Emotron CDX 2.0 AC drive

Instruction manual
English
Valid from software version 4.36

Emotron CDX2.0

INSTRUCTION MANUAL - ENGLISH

Valid from software version 4.36

Document number: 01-4972-01
Edition: rl
Date of release: 03-02-2015
© Copyright CG Drives \& Automation Sweden AB 2015
CG Drives \& Automation Sweden AB retains the right to change specifications and illustrations in the text, without prior notification. The contents of this document may not be copied without the explicit permission of CG Drives \& Automation Sweden AB

Safety Instructions

Congratulations for choosing a product from CG Drives \& Automation!

Before you begin with installation, commissioning or powering up the unit for the first time it is very important that you carefully study this Instruction manual. Following symbols can appear in this manual or on the product itself. Always read these first before continuing:

NOTE: Additional information as an aid to avoid problems.

CAUTION!
Failure to follow these instructions can result in malfunction or damage to the AC drive.

Warning!

Failure to follow these instructions can result in serious injury to the user in addition to serious damage to the AC drive.

HOT SURFACE!
Failure to follow these instructions can result in injury to the user.

Handling the AC drive

Installation, commissioning, demounting, taking measurements, etc, of or on the AC drive may only be carried out by personnel technically qualified for the task. A number of national, regional and local regulations govern handling, storage and installation of the equipment. Always observe current rules and legislation.

Opening the AC drive

WARNING!

Always switch off the mains voltage before opening the AC drive and wait at least 7 minutes to allow the buffer capacitors to discharge.

Always take adequate precautions before opening the AC drive. Although the connections for the control signals and the switches are isolated from the main voltage, do not touch the control board when the AC drive is switched on.

Precautions to be taken with a connected motor

If work must be carried out on a connected motor or on the driven machine, the mains voltage must always be disconnected from the AC drive first. Wait at least 7 minutes before starting work.

Earthing

The AC drive must always be earthed via the mains safety earth connection.

Earth leakage current

4CAUTION! This AC drive has an earth leakage current which does exceed 3.5 mA AC . Therefore the minimum size of the protective earth conductor must comply with the local safety regulations for high leakage current equipment which means that according the standard IEC61800-5-1 the protective earth connection must be assured by one of following conditions:
PE conductor cross-sectional area shall for cable size $\leq 16 \mathrm{~mm}^{2}$ (6 AWG) be equal to the used phase conductors, for cable size above $16 \mathrm{~mm}^{2}$ (6 AWG) but smaller or equal to $35 \mathrm{~mm}^{2}$ (2 AWG) the PE conductor cross-sectional area shall be at least $16 \mathrm{~mm}^{2}$ (6 AWG). For cables $>35 \mathrm{~mm}^{2}$ (2 AWG) the PE conductor cross-sectional area should be at least 50% of the used phase conductor.
When the PE conductor in the used cable type is not in accordance with the above mentioned cross-sectional area requirements, a separate PE conductor should be used to establish this.

Residual current device (RCD) compatibility

This product cause a DC current in the protective conductor. Where a residual current device (RCD) is used for protection in case of direct or indirect contact, only a Type B RCD is allowed on the supply side of this product. Use RCD of 300 mA minimum.

EMC Regulations

In order to comply with the EMC Directive, it is absolutely necessary to follow the installation instructions. All installation descriptions in this manual follow the EMC Directive.

Mains voltage selection

The AC drive may be ordered for use with the mains voltage range listed below.

Voltage tests (Megger)

Do not carry out voltage tests (Megger) on the motor, before all the motor cables have been disconnected from the AC drive.

Condensation

If the AC drive is moved from a cold (storage) room to a room where it will be installed, condensation can occur. This can result in sensitive components becoming damp. Do not connect the mains voltage until all visible dampness has evaporated.

Incorrect connection

The AC drive is not protected against incorrect connection of the mains voltage, and in particular against connection of the mains voltage to the motor outlets U, V and W. The AC drive can be damaged in this way.

Power factor capacitors for improving $\cos \varphi$

Remove all capacitors from the motor and the motor outlet.

Precautions during Autoreset

When the automatic reset is active, the motor will restart automatically provided that the cause of the trip has been removed. If necessary take the appropriate precautions.

Transport

To avoid damage, keep the AC drive in its original packaging during transport. This packaging is specially designed to absorb shocks during transport.

IT Mains supply

The AC drives can be modified for an IT mains supply, (non-earthed neutral), please contact your supplier for details.

[^0]Heat warning

HOT SURFACE!
Be aware of specific parts on the AC drive having high temperature.

DC-link residual voltage

WARNING!
After switching off the mains supply, dangerous voltage can still be present in the $A C$ drive. When opening the AC drive for installing and/ or commissioning activities wait at least 7 minutes. In case of malfunction a qualified technician should check the DC-link or wait for one hour before dismantling the AC drive for repair.

