного тока можно поменять путем корректировки параметра. Но корректировка не рекомендуется.

• Р8.15 ВРЕМЯ УСКОРЕНИЯ КРУТЯЩЕГО МОМЕНТА

Nº	Наименование функции	Настройки	По умолчанию
P8.15	Время ускорения крутящего момента	0,00÷120,0 c	0,50 с

P8.16 ВРЕМЯ ТОРМОЖЕНИЯ КРУТЯЩЕГО МОМЕНТА

Nº	Наименование функции	Настройки	По умолчанию
P8.16	Время торможения крутящего момента	0,00÷120,0 c	0,50 с

ПРИМЕЧАНИЯ

- Установите время ускорения и торможения крутящего момента в режиме крутящего момента. Данная функция не действует в режиме скорости.
- Время, в течение которого крутящий момент достигает номинальной величины от 0, это время ускорения крутящего момента. Время, в течение которого крутящий момент снижается от номинальной величины до 0, это время торможения крутящего момента.

Р8.17 КОЭФФИЦИЕНТ КОМПЕНСАЦИИ СКОЛЬЖЕНИЯ НА НИЗКОЙ СКОРОСТИ

Nº	Наименование функции	Настройки	По умолчанию
P8.17	Коэффициент компенсации скольжения на низкой	50,0÷200,0 %	130,0 %
	скорости		

ПРИМЕЧАНИЕ

Если рабочая нагрузка нестабильна при низкой скорости, то для осуществления бессенсорного векторного управления параметр можно соответственно увеличить.

• Р8.18 КОЭФФИЦИЕНТ КОМПЕНСАЦИИ СКОЛЬЖЕНИЯ НА ВЫСОКОЙ СКОРОСТИ

Nº	Наименование функции	Настройки	По умолчанию
P8.18	Коэффициент компенсации скольжения	50,0÷200,0 %	117,0 %
	на высокой скорости		

ПРИМЕЧАНИЕ

Для осуществления бессенсорного векторного управления параметр используется для настройки точности и стабильности скорости двигателя: если скорость ниже при нагрузке мотора, то параметр необходимо увеличить, если же скорость выше, то параметр необходимо уменьшить.

• Р8.23 УВЕЛИЧЕНИЕ КРУТЯЩЕГО МОМЕНТА НА НУЛЕВОЙ СКОРОСТИ

Nº	Наименование функции	Настройки	По умолчанию
P8.23	Адаптивное увеличение крутящего момента на	0,0÷50,0 %	0,0 %
	нулевой скорости		

Р8.24 ПОРОГ НУЛЕВОЙ СКОРОСТИ

Nº	Наименование функции	Настройки	По умолчанию
P8.24	Порог нулевой скорости	0÷20 %	5 %

ПРИМЕЧАНИЯ

- Адаптивное увеличение выходного крутящего момента, таким образом, двигатель может преодолеть статическое трение при запуске и запуститься мягко при малой установке крутящего момента.
- Диапазон настроек порога нулевой скорости соответствует значению 0÷20 % от максимальной выходной частоты.

Р8.25 ИСТОЧНИК ЗАДАНИЯ МОМЕНТА ТОРМОЖЕНИЯ

Nº	Наименование функции	Настройки	По умолчанию
P8.25	Источник задания момента торможения	0÷5	0

- 0: Такой же, как и конечное значение крутящего момента, рассчитанного в Р8.11
- 1: Bxog AI1
- 2: Bxoд Al2
- 3: Резерв
- 4: Входной импульсный сигнал
- 5: MODBUS

• Р8.26 ДОПОЛНИТЕЛЬНЫЙ КРУТЯЩИЙ МОМЕНТ

Nº	Наименование функции	Настройки	По умолчанию
P8.26	Дополнительный высокий крутящий момент	40,0÷160,0 %	100,0 %

• Р8.27 ЗАДАННОЕ ЗНАЧЕНИЕ ДОПОЛНИТЕЛЬНОГО КРУТЯЩЕГО МОМЕНТА

Nº	Наименование функции	Настройки	По умолчанию
P8.27	Эталонное значение дополнительного большого	0÷2	0
	крутящего момента		

- 0: Рабочая частота
- 1: Линейная скорость (резерв)
- 2: Инерция нагрузки

- При увеличении рабочей скорости механическая система будет увеличивать крутящий момент; дополнительный большой крутящий момент предназначен для компенсирования крутящего момента механической системы с целью поддержания без изменений изначального крутящего момента, полученного при эффективной нагрузке.
- Функция Р8.26 устанавливает максимальный крутящий момент и на 100,0 % соответствует номинальному выходному крутящему моменту двигателя. Когда значение дополнительного момента соответствует рабочей частоте, соотношение между дополнительным крутящим моментом и настоящей рабочей частотой указано на рисунке 5.36.

Рисунок 5.36 - Соотношение между дополнительным высоким крутящим моментом и выходной частотой

P8.28 BPEMЯ ПРЕДВОЗБУЖДЕНИЯ

Nº	Наименование функции	Настройки	По умолчанию
P8.28	Время предвозбуждения	0,05÷3,00 c	0,10 c

ПРИМЕЧАНИЕ

Функция предвозбуждения используется для установления магнитного поля перед запуском асинхронного двигателя. Параметр устанавливает длительность этого процесса.

Р9 Управление напряжением/частотой (V/f)

Р9.00 НАСТРОЙКА КРИВОЙ УПРАВЛЕНИЯ НАПРЯЖЕНИЕМ/ЧАСТОТОЙ

Nº	Наименование функции	Настройки	По умолчанию
P9.00	Настройка кривой управления напряжением/	0÷4	0
	частотой (V/f)		

- 0: Кривая характеристики постоянного момента 0
- 1: Кривая характеристики переменного момента 1 (2,0)
- 2: Кривая характеристики переменного момента 2 (1,5)
- 3: Кривая характеристики переменного момента 3 (1,2)
- 4: Кривая управления напряжением/частотой, определенная пользователем (определяется посредством функции P9.01 P9.06)

• **P9.01** ЧАСТОТА РЕЖИМА УПРАВЛЕНИЯ НАПРЯЖЕНИЕМ/ЧАСТОТОЙ F1

	.,
Р9.01 Частота режима управления напряжением/ 0,0 — Р9.03	10,00 Гц

• **Р9.02** НАПРЯЖЕНИЕ РЕЖИМА УПРАВЛЕНИЯ НАПРЯЖЕНИЕМ/ЧАСТОТОЙ V1

Nº	Наименование функции	Настройки	По умолчанию
P9.02	Напряжение режима управления напряжением/	0÷100,0 %	20,0 %
	частотой V1		

Р9.03 ЧАСТОТА РЕЖИМА УПРАВЛЕНИЯ НАПРЯЖЕНИЕМ/ЧАСТОТОЙ F2

Nº	Наименование функции	Настройки	По умолчанию
P9.03	Частота режима управления напряжением/	P9.01 - P9.05	25,00 Гц
	частотой F2		

• **Р9.04** НАПРЯЖЕНИЕ РЕЖИМА УПРАВЛЕНИЯ НАПРЯЖЕНИЕМ/ЧАСТОТОЙ V2

Nº	Наименование функции	Настройки	По умолчанию
P9.04	Напряжение режима управления напряжением/	0÷100,0 %	50,0 %
	частотой V2		

• **Р9.05** ЧАСТОТА РЕЖИМА УПРАВЛЕНИЯ НАПРЯЖЕНИЕМ/ЧАСТОТОЙ F3

Nº	Наименование функции	Настройки	По умолчанию
P9.05	Частота режима управления напряжением/	P9.03 - P0.09	40,00 Гц
	частотой F3		

• **Р9.06** НАПРЯЖЕНИЕ РЕЖИМА УПРАВЛЕНИЯ НАПРЯЖЕНИЕМ/ЧАСТОТОЙ V3

Nº	Наименование функции	Настройки	По умолчанию
P9.06	Напряжение режима управления напряжением/	0÷100,0 %	80,0 %
	частотой V3		

ПРИМЕЧАНИЕ

 Данная группа параметров определяет гибкость установки режима управления напряжением/ частотой инвертора для обеспечения различных потребностей в характеристиках нагрузки.

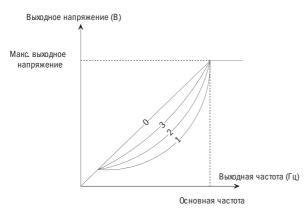


Рисунок 5.37 - Кривая снижения крутящего момента

- Когда значение 4 выбрано для функции Р9.00, пользователь может самостоятельно определить кривую напряжения/частоты посредством функций Р9.01 — Р9.06. Как указано на рисунке 5.38, кривая напряжения/частоты определена посредством ломаной линии, состоящей из четырех точек, адаптированных для специальных характеристик нагрузки.
- Примечания V1 < V2 < V3. В случае если частота низкая, а установка напряжения высокая, двигатель может перегреться и даже сгореть, а инвертор может остановиться по причине высокого напряжения или срабатывания защиты от высокого напряжения.

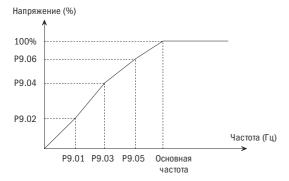


Рисунок 5.38 - Кривая напряжения/частоты, определенная пользователем

• Р9.07 КОМПЕНСАЦИЯ КРУТЯЩЕГО МОМЕНТА

Nº	Наименование функции	Настройки	По умолчанию
P9.07	Компенсация крутящего момента	0,0÷30,0 %	0,0 %

ПРИМЕЧАНИЕ

Для улучшения характеристик низкочастотного крутящего момента можно сделать определенную компенсацию выходного напряжения. Когда код функции настроен на значение 0,0 %, функция находится в режиме управления напряжением/частотой, как показано на рисунке 5.39.

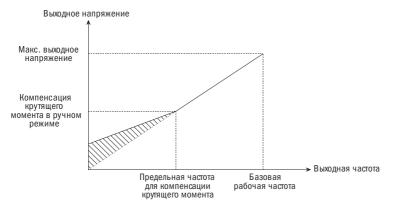


Рисунок 5.39 - Компенсация крутящего момента в ручном режиме

РЕКОМЕНДАЦИИ:

- Неправильная настройка параметра может привести к срабатыванию защиты от перегрева или высокого напряжения двигателя.
- Когда инвертор приводит в действие синхронный мотор, рекомендуется использовать функцию компенсации крутящего момента в ручном режиме, и кривая напряжения/частоты должна быть настроена в соответствии с параметрами двигателя и особенностями применения.

Р9.08 ПРЕДЕЛЬНАЯ ЧАСТОТА КОМПЕНСАЦИИ КРУТЯЩЕГО МОМЕНТА В РУЧНОМ РЕЖИМЕ

Nº	Наименование функции	Настройки	По умолчанию
P9.08	Предельная частота компенсации крутящего	0,00÷50,00 Гц	16,67 Гц
	момента в ручном режиме		

ПРИМЕЧАНИЕ

Данная функция определяет предельную частоту компенсации крутящего момента в ручном режиме, как показано на рисунке 5.38. Предельная частота применяется к любой кривой напряжения/частоты, определенной функцией Р9.00.

• Р9.09 КОЭФФИЦИЕНТ КОМПЕНСАЦИИ СКОЛЬЖЕНИЯ

Nº	Наименование функции	Настройки	По умолчанию
P9.09	Коэффициент компенсации скольжения	0,0÷250,0 %	0,0 %

• Р9.10 ПОСТОЯННОЕ ЗНАЧЕНИЕ ВРЕМЕНИ КОМПЕНСАЦИИ СКОЛЬЖЕНИЯ

Nº	Наименование функции	Настройки	По умолчанию
P9.10	Постоянное значение времени компенсации	0,01÷2,55 c	0,20 c
	скольжения		

ПРИМЕЧАНИЯ

Скольжение ротора двигателя изменяется с моментом нагрузки, что приводит к отклонениям
в скорости двигателя. Выходная частота инвертора может быть настроена автоматически посредством компенсации скольжения в соответствии с моментом нагрузки. Таким образом, электрические характеристики механической прочности могут быть улучшены. Смотрите рисунок 5.40.

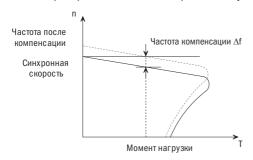


Рисунок 5.40 - Рисунок автоматической компенсации скольжения

 В случае если настроено номинальное значение крутящего момента, величина компенсации скольжения будет равна коэффициенту компенсации (Р9.09) * номинальное скольжение (скорость синхронного вращения — номинальная скорость вращения).

Состояние режима работы двигателя: когда фактическая скорость вращения ниже заданной скорости, коэффициент компенсации (Р9.09) необходимо увеличивать поэтапно.

РЕКОМЕНДАЦИИ

- Автоматическая компенсация скольжения связана с номинальным скольжением ротора двигателя.
 При использовании функции компенсации скольжения номинальная скорость вращения двигателя должна быть установлена правильно (РА.ОЗ и РА.17).
- Когда коэффициент компенсации равен 0, компенсация скольжения будет неэффективной.

Р9.11 ВЫБОР КОНТРОЛЯ ЭНЕРГОСБЕРЕЖЕНИЯ

Nº	Наименование функции	Настройки	По умолчанию
P9.11	Выбор контроля энергосбережения	0, 1	0

0: Включено

1: Выключено

ПРИМЕЧАНИЕ

Параметры контроля энергосбережения были установлены на заводе с учетом оптимальных значений. Нет необходимости в их настройке при нормальной работе. Если характеристики вашего двигателя сильно отличаются от характеристик стандартных индуктивных двигателей, смотрите следующее описание настройки параметров.

• Р9.12 КОЭФФИЦИЕНТ УСИЛЕНИЯ ЭНЕРГОСБЕРЕЖЕНИЯ

Nº	Наименование функции	Настройки	По умолчанию
P9.12	Коэффициент усиления энергосбережения	0,00÷655,3	в зависимости от модели

ПРИМЕЧАНИЕ

В режиме контроля энергосбережения для расчета напряжения двигателя и его наибольшей эффективности используется коэффициент усиления энергосбережения в качестве выходного напряжения. Коэффициент энергосбережения Р9.12 установлен на заводе в соответствии со значением стандартного двигателя. При увеличении коэффициента усиления энергосбережения также увеличивается и выходное напряжение.

• Р9.13 НИЖНЕЕ ЗНАЧЕНИЕ НАПРЯЖЕНИЯ ЭНЕРГОСБЕРЕЖЕНИЯ (50 ГЦ)

Nº	Наименование функции	Настройки	По умолчанию
P9.13	Нижнее значение напряжения энергосбережения	0÷120 %	50 %
	(50 Гц)		

• Р9.14 НИЖНЕЕ ЗНАЧЕНИЕ НАПРЯЖЕНИЯ ЭНЕРГОСБЕРЕЖЕНИЯ (5 ГЦ)

Nº	Наименование функции	Настройки	По умолчанию
P9.14	Нижнее значение напряжения энергосбережения	0÷25 %	12 %
	(5 Гц)		

ПРИМЕЧАНИЯ

Данные параметры используются для установки нижнего предельного значения выходного напряжения. Если эталонное значение напряжения, рассчитанное в режиме сохранения энергии, будет меньше нижнего предельного значения напряжения при энергосбережении, это нижнее предельное значение будет принято как эталонное значение выходного напряжения. Для предотвращения

остановки двигателя при малой нагрузке необходимо установить нижнее предельное значение напряжения при энергосбережении. Следует установить предельные значения напряжения при 5 Гц и 50 Гц; предельные значения, отличные от тех, что установлены при 5 Гц и 10 Гц, получаются путем линейной интерполяции. Установленное значение представляет собой процентное содержание номинального напряжения двигателя.

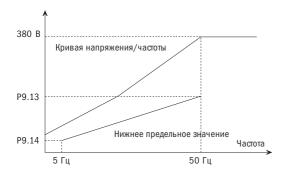


Рисунок 5.41 - Нижнее предельное значение напряжения при энергосбережении

 В режиме контроля энергосбережения оптимальным напряжением, подаваемым на нагрузку, является напряжение, рассчитанное в соответствии с мощностью нагрузки. Вместе с тем, установленный параметр может варьироваться по причине изменения температуры или при использовании двигателей разных производителей; таким образом, оптимальное напряжение может и не подаваться в некоторых случаях. Автоматическая точная регулировка напряжения обеспечивает высокую эффективность работы.

• Р9.15 ВРЕМЯ ПОДАЧИ СРЕДНЕЙ МОЩНОСТИ

Nº	Наименование функции	Настройки	По умолчанию
P9.15	Время подачи средней мощности	1÷200 * (25 мс)	5

ПРИМЕЧАНИЕ

Предварительно установите время подачи средней мощности, рассчитываемой в режиме контроля энергосбережения. Диапазон настроек P9.15 составляет 25 мс * (1÷200).

Р9.16 ФУНКЦИЯ АВТОМАТИЧЕСКОГО РЕГУЛИРОВАНИЯ НАПРЯЖЕНИЯ AVR

Nº H	Наименование функции	Настройки	По умолчанию
I .	Функция автоматического регулирования напря- жения AVR	1÷2	2

0: Неактивна

1: Всегда активирована

2: Неактивна только во время процесса торможения

ПРИМЕЧАНИЕ

AVR означает автоматическое регулирование выходного напряжения. Когда функция AVR неактивна, выходное напряжение будет колебаться при колебаниях напряжения электроснабжения. Когда функция активна, выходное напряжение не будет колебаться, как входное напряжение. Выходное напряжение будет постоянным при выдаваемой мощности инвертора.

• Р9.17 ВЫБОР ПЕРЕМОДУЛЯЦИИ

Nº	Наименование функции	Настройки	По умолчанию
P9.17	Выбор перемодуляции	0, 1	0

0: Выключено

1: Включено

ПРИМЕЧАНИЕ

Когда функция перемодуляции активирована, можно улучшить выходное напряжение инвертора. Тем не менее, если выходное напряжение слишком высоко, то увеличатся гармонические колебания выходного тока.

• Р9.18 РАСПРЕДЕЛЕНИЕ НАГРУЗКИ

Nº	Наименование функции	Настройки	По умолчанию
P9.18	Распределение нагрузки	0,00÷10,00 Гц	0,00 Гц

ПРИМЕЧАНИЯ

- Функция применяется в случае, когда несколько инверторов работают на одинаковую нагрузку.
 Путем установки данной функции мощность может распределяться равномерно, когда много инверторов дают одинаковую нагрузку.
- Когда ток нагрузки инвертора > 50 %, инвертор соответственно автоматически снизит выходную
 частоту в соответствии с параметрами, установленными посредством функции для снижения определенной нагрузки. Когда ток нагрузки составляет ≤ 50 %, инвертор прекращает снижение частоты.
 Если ток нагрузки постоянно выше 50 %, то выходная частота будет снижена до установленного
 значения (Р9.18).

РЕКОМЕНДАЦИЯ

Когда компенсация скольжения и контроль статизма по частоте не будут эффективны при одновременной работе, компенсация скольжения будет иметь больший приоритет.

Рисунок 5.42 - Характеристика контроля статизма по частоте

Р9.19 ИСТОЧНИК ЗНАЧЕНИЯ СМЕЩЕНИЯ ВЫХОДНОГО НАПРЯЖЕНИЯ

Nº	Наименование функции	Настройки	По умолчанию
P9.19	Источник значения смещения выходного	0÷5	0
	напряжения		

0: Цифровая установка

1: Bxog Al1

3: Вход AI2

2: Резерв

4: Выходной импульсный сигнал

5: MODBUS

Р9.20 СМЕЩЕНИЕ ВЫХОДНОГО НАПРЯЖЕНИЯ

Nº	Наименование функции	Настройки	По умолчанию
P9.20	Смещение выходного напряжения	0,0÷100,0 %	0,0 %

ПРИМЕЧАНИЕ

В режиме разделения напряжения/частоты фактическое выходное напряжение представляет собой установленное значение отклонения выходного напряжения (100 % соответствуют максимальному выходному напряжению).