Mechanical installation

The transmission member (such as coupling, pinion or pulley) should be mounted by means of pull-on devices and / or the part to be mounted is to be warmed up. For this, the shaft ends are fitted with threaded centre bores according to DIN 332 part 2.
Transmission members must never be driven onto the shaft by hammer blows because shaft, bearings and other components of the compact drive can be damaged. All the parts which have to be attached to the shaft are to be balanced dynamically. The rotors are balanced with half key.
If possible, the compact drives are to be installed so that they are free from vibration. Direct coupling with the driven machine requires exact alignment. The shafts of both machines must be in line. By means of suitable shims, the shaft height is to be adapted to the driven machine. The required minimum diameter of the belt pulley and the correct relation of the belt tension to the belt pulley diameter are to be observed in case of belt drive because an excessive pretension can be the cause for bearing damages and shaft failures. The dimensions of the belt pulley are to be determined according to the kind of belt, the transmission and the power to be transmitted. Vent holes are to be kept free and required minimum distances are to be observed so that the cooling will not be reduced. In case of intensive cooling air pollution, countermeasures are to be taken. It is to be taken care that the discharged warmed up cooling air will not be aspirated again. In case of the open air installation of the compact drives is to be observed that the compact drives are protected against direct atmospheric influences (such as rain, snow and ice, solid freezing of the fan). No operation below $-20^{\circ} \mathrm{C}$.

The type of construction permissible for the compact drives is stated on the motor rating plate. An application to different types of construction is only allowed by permission of the manufacturer and, if necessary, after reconstruction according to the manufacturer's instructions.

Cleaning

To prevent impairing of the effects of cooling air, all the parts of the compact drive have to be cleaned at regular intervals. In most cases it suffices to blow-out the compact drive with compressed air that must be free from water and oil.

Particular attention should be given to the cleaning of vent holes and the spaces between the ribs. We recommend to include the compact drives into the usual routine inspections of the driven machine.

Bearings

The anti friction bearings of the motor are life lubricated by the manufacturer. Under normal load and environmental conditions, the quality of grease ensures proper operation of the motor for about 10000 service hours with two-pole design and 20000 service hours with four-pole design. If not otherwise agreed, the grease of anti friction bearings must never be refilled during this period. The stated service hours are only valid under operation with 1500 r.p.m. or 3000 r.p.m. After this running time, the bearings should be changed by a service agency.

Content

Safety Instructions 1
Content 5

1. Introduction 7
1.1 Delivery and unpacking 7
1.2 Using of the instruction manual. 7
1.2.1 Instruction manuals for optional equipment 8
1.3 Warranty 8
1.4 Type code number 9
1.5 Standards 9
1.5.1 Product standard for EMC 9
1.6 Dismantling and scrapping 11
1.6.1 Disposal of old electrical and electronic equipment 11
1.7 Glossary 11
1.7.1 Abbreviations and symbols 11
1.7.2 Definitions 11
2. Installation 13
2.1 Product description 13
2.2 Before installation 13
2.3 Cooling 14
2.4 Fan flow rate 14
2.5 Cable connections 14
2.5.1 Mains cables 15
2.6 Cable specifications 16
2.7 Stripping lengths 16
2.7.1 Dimension of cables and fuses 16
2.7.2 Tightening torque for mains cables 16
2.8 Thermal protection on the motor 17
2.9 Motor cables 17
3. Control Connections 19
3.1 Control board 19
3.2 Terminal connections 20
3.3 Inputs configuration with the switches 20
3.4 Connection example 21
3.5 Connecting the Control Signal 22
3.5.1 Cables 22
3.5.2 Types of control signals 23
3.5.3 Screening 23
3.5.4 Single-ended or double-ended connection? 23
3.5.5 Current signals ((0)4-20 mA) 24
3.5.6 Twisted cables 24
3.6 Connecting options 24
4. Getting Started 25
4.1 Remote control 25
4.1.1 Connect control cables. 25
4.1.2 Switch on the mains 25
4.1.3 \quad Set the Motor Data 25
4.1.4 Run the AC drive 25
4.2 Local control (Optional) 26
4.2.1 Switch on the mains 26
4.2.2 Using the function keys 26
4.2.3 Select manual control 26
4.2.4 Set the Motor Data 26
4.2.5 Enter a Reference Value 26
4.2.6 Run the AC drive 26
5. Applications 27
5.1 Application overview 27
5.1.1 Cranes 27
5.1.2 Crushers 27
5.1.3 Mills 28
5.1.4 Mixers 28
6. Main Features 29
6.1 Remote control functions 29
6.2 Parameter sets 31
6.2.1 One motor and one parameter set 32
6.2.2 One motor and two parameter sets 32
6.2.3 Autoreset at trip 32
6.2.4 Reference priority 32
6.2.5 Preset references 33
6.3 Performing an Identification Run. 33
6.4 Using the - Handheld control panel - HCP memory (Optional) 33
6.5 Load Monitor and Process Protection [400] 34
6.5.1 Load Monitor [410] 34
7. EMC and standards 37
7.1 EMC standards 37
7.2 Stop categories and emergency stop 37
8. Operation via the Control Panel 39
8.1 General 39
8.1.1 LED indications and control keys 39
8.2 Hand held Control Panel -HCP (Option) 40
8.3 Hand held Control Panel - HCP (Option) 40
8.3.1 The display 40
8.3.2 Indications on the display 41
8.3.3 LED indicators 41
8.3.4 Control keys 41
8.3.5 The Toggle and Loc/Rem Key 42
8.3.6 Function keys 43
8.4 The menu structure 43
8.4.1 The main menu 44
8.5 Programming during operation 44
8.6 Editing values in a menu 44
8.7 Copy current parameter to all sets 44
8.8 Programming example 45
9. Serial communication 47
9.1 Modbus RTU 47
9.2 Parameter sets 47
9.3 Motor data 48
9.4 Start and stop commands 48
9.5 Reference signal 48
9.5.1 Process value 48
9.6 Description of the Elnt formats 49
10. Functional Description for Hand held Control Panel - HCP (option) 51
10.1 Preferred View [100] 51
10.1.1 1st Line [110] 52
10.1.2 2nd Line [120] 52
10.2 Main Setup [200] 53
10.2.1 Operation [210] 53
10.2.2 Remote Signal Level/Edge [21A] 57
10.2.3 Mains supply voltage [21B] 58
10.2.4 Motor Data [220] 58
10.2.5 Motor Protection [230] 64
10.2.6 Parameter Set Handling [240] 68
10.2.7 Trip Autoreset/Trip Conditions [250] 70
10.2.8 Serial Communication [260] 79
10.3 Process and Application Parameters [300] 83
10.3.1 Set/View Reference Value [310] 83
10.3.2 Process Settings [320] 83
10.3.3 Start/Stop settings [330] 88
10.3.4 Mechanical brake control 92
10.3.5 Speed [340] 96
10.3.6 Torques [350] 99
10.3.7 Preset References [360] 101
10.3.8 PI Speed Control [370] 102
10.3.9 PID Process Control [380] 103
10.3.10 Pump/Fan Control [390] 107
10.3.11 Crane Option [3AO] 113
10.4 Load Monitor and Process Protection [400] 117
10.4.1 Load Monitor [410] 117
10.4.2 Process Protection [420] 121
10.5 I/Os and Virtual Connections [500]. 123
10.5.1 Analogue Inputs [510] 123
10.5.2 Digital Inputs [520] 130
10.5.3 Analogue Outputs [530] 132
10.5.4 Digital Outputs [540] 136
10.5.5 Relays [550] 138
10.5.6 Virtual Connections [560] 140
10.6 Logical Functions and Timers [600] 141
10.6.1 Comparators [610] 141
10.6.2 Logic Output Y [620] 151
10.6.3 Logic Output Z [630] 153
10.6.4 Timer1 [640] 154
10.6.5 Timer2 [650] 156
10.6.6 Counters [660] 158
10.7 View Operation/Status [700] 161
10.7.1 Operation [710] 161
10.7.2 Status [720] 163
10.7.3 Stored values [730] 167
10.8 View Trip Log [800] 168
10.8.1 Trip Message log [810] 168
10.8.2 Trip Messages [820] - [890] 169
10.8.3 Reset Trip Log [8AO] 170
10.9 System Data [900] 170
10.9.1 VSD Data [920] 170
11. Troubleshooting, Diagnoses and Maintenance 173
11.1 Trips, warnings and limits 173
11.2 Trip conditions, causes and remedial action 174
11.2.1 Technically qualified personnel 175
11.2.2 Opening the AC drive 175
11.2.3 Precautions to take with a connected motor. 175
11.2.4 Autoreset Trip 175
11.3 Maintenance 179
12. Options 181
12.1 Handheld Control Panel 2.0 181
12.2 Gland kits 181
12.3 EmoSoftCom 181
12.4 Brake chopper. 181
12.5 I/O Board 182
12.6 Encoder 182
12.7 PTC/PT100 182
12.8 Crane option board 182
12.9 Serial communication and fieldbus 183
12.10 Standby supply board option 183
12.11 Safe Stop option 183
12.12 EMC filter class C1/C2 186
12.13 Other options 186
13. Technical Data 187
13.1 Electrical specifications related to model 187
13.2 General electrical specifications. 189
13.3 Operation at higher temperatures 190
13.4 Dimensions and Weights 190
13.5 Environmental conditions 191
13.6 Fuses, cable cross-sections and glands. 192
13.6.1 According to IEC ratings 192
13.6.2 Fuses and cable dimensions according to NEMA ratings 193
13.7 Control signals 194
14. Menu List for Hand held Control Panel 2.0 195
Index 201

1. Introduction

Emotron CDX is intended for controlling the speed and torque of standard three phase asynchronous electrical motors. The AC drive (Frequency converter) is equipped with direct torque control which uses built-in digital signal processor - DSP, giving the AC drive the capability of high dynamic performance even at very low speeds without using feedback signals from the motor. Therefore the inverter is designed for use in high dynamic applications where low speed high torque and high-speed accuracy are demanded. In "simpler" application such as fans or pumps, the VFX direct torque control offers other great advantages such as insensitivity to mains disturbances or load shocks. Several options are available, listed in chapter, Options, that enable you to customize the AC drive for your specific needs.

> NOTE: Read this instruction manual carefully before starting installation, connection or working with the AC drive.

Users

This instruction manual is intended for:

- installation engineers
- maintenance engineers
- operators
- service engineers

Motors

The AC drive is suitable for use with standard 3-phase asynchronous motors. Under certain conditions it is possible to use other types of motors. Contact your supplier for details.

1.1 Delivery and unpacking

Check for any visible signs of damage. Inform your supplier immediately of any damage found. Do not install the AC drive if damage is found.
Check that all items are present and that the type number is correct.

1.2 Using of the instruction manual

Within this instruction manual the abbreviation "AC drive" is used to indicate the complete variable speed drive as a single unit.
Check that the software version number on the first page of this manual matches the software version in the AC drive.
See Chapter 10.9 page 170.