РЕКОМЕНДАЦИЯ

Функция является действенной только в режиме раздела напряжения/частоты.

Р9.21 КОЭФФИЦИЕНТ ГАШЕНИЯ КОЛЕБАНИЙ

Nº	Наименование функции	Настройки	По умолчанию
P9.21	Коэффициент гашения колебаний	0÷100	0

ПРИМЕЧАНИЯ

При отсутствии вибрации в работе двигателя установите значение коэффициента на О. Коэффициент можно соответственно увеличивать, только когда у двигателя наблюдается очевидная вибрация и он не может работать нормально. Чем больше коэффициент, тем сильнее подавляется вибрация двигателя. Руководствуясь предположением, что вибрация двигателя эффективно гасится, значение параметра должно быть как можно меньше во избежание снижения управляемости.

РА Параметры двигателя

• РА.00 ВЫБОР ДВИГАТЕЛЯ

Nº	Наименование функции	Настройки	По умолчанию
PA.00	Выбор двигателя	0, 1	0

0: Использование двигателя 1

1: Использование двигателя 2

ПРИМЕЧАНИЕ Вы можете установить код данной функции для переключения двигателей 1 и 2.

РЕКОМЕНДАЦИЯ

После выбора модели двигателя, если защита двигателя от перегрузки выполняется посредством внешнего датчика, вы должны установить Pd.01-Pd.04 соот-

ветственно.

PA.01 КОЛИЧЕСТВО ПОЛЮСОВ ДВИГАТЕЛЯ 1

Nº	Наименование функции	Настройки	По умолчанию
PA.01	Количество полюсов двигателя 1	2÷56	4

• РА.02 НОМИНАЛЬНАЯ МОЩНОСТЬ ДВИГАТЕЛЯ 1

Nº	Наименование функции	Настройки	По умолчанию
PA.02	Номинальная мощность двигателя 1	0,4÷999,9 кВт	в зависимости от модели

• РА.03 НОМИНАЛЬНАЯ СКОРОСТЬ ДВИГАТЕЛЯ 1

Nº	Наименование функции	Настройки	По умолчанию
PA.03	Номинальная скорость двигателя 1	0÷24000 об/мин	в зависимости от модели

РА.04 НОМИНАЛЬНЫЙ ТОК ДВИГАТЕЛЯ 1

Nº	Наименование функции	Настройки	По умолчанию
PA.04	Номинальный ток двигателя 1	0,1÷999,9 A	в зависимости от модели

ПРИМЕЧАНИЯ

- РА.01 РА.04 используются для установки параметров управляемого двигателя 1. Для обеспечения управляемости работы установите соответствующие значения согласно параметрам на табличке двигателя.
- Мощность двигателя должна совпадать с мощностью инвертора. Допускается, чтобы мощность двигателя была на 2 ступени ниже мощности инвертора или на одну ступень выше; в противном случае управляемость работы не будет обеспечена.

• РА.05 ТОК ХОЛОСТОГО ХОДА 10 ДВИГАТЕЛЯ 1

Nº	Наименование функции	Настройки	По умолчанию
PA.05	Ток холостого хода IO двигателя 1	0,1÷999,9 A	в зависимости от модели

РА.06 СОПРОТИВЛЕНИЕ ОБМОТКИ СТАТОРА ДВИГАТЕЛЯ 1

Nº	Наименование функции	Настройки	По умолчанию
PA.06	Сопротивление обмотки статора двигателя 1	0,001÷65,000 Ω	в зависимости от модели

• **РА.07** ИНДУКЦИЯ РАССЕЯНИЯ L1 ДВИГАТЕЛЯ 1

Nº	Наименование функции	Настройки	По умолчанию
PA.07	Индукция рассеяния L1 двигателя 1	0,1÷2000,0 мГн	в зависимости от модели

▶ РА.08 СОПРОТИВЛЕНИЕ В ЦЕПИ РОТОРА R2 ДВИГАТЕЛЯ 1

Nº	Наименование функции	Настройки	По умолчанию
PA.08	Сопротивление в цепи ротора R2 двигателя 1	0,001÷65,000 Ω	в зависимости от модели

• РА.09 ВЗАИМНОЕ КОНДУКТИВНОЕ СОПРОТИВЛЕНИЕ ІМ ДВИГАТЕЛЯ 1

Nº	Наименование функции	Настройки	По умолчанию
PA.09	Взаимное кондуктивное сопротивление Lm	0,1÷2000,0 мГн	в зависимости от модели
	двигателя 1		

• РА.10 КОЭФФИЦИЕНТ МАГНИТНОГО НАСЫЩЕНИЯ 1 ДВИГАТЕЛЯ 1

Nº	Наименование функции	Настройки	По умолчанию
PA.10	Коэффициент магнитного насыщения 1 двигателя 1	0,0÷100,0 %	в зависимости от модели

• РА.11 КОЭФФИЦИЕНТ МАГНИТНОГО НАСЫЩЕНИЯ 2 ДВИГАТЕЛЯ 1

Nº	Наименование функции	Настройки	По умолчанию
PA.11	Коэффициент магнитного насыщения 2 двигателя 1	0,0÷100,0 %	в зависимости от модели

• РА.12 КОЭФФИЦИЕНТ МАГНИТНОГО НАСЫЩЕНИЯ З ДВИГАТЕЛЯ 1

Nº	Наименование функции	Настройки	По умолчанию
PA.12	Коэффициент магнитного насыщения 3 двигателя 1	0,0÷100,0 %	в зависимости от модели

• РА.13 КОЭФФИЦИЕНТ МАГНИТНОГО НАСЫЩЕНИЯ 4 ДВИГАТЕЛЯ 1

Nº	Наименование функции	Настройки	По умолчанию
PA.13	Коэффициент магнитного насыщения 4 двигателя 1	0,0÷100,0 %	в зависимости от модели

• РА.14 КОЭФФИЦИЕНТ МАГНИТНОГО НАСЫЩЕНИЯ 5 ДВИГАТЕЛЯ 1

Nº	Наименование функции	Настройки	По умолчанию
PA.14	Коэффициент магнитного насыщения 5 двигателя 1	0,0÷100,0 %	в зависимости от модели

ПРИМЕЧАНИЯ

- Если параметры двигателя неизвестны, смотрите инструкцию по настройке параметров в PA.29. Если параметры известны, введите их в PA.05 — PA.09 соответственно.
- Коэффициенты магнитного насыщения настроятся автоматически в функции автоматической настройки двигателя и пользователям нет необходимости их настраивать.

• РА.15 КОЛИЧЕСТВО ПОЛЮСОВ ДВИГАТЕЛЯ 2

Nº	Наименование функции	Настройки	По умолчанию
PA.15	Количество полюсов двигателя 2	2÷56	4

РА.16 НОМИНАЛЬНАЯ МОЩНОСТЬ ДВИГАТЕЛЯ 2

Nº	Наименование функции	Настройки	По умолчанию
PA.16	Номинальная мощность двигателя 2	0,4÷999,9 кВт	в зависимости от модели

• РА.17 НОМИНАЛЬНАЯ СКОРОСТЬ ДВИГАТЕЛЯ 2

Nº	Наименование функции	Настройки	По умолчанию
PA.17	Номинальная скорость двигателя 2	0÷24000 об/мин	в зависимости от модели

• РА.18 НОМИНАЛЬНЫЙ ТОК ДВИГАТЕЛЯ 2

Nº	Наименование функции	Настройки	По умолчанию
PA.18	Номинальный ток двигателя 2	0,1÷999,9 A	в зависимости от модели

• РА.19 ТОК ХОЛОСТОГО ХОДА 10 ДВИГАТЕЛЯ 2

Nº	Наименование функции	Настройки	По умолчанию
PA.19	Ток холостого хода IO двигателя 2	0,1÷999,9 A	в зависимости от модели

• PA.20 СОПРОТИВЛЕНИЕ ОБМОТКИ СТАТОРА R1 ДВИГАТЕЛЯ 2

Nº	Наименование функции	Настройки	По умолчанию
PA.20	Сопротивление обмотки статора R1 двигателя 2	0,001÷65,000 Ω	в зависимости от модели

РА.21 ИНДУКЦИЯ РАССЕЯНИЯ L1 ДВИГАТЕЛЯ 2

Nº	Наименование функции	Настройки	По умолчанию
PA.21	Индукция рассеяния L1 двигателя 2	0,1÷2000,0 мГн	в зависимости от модели

РА.22 СОПРОТИВЛЕНИЕ В ЦЕПИ РОТОРА R2 ДВИГАТЕЛЯ 2

Nº	Наименование функции	Настройки	По умолчанию
PA.22	Сопротивление в цепи ротора R2 двигателя 2	0,001÷65,000 Ω	в зависимости от модели

• **РА.23** ВЗАИМНОЕ ИНДУКТИВНОЕ СОПРОТИВЛЕНИЕ Lm ДВИГАТЕЛЯ 2

Nº	Наименование функции	Настройки	По умолчанию
PA.23	Взаимное кондуктивное сопротивление Lm	0,1÷2000,0 мГн	в зависимости от модели
	двигателя 2		

• РА.24 КОЭФФИЦИЕНТ МАГНИТНОГО НАСЫЩЕНИЯ 1 ДВИГАТЕЛЯ 2

Nº	Наименование функции	Настройки	По умолчанию
PA.24	Коэффициент магнитного насыщения 1 двигателя 2	0,0÷100,0 %	в зависимости от модели

• РА.25 КОЭФФИЦИЕНТ МАГНИТНОГО НАСЫЩЕНИЯ 2 ДВИГАТЕЛЯ 2

Nº	Наименование функции	Настройки	По умолчанию
PA.25	Коэффициент магнитного насыщения 2 двигателя 2	0,0÷100,0 %	в зависимости от модели

• РА.26 КОЭФФИЦИЕНТ МАГНИТНОГО НАСЫЩЕНИЯ З ДВИГАТЕЛЯ 2

Nº	Наименование функции	Настройки	По умолчанию
PA.26	Коэффициент магнитного насыщения 3 двигателя 2	0,0÷100,0 %	в зависимости от модели

• РА.27 КОЭФФИЦИЕНТ МАГНИТНОГО НАСЫЩЕНИЯ 4 ДВИГАТЕЛЯ 2

Nº	Наименование функции	Настройки	По умолчанию
PA.27	Коэффициент магнитного насыщения 4 двигателя 2	0,0÷100,0 %	в зависимости от модели

• РА.28 КОЭФФИЦИЕНТ МАГНИТНОГО НАСЫЩЕНИЯ 5 ДВИГАТЕЛЯ 2

Nº	Наименование функции	Настройки	По умолчанию
PA.28	Коэффициент магнитного насыщения 5 двигателя 2	0,0 %÷100,0 %	в зависимости от модели

ПРИМЕЧАНИЕ

Подробные настройки параметров двигателя 2 являются такими же, как и настройки для двигателя 1. Настройки становятся действительными после того, как функция PA.00 настроена на значение 2.

• РА.29 АВТОМАТИЧЕСКАЯ НАСТРОЙКА ДВИГАТЕЛЯ

Nº	Наименование функции	Настройки	По умолчанию
PA.29	Регулировка параметров двигателя	0÷2	0

0: Отключено

1: Статичная настройка

2: Настройка с вращением

ПРИМЕЧАНИЯ

- Статическая настройка применяется, когда двигатель и нагрузку невозможно разъединить, и вращение ротора недопустимо. Когда код функции настроен и дана команда «ХОД» (RUN), частотный преобразователь настроит параметры PA.06 – PA.08 / PA.20 – PA.22 автоматически.
- РА.05, РА.09 / РА.19 и РА.23 должны быть настроены в ручном режиме в соответствии со стандартными параметрами двигателя.
- Настройка с вращением применяется для полной настройки всех параметров двигателя. При использовании векторного режима управления данный тип автонастройки предпочтителен. При старте автонастройки будет происходить вращение ротора двигателя.

РЕКОМЕНДАЦИИ

- Перед выполнением автонастройки следует ввести правильные параметры, указанные на информационной табличке управляемого двигателя (РА.01 РА.04, РА.15 РА.18).
- При настройке с вращением необходимо отключить двигатель от нагрузки. Недопустимо производить настройку двигателя при подключенной нагрузке.
- 3. Перед выполнением автонастройки следует убедиться, что двигатель остановлен. В противном случае настройка будет произведена некорректно.
- После выполнения автонастройки (включая неправильное завершение) функция РА.29 автоматически настраивается на 0.
- Во время произведения настройки параметра на дисплей будет выведена индикация «- At-».
 Если настройка произведена некорректно, на рабочей панели будет выведена индикация «AtE».

ПРИМЕЧАНИЯ

Во время выполнения статической настройки метод расчета тока холостого хода двигателя и взаимной индукции указан в виде следующей формулы, где L- это индукция рассеяния, IO- это ток холостого хода, Lm- это взаимная индукция, $\eta-$ это эффективность, I- это номинальный ток, U- это номинальное напряжение, и f- это основная частота двигателя.

Ток холостого хода: $10=1 \cdot \sqrt{(1+\eta^2)}$

Расчет взаимной индукции: $L_m=U/(I_0 • 2\pi f\sqrt{3})-L$

Специальные значения вышеуказанных параметров двигателя указаны на рисунке 5.43.

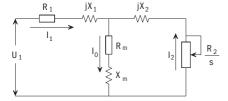


Рисунок 5.43 - Принципиальная эквивалентная схема обмотки асинхронного двигателя

На рисунке $5.43~R_1$, X_1 , R_2 , X_2 , X_m и I_0 соответственно обозначают сопротивление цепи статора, индуктивное сопротивление индукции рассеяния цепи статора, сопротивление ротора, индуктивное сопротивление индукции рассеяния ротора, сопротивление взаимной индукции и ток холостого хода.

Pb MODBUS

Инверторы данной модификации могут осуществлять коммуникационный интерфейс посредством протокола коммуникации MODBUS и через программируемый логический контроллер (ПЛК). Сеть MODBUS состоит из задающего контроллера (ПЛК) и исполнительных элементов 1-31 (инверторов). Обмен сообщениями между ПЛК и инверторами всегда инициируется ПЛК, а инвертор, который получает сообщение от ПЛК, выполняет функцию и направляет ответ ПЛК.

- Коммуникационный интерфейс спецификации: RS-485.
- Способ синхронизации: полудуплексная передача, асинхронная передача.
- Параметры передачи:
 - Скорость передачи данных: выбор из 1200, 2400, 4800, 9600, 19200, 38400 бит/сек. (параметр Pb.00).
 - Режим работы RTU: длина сигнала фиксирована на 8 бит, стоповый бит зафиксирован на 1 бит.
 - Режим работы ASCII: 7 бит данных и 8 бит данных опционально. 1 стоповый бит при активном паритетном контроле и 2 стоповых бита при неактивном паритетном контроле (Pb.02).
 - Паритетный контроль: выбор контроль четности / без контроля паритета / отрицательная четность (параметр Pb.02).
 - Протокол: в соответствии с MODBUS.
 - Максимальное количество подключаемых инверторов: 31 агрегат.
- Переданные/полученные данные через канал связи: включают рабочую команду, введенную частоту, содержание ошибки, состояние инвертирования и установки и считывание параметров функции. Параметры мониторинга, а также функции считывания и регистрации являются активными на момент запуска по умолчанию.

• РЬ.00 ВЫБОР СКОРОСТИ ПЕРЕДАЧИ ДАННЫХ

Nº	Наименование функции	Настройки	По умолчанию
Pb.00	Выбор скорости передачи данных	0÷5	3

0: 1200 бит/сек.

1: 2400 бит/сек.

2: 4800 бит/сек.

3: 9600 бит/сек.

4: 19200 бит/сек.

5: 38400 бит/сек.

Pb.01 АДРЕС ИНВЕРТОРА

Nº	Наименование функции	Настройки	По умолчанию
b.01	Адрес инвертора	0÷31	1

ПРИМЕЧАНИЕ

Адрес инвертора не может быть таким же, как адрес других управляемых элементов, подключенных к той же линии передачи.

Pb.02 ФОРМАТ ПЕРЕДАЧИ ДАННЫХ

Nº	Наименование функции	Настройки	По умолчанию
Pb.02	Формат передачи данных	0÷8	0

0: 1-8-1-E, RTU

1: 1-8-1-0, RTU

2: 1-8-1-N, RTU

3: 1-7-1-E, ASCII

4: 1-7-1-0, ASCII

5: 1-7-2-N, ASCII

6: 1-8-1-E, ASCII

7: 1-8-1-0, ASCII

3÷8: Резерв

8: 1-8-2-N, ASCII

Pb.03 ВРЕМЯ ОПРЕДЕЛЕНИЯ ПЕРИОДА ОЖИДАНИЯ ПЕРЕДАЧИ ДАННЫХ

Nº	Наименование функции	Настройки	По умолчанию
Pb.03	Время определения периода ожидания передачи	0÷100,0 c	0,0 c
	данных		

ПРИМЕЧАНИЯ

- 0: без проверки периода ожидания.
- Не 0: проверка периода ожидания. Система будет проверять состояние передачи данных в интервале со значением установки Pb.O3. Если не происходит нормального отправления или получения данных, система передаст отчет о неисправности передачи данных (EFO) и остановит оборудование; сообщение о неисправности удаляется в ручном режиме.

РЕКОМЕНДАЦИЯ

Если во время проверки периода ожидания происходит получение только аномальных данных, эти данные не будут использоваться в качестве базовых данных в процессе передачи данных, и в этом случае будет выведена индикация о неисправности.

Pb.04 BPEMЯ ЗАДЕРЖКИ ОТВЕТА

Nº	Наименование функции	Настройки	По умолчанию
Pb.04	Время задержки ответа	0÷500 мс	5 мс

ПРИМЕЧАНИЕ

Этот аспект относится ко времени с момента получения инвертором команды от центрального ЭВМ и до возвращения ответа на эту команду.

Pb.06 BЫБОР СОХРАНЕНИЯ В ЕЕРКОМ

Nº	Наименование функции	Настройки	По умолчанию
Pb.06	Выбор сохранения в EEPROM	0, 1	0

0: Без прямого сохранения в EEPROM

1: Прямое сохранение в EEPROM

ПРИМЕЧАНИЕ

Данный код функции используется для выбора сохранения данных MODBUS в EEPROM. Если выполнена настройка pb.06 на 1, то параметры, которые были изменены интерфейсом MODBUS, будут напрямую сохранены в EEPROM. Вместе с тем, если значение Pb.06 настроено на 0, то измененные параметры не будут напрямую сохранены в EEPROM, но они сохранятся в ОЗУ и будут утрачены при отключении питания. Другим способом сохранения данных в EEPROM является прописывание адреса MODBUS в соответствии с измененным параметром в 0х00FF, и тогда данные будут сохранены в EEPROM путем клавиши ввода ("ENTER") для сохранения данных.

ВНИМАНИЕ

Прописывание или удаление EEPROM часто укорачивает срок службы EEPROM. Некоторые параметры необязательно сохранять в режиме передачи данных, достаточно лишь проверить значение ОЗУ (RAM). В таком случае сделайте установку Pb.06 = 0.

Рb.07 ССЕ6. УСТРАНЕНИЕ НЕИСПРАВНОСТЕЙ

Nº	Наименование функции	Настройки	По умолчанию
Pb.07	ССF6, устранение неисправностей	0, 1	0

0: Возобновление без отчета о неисправности

1: Направление отчета о неисправности и остановка

ПРИМЕЧАНИЕ

Данный код функции используется для принятия решения о том, инициировать отчет о неисправности или нет. Когда значение равно 1, то при возникновении сообщения о неисправности будет выведено сообщение ССF6, и инвертор остановится в соответствии с установкой режима остановки; когда значение равно 0, отчет о неисправности не отправляется и инвертор продолжает работать.

Pb.08 УПРАВЛЕНИЕ СРАБАТЫВАНИЕМ ОТВЕТА

Nº	Наименование функции	Настройки	По умолчанию
Pb.08	Управление срабатыванием ответа	0, 1	0

0: Нормальный ответ

1: Без ответа при прописывании инструкции

ПРИМЕЧАНИЕ

Когда код данной функции настроен на 1, срабатывания ответа не будет, если инвертор получил прописанную инструкцию. Если инвертор получил другую инструкцию, то ответ срабатывает.

РС Управление дисплеем

PC.01 ВЫХОДНАЯ ЧАСТОТА (ГЦ) (ДО КОМПЕНСАЦИИ)

Nº	Наименование функции	Настройки	По умолчанию
PC.01	Выходная частота (Гц) (до компенсации)	0, 1	1

РС.02 ВЫХОДНАЯ ЧАСТОТА (ГЦ) (ФАКТИЧЕСКАЯ)

Nº	Наименование функции	Настройки	По умолчанию
PC.02	Выходная частота (Гц) (фактическая)	0, 1	0

0: Без вывода на дисплей

1: С выводом на дисплей

ПРИМЕЧАНИЯ

- Когда значение РС.01 установлено на 1, выходная частота до компенсации будет выводиться
 на дисплей в состоянии текущего контроля, и световой индикатор будет указывать единицы
 измерения в Гц; если же значение настроено на 0, то выходная частота до компенсации и единица
 измерения не будут выводиться на дисплей.
- Когда значение РС.02 установлено на 1, то фактическое значение выходной частоты будет выведено
 на дисплей в состоянии текущего контроля, и единицей измерения будет Гц; если значение установлено на 0, то объект не будет выведен на дисплей.

PC.03 ВЫХОДНОЙ ТОК (А)

Nº	Наименование функции	Настройки	По умолчанию
PC.03	Выходной ток (А)	0, 1	1

0: Без вывода на дисплей

1: С выводом на дисплей

ПРИМЕЧАНИЕ

Когда значение PC.03 установлено на 1, выходной ток будет выводиться на дисплей в состоянии текущего контроля, и единицей измерения будет А. Если же значение настроено на 0, то объект не будет выведен на дисплей.

РС.04 УСТАНОВКА ЧАСТОТЫ (ГЦ, МЕРЦАНИЕ)

Nº	Наименование функции	Настройки	По умолчанию
PC.04	Установка частоты (Гц, мерцание)	0, 1	1

0: Без вывода на дисплей

1: С выводом на дисплей

ПРИМЕЧАНИЕ

Значение PC.04 может быть настроено на 1. Переключение на данный объект под наблюдением осуществляется посредством нажатия «>>». Когда целевой объект выбран, единица измерения выводится на дисплей в Гц и мерцает. Если значение P0.03 настроено на 1, то частота может быть настроена посредством кнопки на клавишной панели. Если значение P0.17 настроено на 0, то диапазон настройки может составлять от 0,01 Гц до 0,1 Гц, даже до максимального значения в 1 Гц для быстрого увеличения частоты посредством постоянного вращения регулятора. Для более подробной информации смотрите функцию P0.17.

РС.05 РАБОЧАЯ СКОРОСТЬ (ОБ/МИН)

Nº	Наименование функции	Настройки	По умолчанию
PC.05	Рабочая скорость (об/мин)	0, 1	1

• РС.06 УСТАНОВКА СКОРОСТИ (ОБ/МИН, МЕРЦАНИЕ)

Nº	Наименование функции	Настройки	По умолчанию
PC.06	Установка скорости (об/мин, мерцание)	0, 1	0

0: Без вывода на дисплей

1: С выводом на дисплей

- Когда значение РС.05 настроено на 1, то рабочая скорость вращения будет выведена на дисплей в состоянии текущего контроля и единицей измерения будет об/мин. Если значение настроено на 0, то объект не будет выведен на дисплей.
- Когда значение PC.06 настроено на 1, то установка скорости вращения будет выведена на дисплей в состоянии текущего контроля и единицей измерения будет об/мин с мерцанием.
- При значении PC.06 = 1, когда пользователь переключает на PC.05 или PC.06 нажатием клавиши «>>»: если это обычная операция и значение P0.03 настроено на 1 (цифровая установка посредством клавиатуры), то скорость вращения может быть настроена в режиме онлайн посредством вращения регулятора на панели, и соответствующее значение частоты будет сохранено в P0.02 после нажатия кнопки ввода «ENTER»; если это операция ПИД-регулирования, значение P7.00 настроено на 0 и значение P7.03 настроено на 0 (PG или однофазный входной сигнал измерения скорости), то заданные параметры ПИД-регулирования скорости могут быть настроены в режиме онлайн и сохранены в P7.08 после нажатия клавиши ввода (ENTER); если значение P7.03 не настроено на 0 (PG или однофазный входной сигнал измерения скорости), то параметр нельзя настроить. Значение PC.06 будет выведено на дисплей во время настройки в режиме онлайн. По окончании настройки объект в состоянии до настройки выводится на дисплей.

РС.07 ЛИНЕЙНАЯ РАБОЧАЯ СКОРОСТЬ (M/C)

Nº	Наименование функции	Настройки	По умолчанию
PC.07	Линейная рабочая скорость (м/с)	0, 1	0

• РС.08 УСТАНОВКА ЛИНЕЙНОЙ СКОРОСТИ (М/С, МЕРЦАНИЕ)

Nº	Наименование функции	Настройки	По умолчанию
C.08	Установка линейной скорости (м/с, мерцание)	0, 1	0

0: Без вывода на дисплей

1: С выводом на дисплей

ПРИМЕЧАНИЯ

- Когда значение РС.07 настроено на 1, линейная рабочая скорость будет выведена на дисплей в состоянии текущего контроля, и единицей измерения будет м/с (горит световой индикатор м/с).
 Если значение настроено на 0, то объект не будет выведен на дисплей.
- Когда значение PC.08 настроено на 1, установка линейной скорости будет выведена на дисплей в состоянии текущего контроля, и единицей измерения будет м/с (световой индикатор м/с горит и мерцает) (объект нельзя настроить в режиме онлайн).

РС.09 ВЫХОДНАЯ МОЩНОСТЬ (кВт)

Nº	Наименование функции	Настройки	По умолчанию
PC.09	Выходная мощность (кВт)	0, 1	0

0: Без вывода на дисплей

1: С выводом на дисплей

ПРИМЕЧАНИЕ

Когда значение PC.09 настроено на 1, выходная мощность (единицы измерения на дисплей не выводятся) будет выведена на дисплей в состоянии текущего контроля. Если значение настроено на 0, то объект не будет выведен на дисплей.

• РС.10 ВЫХОДНОЙ КРУТЯЩИЙ МОМЕНТ (%)

Nº	Наименование функции	Настройки	По умолчанию
PC.10	Выходной крутящий момент (%)	0, 1	0

0: Без вывода на дисплей

1: С выводом на дисплей

ПРИМЕЧАНИЕ

Если значение PC.10 настроено на 1, выходной крутящий момент будет выведен на дисплей в состоянии текущего контроля и единицей измерения будет «%». Если значение PC.10 настроено на 0, выходной крутящий момент не будет выведен на дисплей.

РС.11 ВЫХОДНОЕ НАПРЯЖЕНИЕ (В)

Nº	Наименование функции	Настройки	По умолчанию
PC.11	Выходное напряжение (В)	0, 1	1

PC.12 НАПРЯЖЕНИЕ ШИНЫ (В)

Nº	Наименование функции	Настройки	По умолчанию
PC.12	Напряжение шины (В)	0, 1	0

0: Без вывода на дисплей

1: С выводом на дисплей

ПРИМЕЧАНИЯ

- Если значение PC.11 настроено на 1, то выходное напряжение будет выведено на дисплей в состоянии текущего контроля, и загорится индикатор единицы измерения «В» ("V"). Если значение настроено на 0, то выходное напряжение не будет выведено на дисплей.
- Если значение PC.12 настроено на 1, то напряжение шины будет выведено на дисплей в состоянии текущего контроля, и загорится индикатор единицы измерения «В» ("V"). Если значение настроено на 0, то напряжение шины не будет выведено на дисплей.

PC.13 И PC.14 AI1 (V) И AI2 (V)

Nº	Наименование функции	Настройки	По умолчанию
PC.13	AI1 (V)	0, 1	0
PC.14	AI2 (V)	0, 1	0

0: Без вывода на дисплей

1: С выводом на дисплей

ПРИМЕЧАНИЕ

Если значение РС.13 настроено на 1, то выходной аналоговый сигнал напряжения Al1 будет выведен на дисплей в состоянии текущего контроля, и загорится индикатор единицы измерения «В» ("V"). Если значение настроено на 0, то выходной аналоговый сигнал напряжения не будет выведен на дисплей.

• РС.16 АНАЛОГОВЫЙ СИГНАЛ ОБРАТНОЙ СВЯЗИ ПИД (%)

Nº	Наименование функции	Настройки	По умолчанию
PC.16	Аналоговый сигнал обратной связи ПИД (%)	0, 1	0

РС.17 ПОДАЧА АНАЛОГОВОГО СИГНАЛА ПИД (%. МЕРЦАНИЕ)

Nº	Наименование функции	Настройки	По умолчанию
PC.17	Подача аналогового сигнала ПИД (%, мерцание)	0, 1	0

0: Без вывода на дисплей

1: С выводом на дисплей

ПРИМЕЧАНИЯ

- Аналоговый сигнал установки/обратной связи ПИД: процентное содержание физической величины, соответствующее значению аналогового сигнала × диапазон измерения замкнутого контура.
- Когда значение РС.16 настроено на 1, установка аналогового сигнала ПИД будет выведена на дисплей в состоянии текущего контроля без указания единицы измерения. Если значение настроено на 0, то объект не будет выведен на дисплей.
- Когда значение РС.17 настроено на 1, установка аналогового сигнала ПИД будет выведена на
 дисплей в состоянии текущего контроля. Когда значение Р7.00 настроено на 0 и Р7.08 не настроено
 на 0, установка аналогового сигнала может быть настроена в режиме онлайн при переключении
 на РС.16 или РС.17 нажатием регистровой клавиши «>>», и новое установленное значение будет
 сохранено в Р7.06 после нажатия кнопки ввода (ENTER). Во время настройки в режиме онлайн
 на дисплей будет выведено значение РС.17. Объект в состоянии до настройки будет выведен
 на дисплей после настройки.

• РС.18 ЗНАЧЕНИЕ ВНЕШНЕГО СЧЕТЧИКА (БЕЗ УКАЗАНИЯ ЕДИНИЦ ИЗМЕРЕНИЯ)

Nº	Наименование функции	Настройки	По умолчанию
PC.18	Значение внешнего счетчика (без указания единиц	0, 1	0
	измерения)		

0: Без вывода на дисплей

1: С выводом на дисплей

ПРИМЕЧАНИЕ

Если значение PC.18 настроено на 1, значение внешнего счетчика будет выведено на дисплей в состоянии текущего контроля, и все индикаторы будут отключены. Если значение настроено на 0, значение внешнего счетчика не будет выведено на дисплей.

• РС.19 СОСТОЯНИЕ ВХОДОВ И ВЫХОДОВ (БЕЗ ЕДИНИЦЫ ИЗМЕРЕНИЯ)

Nº	Наименование функции	Настройки	По умолчанию
PC.19	Состояние контактной панели (без единицы	0, 1	0
	измерения)		

0: Без вывода на дисплей

1: С выводом на дисплей

- Когда значение РС.19 настроено на 1, состояние контактной панели будет выведено на дисплей.
 Если значение настроено на 0, то объект не будет выведен на дисплей.
- Информация о состоянии контактной панели включает в себя состояние многофункциональных контактных панелей X1 — X6, двусторонних выходных контактных панелей открытого коллектора D0 и реле выходного сигнала 1. Состояние функциональных контактных панелей указано индикатором

ВКЛ./ВЫКЛ. (ON/OFF) соответствующего сегмента светодиодной лампы. Если сегмент светодиодной лампы включен, это означает, что состояние соответствующей контактной панели активное; если сегмент выключен, это означает, что состояние неактивное. Для облегчения обзора предусмотрены четыре постоянно включенных сегмента, как указано на рисунке 5.44,

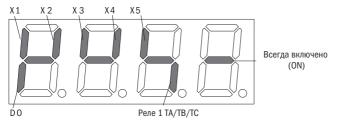


Рисунок 5.44 - Индикация состояния контактной панели

• РС.21 ВЫБОР ИНДИКАЦИИ ВКЛЮЧЕНИЯ ПИТАНИЯ

Nº	Наименование функции	Настройки	По умолчанию
PC.21	Выбор индикации включения питания	1÷20	1

ПРИМЕЧАНИЯ

- РС.21, выбор индикации запуска: код функции используется для настройки предыдущей индикации параметра при запуске. Значения уставок 1÷20 соответствуют PC.01 — PC.20. Когда установка выбранной индикации с выведенным параметром настроена на 0 (не выводится на дисплей), система будет совершать поиск в обратном направлении от текущего параметра, пока не найдет параметр, установка которого не равна 0, с выводом на дисплей соответствующего значения. Поиск будет совершаться по возрастанию и возвратится к PC.01 по достижении PC.20.
- Индикация установки приоритета здесь ограничивается только параметрами РС.01 РС.20 и активна только на момент запуска. При индикации неисправности, предупреждения или сообщения CALL параметры будут выводиться на дисплей в соответствии с оригинальным порядком приоритетности, а текущий приоритет вывода параметров на дисплей будет неактивен.

• РС.22 КОЭФФИЦИЕНТ ИНДИКАЦИИ СКОРОСТИ

Nº	Наименование функции	Настройки	По умолчанию
C.22	Коэффициент индикации скорости	0,1÷999,9 %	100,0 %

- РС.22 (коэффициент индикации скорости) используется для корректировки отклонений выведенной на дисплей скорости вращения и не влияет на фактическую скорость.
- Скорость механического вращения = установленная фактическая скорость вращения * PC.22 (PG)
- Скорость механического вращения = 120 * частота хода / количество полюсов двигателя * РС.22 (без PG)
- Установка скорости вращения = скорость вращения в соответствии с ПИД * РС.22 (РG)
- Установка скорости вращения = 120 * установка частоты / количество полюсов двигателя * РС.22 (без PG)

РС.23 КОЭФФИЦИЕНТ ЛИНЕЙНОЙ СКОРОСТИ

Nº	Наименование функции	Настройки	По умолчанию
PC.23	Коэффициент линейной скорости	0,1÷999,9 %	100,0 %

ПРИМЕЧАНИЯ

- РС.23, коэффициент линейной скорости: используется для проверки и корректировки ошибки индикации линейной скорости и не влияет на фактическую скорость вращения.
- Линейная скорость = частота хода * PC.23 (без PG).
- Линейная скорость = скорость механического вращения * PC.23 (PG).
- Установка линейной скорости = установка частоты* PC.23 (без PG).
- Установка линейной скорости = установка скорости * PC.23 (PG).

РЕКОМЕНДАЦИИ

Перечень индикации:

- Линейная скорость и установка: 0,000÷65,53 м/с.
- Выходной крутящий момент: 0÷300,0 %.
- Напряжение шин: 0÷1000 В.
- Значение внешнего счетчика: 0÷65530.
- Выходная мощность: 0÷999,9 кВт.
- Выходное напряжение: 0.00÷10.00 В.

Pd Параметры защиты и неисправности

Pd.00
 ВЫБОР РЕЖИМА ЗАШИТЫ ДВИГАТЕЛЯ ОТ ПЕРЕГРУЗКИ

Nº	Наименование функции	Настройки	По умолчанию
Pd.00	Выбор режима защиты двигателя от перегрузки	0÷3	1

0: Нет защиты

- 1: Типовой двигатель (с компенсацией низкой скорости оборотов)
- 2: Двигатель переменного тока с частотным регулированием (без компенсации низкой скорости)
- 3: Датчик защиты (моментальная защита при превышении установленного порога)

- Нет защиты: при выборе значения 0 у инвертора нет защиты от перегрузки нагруженного двигателя, таким образом, это значение необходимо выбирать осмотрительно.
- Типовой двигатель (с компенсацией низкой скорости оборотов)
 Ввиду того, что вентилятор типового двигателя установлен на валу ротора двигателя и вращается медленно при низкой скорости, происходит малое выделение тепла, и требуемое значение электронной тепловой защиты будет настраиваться соответствующим образом, например, пороговое значение защиты от перегрузки двигателя с рабочей частотой ниже 30 Гц будет снижено.
- Двигатель переменного тока с частотным регулированием (без компенсации при низкой скорости)
 Ввиду того, что на валу ротора двигателя переменного тока не установлен вентилятор, скорость вращения не повлияет на распространение тепла от вентилятора, и установку защиты, в случае работы при низкой скорости, не надо настраивать.

Датчик защиты (моментальная защита при превышении установленного порога)
 Выполняется функция защиты внешнего теплового реле двигателя.
 Пороговые значения для двигателя 1 и двигателя 2 установлены посредством Pd.01 и Pd.03.
 Канал датчика настроен посредством Pd.02 и Pd.04.

Pd.01 ПОРОГ ЗАЩИТЫ ДВИГАТЕЛЯ 1

Nº	Наименование функции	Настройки	По умолчанию
Pd.01	Порог защиты двигателя 1	0,0÷10,0 B	10,0 B

Pd.02 BXOДНОЙ КАНАЛ ДАТЧИКА ЗАЩИТЫ ДВИГАТЕЛЯ 1

Nº	Наименование функции	Настройки	По умолчанию
Pd.02	Входной канал датчика защиты двигателя 1	0÷4	0

Pd.03 ПОРОГ ЗАЩИТЫ ДВИГАТЕЛЯ 2

Nº	Наименование функции	Настройки	По умолчанию
Pd.03	Порог защиты двигателя 2	0,0÷10,0 B	10,0 B

• Pd.04 ВХОДНОЙ КАНАЛ ДАТЧИКА ЗАЩИТЫ ДВИГАТЕЛЯ 2

Nº	Наименование функции	Настройки	По умолчанию
Pd.04	Входной канал датчика защиты двигателя 2	0÷4	0

0: Bxoд AI1

1: Вход AI2

2: Резерв

3: Входной импульсный сигнал

4: Установка интерфейса

• Pd.05 ПАРАМЕТР ЗАЩИТЫ ЭЛЕКТРОННОГО ТЕПЛОВОГО РЕЛЕ

Nº	Наименование функции	Настройки	По умолчанию
Pd.05	Параметр защиты электронного теплового реле	20÷110 %	100 %

ПРИМЕЧАНИЕ

Для эффективного применения защиты от перегрузки в различных видах двигателей максимальный выходной ток инвертора должен быть настроен в соответствии с рисунком 5.45.

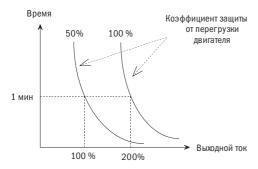


Рисунок 5.45 - Кривая защиты двигателя от перегрузки

Настройка может быть определена в соответствии со следующей формулой:

Для двигателя с большей теплостойкостью значение можно немного увеличить (например, на 10 %); для двигателя с меньшей теплостойкостью значение можно немного уменьшить.

РЕКОМЕНДАЦИЯ

Когда номинальный ток двигателя не совпадает с номинальным током инвертора, двигатель можно эффективно защищать посредством настройки значения Pd.05. Когда защита действует, ШИМ-сигнал будет блокирован и будет введен отчет об ошибке Ol.1.