With help of the index and the table of contents it is easy to track individual functions and to find out how to use and set them.
The Quick Setup Card can be put in a cabinet door, so that it is always easy to access in case of an emergency.

1.2.1 Instruction manuals for optional equipment

In the following table we have listed available options and the name of the Instruction manual or data sheet/ Instruction plus document number. Further in this main manual we are often referring to these instructions.

Table 1 Available options and documents

Option	Valid instruction manual/ document number
I/O board	I/O board 2.0, instruction manual / 01-5916-01
Encoder board	Emotron Encoder board 2.0, Instruction manual / 01-5917-01
PTC/PT100 board	PTC/PT100 board 2.0, instruction manual / 01-5920-01
Fieldbus - Profibus	Fieldbus Option, Instruction manual / 01-3698-01
Fieldbus - DeviceNet	
Ethernet - Modbus TCP	
Ethernet - EtherCAT	
Ethernet - Profinet IO 1-port	
Ethernet - Profinet IO 2-port	
Ethernet - EtherNet/IP 2-port	
RS232/RS485 isolated	Emotron isolated RS232 / 4852.0 option Instruction manual / 01-5919-01
Handheld Control Panel HCP2.0	Emotron HCP 2.0, instrucion manual / 01-5925-01
Safe stop	Option Safe Stop (STO - Safe Torque Off), Technical description / 01-5921-01
Overshoot clamp	Overshoot clamp Datasheet/Instruction / $01-5933-11$
Output choke	Output coils Datasheet/Instruction / $01-3132-11$

1.3 Warranty

The warranty applies when the equipment is installed, operated and maintained according to instructions in this instruction manual. Duration of warranty as per contract. Faults that arise due to faulty installation or operation are not covered by the warranty.

1.4 Type code number

Fig. 1 gives an example of the type code numbering used on all AC drives. With this code number the exact type of the drive can be determined. This identification will be required for type specific information when mounting and installing. The code number is located on the product label, on the unit.

CDX48-046-55 C E - - - A - N N N N A N - Position number:

Fig. 1 Type code number

Position	Configuration	
1	AC drive type	$\begin{aligned} & \hline \text { CDU } \\ & \text { CDD } \end{aligned}$
2	Supply voltage	$\begin{aligned} & 48=480 \mathrm{~V} \text { mains } \\ & 52=525 \mathrm{~V} \text { mains } \end{aligned}$
3	Rated current (A) continuous	$\begin{aligned} & -008=7.5 \mathrm{~A} \\ & - \\ & -046=46 \mathrm{~A} \end{aligned}$
4	Protection class	55=IP55
5	Control panel	C=Standard panel
6	EMC option	```E=Standard EMC (Category C3) F=Extended EMC (Category C2) I=IT-Net```
7	Brake chopper option	-=No chopper $\mathrm{B}=$ Chopper built in $\mathrm{D}=\mathrm{DC}+/$ - interface
8	Stand-by power supply option	$\begin{aligned} & -=\text { No SBS } \\ & \text { S=SBS included } \end{aligned}$
9	Brand label	A=Standard
10	Painted AC drive	A=Standard paint
11	Coated boards, option	- =Standard boards $\mathrm{V}=$ Coated boards
12	Option position 1	$\mathrm{N}=$ No option
13	Option position 2	$\mathrm{E}=\text { Encoder (max. 1) }$
14	Option position 3	P=PTC/PT100 (max. 1) I=Extended I/O (max. 3) S=Safe Stop (max. 1)
15	Option position, communication	$\mathrm{N}=$ No option $D=$ DeviceNet P=Profibus S=RS232/485 M=Modbus/TCP $\mathrm{E}=$ EtherCAT A=Profinet IO 1-port $\mathrm{B}=$ Profinet IO 2-port G=EtherNet/IP 2-port
16	Software type	A=Standard

Position	Configuration	
17	Motor PTC.	P=PTC
18	Gland kit.	-=Glands not included G=Gland kit included
19	Approval/ certification	-=CE approved D=Marine DNV Product certificate + CE approved M=Marine version + CE approved U=UL/cUL approved

1.5 Standards

The AC drives described in this instruction manual comply with the standards listed in Table 2. For the declarations of conformity and manufacturer's certificate, contact your supplier for more information or visit www.emotron.com/ www.cgglobal.com.

1.5.1 Product standard for EMC

Product standard EN(IEC)61800-3, second edition of 2004 defines the:

First Environment (Extended EMC) as environment that includes domestic premises. It also includes establishments directly connected without intermediate transformers to a low voltage power supply network that supplies buildings used for domestic purposes.
Category C2: Power Drive System (PDS) of rated voltage $<1.000 \mathrm{~V}$, which is neither a plug in device nor a movable device and, when used in the first environment, is intended to be installed and commissioned only by a professional.
Second environment (Standard EMC) includes all other establishments.

Category C3: PDS of rated voltage $<1.000 \mathrm{~V}$, intended for use in the second environment and not intended for use in the first environment.

Category C4: PDS or rated voltage equal or above 1.000 V , or rated current equal to or above 400 A , or intended for use in complex systems in the second environment.
The AC drive complies with the product standard $\mathrm{EN}($ IEC) 61800-3:2004. The standard AC drive is designed to meet the requirements according to category C3.
By using the optional "Extended EMC" filter the AC drive fulfils requirements according to category C 2 ,

[^1]WARNING!
The standard AC drive, complying with category C3, is not intended to be used on a low-voltage public network which supplies domestic premises; radio interference is expected if used in such a network. Contact your supplier if you need additional measures.