Pd.06 УРОВЕНЬ ДЕТЕКТИРОВАНИЯ ПРЕДАВАРИЙНОЙ СИГНАЛИЗАЦИИ ПЕРЕГРУЗКИ

Nº	Наименование функции	Настройки	По умолчанию
Pd.06	Уровень детектирования предаварийной сигнали-	20,0÷200,0 %	160,0 %
	зации перегрузки		

• Pd.07 ВРЕМЯ ДЕТЕКТИРОВАНИЯ ПРЕДАВАРИЙНОЙ СИГНАЛИЗАЦИИ ПЕРЕГРУЗКИ

Nº	Наименование функции	Настройки	По умолчанию
Pd.07	Время детектирования предаварийной сигнали-	0,0÷60,0 c	60,0 c
	зации перегрузки		

- Уровень детектирования предаварийной сигнализации перегрузки (Рd.06) определяет текущее пороговое значение действия предаварийной сигнализации перегрузки. Значение установки соответствует процентному значению номинального тока инвертора.
- Время детектирования предаварийной сигнализации (Pd.07) определяет, что предаварийная сигнализация перегрузки OLP2 будет выдана после того, как выходной ток инвертора превысит уровень детектирования перегрузки (Pd.06) на определенное время и будет держаться постоянно в течение этого времени.
- Действующее состояние предаварийной сигнализации перегрузки означает, что действующий ток инвертора превышает уровень детектирования перегрузки, и время действия превышает время детектирования перегрузки.

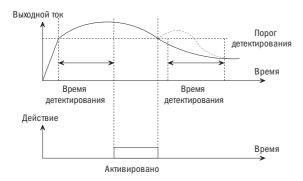


Рисунок 5.46 - Функция предаварийной сигнализации перегрузки

РЕКОМЕНДАЦИИ

- Для настройки уровня/времени детектирования предаварийной сигнализации перегрузки, как правило, необходимо обеспечить, чтобы предаварийная сигнализация срабатывала раньше, чем сработает защита от перегрузки инвертора.
- 2. В течение периода времени детектирования предаварийной сигнализации перегрузки, если значение рабочего тока ниже уровня детектирования предаварийной сигнализации перегрузки, то время детектирования предаварийной сигнализации внутри инвертора сбрасывается.

Pd.08 ОГРАНИЧЕНИЕ АМПЛИТУДЫ ТОКА

Nº	Наименование функции	Настройки	По умолчанию
Pd.08	Ограничение амплитуды тока	0÷3	1

0: Недействительно

1: Действует во время ускорения и торможения и не действует во время постоянной работы на скорости

2: Действует всегда

3: Уменьшение рабочей скорости во время действия сверхтоков

Pd.09 УРОВЕНЬ ОГРАНИЧЕНИЯ АМПЛИТУДЫ ТОКА

Nº	Наименование функции	Настройки	По умолчанию
Pd.09	Уровень ограничения амплитуды тока	30÷180 %	160 %

- Когда инвертор работает в режиме ускорения/торможения или при постоянной скорости, может случиться быстрый скачок тока вверх по причине несоответствия времени ускорения/торможения и инерции двигателя или изменение момента нагрузки. Когда значение Pd.08 настроено на 1, 2 или 3, то для контроля выходного тока входная частота инвертора может быть настроена автоматически.
- Когда значение настроено на 1 или 2, если значение выходного тока достигнет предельного уровня Pd.09 во время ускорения/торможения, то выходная частота инвертора не изменится до того момента, пока ток не восстановится до своего нормального параметра, и в итоге будет контролировать. чтобы выходной ток не превышал значения Pd.09.

- В случае работы при стабильной скорости, если значение Pd.08 установлено на 2, когда значение
 тока достигнет предельного уровня Pd.09, инвертор снизит выходную частоту в соответствии со временем торможения 4 и восстановит изначально настроенный режим работы после снижения тока.
 Если значение Pd.08 установлено на 1, то выходная частота инвертора не изменится.
- Если значение Pd.08 установлено на 3, то, когда значение тока достигнет предельного уровня Pd.09 и будет удерживаться в течение периода времени, установленного посредством Pd.20, инвертор снизит выходную частоту в соответствии с временем торможения 4 и восстановит начальное рабочее состояние после снижения тока.
- Во время процесса торможения, если инвертор находится в состоянии предельного значения тока дольше 1 минуты, будет выдан сигнал перегрузки инвертора OL2, и двигатель будет двигаться по инерции до остановки; или же двукратным нажатием кнопки «СТОП/СБРОС» (STOP/RESET) (с интервалом не менее 2 сек) будет выдан сигнал инвертора OL2, и двигатель будет останавливаться по инерции.

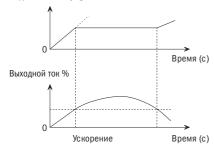


Рисунок 5.47 - Ускорение

Выходная частота (Гц)

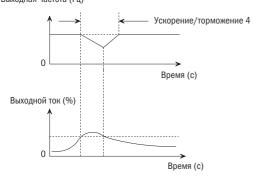


Рисунок 5.48 - Работа при постоянной скорости

Рd.10 ЗАЩИТА ОТ ОПРОКИДЫВАНИИ ПРИ НАПРЯЖЕНИИИ

Nº	Наименование функции	Настройки	По умолчанию
Pd.10	Выбор тока остановки от перенапряжения	0, 1	1

0: Запрещено (рекомендуется при использовании тормозного резистора)

1: Разрешено

Pd.11 ТОЧКА ОСТАНОВКИ ПРИ ПЕРЕНАПРЯЖЕНИИ

Nº	Наименование функции	Настройки	По умолчанию
Pd.11	Точка остановки при перенапряжении	110,0÷150,0 %	380 B: 140 %
		Напряжение шины	

- Напряжение шины приблизительно равно значению входного напряжения, умноженному на 1.414.
 Для инвертора с выходным напряжением в 380 В значение по умолчанию для Pd.11 составляет 140 % (около 752 В).
- Точка напряжения динамического торможения также относится к параметру. Для инвертора с входным напряжением в 380 В напряжение динамического торможения будет на 52 В ниже значения точки остановки от перенапряжения (например, напряжение действия по умолчанию составляет 700 В).
- Во время торможения инвертора фактическое снижение номинальной скорости двигателя может быть ниже, чем значение выходной частоты инвертора. В данном случае двигатель подключен к сети питания и подает питание на инвертор, вследствие чего напряжение шины постоянного тока инвертора повысится. Если не предпринять соответствующие меры, произойдет сбой в работе по причине перенапряжения.
- Если значение Pd.10=1 является активным, то при повышении напряжения шины постоянного тока до определенного значения (≥Pd.11) во время торможения торможение будет приостановлено и выходная частота инвертора останется без изменения. Торможение не будет возобновлено до тех пор, пока не снизится напряжение постоянного тока шины.
- Когда инвертор находится в состоянии остановки по причине перенапряжения непрерывно в течение более 1 минуты, будет выдан сигнал повышения напряжения «Оu» и двигатель будет останавливаться по инерции; или же при нажатии кнопки «СТОП/СБРОС» (STOP/RESET) с последующим двойным нажатием кнопки «СТОП/СБРОС» (STOP/RESET) (с интервалом не менее 2 сек.) инвертор выдаст сигнал о перенапряжении, и двигатель остановится по инерции.

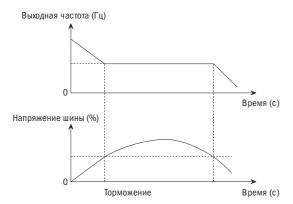


Рисунок 5.49 - Торможение

• Pd.12 КРИТЕРИЙ ПОТЕРИ ВХОДНОЙ ФАЗЫ

Nº	Наименование функции	Настройки	По умолчанию
Pd.12	Критерий потери входной фазы	1÷100 %	100 %

• Pd.13 ВРЕМЯ ОПРЕДЕЛЕНИЯ ПОТЕРИ ВХОДНОЙ ФАЗЫ

Nº	Наименование функции	Настройки	По умолчанию
Pd.13	Время определения потери входной фазы	2÷255 c	10 c

ПРИМЕЧАНИЕ

Посредством данной функции осуществляется определение обрыва входной фазы или существенный дисбаланс входного напряжения.

• Рd.14 КРИТЕРИЙ ОПРЕДЕЛЕНИЯ ПОТЕРИ ВЫХОДНОЙ ФАЗЫ

Nº	Наименование функции	Настройки	По умолчанию
Pd.14	Критерий определения потери выходной фазы	0÷100 %	1 %

Pd.15 ВРЕМЯ ОПРЕДЕЛЕНИЯ ПОТЕРИ ВЫХОДНОЙ ФАЗЫ

Nº	Наименование функции	Настройки	По умолчанию
Pd.15	Время определения выходной фазы	0,0÷20,0 c	2,0 c

ПРИМЕЧАНИЕ

Посредством данной функции осуществляется детектирование пропадания фазы входного сигнала или существенного дисбаланса трех фаз выходного сигнала с целью защиты инвертора.

Pd.17 ПРЕДУПРЕЖДЕНИЕ AE1, AE2

Nº	Наименование функции	Настройки	По умолчанию
Pd.17	ПРЕДУПРЕЖДЕНИЕ АЕ1, АЕ2	0, 1	0

0: Без индикации предупреждения

1: Индикация предупреждения

ПРИМЕЧАНИЕ

Посредством данной функции можно настроить индикацию сигнализации в случае выдачи аварийного аналогового сигнала; когда значение функции настроено на 1, если аналоговый сигнал 1 является аварийным, то выводится индикация сигнализации AE1, когда значение функции настроено на 0, то индикация сигнализации не выводится.

Pd.18 ВРЕМЯ АВТОМАТИЧЕСКОГО СБРОСА

Nº	Наименование функции	Настройки	По умолчанию
Pd.18	Время автоматического сброса	0÷10	0

Pd.19 ВРЕМЯ ИНТЕРВАЛА СБРОСА

Nº	Наименование функции	Настройки	По умолчанию
Pd.19	Время интервала сброса	2,0÷20,0 c	5,0 c

Pd.20 ЗАДЕРЖКА ПЕРЕД АВАРИЕЙ О ПРЕВЫШЕНИИ ТОКА

Nº	Наименование функции	Настройки	По умолчанию
Pd.20	ЗАДЕРЖКА ПРИ АВАРИИ ПРЕВЫШЕНИЯ ТОКА	0÷200 мс	50 мс

- Автоматический сброс можно произвести только для трех видов сигналов неисправности: ОС, Ои и GF.
- Три действующих сигнала неисправности можно сбросить автоматически в соответствии с установками времени (Pd.18) и времени интервала (Pd.19). В течение интервала сброса выходной сигнал блокируется, и инвертор работает на нулевой частоте. Инвертор запустится по окончании автоматического сброса сигналов. Когда значение Pd.18 настроено на 0, это означает, что функция автоматического сброса отсутствует и необходимо незамедлительно включить защиту.

РЕКОМЕНДАЦИЯ

Следует проявлять осторожность при использовании функции автоматического сброса, в противном случае возможно нанесение увечий персоналу или порча оборудования. Для сброса сигнала неисправности SC в ручном режиме необходимо 10 секунд времени ожидания.

• Pd.21 ЗАЩИТА РЕЖИМА РАБОТЫ ПРИ ПОДАЧЕ ПИТАНИЯ

Nº	Наименование функции	Настройки	По умолчанию
Pd.21	Защита режима работы при подаче питания	0, 1	0

0: Без защиты

1: С защитой

Pd.22 ЗАЩИТА РЕЖИМА РАБОТЫ ПОСЛЕ ПЕРЕКЛЮЧЕНИЯ ИСТОЧНИКА КОМАНД

Nº	Наименование функции	Настройки	По умолчанию
Pd.22	Защита режима работы после переключения	0, 1	0
	источника команд		

0: Продолжение работы

1: Остановка, перезапуск после получения новой команды хода

ПРИМЕЧАНИЯ

- Когда значение Pd.21 настроено на 1, защита режима работы при подаче питания неактивна.
 Защита рабочего режима инвертора активируется при подаче питания, если питание подается при действующей команде хода (RUN). Инвертор не будет работать до получения новой рабочей команды.
- Когда значение Pd.22 настроено на 1, инвертор в состоянии остановки не запустится сразу после переключения канала команды, пока не получит новую рабочую команду. Если во время работы инвертора переключается канал команды, то инвертор будет снижать скорость вращения до остановки. Инвертор перезапустится после получения новой рабочей команды.

• Pd.33 ПРОГРАММНОЕ ОГРАНИЧНИЕ ТОКА

Nº	Наименование функции	Настройки	По умолчанию
Pd.33	Программное ограничение тока	100,0÷300,0 %	в зависимости от модели

Pd.34 АППАРАТНОЕ ОГРАНИЧЕНИЕ ТОКА

Nº	Наименование функции	Настройки	По умолчанию
Pd.34	Аппаратное ограничение тока	0, 1	0

0: Запрещено

1: Разрешено

ПРИМЕЧАНИЯ

- Программное ограничение тока 100 % от номинального тока преобразователя.
- Аппаратное ограничение тока 230 % от номинального тока преобразователя. Зависит от мощности преобразователя.
- Программное ограничение тока работает медленнее, чем аппаратное, поэтому отключать аппаратное ограничение не рекомендуется.

РЕ Регистрация событий режима работы

РЕ.00 ВЫБОР ИНДИКАЦИИ НЕИСПРАВНОСТИ

Nº	Наименование функции	Настройки	По умолчанию
PE.00	Выбор индикации неисправности	0÷30	1

PE.01 ТИП НЕИСПРАВНОСТИ

Nº	Наименование функции	Настройки	По умолчанию
PE.01	Тип неисправности	таблица 5.6	NULL

• РЕ.02 ВЫХОДНАЯ ЧАСТОТА ПРИ НЕИСПРАВНОСТИ

Nº	Наименование функции	Настройки	По умолчанию
PE.02	Выходная частота при неисправности	0 — верхнее значение	0,00 Гц
		частоты	

• РЕ.03 НАСТРОЙКА ЧАСТОТЫ ПРИ НЕИСПРАВНОСТИ

Nº	Наименование функции	Настройки	По умолчанию
PE.03	Настройка частоты при неисправности	0 — верхнее значение	0,00 Гц
		частоты	

• РЕ.04 ВЫХОДНОЙ ТОК ПРИ НЕИСПРАВНОСТИ

Nº	Наименование функции	Настройки	По умолчанию
PE.04	Выходной ток при неисправности	0÷2 раза	0,0 A
		(номинальный ток)	

РЕ.05 НАПРЯЖЕНИЕ ШИНЫ ПРИ НЕИСПРАВНОСТИ

Nº	Наименование функции	Настройки	По умолчанию
PE.05	Напряжение шины при неисправности	0÷1000 B	0 B

РЕ.06 РАБОЧЕЕ СОСТОЯНИЕ ПРИ НЕИСПРАВНОСТИ

Nº	Наименование функции	Настройки	По умолчанию
PE.06	Рабочее состояние при неисправности	0÷3	StP

0: StP, остановка

1: Асс, ускорение

2: dEc, торможение

3: con, постоянная величина

РЕ.07 ОБШЕЕ ВРЕМЯ РАБОТЫ ПРИ НЕИСПРАВНОСТИ

Nº	Наименование функции	Настройки	По умолчанию
PE.07	Общее время работы при неисправности	0÷65530 ч	0

РЕ.08 IGBT. ТЕМПЕРАТУРА ПРИ НЕИСПРАВНОСТИ

Nº	Наименование функции	Настройки	По умолчанию
PE.08	IGBT, температура при неисправности	0,0÷200,0 °C	0,0 °C

ПРИМЕЧАНИЕ

Если инвертор дает сбой во время работы, то выход преобразователя будет сразу отключен и двигатель остановится, на дисплее будет гореть индикатор АВАРИЯ. Условия работы будут зарегистрированы в момент возникновения неисправности (включая значение выходной частоты, установки частоты, выходного тока, напряжения шины, рабочие условия, время работы перед неисправностью и т.д.). Главным образом, регистрируются последние 30 групп с информацией о неполадке. Можно выбрать специальную группу с информацией о неисправности для индикации в РЕ.01 — РЕ.08 путем настройки РЕ.00, установка 0 означает, что информация о неисправности не выводится на дисплей, а установка 1 означает, что последняя информация о неисправности выводится на дисплей (нулевое значение «NULL» при отсутствии неисправности), и чем больше значение, тем раньше будет выведена информация о неисправности; самое большое значение РЕ.00 не может превышать количество групп с информацией о неисправности. Указание по всем видам неисправностей дано в таблице 5.6.

Таблица 5.6 - Указание по всем видам неисправностей

Код неисправности	Описание	Код неисправности	Категории неисправностей
NULL	неисправности нет	Uu1	низкое напряжение шины
Uu2	низкое напряжение в цепи управления	Uu3	неисправность цепи зарядки
OC1	сверхток при ускорении	0C2	сверхток при торможении
OC3	сверхток при постоянной рабочей скорости	Ou1	перенапряжение при ускорении
0u2	перенапряжение при торможении	Ou3	перенапряжение при работе с постоянной скоростью
GF	неисправность заземления	ON1	перегрев охлаждающей плиты
OL1	перегрузка двигателя	0L2	перегрузка инвертора
SC	короткое замыкание при нагрузке	EFO	внешняя неисправность серийного интерфейса
EF1	внешняя неполадка контактной панели	SP1	пропадание фазы входного сигнала или дисбаланс
SP0	пропадание фазы выходного сигнала или дисбаланс	CCF1	неисправность цепи управления 1: связь между инвертором и клавишной панелью не устанавливается через 5 секунд после подачи питания
CCF2	неисправность в цепи управления 2: связь между инвертором и клавишной панелью установилась после подачи питания, но затем появляется неисправ- ность длительностью более 2 секунд	CCF3	неисправность ЭСППЗУ (EEPROM)
CCF4	неисправность преобразования пере- менного тока	CCF5	неисправность ОЗУ
CCF6	перебои в работе центрального процессора	PCE	ошибка копирования параметров
HE	неисправность детектирования холлов- ского тока	DE	ошибка детектирования
CUE	перебой с питанием		

PE.10 ОБЩЕЕ ВРЕМЯ РАБОТЫ (Ч)

Nº	Наименование функции	Настройки	По умолчанию
PE.10	Общее время работы (ч)	0÷65530 ч	0

• РЕ.11 ОБЩЕЕ ВРЕМЯ ПОДКЛЮЧЕНИЯ ПИТАНИЯ (Ч)

Nº	Наименование функции	Настройки	По умолчанию
PE.11	Общее время подключения питания (ч)	0÷65530 ч	0

• РЕ.12 ОБЩИЙ РАСХОД ЭНЕРГИИ (МВТ/Ч)

Nº	Наименование функции	Настройки	По умолчанию
PE.12	Общий расход энергии (МВт/ч)	0÷9999 МВт/ч	0

РЕ.13 ОБЩИЙ РАСХОД ЭЛЕКТРИЧЕСТВА (КВТ/Ч)

Nº	Наименование функции	Настройки	По умолчанию
PE.13	Общий расход электричества (кВт/ч)	0÷999 кВт/ч	0

ПРИМЕЧАНИЯ

- Общее время работы (ч): общее время нахождения инвертора в рабочем состоянии.
- Общее время подключения питания (ч): суммарное время нахождения инвертора во включенном состоянии.
- Общий расход электроэнергии (МВт/ч): верхнее значение суммарной энергии, потребленной инвертором.
- Общий расход электроэнергии (кВт/ч): нижнее значение суммарной энергии, потребленной инвертором.

● PE.14 IGBT, TEMПЕРАТУРА

Nº	Наименование функции	Настройки	По умолчанию
PE.14	IGBT, температура	0,0÷200,0 °C	0,0 °C

ПРИМЕЧАНИЕ

Данный параметр используется для индикации текущей температуры (IGBT) инвертора.

РЕ.15 ТЕМПЕРАТУРА ВЫПРЯМИТЕЛЯ

Nº	Наименование функции	Настройки	По умолчанию
PE.15	Температура выпрямителя	0,0÷200,0 °C	0,0 °C

ПРИМЕЧАНИЕ

Данный параметр используется для индикации текущей температуры выпрямительного моста преобразователя.

РF Защита параметров

PF.00 ПАРОЛЬ ПОЛЬЗОВАТЕЛЯ

Nº	Наименование функции	Настройки	По умолчанию
PF.00	Пароль пользователя	0÷9999	0

- Установка пароля пользователя: начальное значение пароля пользователя 0, это означает, что функция защиты пароля неактивна. В этом состоянии пользователь может иметь доступ ко всем параметрам и параметрам группы PF.
- Разблокировка пароля пользователя: после установки пароля пользователя и его активации необходимо ввести пароль для разблокировки и повторного входа в группу РF. В противном случае не будет доступа ко всем другим параметрам группы РF.

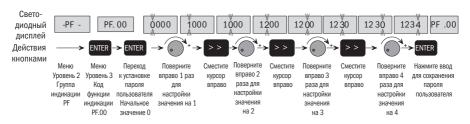


Рисунок 5.50 - Таблица настройки пароля пользователя

Изменение пароля пользователя: если функция защиты пароля активна, сначала необходимо ввести правильный пароль и разблокировать систему. После разблокировки выберите PF.00, повторно введите значение параметра и нажмите «ВВОД» ("ENTER") для сохранения значения. Теперь пароль заменен. Перед заменой пароля пользователя не забудьте установить PF.01 на 0, чтобы все параметры можно было менять.

РЕКОМЕНДАЦИЯ

Пароль активируется после нажатия «ППОГ» для выхода из группы PF, если вы установили пароль пользователя. Не забывайте пароль, в противном случае у вас не будет доступа ко всем параметрам группы PF. Если Вы забыли пароль, свяжитесь с производителем.

ПРИМЕР

Установите пароль 1234, затем выйдите из группы PF и разблокируйте пароль пользователя. Процедура указана на рисунках 5-49 и 5-50.

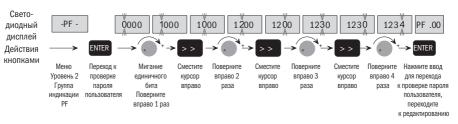


Рисунок 5.51 - Рисунок разблокировки пароля пользователя

PF.01 ЗАЩИТА ОТ ЗАПИСИ ПАРМЕТРОВ

Nº	Наименование функции	Настройки	По умолчанию
PF.01	Защита от записи параметров	0÷2	0

0: Все параметры можно переписать заново

1: За исключением цифровой установки частоты (РО.02) и кода этой функции (РГ.01), запрещено повторно прописывать другие коды функции

2: За исключением данного параметра, все другие коды запрещено изменять

ПРИМЕЧАНИЯ

Значение PF.01 настроено на 0: все параметры можно изменять. Тем не менее, только те параметры, которые помечены знаком «О» в функциональной таблице, можно менять, независимо от того, работает ли инвертор, или он остановлен. Параметры, помеченные значком «×», можно изменять, только если инвертор остановлен. Касательно изменения параметров смотрите главу 4 для получения более подробной информации. В дополнение Вы можете проверять индикацию параметров

посредством клавишной панели. Если какое-либо значение параметра мигает, то этот параметр можно изменить. Если ни одно из значений параметра не мигает, то параметр менять нельзя.

- Значение PF.01 настроено на 1: за исключением цифровой установки частоты (P0.02) и кода этой функции, другие коды функции изменять запрещено.
- Значение PF.01 настроено на 2: за исключением кода этой функции, другие коды функции изменять запрещено.

РЕКОМЕНДАЦИЯ

В режиме мониторинга параметра запуска, когда значение PF.01 настроено на 0, можно проверять и корректировать все параметры, а установку частоты, заданную скорость ПИД-регулирования и заданное значение аналогового ПИД-регулирования можно настраивать и сохранять в режиме онлайн. Когда значение PF.01 настроено на 1, можно настраивать и сохранять только установку. Когда значение PF.01 настроено на 2, все настройки, производимые в режиме онлайн, неактивны.

PF.02

СБРОС ПАРАМЕТРОВ

Nº	Наименование функции	Настройки	По умолчанию
PF.02	Сброс параметров	0÷3	0

0: Выключено

- 1: Удаление регистрации неисправности
- 2: Восстановление заводских настроек (за исключением регистрации/пароля/параметров двигателя)
- 3: Восстановление заводских настроек (за исключением регистрации/пароля)

ПРИМЕЧАНИЯ

- Когда значение РF.02 настроено на 0. параметр находится в нерабочем состоянии.
- Когда значение PF.02 настроено на 1, все записи о неисправности PE.00 PE.08 в группе PE будут удалены для облегчения наладки и анализа неисправности пользователем.
- Когда значение PF.02 настроено на 2, то, кроме записей истории рабочего режима, установки пароля пользователя и параметров двигателя, все другие параметры будут восстановлены по умолчанию.
- Когда значение PF.02 настроено на 3, то, кроме записей истории рабочего режима и установки пароля пользователя, все другие параметры будут восстановлены по умолчанию.

РЕКОМЕНДАЦИИ

- Если пользователь забудет значение установки параметров и не захочет устанавливать их по отдельности, то можно значение PF.02 настроить на 2 и использовать его для быстрого восстановления по умолчанию вместо повторной настройки параметров.
- После удаления записей истории неисправности или сброса заводских настроек значение PF.02 автоматически восстановится на 0, и это означает, что соответствующая операция закончена.

• РГ.03 КОПИРОВАНИЕ ПАРАМЕТРОВ (ОПЦИОНАЛЬНЫЙ ПУЛЬТ УПРАВЛЕНИЯ)

Nº	Наименование функции	Настройки	По умолчанию
PF.03	Копирование параметров	0÷3	0

0: Не активирован

- 1: Загрузка параметров из пульта управления
- 2: Копирование параметров в пульт

3: Копирование параметров в пульт, за исключением параметров двигателя

ПРИМЕЧАНИЯ

Функция копирования параметров доступна только при использовании опциональной клавишной панели.

Копирование параметра запускается посредством установки PF.03. Значение PF.03 будет настроено на 0 автоматически по окончании копирования параметра. Пользователь может работать на клавишной панели после нажатия кнопки остановки (STOP). Если ЭСППЗУ (EEPROM) на приборной панели инвертора неисправно, то генерируется код ССF3.

На клавишной панели будут выводиться следующие обозначения:

Код	Толкование	Код	Толкование
dn0	Копирование	dn1	Загрузка параметров, кроме параметров двигателя
uP	Загрузка в преобразователь	SUCC	Копирование выполнено
StP	Нажатие пользователем клавиши оста- новки (STOP)	rEt	Более 3 повторных попыток
EFLF	Режим и серийный номер не согласуются	bdAF	Неправильная дата на клавишной панели
rEF	Ошибка при загрузке	Urt0	Время задержки при приеме данных с панели управления
brt0	Время задержки при приеме данных клавишной панели	LdtO	Время задержки при копировании параметров

РЕКОМЕНДАЦИЯ

Пользователь может скопировать параметры пользователя в инвертор из одного узла в другой посредством опциональной клавишной панели. Данная функция доступна, только когда модели оборудования одинаковы.

PF.04 ТИП НАГРУЗКИ НД/ND

Nº	Наименование функции	Настройки	По умолчанию
PF.04	Тип нагрузки	0, 1	0

0: HD (тяжёлая нагрузка)

1: ND (лёгкая нагрузка, например, как вентилятор и насос)

PF.05 ВЫБОР ПРИЛОЖЕНИЯ

Nº	Наименование функции	Настройки	По умолчанию
PF.05	Выбор приложения	0, 1	0

0: Универсальный инвертор

1: Ротационная резальная машина

• РГ.09 СЕРИЙНЫЙ НОМЕР ПРОДУКТА

Nº	Наименование функции	Настройки	По умолчанию
PF.09	Серийный номер продукта	0÷9999	в зависимости от модели

• РГ.10 НОМЕР ВЕРСИИ ПО

Nº	Наименование функции	Настройки	По умолчанию
PF.10	Номер версии ПО	0,00÷99,99	в зависимости от модели

• РГ.11 НЕСТАНДАРТНАЯ СЕРИЯ И СЕРИЙНЫЙ НОМЕР

Nº	Наименование функции	Настройки	По умолчанию
PF.11	Нестандартная серия и серийный номер	0,000÷9,999	в зависимости от модели

• РГ.12 КОД ИДЕНТИФИКАЦИИ ПО

Nº	Наименование функции	Настройки	По умолчанию
PF.12	Код идентификации ПО	0÷9999	в зависимости от модели

Глава 6 Устранение неисправностей

6.1 Устранение неисправностей

Если инвертор определил неисправность, на дисплее будет выведена индикация кода неисправности, и инвертор остановится и войдет в режим защиты от неисправности. Если индикатор остановки (АВАРИЯ) будет мерцать, это означает, что реле цепи сигнализации отказа выдало сигнал, и двигатель будет вращаться по инерции до остановки. В это время вам необходимо установить причину неисправности и выполнить действия по устранению. Если перечень действий по устранению неисправностей не поможет решить проблему, пожалуйста, свяжитесь с нашей компанией напрямую. После наладки вы можете нажать кнопку остановки/сброса или произвести сброс цифровым входом для перезапуска инвертора.

ПРИМЕЧАНИЕ

Инвертор не может запускаться даже после отладки, если не удален рабочий сигнал запуска. Необходимо сначала отключить рабочий сигнал запуска, а затем снова замкнуть цепь или отключить питание от сети сразу после сброса сигнала о неисправности. При появлении кода неисправности «SC» (короткое замыкание при нагрузке) сброс допускается только через 10 секунд. Если Вы намерены просмотреть условия работы (такие как выходная частота, выходной ток, напряжение шины и т. д.) или содержание последних трех сигналов неисправности, нажмите «ПРОГ» для входа в состояние программы и затем поверните регулятор для просмотра значения параметра кода функции РЕ.00 — РЕ.08.

Таблица 6.1 - Устранение неисправностей

Индикация неисправности	Наименование защиты	Возможная причина неисправности	Меры по устранению
Uu1	Недостаточное напряжение шины	Анормальное выходное напряжение	Проверьте напряжение питания Проверьте настройку уровня срабаты- вания ошибки
Uu3	Дефект зарядной цепи	Шунтирующее устройство не срабатывает	Проверьте зарядную цепь
0C1	Превышение тока при ускорении	Слишком малое время ускорения Неправильная кривая напряжения/ частоты (V/F) Низкое напряжение Слишком малая мощность инвертора Короткое замыкание в выходной нагрузке инвертора	Увеличьте время ускорения Отрегулируйте установки кривой напряжения/частоты (V/F) и настройте соответствующую установку усиления крутящего момента Проверьте входное напряжения Выберите инвертор с большей мощностью Проверьте сопротивление обмотки двигателя и изоляцию двигателя

Индикация неисправности	Наименование защиты	Возможная причина неисправности	Меры по устранению
0C2	Превышение тока при торможении	Слишком малое время торможения Высокий момент инерции нагрузки Малая мощность инвертора Короткое замыкание в выходной нагрузке инвертора	Увеличьте время торможения Добавьте соответствующие компоненты тормозной системы Выберите инвертор с большей мощностью Проверьте сопротивление обмотки двигателя и изоляцию двигателя
0C3	Превышение тока при работе на постоянной скорости	Слишком большая нагрузка Слишком малое время ускорения или торможения Низкое напряжение питания Малая мощность инвертора Короткое замыкание в выходной нагрузке инвертора	Проверьте нагрузку Увеличьте время ускорения или торможения Проверьте входное напряжение Выберите инвертор с большей мощностьк Проверьте сопротивление обмотки двигателя и изоляцию двигателя
Ou1	Перенапряжение при ускорении	Неисправность входного напряжения Слишком малое время ускорения Слишком низкое значение точки остановки при избыточном напря- жении	Проверьте подачу входного напряжения; проверьте и протестируйте настройку электрического уровня Увеличьте время ускорения соответственно Увеличьте значение точки остановки при избыточном напряжении
Ou2	Перенапряжение при торможении	Неисправность входного напряжения Слишком малое время торможения Высокий момент инерции нагрузки Слишком низкое значение точки остановки при избыточном напря- жении	Проверьте подачу входного напряжения; проверьте и протестируйте настройку электрического уровня Увеличьте время торможения соответственно Добавьте соответствующие компоненты тормозной системы Увеличьте значение точки остановки при избыточном напряжении
Ou3	Перенапряжение при работе на постоянной скорости	Анормальное входное напряжение Слишком малое время ускорения или торможения Высокий момент инерции нагрузки Слишком низкое значение точки остановки при избыточном напряжении	Проверьте подачу входного напряжения; проверьте и протестируйте настройку электрического уровня Увеличьте время торможения соответственно Добавьте соответствующие компоненты тормозной системы Увеличьте значение точки остановки при избыточном напряжении
GF	Ток утечки на землю	Ток утечки на заземление превышает установленное значение	Проверьте состояние изоляции двигателя Проверьте линию соединения между инвертором и двигателем на предмет повреждений
OH1	Перегрев ради- атора	Слишком высокая температура окружающей среды Воздуховод заблокирован Анормальная работа вентилятора / вентилятор поврежден	Снизьте температуру окружающей среды Прочистите воздуховод Замените вентилятор

Индикация неисправности	Наименование защиты	Возможная причина неисправности	Меры по устранению
OL1	Перегрузка двигателя	Значение выходного тока инвертора превышает значение перегрузки двигателя Неправильная кривая напряжения/ частоты (V/F) Слишком низкое напряжение электросети Стандартный двигатель долго работает на низкой скорости и под большой нагрузкой Двигатель останавливается или нагрузка неожиданно сильно возрастает	Снизьте нагрузку Отрегулируйте установки кривой напряжения/частоты (V/F) и настройте соответствующую установку усиления крутящего момента Проверьте напряжение электросети Выберите специальный двигатель Проверьте нагрузку
0L2	Перегрузка инвертора	Значение выходного тока инвертора превышает значение его перегрузки Слишком высокое значение динамического торможения Неправильная кривая напряжения/ частоты (V/F) Слишком низкое напряжение электросети Слишком высокая нагрузка Слишком низкий уровень ограничения тока	Снизьте нагрузку и увеличьте время ускорения Снизьте значение динамического торможения и увеличьте время торможения Отрегулируйте установки кривой напряжения/частоты (V/F) и настройте соответствующую установку усиления крутящего момента Проверьте напряжение электросети Выберите инвертор с большей мощностью Увеличьте время ускорения Повысьте уровень ограничения тока
SC	Короткое замыкание в нагрузке/ короткое замы- кание выхода инвертора на землю	Короткое замыкание в нагрузке Короткое замыкание выхода инвертора на землю	Проверьте кабельное соединение между инвертором и двигателем на предмет повреждения Проверьте сопротивление обмотки двигателя Проверьте изоляцию двигателя
EF0	Внешняя неисправность интерфейса RS485	Ошибка последовательной передачи (MODBUS) Причиной неисправности является внешняя цепь управления	Проверьте правильность времени детектирования времени ожидания или настройте время детектирования Pb.03 времени ожидания на 0,0 с
EF1	Внешняя неисправность контактных панелей X1 — X6		Проверьте внешнюю цепь управления Проверьте настройки входной кон- тактной панели. Если контактные панели не используются, но все еще выдается индикация о неисправности, пожалуйста обратитесь за технической поддержкой для устранения неисправности
SP1	Пропадание или дисбаланс фазы входного напряжения	Пропадание или дисбаланс фаз входного напряжения R, S и T	Проверьте входное напряжение Проверьте линию подключения входного сигнала

Индикация неисправности	Наименование защиты	Возможная причина неисправности	Меры по устранению
SP0	Пропадание или дисбаланс фазы выходного напряжения	Пропадание или дисбаланс фаз входного напряжения U, V, W	Проверьте линию подключения выходного напряжения Проверьте изоляцию двигателя и кабеля
CCF1	Неисправность цепи управ- ления О	Передача между инвертором и клавишной панелью не устанавливается в течение 5 с после подачи питания (уже при поданном питании)	Повторно подключите клавишную панель Проверьте линию связи Замените клавишную панель Замените панель управления
CCF2	Неисправность цепи управ- ления 1	Связь между инвертором и клавишной панелью установлена после подачи питания, но нет передачи сигналов в течение 2 с после последней передачи (в режиме работы)	
CCF3	Неисправ- ность ЭСППЗУ (EEPROM)	Неисправность ЭСППЗУ (EEPROM) из-за платы управления инвертора	Замените плату управления
CCF4	Неисправность аналого-цифро- вого преобразо- вания	Неисправность аналого-цифрового преобразования платы управления инвертора	Замените плату управления
CCF5	Неисправность ОЗУ	Неисправность ОЗУ платы управ- ления инвертора	Замените плату управления
CCF6	Сбои в работе центрального процессора	Существенный сбой Ошибка отчетности и регистрации МСИ из-за платы управления Линия передачи подключена в обратном порядке или DIP-пе- реключатель в неправильном положении	Выполните сброс посредством кнопки остановки/сброса (STOP/RESET) Добавьте сетевой фильтр со стороны источника питания Обратитесь за технической поддержкой
PCE	Ошибка копиро- вания параметра	Ошибка копирования параметра между клавишной панелью и ЭЭСПЗУ (EEPROM) панели управления Повреждение ЭЭСПЗУ (EEPROM) платы управления	Повторите операцию копирования Замените плату управления Обратитесь за технической поддержкой
HE	Ошибка детекти- рования тока	Неисправность цепи детектирования тока инвертора Повреждение холловских компонентов	Замените инвертор Обратитесь за технической поддержкой

6.2 Индикация предупреждений и их пояснение

После срабатывания предупреждения выводится индикация кода ошибки и мерцает, но инвертор не переходит в режим защиты от неисправности. Иными словами, выходной ШИМ-сигнал не блокируется, реле сигнализации неисправности не срабатывает. Инвертор автоматически вернется в предыдущий режим работы после устранения причины предупреждения.

В следующей таблице дан перечень различных видов предупреждений.

Таблица 6.2 - Индикация предупреждений и их пояснение

Индикация сигнализации	Содержание индикации	Описание
Uu	Детектирование недостаточного напряжения	Выполнено детектирование недостаточного напряжения. В данном случае инвертор все еще может работать
OLP2	Предаварийная сигнализация перегрузки инвертора	Рабочий ток инвертора превышает уровень детектирования перегрузки и продолжительность превышает время детектирования перегрузки, но в данном случае инвертор все еще может работать
OH2	Превышение температуры радиатора	Температура радиатора превышает эталонное значение детектирования ОН2. В данном случае инвертор все еще может работать
AE1	Анормальный аналоговый сигнал 1	Значение входного аналогового сигнала в канале входного аналогового сигнала AI1 превышает максимально допустимый диапазон от -0,2 до +10,2 В
SF1	Неправильная установка кода функции	Например, для контактной панели I/OI установка SSO-2 и TTO-1 не является неполной
SF2	Выбор режима работы не соответствует установке контактной панели	Настройка режима работы не соответствует установке контактной панели X1 — X6
AtE	Анормальная автонастройка параметра	Анормальная автонастройка параметра. Инвертор выйдет из режима настройки параметра автоматически

6.3 Неисправности двигателя и меры по их устранению

Если у двигателя отмечается одна из следующих неисправностей, пожалуйста, установите причину и предпримите соответствующие меры по устранению неисправности. Если меры оказываются неэффективными, обратитесь за технической поддержкой.