Table 2 Standards

M arket	Standard	Description
European	EMC Directive	2004/108/EC
	Low Voltage Directive	2006/95/EC
	WEEE Directive	2002/96/EC
All	EN 60204-1	Safety of machinery - Electrical equipment of machines Part 1: General requirements.
	EN(IEC)61800-3:2004	Adjustable speed electrical power drive systems Part 3: EMC requirements and specific test methods. EMC Directive: Declaration of Conformity and CE marking
	EN(IEC)61800-5-1 Ed. 2.0	Adjustable speed electrical power drive systems Part 5-1. Safety requirements - Electrical, thermal and energy. Low Voltage Directive: Declaration of Conformity and CE marking
	IEC 60721-3-3	Classification of environmental conditions. Air quality chemical vapours, unit in operation. Chemical gases 3C2, Solid particles 3S2. Optional with coated boards Unit in operation. Chemical gases Class 3C3, Solid particles 3S2.
	UL508C	UL Safety standard for Power Conversion Equipment
North \& South America	USL	USL (United States Standards - Listed) complying with the requirements of UL508C Power Conversion Equipment
	UL 840	UL Safety standard for Power Conversion Equipment. Insulation coordination including clearances and creepage distances for electrical equipment.
	CNL	CNL (Canadian National Standards - Listed) complying with the requirements of CAN/CSA C22.2 No. 14-10 Industrial Control Equipment.
Russian	GOST R	For all sizes.

NOTE: Emotron CDU/ CDX drives are only approved as UL/ cUL Recognized component (UR / cUR).

1.6 Dismantling and scrapping

The enclosures of the drives are made from recyclable material as aluminium, iron and plastic. Each drive contains a number of components demanding special treatment, for example electrolytic capacitors. The circuit boards contain small amounts of tin and lead. Any local or national regulations in force for the disposal and recycling of these materials must be complied with.

1.6.1 Disposal of old electrical and electronic equipment

This symbol on the product or on its packaging indicates that this product shall be taken to the applicable collection point for the recycling of electrical and electronic equipment. By ensuring this product is disposed of correctly, you will help prevent potentially negative consequences for the environment and human health, which could otherwise be caused by inappropriate waste handling of this product. The recycling of materials will help to conserve natural resources. For more detailed information about recycling this product, please contact the local distributor of the product.

1.7 Glossary

1.7.1 Abbreviations and symbols
 In this manual the following abbreviations are used:

Table 3 Abbreviations

Abbreviation/ symbol	Description				
DSP	Digital signals processor				
AC drive	Frequency converter				
IGBT	Insulated Gate Bipolar Transistor Control panel, the programming and CP				
HCP	Communication format				
EInt	Communication format (Unsigned integer)				
UInt	Communication frive	$	$	Int	Safety Extra Low Voltage (Integer)
:---	:---				
Long	The function cannot be changed in run mode				
SELV					

1.7.2 Definitions

In this manual the following definitions for current, torque and frequency are used:
Table 4 Definitions

Name	Description	Quantity
$I_{\text {IN }}$	Nominal input current of AC drive	$A_{R M S}$
$I_{\text {NOM }}$	Nominal output current of AC drive	$A_{R M S}$
$I_{\text {MOT }}$	Nominal motor current	$A_{R M S}$
$\mathrm{P}_{\text {NOM }}$	Nominal power of AC drive	kW
$\mathrm{P}_{\text {MOT }}$	Motor power	kW
$\mathrm{T}_{\text {NOM }}$	Nominal torque of motor	Nm
$\mathrm{T}_{\text {MOT }}$	Motor torque	Nm
$\mathrm{f}_{\text {OUT }}$	Output frequency of AC drive	Hz
$\mathrm{f}_{\text {MOT }}$	Nominal frequency of motor	Hz
$\mathrm{n}_{\text {MOT }}$	Nominal speed of motor	rpm
$\mathrm{I}_{\text {CL }}$	Maximum output current	$\mathrm{A}_{R M S}$
Speed	Actual motor speed	rpm
Torque	Actual motor torque	Nm
Sync speed	Synchronous speed of the motor	rpm

2. Installation

The description of installation in this chapter complies with the EMC standards and the Machine Directive.

Select cable type and screening according to the EMC requirements valid for the environment where the AC drive is installed.

2.1 Product description

Fig. 2 Emotron CDX frame size B and C
Emotron CDX is a robust AC drive for motor mounting. Available with cable inlet either on long side (standard) or short side.
As an option Brake chopper can be built in (brake resistor must be mounted outside the AC drive).

Fig. 3 CDX 48/52 Model 008 to 018, frame size B with cable inlet from long side (standard) or short side.

Fig. 4 CDX 48/52 Model 026 to 046, frame size C with cable inlet from long side (standard) or short side

2.2 Before installation

Read the following checklist and prepare your application before installation.

- Check ambient conditions, ratings, required cooling air flow, compatibility of the motor, etc.
- Local or remote control.
- Functions.
- Mount separately supplied option boards according to the instructions in the appropriate option manual.