Таблица 6.3 - Неисправности двигателя и меры по их устранению

Неисправность	Содержание проверки	Меры по устранению неисправности
Сбой в работе двигателя	Проверьте подачу питания на вход ПЧ R, S и T, а также срабатывание светодиодного индика- тора зарядки конденсаторов («CHARGE LED»)	Подключите питание Отключите подачу питания и затем снова подключите Проверьте напряжение питания Проверьте, затянуты ли винты силовых клемм
Сбой в работе двигателя	Проверьте правильность напряжения силовых клемм U, V и W при помощи вольтметра	Отключите питание и затем подключите снова
	Проверьте, был ли двигатель заблокирован по причине перегрузки	Снизьте нагрузку и снимите блокировку
	Проверьте индикацию неисправности на клавишной панели, а также мерцает ли световой индикатор остановки («АВАРИЯ»)	Смотрите таблицу 6.1 по кодам неисправностей
	Проверьте наличие рабочей команды запуска	Проверьте надежность подключения к плате управления
	Проверьте параметр запрета реверса	Настройте обратный ход, допускающий или изменяющий направление хода
	Проверьте, не возникла ли неисправность при отключенном сигнале работы контактной панели	Отключите сигнал работы контактной панели и снова подключите
	Проверьте, была ли подача заданной частоты	Проверьте заданную частоту напряжения
	Проверьте правильность настройки режима работы	Введите правильную настройку
Двигатель вращается в обратную сторону	Проверьте правильность подключения кабеля двигателя к выходу ПЧ	Подключите в правильной последовательности кабель двигателя Отрегулируйте код функции Р2.45
Двигатель вращается, но невоз-	Проверьте правильность подключения линий связи задания частоты	Исправьте подключение линий связи
но невоз- можно изме- нить скорость	Проверьте, велика ли нагрузка	Уменьшите нагрузку или увеличьте время ускорения или торможения
Скорость вращения дви-	Проверьте правильность значения установки максимальной выходной частоты	Проверьте значение установки максимальной выходной частоты
гателя очень высокая или очень низкая	Проверьте напряжения аналового входа	Проверьте значение характеристики напряжения/ частоты (V/F)

Неисправность	Содержание проверки	Меры по устранению неисправности
Во время	Проверьте, высок ли уровень нагрузки	Уменьшите нагрузку
работы скорость	Проверьте, высок ли уровень колебаний под нагрузкой	Уменьшите колебания нагрузки
двигателя нестабильна	Проверьте обрыв фазы трехфазного питания	Проверьте пропадание фазы при помощи линий связи трехфазного питания Для однофазного питания подключите дроссель переменного тока к источнику питания
	Источник задания частоты нестабилен	Проверьте источник задания частоты
Очень высокий уровень шума	Подшипник изношен, малое количество смазки, смещение оси ротора	Почините двигатель
двигателя	Очень низкая несущая частота	Увеличьте несущую частоту
Очень	Механический резонанс	Отрегулируйте скачки частоты
высокий уро- вень вибрации двигателя	Опоры оборудования стоят неровно	Отрегулируйте опоры оборудования
	Разбалансирование трехфазного выходного напряжения	Проверьте баланс фаз выходного напряжения инвертора

Глава 7 Периферийное оборудование

7.1 Схема соединений периферийного оборудования

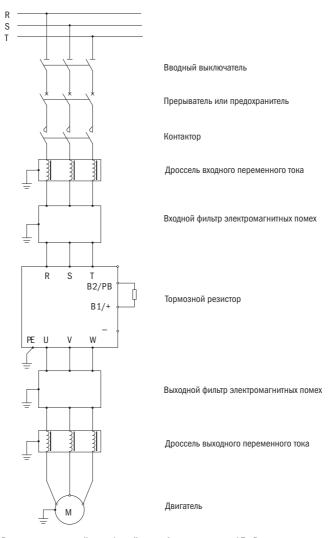


Рисунок 7.1 - Рисунок соединений периферийного оборудования до 15 кВт

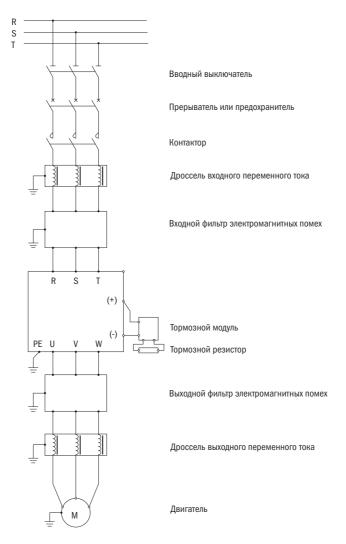


Рисунок 7.2 - Рисунок соединений периферийного оборудования для преобразователей свыше 15 кВт

7.2 Функции периферийного оборудования

Таблица 7.1 - Функции периферийного оборудования

Периферийное оборудование и дополнительные элементы	Описание
Автоматический выключатель	Используется для быстрого отключения тока КЗ инвертора и предотвращения сбоя питания по причине неисправности инвертора и его цепей
Контактор	Используется для отключения питания от сети при неисправности инвертора, для предотвращения сбоя питания и повторного запуска после возникновения неисправности
* Дроссель переменного тока	Используется для улучшения выходного коэффициента мощности, снижения высшей гармоники и устранения скачков напряжения
* Фильтр электромагнитных помех	Используется для уменьшения помех, создаваемых инвертором. Когда дистанция электропроводки между двигателем и инвертором менее 20 м, рекомендуется подключить фильтр со стороны источника питания; когда дистанция более 20 м, рекомендуется подключить фильтр со стороны выхода
* Тормозной модуль и тормозной резистор	Используются, когда момент торможения не соответствует требованиям, а также применяются при высокой инерционной нагрузке и повторяемом торможении или быстрой остановке

^{*} Отмеченные позиции представляют собой дополнительные элементы.

7.2.1 Дроссель переменного тока

При помощи дросселя переменного тока осуществляется ограничение высоких гармонических колебаний, а также, безусловно, улучшение коэффициента мощности. В следующих случаях рекомендуется использовать дроссель переменного тока.

- Мощность источника питания намного больше мощности инвертора > 10:1.
- Регулируемая полупроводниковыми элементами нагрузка и компенсатор коэффициента мощности находятся на одной линии подачи питания.
- Степень дисбаланса трехфазного напряжения более 3 %.

7.2.2 Тормозной модуль и тормозной резистор

В преобразователях мощностью 15 кВт и меньше тормозной модуль встроен, а для преобразователей свыше 15 кВт тормозной модуль поставляется отдельно. При необходимости в динамическом торможении пользователь должен только подключить тормозной резистор. Тормозной модуль состоит из управляющей части, приводной части и устройства разрядного сопротивления.

В следующей таблице указаны общие технические характеристики тормозных резисторов.

Напряжение (B)	Мощность преобразо- вателя (кВт)	Сопротив- ления (Ом)	Мощность резистора (кВт)	Напряжение (B)	Мощность преобразо- вателя (кВт)	Сопротив- ления (Ом)	Мощность резистора (кВт)
Трехфазное	0,4	100	0,1	Трехфазное	5,5	75	0,8
380 B	0,75	100	0,1	380 B	7,5	75	0,8
	1,5	100	0,1		11	50	1
	2,2	70	0,15		15	40	1,5
	0,75	150	0,25				
	1,5	150	0,25				
	2,2	100	0,4				
	4	75	0,8				

Таблица 7.2 - Выбор мощности двигателя и тормозного резистора

При торможении регенерированная энергия двигателя почти полностью потребляется тормозным резистором. Энергию торможения можно рассчитать по следующей формуле:

$$U * U / R = Pb$$

В данной формуле R — это значение выбранного тормозного резистора, U — это напряжение торможения при стабильном торможении системы (оно варьируется в различных системах, для системы с переменным током 380 В оно обычно выбирается со значением в 700 В), а Pb — это энергия торможения. Теоретически энергия тормозного резистора является такой же, как и энергия торможения, но обычно она составляет 70 % от используемой. Энергию, необходимую для тормозного резистора, можно рассчитать по следующей формуле:

$$0.7 * Pr = Pb * D$$

В данной формуле Pr — это мощность тормозного резистора, а D — это частота торможения (пропорция процесса регенерации во всем рабочем процессе), которую можно выбрать по следующей таблице:

Таблица 7.3 - Значения частоты торможения

Случай применения	Подъемные	Размотка и	Центрифуга	Случайная тор-	Общее приме-
	операции	намотка		мозная нагрузка	нение
Частота торможения	20÷30 %	20÷30 %	50÷60 %	5 %	10 %

Глава 8 Техническое обслуживание

ОПАСНО

- Не прикасайтесь к клеммам цепи постоянного тока. Есть возможность поражения электрическим током.
- Перед подачей напряжения на преобразователь частоты установите крышку. Не производите подключение и отключение проводов под напряжением.
- Нельзя начинать проверку и техническое обслуживание, не отключив подачу питания преобразователя. При этом светодиодный индикатор нагрузки «CHARGE LED» должен погаснуть. Существует опасность остаточного напряжения электролитического конденсатора.

ПРЕДУПРЕЖДЕНИЕ

- Ввиду того, что на пульте управления, плате управления и силовых платах установлены интегральные микроэлектронные элементы, пожалуйста, будьте осторожны при обслужвание преобразователя.
 Если дотронуться пальцем до плат, можно повредить элементы на этих платах электростатическим напряжением.
- Не производите коммутацию проводов управления и линий связей при включенном питании. Существует опасность поражения электрическим током.

8.1 Проверка и техобслуживание

Инвертор является стандартным оборудованием, которое сочетает в себе технологии силовой электроники и технологии микроэлектроники. Таким образом, это оборудование совместимо и с промышленным оборудованием, и с микроэлектронным оборудованием. Изменение характеристик окружающей среды, таких как температура, влажность, наличие дыма, а также старение внутренних компонентов провоцирует появление неисправностей инвертора. Для долгосрочной и надежной работы необходимо проведение ежедневной проверки и периодического техобслуживания (минимум каждые 3 или 6 месяцев).

8.1.1 Ежедневная проверка

Перед запуском инвертора в работу произведите следующую проверку:

- наличие не нормального шума или вибрации двигателя;
- наличие анормального нагрева инвертора и двигателя;
- наличие слишком высокой температуры окружающей среды;
- показывает ли амперметр значение нагрузки, как обычно;
- исправность вентилятора охлаждения инвертора;
- наличие хорошей изоляции заземления у тормозного резистора.

Содержание ежедневного техобслуживания и проверки указано в таблице 8.1.

Таблина 8 1 -	Солержание	ежелневного	TEXHINGECRULU	обслуживания и провег	JKN

Nº	Позиция для проверки	Проверяемый элемент	Содержание проверки	Стандарты оценки
1	Дисплей	Светодиодный монитор	Ненормальная работа дисплея	Определение в соответствии с функциями
2	Система охлаж- дения	Вентилятор	Проверьте, свободно ли вращается вентилятор, есть ли ненормальные шумы, не забит ли венти- лятор пылью	Без анормальных изменений
3	Корпус инвер- тора	Внутри корпуса агрегата	Повышение температуры, ненормальные шумы, специфический запах и скопление пыли	Без анормальных изменений
4	Рабочая среда	Окружающая среда	Температура, влажность, пыль, вредный газ и т. д.	В соответствии с условиями эксплуатации
5	Напряжение	Входные и выходные контакты	Входное и выходное напряжение	В соответствии с техническими спецификациями, указанными в приложении 2
6	Нагрузка	Двигатель	Повышение температуры, ненормальный шум и вибрация	Без анормальных изменений

8.1.2 Периодическое техническое обслуживание

Перед проведением периодического техобслуживания необходимо отключить подачу питания. Только после того, как на мониторе исчезнет индикация и отключится светодиодный индикатор нагрузки, спустя $5 \div 10$ минут можно начинать техобслуживание. В противном случае возникает опасность поражения электрическим током, так как в инверторе имеются накопительные конденсаторы, которые удерживают напряжение даже после отключения питания.

Содержание периодического техобслуживания указано в таблице 8.2.

Таблина 8.2 -	Солержание	периодического	техобслуживани	я и проверки

Позиция для проверки	Содержание проверки	Меры устранения неисправности
Винты контактов сети питания и цепи управления	Проверьте, не ослаблены ли винты	Затяните винты отверткой
Радиатор	Проверьте наличие пыли	Продуйте агрегат сухим сжатым воздухом под давлением в 4÷6 кг/см ²
РСВ (печатная монтажная плата)	Проверьте наличие пыли	Продуйте агрегат сухим сжатым воздухом под давлением в 4÷6 кг/см ²
Вентилятор охлаждения	Проверьте плавность вращения, наличие ненормальных шумов или вибрации, а также наличие скопления пыли или пред- метов, стопорящих вентилятор	Замените вентилятор охлаждения и устраните пыль и посторонние частицы
Силовая установка	Проверьте наличие пыли	Продуйте агрегат сухим сжатым воздухом под давлением в 4÷6 кг/см ²
Электролитический конденсатор	Проверьте наличие изменений цвета, характерного запаха, пузырьков, утечек жидкости и т. д.	Замените электролитический конденсатор
Тормозной резистор	Проверьте надежность изоляции зазем- ления	Установите тормозной резистор в сухом и хорошо изолированном месте

Во время проведения проверки исключен демонтаж или случайная встряска элементов. Более того, не допускайте случайного вытягивания соединителей из гнезд. В противном случае инвертор не будет нормально работать или может выдать индикацию неисправности. Помимо этого, могут возникнуть неисправности компонентов или модуля БТИЗ (IGBT) сетевого выключателя, равно как могут быть повреждены другие элементы. При необходимости выполнения измерений следует учесть, что разные измерительные устройства могут дать сильно различающиеся результаты замеров. Для измерения входного напряжения рекомендуется использовать мостовой вольтметр, для измерения выходного напряжения рекомендуется использовать мостовой вольтметр, для измерения входного и выходного тока рекомендуется использовать клещевой амперметр, а для измерения мощности рекомендуется использовать электронный ваттметр. При наличии неподходящих условий для замеров можно использовать один измерительный прибор, а регистрационные записи необходимо сохранять для облегчения сравнения.

При необходимости тестирования для определения формы волны рекомендуется использовать осциллограф с частотой считывания выше 40 МГц. При определении формы волны следует использовать осциллограф с частотой более 100 МГц. Перед тестированием следует обеспечить электрическую изоляцию осциллографа.

В случае значительной асимметрии питающей сети или дисбаланса трехфазного тока для измерения мощности рекомендуется использовать метод трех ваттметров.

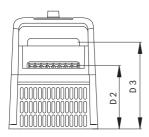
Ввиду того, что тестирование электрической изоляции и диэлектрической прочности было выполнено на заводе перед выпуском агрегата, пользователю нет необходимости снова выполнять эту проверку. Более того, такие проверки ухудшат свойства изоляции и электрического сопротивления агрегата. Если такие проверки будут выполняться неправильно, возможно повреждение элементов агрегата. При действительной необходимости проведения таких проверок рекомендуется, чтобы эти проверки проводились специально обученным техническим персоналом.

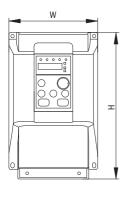
8.1.3 Регулярно заменяемые элементы

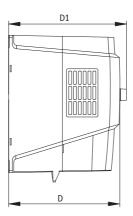
Для обеспечения долговременной и надежной работы инвертора необходимо выполнять периодическое техническое обслуживание внутренних электронных элементов инвертора. Срок службы этих электронных элементов варьируется в зависимости от окружающей среды и условий, в которых используются инверторы. В целом, если инвертор используется непрерывно, его элементы можно менять в соответствии со следующей таблицей, хотя это тоже зависит от окружающей среды, условий нагрузки и состояния инвертора, а также от других специфических условий. В таблице 8.3 указаны сроки технического обслуживания.

Таблица 8.3 - Сроки замены изнашивающихся элементов инвертора

Наименование элемента	Стандартный срок замены, в годах
Охлаждающий вентилятор	2 – 3
Электролитический конденсатор	4-5
Платы	5 – 8


8.2 Хранение


Если преобразователь не используется сразу после его покупки или если его необходимо передать на временное или постоянное хранение, необходимо выполнить следующие действия:


- Хранить преобразователь в месте со специальной температурой и влажностью, где не должно быть сырости, пыли, металлических мелких частиц, а также необходимо предусмотреть хорошую вентиляцию.
- Если преобразователь не использовался более одного года, необходимо выполнить процедуру
 формовки конденсаторов с целью восстановления их характеристик. Во время формовки входное
 напряжение инвертора необходимо медленно повысить до номинального значения посредством
 регулятора напряжения. Время подачи энергии должно составлять минимум 1 2 часа.
- Вышеуказанная процедура должна проводиться минимум один раз в год.

Приложение А. Габаритные и монтажные размеры

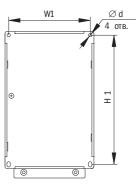


Рисунок А.1 - Габариты 1; 2; 3

Таблица А.1 - Габаритные размеры (ед. изм.: мм)

Габарит	Н	H1	W	W1	D	D1	D2	D3	d
1	198	175	120	110	150	160	85	117	4,5
2	210	182	130	119	162	172	100	127	4,5
3	255	238	180	166	174	183	105	127	7

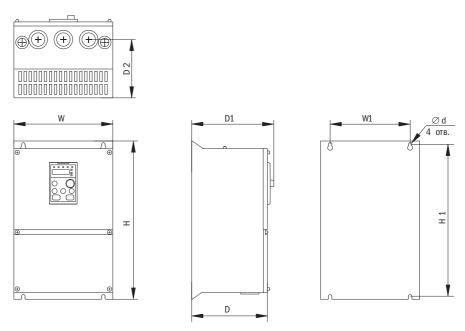


Рисунок А.2 - Габариты 4; 5; 6; 7; 8; 9

Таблица А.2 - Габаритные размеры (ед. изм.: мм)

Габарит	Н	H1	W	W1	D	D1	d
4	375	360	235	193	184	199	8
5	460	440	285	230	238	253	8
6	535	512	320	180	230	248	8
7	540	522	360	230	274	292	8
8	657	630	438	318	280	299	10
9	809	782	520	420	360	379	10
9.1	907	878	600	420	385	404	12

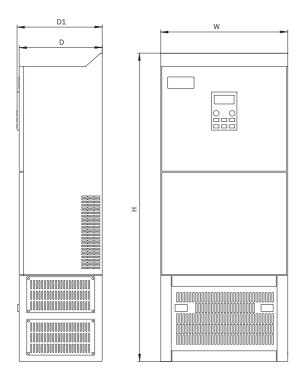


Рисунок А.3 - Габариты 9.1; 9.2; 9.3

Таблица А.З - Габаритные размеры (ед. изм.: мм)

Габарит	Н	W	D	D1
9.2	1608	800	412	430
9.3	1800	1000	480	498

Приложение Б. Технические параметры

Таблица Б.1 - Технические параметры

Габарит Количество фаз				Значение									
Количество фаз			1			2	3		4		5		
			3										
Максимальная к	кВт	HD*	0,75	1,5	2,2	4	5,5	7,5	11	15	18,5	22	30
мощность		ND*	1,5	2,2	4	5,5	7,5	11	15	18,5	22	30	37
двигателя	п. с.	HD*	1	2	3	5,4	7,5	10	15	20	25	30	40
		ND*	2	3	5	7,5	10	15	20	25	30	40	50
Номинальная частота,	Гц		50/60										
Номинальное напряже	Номинальное напряжение, В		400										
Диапазон входных нап	тряжений	í, B	380÷4	120									
Выходная частота, Гц ((регулиру	емая)	0÷400)									
Несущая частота, кГц			1÷16										
Выходное напряжение, В		0÷400	0÷400										
Входной ток, А		HD*	3,7	5,4	7	10,7	15,5	20,5	26	35	38,5	46,5	62
		ND*	5,4	7	10,7	15,5	20,5	26	35	38,5	46,5	62	76
Выходной ток, А		HD*	2,5	4	6	9	13	17	25	32	37	45	60
		ND*	4	6	9	13	17	25	32	37	45	60	75
Метод управления			Векторное управление в разомкнутом контуре										
Номинальное импульст емое напряжение U _{imp}		ержива-	4000										
Максимальное сечени присоединяемого к ког зажимам, мм ²			10			10	10	16	16		25		
Момент затяжки винто зажимов при использо Н·м			1,6÷1	,8		1,6 ÷ 1,8	1,6 ÷ 1,8	3,4	3,4		5,6		
Метод охлаждения			Вентил	пятор (в	встроен	ный)							
Масса, кг, не более			2,3			2,3	5,3		11		19		
Класс защиты от пораж ским током по ГОСТ IEC		ектриче-	I										
Ремонтопригодность			Ремонтопригодные										
Срок службы, лет, не м	иенее		7										