If the AC drive is temporarily stored before being connected, please check the technical data for environmental conditions. If the AC drive is moved from a cold storage room to the room where it is to be installed, condensation can form on it. Allow the AC drive to become fully acclimatised and wait until any visible condensation has evaporated before connecting the mains voltage.

2.3 Cooling

Fig. 5 Variable speed drive mounting models 008 to 046
Fig. 5 shows the minimum free space required around the AC drive in order to guarantee adequate cooling. Because the fans blow the air from the bottom to the top it is advisable not to position an air inlet immediately above an air outlet.

The following minimum free space around the AC drive must be maintained. Valid if free space on opposite side.

Table 5 Mounting and cooling

		$008-018$	$026-046$
 	a	100	
	b	100	
	c	0	
	d	0	

2.4 Fan flow rate

If the variable speed drive is installed in a cabinet or a small room, the rate of airflow supplied by the cooling fans must be taken into consideration.

Table 6 Flow rates cooling fans

Frame	Model	Flow rate $\left[\mathrm{m}^{3}\right.$ / hour]
B	$008-018$	75
C	$026-046$	170

2.5 Cable connections

The AC drives are delivered with cover plugs. Replace the plugs with cable glands adapted to cables used. Glands are available as option kits, see chapter, Gland kits.

Fig. 6 CDX 48/52: Model 008 to 018 (B) with side cable entry/outlets.

Fig. 7 CDX 48/52: Model 008to 018 (B) with cable entry/ outlets on short side.

Fig. 8 CDX 48/52: Model 026 to 046 (C), with side cable entry/outlets.

Fig. 9 CDX 48/52: Model 026 to 046 (C), with cable entry/ outlets on short side

NOTE: Glands are available as option kit, see chapter, Gland kits.

2.5.1 Mains cables

Dimension the mains and motor cables according to local regulations. The cable must be able to carry the AC drive load current.

Recommendations for selecting mains cables

- To fulfil EMC purposes it is not necessary to use screened mains cables.
- Use heat-resistant cables, $+60^{\circ} \mathrm{C}$ or higher.
- Dimension the cables and fuses in accordance with local regulations and the nominal current of the motor. See table 43, page 192.
- PE conductor cross-sectional area shall for cable size $<16 \mathrm{~mm} 2$ be equal to the used phase conductors, for cable size above $16 \mathrm{~mm}^{2}$ but smaller or equal to $35 \mathrm{~mm}^{2}$ the PE conductor cross-sectional area shall be at least $16 \mathrm{~mm}^{2}$.
When the PE conductor in the used cable type is not in accordance with the above mentioned cross-sectional area requirements, a separate PE conductor should be used to establish this.

Connect the mains cables according to fig. 10 to 13 . The AC drive has as standard a built-in RFI mains filter that complies with category C3 which suits the Second Environment standard.

Fig. 10 Mains connections, CDX 008-018 with side cable entry/outlet.

Fig. 11 Mains connections, CDX 008-018 with cable entry/ outlet on short side.

Fig. 12 Mains connections, CDX 026-046 with side cable entry/outlet.

Fig. 13 Mains connections, CDX 026-046, with cable entry/ outlet on short side.

NOTE: The Brake and DC-link Terminals are only fitted if the Brake Chopper Option is built-in. Only possible when cable entry/ outlet on short side

WARNING!
The Brake Resistor must be connected between terminals $D C+$ and R.

WARNING!
In order to work safely, the mains earth must be connected to PE and the motor earth to \perp.

2.6 Cable specifications

Table 7 Cable specifications

Cable	Cable specification
Mains	Power cable suitable for fixed installation for the voltage used.
Control	Control cable with low-impedance shield, screened.

2.7 Stripping lengths

Fig. 14 indicates the recommended stripping lengths for mains cables.

Table 8 Stripping lengths for mains cables

Model	Mains cable	
	$\mathrm{a}(\mathrm{mm})$	$\mathrm{b}(\mathrm{mm})$
$008-018$	90	10
$026-046$	150	14

Fig. 14 Stripping lengths for cables

2.7.1 Dimension of cables and fuses

Please refer to the chapter Technical data, section 13.6, page 192.

2.7.2 Tightening torque for mains cables

Table 9 Model CDU/CDX 48/52 008 to 046

	Mains
Tightening torque, Nm	$1.2-1.4$

2.8 Thermal protection on the motor

Standard motors are normally fitted with an internal fan. The cooling capacity of this built-in fan is dependent on the speed of the motor. At low speed, the cooling capacity will be insufficient for nominal loads. Please contact the motor supplier for the cooling characteristics of the motor at low speed.

WARNING!
Depending on the cooling characteristics of the motor, the application, the speed and the load, it may be necessary to use forced cooling on the motor.

Motor thermistors offer better thermal protection for the motor. Depending on the type of motor thermistor fitted, the optional PTC input may be used. The motor thermistor gives a thermal protection independent of the speed of the motor, thus of the speed of the motor fan. See the functions, Motor $I^{2} \mathrm{t}$ type [231] and Motor $\mathrm{I}^{2} \mathrm{t}$ current [232].

2.9 Motor cables

Motor cables are normally already connected to the Compact drive unit through the motor adaptor plate. If the cables of some reason are not connected, lead the motor cables through the hole in the back of the drive unit (see Fig. 15) and connect to the terminals on the main circuit board according to separate instructions.