Продолжение таблицы Б.1

Габарит 6 7 Количество фаз 3 Максимальная кВт HD* 37 45 55	8				Значение							
Максимальная кВт HD* 37 45 55		6 7 8 9										
	75	93	110	132	160							
мощность ND* 45 55 75	93	110	132	160	185							
двигателя л. с. HD* 50 60 75	5 100	125	150	180	215							
ND* 60 75 100	00 125	150	180	215	250							
Номинальная частота, Гц 50/60												
Номинальное напряжение, В 400												
Диапазон входных напряжений, В 380÷420												
Выходная частота, Гц (регулируемая) 0÷400												
Несущая частота, кГц 1÷16												
Выходное напряжение, В 0÷400	0÷400											
Входной ток, А НD* 76 92 11:	157	180	214	256	307							
ND* 92 113 15	7 180	214	256	307	350							
Выходной ток, А НD* 75 90 11	150	170	210	250	300							
ND* 90 110 15	50 170	210	250	300	342							
Метод управления Векторное управление	Векторное управление в разомкнутом контуре											
Номинальное импульсное выдержива- емое напряжение U _{imp} , В	4000											
Максимальное сечение провода, присоединяемого к контактным зажимам, мм²	95		185									
Момент затяжки винтов контактных зажимов при использовании отвертки, H·м	7,8		7,8									
Метод охлаждения Вентилятор (встроенны	ый)											
Масса, кг, не более 25 40	55		85									
Класс защиты от поражения электриче- ским током по ГОСТ IEC 61140												
Ремонтопригодность Ремонтопригодные	Ремонтопригодные											
Срок службы, лет, не менее 7												

Продолжение таблицы Б.1

Наименование пара	метра		Значен	ние			,		,			
Габарит			9.1			9.2				9.3		
Количество фаз			3									
Максимальная	кВт	HD*	185	200	220	250	280	315	355	400	450	500
мощность		ND*	200	220	250	280	315	355	400	450	500	560
двигателя	л. с.	HD*	250	270	300	340	380	425	480	540	610	680
		ND*	270	300	340	380	425	480	540	610	680	760
Номинальная частота	а, Гц		50/60									
Номинальное напрях	жение, В		400									
Диапазон входных на	апряжени	й, В	380÷4	20								
Выходная частота, Ги	ц (регулир	уемая)	0÷400									
Несущая частота, кГи	ļ		1÷16	1÷16								
Выходное напряжение, В		0÷400	0÷400									
Входной ток, А		HD*	350	385	430	500	548	625	710	760	830	910
		ND*	385	430	500	548	625	710	760	830	910	970
Выходной ток, А		HD*	342	380	426	480	520	600	680	750	820	900
		ND*	380	426	480	520	600	680	750	820	900	950
Метод управления			Векторное управление в разомкнутом контуре									
Номинальное импули емое напряжение U _{ir}		ержива-	4000									
Максимальное сечен присоединяемого к н зажимам, мм ²	ние прово		150x2			150x3				150x4		
Момент затяжки вин зажимов при исполь Н·м			45			78			192			
Метод охлаждения			Вентил	ятор (в	троенн	ый)						
Масса, кг, не более			160			274				328		
Класс защиты от поражения электриче- ским током по ГОСТ IEC 61140												
Ремонтопригодность			Ремонтопригодные									
Срок службы, лет, не	менее		7									

Таблица Б.2 - Другие технические параметры

Номинальное входное напряжение	380-440 В АС 50 Гц
Максимальный ток перегрузки	150 % — 1 мин, 180 % — 20 с
Режим управления	U/f, векторное управление с разомкнутой цепью
Точность измерения частоты	Цифровая команда ±0,01 % (от -10 до +40 °C)
сигнала	Аналоговая команда ±0,01 % (25±10 °C)
Установка разрешения	Цифровая команда 0,01 Гц; аналоговая команда 1/1000 максимальной частоты
по частоте	
Разрешение выходной частоты	0,01 Гц
Сигнал установки частоты	0÷10 В, 0÷20 мА
Время ускорения и торможения	0,1÷3600 с (время ускорения и время торможения настроены независимо друг от друга)
Момент торможения	До 125 % посредством использования дополнительного тормозного резистора
Характеристика напряжения/	4 типа регулируемых характеристик напряжения/частоты опционально;
частоты	возможна настройка любых характеристик напряжения/частоты
Функция защиты	Избыточное напряжение, недостаточное напряжение, ограничение тока, токовая
	перегрузка, перегрузка, электронное тепловое реле, перегрев, остановка при
	избыточном напряжении, короткое замыкание при перегрузке, заземление,
	защита при недостаточном напряжении, пропадание фазы входного сигнала,
	короткое замыкание на землю и междуфазное короткое замыкание, защита перегрузки двигателя и т. д.
Температура окружающей среды	0T -10 до +40 °C
Влажность	5÷95 % относительная влажность (без конденсации)
	0т -40 до +70 °C
Температура хранения	
Место использования	Внутри помещений (без корродирующего газа)
Место установки	На высоте не более 1000 м, без наличия пыли, корродирующего газа и прямого
	солнечного света
	Снижение 6 % на 1000 метров выше 1000 м
Вибрация	$< 5.9 \text{ m/c}^2 (0.6 \text{ g})$
Класс защиты	IP20

Приложение В. Использование коммуникационного интерфейса MODBUS

В инверторах данной серии может быть предусмотрен программируемый логистический контроллер (PLC) и другие устройства для обеспечения обмена данными через протокол передачи данных MODBUS.

Состав протокола передачи данных MODBUS:

- Шина передачи данных состоит из главного контроллера (PLC) и инверторов 1÷31. Сигнал передается от главного контроллера и инвертор отвечает на него.
- Главный контроллер передает сигнал посредством максимум 31 инвертора. Все инверторы должны
 иметь свои коды адресования. Главный контроллер передает сигналы в соответствии со специальными кодами. Инверторы функционируют после получения команд от главного контроллера и
 отвечают на эти команды.

Стандарты передачи сигналов

Интерфейс	RS-485
Способ передачи данных	Асинхронная и полудуплексная передача
Параметры передачи данных	Скорость: выбрана из 1200/2400/4800/9600/19200/38400 бод Выбор контроля четности: четность/нечетность/нет Размер данных: режим RTU — 8 бит фиксированных, режим ASCII — 7 бит данных или 8 бит данных Стоповый бит: режим RTU — 1 бит фиксированный, режим ASCII — 1 бит при активной четности, 2 бита при отсутствии четности
Протокол передачи данных	MODBUS — режим RTU, режим ASCII (резерв)
Количество подключаемых инверторов	31

Описание контактной панели передачи данных:

Коммуникационный интерфейс MODBUS задействует 485+ и 485- контактных панелей. Помимо этого, панель управления инвертора снабжена оконечными резисторами: когда групповые инверторы данной серии подключаются при помощи электрической шины RS-485 от соответствующего ПЛК, эти инверторы, выступающие в качестве контактной панели, должны поддерживать переключатель SW2 во включенном положении.

Переключатель сопротивления контактной панели

Рекомендации по электропроводке:

- Кабели связи должны находиться отдельно от кабелей сети питания, других силовых и электрических кабелей.
- Экранированные кабели должны использоваться в качестве кабелей связи. Экранирующий слой должен быть подключен к кабелям выводов заземления инвертора, в то время как другой конец не должен быть подключен (для исключения неисправности по причине помех).

Последовательность связи с ПЛК следующая:

- 1. Когда питание отключено, подключите кабель связи к ПЛК и инвертору.
- 2. Подключите питание.
- 3. Установите параметры, требуемые для обеспечения связи, посредством клавишной панели (Pb.00 Pb.08).
- 4. Отключите подачу питания и подождите, пока на клавишной панели индикация не исчезнет полностью.
- 5. Снова подключите питание.
- 6. Выполните сеанс передачи данных посредством ПЛК.

Настройка параметров связи

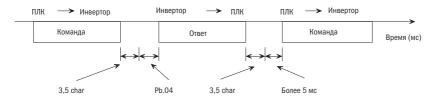
Для обеспечения связи через ПЛК необходимо установить соответствующие параметры связи. Учесть следующие параметры: P0.03, P0.04, P0.07, P0.11, P7.00, P7.01, P7.03, P7.04, P8.11, P9.19, Pd.02, Pd.04, Pb.00 — Pb.06. Более подробную информацию смотрите в главах 4 и 5.

ПРИМЕЧАНИЯ

- Только после того, как будет выбран канал настройки связи, можно прописать команду в соответствующий реестр. В противном случае будет выдано сообщение 02h.
- После изменения выбора скорости передачи данных в бодах и выбора контроля четности новая установка не активируется, пока инвертор не будет остановлен и перезапущен снова. Настройка этих двух позиций для компьютеров верхнего и нижнего уровня должна быть одинаковой. В противном случае связь не будет установлена, или же во время связи будут возникать ошибки.
- Когда адрес инвертора настроен на 0, инвертор не получит команду связи и циркулярную команду. Когда значение адреса инвертора выше 0, новый адрес активируется сразу после изменения.

Ограничения периода передачи данных

Для снижения коэффициента потери пакетов, связанной с помехами связи, и для получения оптимального эффекта связи следует установить ограничения периода передачи данных на станции управляющих ЭВМ, чтобы передача и прием данных проходили нормально. При выборе способа контроля четности пользователь может получить быстрый ответ на запрос.



Формат команды

Во время сеанса связи главный контроллер (ПЛК и т. д.) подает команды на инверторы, а инверторы отвечают на эти команды. Ввиду того, что содержание функции команды меняется, также будет меняться и размер данных. Протокол MODBUS поддерживает и режим RTU и режим ASCII.

1. Режим RTU

Процесс представляет собой передачу и получение информации, как указано на следующем рисунке. Интервал между двумя командами должен держать временные рамки, указанные ниже.

Формат кадра показан следующим образом:

Старт	Адрес инвер- тора	Код команды	Данные	Циклическая проверка избыточности CRC	Окончание
Интервал более 3,5 char	1 char	1 char	n char	2 char	Интервал более 3,5 char

В режиме RTU контрольная сумма выводится методом CRC-16. Все данные, за исключением самой контрольной суммы, будут рассчитаны в ходе процесса калькуляции.

Метод калькуляции для CRC-16 в коммуникационном интерфейсе MODBUS следующий:

- 1. При расчете CRC-16 начальным значением является 0, а начальным значением серии связных терминалов является 1 (1 на 16 бит).
- Младший значащий разряд LSB в соответствии с адресом инвертора является старшим значащим разрядом MSB, и для расчета CRC-16 в конечных данных MSB используется LSB.
- Команда ответа инвертора также должна рассчитать CRC-16 и сравнить значение со значением CRC-16 в команде ответа.

2. Режим ASCII:

В режиме ASCII заголовком кадра является «ОхЗА», а концом кадра являются «ОхОD» и «ОхОА». Кроме заголовка и конца кадра, доступны шестнадцатеричные символы «О» — «9» и «А» — «F», эти биты передаются как два символа ASCII, сначала передается старший полубайт, а затем младший полубайт. Символы «А» — «F» соответствуют коду ASCII той или иной заглавной буквы. Здесь применяется продольная проверка избыточности LRC. Контрольная сума LRC рассчитывается посредством сложения всех последующих байтов сообщения, за исключением заголовка и конца кадра, без учета любых носителей, а затем дополняется к результату. Время передачи кадра не должно превышать 1 с, а время задержки ответа должно быть не менее 1 мс.

Формат кадра показан следующим образом:

Старт	Адрес инвертора	Код команды	Данные	Циклическая проверка избыточности LRC	Окончание
1 char (3AH)	2 char	2 char	n char	2 char	2 char (0DH, 0AH)

Адрес инвертора: адрес инвертора (0 — 31)

Когда значение настроено на 0, команды передаются вместе в циркулярном режиме. Даже если будет получена циркулярная команда, инвертор не выдаст ответ.

Код команды

Предусмотрены четыре типа кодов команд MODBUS, которые поддерживают инверторы этой серии, они указаны в следующей таблице:

Код команды	Функция	Длина команды (битовая группа)		Длина норма ответа (битов		Длина анормального ответа (битовая группа)	
(16 бит)		Мин.	Макс.	Мин.	Макс.	Мин.	Макс.
03H	Регистрация чтения	8	8	7	7	5	5
06H	Запись одиночного символа	8	8	8	8	5	5
08H	Петлевой контроль	8	8	8	8	5	5
10H	Регистрация записи	11	11	8	8	5	5

Образец применения команды

ПРИМЕЧАНИЕ Все нижеуказанные данные являются шестнадцатеричными.

[03H]

Считывание команды с одиночным символом: считывание содержания регистрационной записи с одиночным символом из заданного кода. Содержание регистрационной записи разделено на старшие 8 бит и младшие 8 бит и является частью содержания ответа в соответствующей последовательности.

пример: считывание состояния инвертора 1.

Режим RTU:

Содержание команды			Содержание нормального ответа			Содержание анормального ответа		
Адрес инвертора 0		01	Адрес инвертора		01	Адрес инвертора		01
Код команды		03	Код команды		03	Код команды		83
Исходный адрес	Старший бит	00	Количество данны	οIX	02	2 Код нарушения		03
	Младший бит	20	Содержание	Старший бит	00	Циклическая	Старший бит	01
Количество	Старший бит	00	данных	Младший бит	C1	проверка избы-	Младший бит	31
адресов	Младший бит	01	Циклическая	Старший бит	79	точности CRC		
Циклическая	Старший бит	85	проверка избы-	Младший бит	D4			
проверка избы- точности CRC	Младший бит	CO	точности CRC					

ПРИМЕЧАНИЕ Количество данных удваивает количество адресов.

ASCII:

Содержание команды:	3A 3031 3033 3030 3230 3030 3031 4442 0D0A	(LRC: DB)
Нормальный ответ:	3A3031 3033 3032 3030 4331 3339 0D0A	(LRC: 39)
Анормальный ответ:	3A3031 3833 3033 3739 0D0A	(LRC: 79)

[06H]

Команда записи с одиночным символом: запись одиночного символа в соответствующий регистр и сохранение соответствующих данных в выбранном регистре. Сохраненные данные должны находиться среди кодов записи в соответствующем порядке. Содержание команды должно быть расположено в последовательности старших 8 бит и младших 8 бит.

ПРИМЕР: запуск инвертора 1 в работу.

Режим RTU:

Содержание команды		Содержание нормального ответа		Содержание анормального ответа		a		
Адрес инвертора		01	Адрес инвертора		01	Адрес инвертора		01
Код команды		06	Код команды		06	Код команды		86
Исходный адрес	Старший бит	00	Исходный адрес Старший бит		00	Код нарушения		00
	Младший бит	01		Младший бит	01	Циклическая	Старший бит	42
Содержание	Старший бит	00	Содержание	Старший бит	00	проверка избы-	Младший бит	60
данных	Младший бит	01	данных	Младший бит	01	точности CRC		L_
Циклическая	Старший бит	19	Циклическая	Старший бит	19			
· · · innagmin on on		проверка избы- точности CRC	Младший бит	CA				

ASCII:

Содержание команды:	3A 3031 3036 3030 3031 3030 3031 4637 0D0A	(LRC: F7)
Нормальный ответ:	3A 3031 3036 3030 3031 3030 3031 4637 0D0A	(LRC: F7)
Анормальный ответ:	3A3031 3836 3032 3737 0D0A	(LRC: 77)

[08H]

Команда контурного тестирования: содержание команды изначально передается обратно в форме ответа и используется для тестирования передачи сигнала и возврата между главным контроллером и инвертором. В качестве тестового кода и данных можно использовать произвольные значения.

ПРИМЕР: тестирование контура обратной связи.

Режим RTU:

Содержание команды			Содержание нормального ответа			Содержание анормального ответа		
Адрес инвертора		01	Адрес инвертора		01	Адрес инвертора		01
Код команды		08	Код команды		08	Код команды		88
Тестовый код	Старший бит	00	Тестовый код	Старший бит	00	0 Код нарушения		03
	Младший бит	00		Младший бит	00	Циклическая	Старший бит	06
Тестовый код	Старший бит	12	Тестовый код	Старший бит	12	проверка избы-	Младший бит	01
	Младший бит	34		Младший бит	34	точности CRC		
Циклическая	Старший бит	ED	Циклическая	Старший бит	ED			
проверка избы- точности СRC Младший бит 70		7C	проверка избы- точности CRC	Младший бит	7C			

ASCII:

Содержание команды:	3A 3031 3038 3030 3030 3132 3334 4231 0D0A	(LRC: B1)
Нормальный ответ:	3A 3031 3038 3030 3030 3132 3334 4231 0D0A	(LRC: B1)
Анормальный ответ:	3A3031 3838 3033 3734 0D0A	(LRC: 74)

[10H]

Команда записи с одиночным символом: запись содержания в выбранный регистр и запись соответствующих данных в выбранный регистр. Сохраненные данные должны находиться среди кодов записи в соответствующем порядке. Содержание команды должно быть расположено в последовательности старших 8 бит и младших 8 бит.

пример: настройка частоты на 50,00 Гц.

Режим RTU:

Содержание команды				
	01	-		
	10	I		
Исходный адрес Старший бит				
Младший бит	02			
Старший бит	00	ī		
Младший бит	01	ě		
Число данных				
Старший бит	13	Γ		
Младший бит	88	_1		
Старший бит	AA			
Младший бит	E4			
	Старший бит Младший бит Старший бит Младший бит Старший бит Младший бит Старший бит	01 10 Старший бит 00 Младший бит 02 Старший бит 00 Младший бит 01 02 Старший бит 13 Младший бит 88 Старший бит АА		

Содержание нормального ответа			
Адрес инвертора		01	
Код команды		10	
Исходный адрес	Старший бит	02	
	Младший бит	00	
Количество	Старший бит	12	
адресов	Младший бит	01	
Циклическая	Старший бит	A0	
проверка избы- точности CRC	Младший бит	90	

Содержание анормального ответа				
Адрес инвертора				
Код команды				
Код нарушения				
Циклическая	Старший бит	0C		
проверка избы-	Младший бит	01		
точности CRC				

ASCII:

Содержание команды: 3A 3031 3130 3030 3032 3030 3031 3032

3133 3838 3446 0D0A (LRC: 4F)

Нормальный ответ: 3A 3031 3130 3030 3032 3030 3031 4543 0D0A (LRC: EC)

Анормальный ответ: 3A3031 3930 3033 3643 0D0A (LRC: 6C)

[10H]

Команда сохранения данных: запись адреса регистра MODBUS, в соответствии с параметрами функции, в выбранный адрес сохранения 0xFF и сохранение содержания параметра в ЭСППЗУ (EEPROM). Команда соответствует нажатию клавиши ввода (ENTER) на клавишной панели для сохранения данных без их утраты при перебоях с питанием. Содержание команды располагается в последовательности старших 8 бит и младших 8 бит. 00FFH специально используется для сохранения данных и эффективно при Pb.06 = 0.

ПРИМЕР: настройка частоты на 30,00 Гц и ее сохранение в ЭСППЗУ (ЕЕРROM).

Режим RTU:

Содержание команды			Содержание нор
Адрес инвертора			Адрес инвертора
Код команды		10	Код команды
Исходный адрес	Старший бит	00	Исходный адрес
	Младший бит	02	
Количество	Старший бит	00	Количество
адресов	Младший бит	01	адресов
Число данных		02	Число данных
Содержание	Старший бит	0B	Содержание
данных	Младший бит	В8	данных
Циклическая	Старший бит	B1	Циклическая
проверка избы-	Младший бит	D2	проверка избы-
точности CRC			точности CRC

Содержание нормального ответа				
Адрес инвертора		01		
Код команды		10		
Исходный адрес	Старший бит	00		
	Младший бит	FF		
Количество	Старший бит	00		
адресов	Младший бит	01		
Число данных		02		
Содержание	Старший бит	01		
данных	Младший бит	02		
Циклическая	Старший бит	В3		
проверка избы- точности CRC	Младший бит	CF		

Содержание анормального ответа			
Адрес инвертора			
Код команды			
Код нарушения			
Циклическая	Старший бит	0D	
проверка избы- точности CRC			

ASCII:

Содержание команды: 3A 3031 3130 3031 3032 3030 3031 3032 3042

4238 3236 0D0A (LRC: 26)

Нормальный ответ: 3A 3031 3130 3030 4646 3030 3031 3032 3031

3032 4541 0D0A (LRC: EA)

Анормальный ответ: 3A3031 3930 3233 3443 0D0A (LRC: 4C)

[10H]

Запись двух команд: может работать с двумя регистрами команды действия 0001 и установкой частоты 1 0002. Следует учесть, что установка заданного способа команды действия (Р0.07) должна быть «серийным интерфейсом» и что источником настройки частоты 1 (Р0.03) должна быть «настройка передачи данных».

пример: настройка частоты на 50,00 Гц.

Режим RTU:

Содержание команды				
Адрес инвертора		01		
Код команды		10		
Исходный адрес	Старший бит	00		
	Младший бит	01		
Количество	Старший бит	00		
адресов Младший бит				
Число данных				
Содержание	Старший бит	00		
данных	Младший бит	01		
	Старший бит	13		
	Младший бит	88		
Циклическая	Старший бит	6E		
проверка избы- точности CRC	Младший бит	F5		

Содержание нормального ответа				
Адрес инвертора		01		
Код команды				
Исходный адрес Старший бит				
	Младший бит	01		
Количество	Старший бит	00		
адресов	Младший бит	02		
Циклическая	Старший бит	10		
проверка избы- Младший бит				
точности CRC				

Содержание анормального ответа				
Адрес инвертора				
Код команды				
Код нарушения				
Циклическая Старший бит				
проверка избы- точности CRC	Младший бит	01		

ASCII:

Содержание команды: 3A 3031 3130 3030 3031 3030 3032 3034 3030

3031 3133 3838 3443 0D0A (LRC: 4C)

Нормальный ответ: 3A 3031 3130 3030 3031 3030 3032 4543 0D0A (LRC: EC)

Анормальный ответ: 3A3031 3930 3033 3643 0D0A (LRC: 6C)

Перечень данных:

Данные команды (с возможностью записи)

Адрес MODBUS	Наимено-	Бит	Содержание		
0000H	(Резерв)				
0001H	Сигнал	0	Рабочая команда 1: работа 0: остановка		
	операции	1	Команда обратного хода 1: назад 0: вперед		
		2	Внешняя неисправность 1: внешняя неисправность (EFO)		
	3 Сброс сообщения неисправности 1: команда сброса сообщения неисправнос				
		4	Команда многофункционального ввода 1 (функция контактной панели РЗ.01 X1)		
		5	Команда многофункционального ввода 2 (функция контактной панели РЗ.02 Х2)		
		6	Команда многофункционального ввода 3 (функция контактной панели РЗ.03 ХЗ)		
		7	Команда многофункционального ввода 4 (функция контактной панели РЗ.04 Х4)		
		8	Команда многофункционального ввода 5 (функция контактной панели РЗ.05 Х5)		
		9 – F	Зарезервировано (смотрите ниже примечание 1)		
0002H	Установка частоты 1 (примечание 2)				
0003H	Обратная связь ПИД-регулятора передачи данных 1, перечень данных 0÷2000, соответствующих -100,0 % — 100,0 %				
0004H	Установка ПИД-регулятора передачи данных 1, перечень данных $0\div2000$, соответствующих $-100,0~\%-100,0~\%$				
0005H	Установка ч	настоты	2 (примечание 2)		
0006H	Обратная связь ПИД-регулятора 2, перечень данных 0÷2000, соответствующих -100,0 % — 100,0 %				
0007H	Установка ПИД-регулятора 2, перечень данных 0÷2000, соответствующих -100,0 % — 100,0 %				
Н8000	Верхнее ограничение по частоте, перечень данных 0÷1000, соответствующих 0,0÷100,0 %, 100,0 % соответствуют верхнему ограничению по частоте				
0009H	Остановка торможения постоянным током, перечень данных 0÷1000, соответствующих 0,0÷100,0 %				
000AH	Установка крутящего момента на валу привода, перечень данных 0÷1000, соответствующих 0,0÷100,0 %, 100,0 % соответствуют двойному значению номинального крутящего момента двигателя				
000BH	Отклонения выходного напряжения, перечень данных 0÷1000, соответствующих 0,0÷100,0 %, 100,0 % соответствуют максимальному значению выходного напряжения				
000CH	Канал входного сигнала датчика защиты двигателя				
0012H	Установка момента торможения, перечень данных 0÷1000, соответствующих 0,0÷100,0 %, 100,0 % соответствуют двойному значению номинального крутящего момента двигателя				
0013 - 001FH	Зарезерви	ровано			

ПРИМЕЧАНИЕ 1: пропишите «О» в зарезервированном бите.

ПРИМЕЧАНИЕ 2: когда команда частоты передачи данных > максимального значения частоты,

будет выведен код нарушения 21Н «выход за пределы верхней и нижней границ значений», и значение рабочей частоты будет зарезервировано без изменений.

ПРИМЕЧАНИЕ 3: адреса 000DH — 0011H и 0013H — 001FH зарезервированы в универсальном

инверторе.

при считывании вышеуказанных зарегистрированных адресов регистра ошибка

адреса будет отправлена по каналу обратной связи.

Сохранение параметров [Команда ввода] (с возможностью записи)

Рег. запись	Наименование	Содержание	Диапазон настроек	Исходное значение
00FFH	Команда ввода	Адрес MODBUS в списке функций	0100H — 0FFFH	_

ПРИМЕЧАНИЯ

- Для команды записи данных 06 и 10 только данные записываются в 03У для той или иной операции и являются эффективными для этой операции. После отключения питания инвертора и повторного запуска последние записанные данные не сохраняются.
- Если данные, записанные при передаче, должны оставаться действительными после отключения питания инвертора и его повторного запуска, эти данные следует записать и сохранить в ЭСППЗУ (ЕЕРROM). Функция 10 может быть использована для записи параметров адреса MODBUS с сохранением в 0x00F.
- При записи адреса MODBUS, соответствующего параметрам, которые должны быть сохранены
 в 0х00FFH, данные параметра в 03У будут записаны и сохранены в ЭСППЗУ (ЕЕРROM). Ввиду того,
 что максимальное количество сеансов записи в ЭСППЗУ (ЕЕРROM) составляет 100000, команду
 ввода лучше не использовать часто. Команда вводится посредством нажатия клавиши ввода (ENTER)
 на клавишной панели, и нажатием этой клавиши установленные параметры будут записаны
 в ЭСППЗУ (ЕЕРROM). Код регистрации записи 00FFH специально предназначен для записи данных.
 При считывании записанных данных могут возникать ошибки кода считывания (код нарушения 02H).

Содержание мониторинга (только для чтения)

Адрес MODBUS	Наимено- вание	Бит	Содержание
0020H	Сигнал	0	Работа 1: Работа 0: Остановка
	состояния	1	Обратный ход 0: Вперед
	2	Сброс сообщения неисправности 1: Сброс сообщения неисправности 0: Без сброса сообщения неисправности	
		3	Неисправность 1: Неисправность
		4	Сигнализация 1: Сигнализация
	5	Команда многофункционального выхода 1 (1: DO ON 0: OFF)	
		6	(Зарезервировано)
		7	(Зарезервировано)
		8	Команда многофункционального выхода 4 (1: TA ON 0: OFF)
		9 – F	(Зарезервировано)

Адрес MODBUS	Наимено- вание	Бит	Содержание		
0021H	Содер- 0 Перегрузка по току (ОС)				
	жание	1	Избыточное напряжение при ускорении (Ou1)		
	неисправ-	2	Перегрузка инвертора (OL2)		
	ности	3	Перегрев инвертора (ОН1)		
		4	Избыточное напряжение при торможении (Ou2)		
		5	Избыточное напряжение при постоянной скорости (Ou3)		
		6	Неисправность детектирования холловского тока (НЕ)		
		7	Внешнее нарушение (EFO — EF1)		
		8	Нарушение работы оборудования (CCF3 — CCF6)		
		9	Перегрузка двигателя (OL1)		
		Α	Пропадание или дисбаланс фазы входа/выхода (SP1 — SP2)		
		В	Недостаточное напряжение основной шины (Uu1)		
		С	Недостаточное напряжение цепи управления (Uu2)		
		D	Недостаточное напряжение зарядной цепи (Uu3)		
		Е	Неисправность заземления GF или КЗ при нагрузке (SC)		
		F	(Зарезервировано)		
0022H	Содер-	0	Сигнализация недостаточного напряжения основной шины (Uu)		
	жание				
	сигнали-	2	Сбой аналогового сигнала 1 нарушение (АЕ1)		
	зации	3	Зарезервировано		
		4	Очень высокая температура (OH2)		
		5	Серийный интерфейс не получает нормальный сигнал управления (СЕ)		
		6	Неправильная установка кода функции SF1		
	7		Режим работы не соответствует установке контактной панели SF2		
		8	(Зарезервировано)		
		9	Неисправность регулировки параметров двигателя		
		A – F	(Зарезервировано)		
0023H	Перед комп	Перед компенсацией команды управления частотой			
0024H	После компенсации команды управления частотой				
0025H	AI1 аналого	вый вхо	одной сигнал (B), 0÷10,00 В соответствует 0÷1000		
0026H	(Зарезерви	ровано			
0027H	Выходной т	Выходной ток (А)			
0028H	Выходное н	Выходное напряжение (В)			
0029H	Установлен	тановленная частота, Гц			
002AH	(Зарезерви	ровано			
002BH	т Тч	0	Контактная панель Х1 1: Замкнуть 0: Разомкнуть		
	Состояние контактной панели многофункци- онального входа	1	Контактная панель Х2 1: Замкнуть 0: Разомкнуть		
		2	Контактная панель ХЗ 1: Замкнуть 0: Разомкнуть		
		3	Контактная панель Х4 1: Замкнуть 0: Разомкнуть		
		4	Контактная панель Х5 1: Замкнуть 0: Разомкнуть		
	Co	5 – F	(Зарезервировано)		
002CH	(Зарезерви	ровано			

Адрес MODBUS	Наимено-	Бит	Содержание	
002DH	H Ž P		DO 1: «ВКЛ.» 0: «ВЫКЛ.»	
	Состояние контактной панели многофункцио- нального выхода	1	(Зарезервировано)	
	Состояние конта танели многофун нального выхода	2	ТА-ТВ-ТС реле 1: «ВКЛ.» 0: «ВЫКЛ.»	
	Состо панел налы	3 – F	(Зарезервировано)	
002EH	АО1 Аналог	овый вы	иходной сигнал (B) 0÷10,00 В соответствует 0÷1000	
002FH	(Зарезерви	ровано		
0030H	(Зарезерви	ровано		
0031H	Напряжени	Напряжение постоянного тока основной шины		
0032H	Выходной крутящий момент			
0033H	Текущая скорость вращения			
0034H	Установка скорости вращения			
0035H	Рабочая ли	Рабочая линейная скорость		
0036H	Установка линейной скорости			
0037H	Выходная м	Выходная мощность		
0038H	Величина сигнала обратной связи ПИД-регулятора (%)			
0039H	Величина входного сигнала ПИД-регулятора (%)			
003AH	(Зарезерви	(Зарезервировано)		
003BH	(Зарезервировано)			
003CH	Значение внешнего счетчика			
003D -	(Зарезервировано)			
003FH				
0040 -		контактн	юй панели, 0040H — 004AH соответствует ВІТО — ВІТА бит 002BH в установленном	
004AH	порядке			
004B — 00FEH	(Зарезервировано)			

Перечень адресов регистра Modbus:

Форма кода функции Код параметра (DEC)	Адрес регистра Modbus (HEX)
(Сохранение подтверждено)	(00FFH)
(Данные команды)	(0001H – 001FH)
(Содержание мониторинга)	(0020H – 004FH)
P0.00 - P0.19	0100H - 0113H*
P1.00 - P1.23	0200H — 0217H
P2.00 - P2.54	0300H - 0336H
P3.00 – P3.36	0400H — 0424H
P4.00 - P4.35	0500H — 0523H
P5.00 - P5.36	0600H - 0624H
P6.00 - P6.18	0700H – 0712H
P7.00 – P7.29	0800H — 081DH
P8.00 – P8.28	0900H - 091CH
P9.00 - P9.21	0A00H — 0A15H

Форма кода функции Код параметра (DEC)	Адрес регистра Modbus (HEX)	
PA00 — PA.30	0B00H — 0B1EH	
Pb.00 — Pb.08	0C00H - 0C08H	
PC.00 - PC.23	0D00H - 0D17H	
Pd.00 - Pd.34	0E00H — 0E22H	
PE.00 — PE.14	0F00H — 0F0EH	
PF.00 — PF.12	1000H - 100CH	
(Для расширения параметра)	(1100H – FFFFH)	

Способ кодирования адреса Modbus

Смотрите коды функции в таблице кодов функций. Старший разряд 8 бит HI = номер группы функции + 1; младший разряд 8 бит LO = коду функции. Другие адреса регистров, не указанные в списке, зарезервированы.

• Перечень кодов нарушений

Код нарушения	Содержание
01H	Ошибка кода команды
	Коды команд, отличающиеся от 03H, 08H и10H
02H	Ошибка адреса регистра
	Ни один из адресов регистра не зарегистрирован
	Прочтите выбранный регистр, подтвержденный нажатием клавиши ввода (ENTER) [0X00FFH]
	Функция передачи данных адреса не инициируется в установке кода функции (примечание 1)
03H	Ошибка числа
	Число считанных или записанных данных не находится в диапазоне от 1 до 16
	В записи данные команды не являются номером бита *2
21H	Ошибка установки данных
	Ошибка значений верхних и нижних пределов при вводе контрольных данных и параметров
22H	Ошибка способа записи
	Внесите запись действующих неизменяемых или доступных только для чтения параметров (приме
	чание 2)
	Параметры, защищенные от записей (примечание 3)
	Запишите данные в выбранный регистр чтения
	Внесите запись в случае появления ССF3, например, в случае неисправности ЭСППЗУ (EEPROM)
23H	Внесите запись в случае недостаточного напряжения
	Внесите запись в случае появления Uu
24H	Внесите запись параметров канала связи во время обработки параметров
	В момент сброса сообщения о неисправности, отключения питания системы или сохранения
	данных
25H	Сбой циклической проверки избыточности CRC (примечание 4)

ПРИМЕЧАНИЕ 1:

Настройте установки частоты P0.03 и P0.04 как серийный интерфейс (при записи адреса 0002) или настройте способ управления рабочей командой P0.07 как серийный интерфейс (при записи адреса 0001).

ПРИМЕЧАНИЕ 2:

В отношении параметров, которые могут быть настроены в режиме работы, смотрите перечень параметров функций. Если имеется параметр, который нельзя изменить в рабочем режиме, но можно изменить во время остановки, остановите инвертор и затем измените этот параметр.

ПРИМЕЧАНИЕ 3: Когда параметры защищены от записи и значение PF.01 установлено на 1 или 2,

измените его на 0. Затем можно изменить все параметры.

ПРИМЕЧАНИЕ 4: В случае неисправности проверки CRC 16 ответный сигнал будет послан, даже

если система уже не принимает сигналы, а также будет выведен отчет о неисправ-

ности 25Н для облегчения выборочной отладки.

Приложение Г. Установочные размеры клавишной панели и держателя

Г.1 Клавишная панель

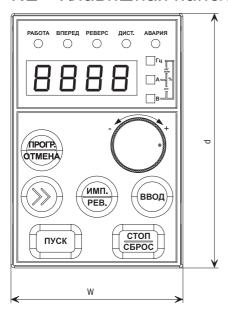


Рисунок Г.1 - Размеры клавишной панели

Таблица Г.1 - Установочные размеры клавишной панели (ед. изм.: мм)

Спецификации	Ширина	Длина
L620	49±0,2	76,5±0,2

Г.2 Держатель клавишной панели

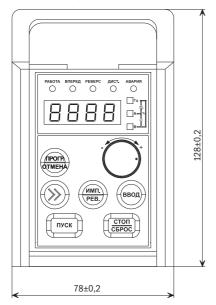


Рисунок Г.2 - Установочные размеры держателя клавишной панели (ед. изм.: мм)

Приложение Д. Гарантийный талон на инвертор

Наименование пользователя:							
Адрес пользователя:							
Контактное лицо:	Тел.:						
Почтовый код:	Факс:						
Тип:	Серийный №:						
Дата покупки:	Дата возникновения неисправности:						
Характеристики неисправности							
Двигатель:КВт Полюс	Применение двигателя:						
Время возникновения неисправности: подача питания, без нагрузки, с нагрузкой							
Признаки неисправности:							
Индикация неисправности: ОС OL OU OH LU нет Другие:							
Используемая управляющая контактная панель:							
Работа после сброса:	Выходное напряжение: да нет						
Общее время работы:ч	Неблагоприятная частота:Гц						
Характеристики участка монтажа Напряжение питания: U-B: B, B-Bт: B, Bт-U:B							
Мощность трансформатора:	Заземление инвертора: да нет						
Расстояние от источника питания:м	Расстояние от двигателя:м						
Вибрация: нет, средняя, сильная	Запыленность: нет, средняя, сильная						
Другое:							

Ю		6 HILLIO		801	271101	,
Е	аш	ближаі	ишии	IIai	JIHUI	Į

Адреса для обращения потребителей:

Российская Федерация ООО «ИЭК ХОЛДИНГ» 142100, Московская область, город Подольск, проспект Ленина, дом 107/49, офис 457 Тел./факс: +7 (495) 542-22-27 info@iek.ru www.iek.ru

Республика Беларусь 000 «ИЭК ХОЛДИНГ» (Представительство в Республике Беларусь) 220025, г. Минск, ул. Шафарнянская, д. 11, пом. 62 Тел.: + 375 (17) 286-36-29 iek.by@iek.ru www.iek.ru

УКРАИНА

ООО «ТОРГОВЫЙ ДОМ УКРЭЛЕКТРОКОМПЛЕКТ» 08132, Киевская область, Киево-Святошинский район, г. Вишневое, ул. Киевская, 6В Тел.: +38 (044) 536-99-00 info@iek.com.ua www.iek.ua

Страны Евросоюза Латвийская Республика 000 «ИЭК Балтия» LV-1005, г. Рига, ул. Ранкас, 11 Тел.: +371 2934-60-30 iek-baltija@inbox.lv www.iek.ru Республика Молдова «ИЭК ТРЭЙД» 0.0.0. MD-2044, город Кишинев ул. Мария Дрэган, 21 Тел.: +373 (22) 479-065, 479-066 Факс: +373 (22) 479-067 info@iek.md; infomd@md.iek.ru www.iek.md

Республика Казахстан ТОО «ТД ИЭК. КАЗ» 040916, Алматинская область, Карасайский район, с. Иргели, мкр. Акжол 71A

Тел.: +7 (727) 237-92-49, 237-92-50 infokz@iek.ru

www.iek.kz

Страны Азии

монголия

«ИЭК Монголия» КОО Улан-Батор, 20-й участок Баянголского района, Западная зона промышленного района 16100,

Московская улица, 9 Тел.: +976 7015-28-28 Факс: +976 7016-28-28 info@iek mn

info@iek.mn www.iek.mn