Fig. 15 Inlet for motor cables

3. Control Connections

3.1 Control board

Fig. 16 shows the layout of the control board which is where the parts most important to the user are located. Although the control board is galvanically isolated from the mains, for safety reasons do not make changes while the mains supply is on!

\triangleWARNING!
Always switch off the mains voltage and wait at least 7 minutes to allow the DC capacitors to discharge before connecting the control signals or changing position of any switches. If the option External supply is used, switch of the mains to the option. This is done to prevent damage on the control board.

Fig. 16 Control board layout

3.2 Terminal connections

The terminal strip for connecting the control signals is accessible after opening the cover.

The table describes the default functions for the signals. The inputs and outputs are programmable for other functions as described in Chapter 10. page 51. For signal specifications refer to Chapter 13.Technical Data, page 187.

NOTE: The maximum total combined current for outputs 11,20 and 21 is 100 mA .

Table 10 Control signals

Terminal	Name	Function (Default)
Outputs		
1	+10 V	+10 VDC supply voltage
6	-10 V	-10 VDC supply voltage
7	Common	Signal ground
11	+24 V	+24 VDC supply voltage
12	Common	Signal ground
15	Common	Signal ground
Digital inputs		
8	Digln 1	RunL (reverse)
9	Digln 2	RunR (forward)
10	Digln 3	Off
16	Digln 4	Off
17	Digln 5	Off
18	Digln 6	Off
19	Digln 7	Off
22	Digln 8	RESET
Digital outputs		
20	DigOut 1	Ready
21	DigOut 2	Brake
Analogue inputs		
2	Anln 1	Process Ref
3	Anln 2	Off
4	Anln 3	Off
5	AnIn 4	Off
Analogue outputs		
13	AnOut 1	Min speed to max speed
14	AnOut 2	0 to max torque
Relay outputs		
31	N/C 1	Relay 1 output Trip, active when the AC drive is in a TRIP condition.
32	COM 1	
33	N/O 1	

Table 10 Control signals

Terminal	Name	Function (Default)
41	N/C 2	Relay 2 output Run, active when the AC drive is started.
42	COM 2	
43	N/O 2	Relay 3 output Off
51	COM 3	N/O 3

NOTE: N / C is opened when the relay is active and N / O is closed when the relay is active.

3.3 Inputs configuration with the switches

The switches S1 to S4 are used to set the input configuration for the 4 analogue inputs AnIn1, AnIn2, AnIn3 and AnIn4 as described in table 11. See Fig. 16 for the location of the switches.

Table 11 Switch settings

Input	Signal type	Switch	
AnIn1	Voltage	S1	U
	Current (default)	S1	$\begin{array}{ll} 1 & u \\ \square \end{array}$
AnIn2	Voltage	S2	\pm
	Current (default)	S2	$\begin{array}{ll} \hline 1 \\ \square \end{array}$
AnIn3	Voltage	S3	U
	Current (default)	S3	$\begin{array}{ll} 1 & u \\ \square \end{array}$
AnIn4	Voltage	S4	1
	Current (default)	S4	$\begin{array}{ll} 1 & u \\ \square \end{array}$

NOTE: Scaling and offset of AnIn1 - AnIn4 can be configured using the software. See menus [512], [515], [518] and [51B] in section 10.5, page 123.

NOTE: the 2 analogue outputs AnOut 1 and AnOut 2 can be configured using the software. See menu [530] section 10.5.3, page 132

3.4 Connection example

Fig. 17 gives an overall view of an AC drive connection example.

Fig. 17 Connection example

3.5 Connecting the Control Signal

3.5.1 Cables

The standard control signal connections are suitable for stranded flexible wire up to $1.5 \mathrm{~mm}^{2}$ and for solid wire up to $2.5 \mathrm{~mm}^{2}$.

Fig. 18 Connecting the control signal cables to CDX 008-018

Fig. 19 Connecting the control signal cables to CDX 026-046

NOTE: The screening of control signal cables is necessary to comply with the immunity levels given in the EMC Directive (it reduces the noise level).

NOTE: Control cables must be separated from motor and mains cables.

3.5.2 Types of control signals

Always make a distinction between the different types of signals. Because the different types of signals can adversely affect each other, use a separate cable for each type. This is often more practical because, for example, the cable from a pressure sensor may be connected directly to the variable speed drive.
We can distinguish between the following types of control signals:

Analogue inputs

Voltage or current signals, ($0-10 \mathrm{~V}, 0 / 4-20 \mathrm{~mA}$) normally used as control signals for speed, torque and PID feedback signals.

Analogue outputs

Voltage or current signals, ($0-10 \mathrm{~V}, 0 / 4-20 \mathrm{~mA}$) which change slowly or only occasionally in value. In general, these are control or measurement signals.

Digital

Voltage or current signals ($0-10 \mathrm{~V}, 0-24 \mathrm{~V}, 0 / 4-20 \mathrm{~mA}$) which can have only two values (high or low) and only occasionally change in value.

Data

Usually voltage signals ($0-5 \mathrm{~V}, 0-10 \mathrm{~V}$) which change rapidly and at a high frequency, generally data signals such as RS232, RS485, Profibus, etc.

Relay

Relay contacts (0-250 VAC) can switch highly inductive loads (auxiliary relay, lamp, valve, brake, etc.).

Signal type	Maximum wire size	Tightening torque	Cable type
Analogue	Rigid cable: $0.14-2.5 \mathrm{~mm}^{2}$ Flexible cable: $0.14-1.5 \mathrm{~mm}^{2}$ Cable with ferrule: $0.25-1.5 \mathrm{~mm}^{2}$	0.5 Nm	Screened
Digital			Screened
Data			Screened
Relay			Not screened

Example:

The relay output from a variable speed drive which controls an auxiliary relay can, at the moment of switching, form a source of interference (emission) for a measurement signal from, for example, a pressure sensor. Therefore it is advised to separate wiring and screening to reduce disturbances.

3.5.3 Screening

For all signal cables the best results are obtained if the screening is connected to both ends: the AC drive side and the at the source (e.g. PLC, or computer). See Fig. 20.
It is strongly recommended that the signal cables be allowed to cross mains and motor cables at a 90° angle. Do not let the signal cable go in parallel with the mains and motor cable.

3.5.4 Single-ended or double-ended connection?

In principle, the same measures applied to motor cables must be applied to all control signal cables, in accordance with the EMC-Directives.

For all signal cables as mentioned in section 3.5.2 the best results are obtained if the screening is connected to both ends. See Fig. 20.

NOTE: Each installation must be examined carefully before applying the proper EMC measurements.

Fig. 20 Electro Magnetic (EM) screening of control signal cables.

3.5.5 Current signals ((0)4-20 mA)

A current signal like (0) $4-20 \mathrm{~mA}$ is less sensitive to disturbances than a $0-10 \mathrm{~V}$ signal, because it is connected to an input which has a lower impedance (250Ω) than a voltage signal ($20 \mathrm{k} \Omega$). It is therefore strongly advised to use current control signals if the cables are longer than a few metres.

3.5.6 Twisted cables

Analogue and digital signals are less sensitive to interference if the cables carrying them are "twisted". This is certainly to be recommended if screening cannot be used. By twisting the wires the exposed areas are minimised. This means that in the current circuit for any possible High Frequency (HF) interference fields, no voltage can be induced. For a PLC it is therefore important that the return wire remains in proximity to the signal wire. It is important that the pair of wires is fully twisted over 360°.

3.6 Connecting options

The option cards are connected by the optional connectors X4 or X5 on the control board see Fig. 16, page 19 and mounted above the control board. The inputs and outputs of the option cards are connected in the same way as other control signals.

4. Getting Started

This chapter is a step by step guide that will show you the quickest way to get the motor shaft turning. We will show you two examples, remote control and local control.
Then there is general information of how to connect control cables. The next section describes how to use the function keys on the control panel. The subsequent examples covering remote control and local control describe how to program/set the motor data and run the AC drive and motor.
First connect mains cables according to section 2.5, page 14.

4.1 Remote control

In this example external signals are used to control the AC drive/motor.
A standard 4-pole motor for 400 V , an external start button and a reference value will also be used.

4.1.1 Connect control cables

Here you will make up the minimum wiring for starting. In this example the motor/AC drive will run with right rotation.
To comply with the EMC standard, use screened control cables with plaited flexible wire up to $1.5 \mathrm{~mm}^{2}$ or solid wire up to $2.5 \mathrm{~mm}^{2}$.

1. Connect a reference value between terminals 7 (Common) and 2 (AnIn 1) as in Fig. 21.
2. Connect an external start button between terminal 11 $(+24$ VDC $)$ and 9 (DigIn2, RUNR) as in Fig. 21.

Fig. 21 Wiring

4.1.2 Switch on the mains

Once the mains is switched on, the internal fan in the AC drive will run for 5 seconds.

4.1.3 Set the Motor Data

Enter correct motor data for the connected motor. The motor data is used in the calculation of complete operational data in the AC drive.

4.1.4 Run the AC drive

Now the installation is finished, and you can press the external start button to start the motor.

When the motor is running the main connections are OK.

4.2 Local control (Optional)

Manual control via the optional Handheld Control PanelHCP can be used to carry out a test run.
Use a 400 V motor and the control panel.

4.2.1 Switch on the mains

Once the mains is switched on, the AC drive is started and the internal fan will run for 5 seconds.

4.2.2 Using the function keys

Fig. 22 Example of menu navigation when entering motor voltage

4.2.3 Select manual control

Menu [100], Preferred View is displayed when started.

1. Press $\underset{\text { wer }}{\rightarrow}$ to display menu [200], Main Setup.
2. Press to display menu [210], Operation.
3. Press to display menu [211], Language.
4. Press \rightarrow wer to display menu [214], Reference Control.
5. Select Keyboard using the key + and press $\stackrel{\text { ana }}{\text { an }}$ confirm.
6. Press $\underset{\text { ner }}{ }$ to get to menu [215], Run/Stop Control.
7. Select Keyboard using the key + and press $\stackrel{\leftrightarrow}{\text { anm }}$ to confirm.
 display menu [220], Motor Data.

4.2.4 Set the Motor Data

Enter correct motor data for the connected motor.
9. Press to display menu [221].
10. Change the value using the + and - keys. Confirm with
11. Press $\underset{\text { ner }}{\rightarrow}$ to display menu [222].
12. Repeat step 9 and 10 until all motor data is entered.
13. Press $\stackrel{\rightharpoonup}{\mathbb{x}}$ twice and then $\stackrel{\leftarrow}{\text { mev }}$ to display menu [100], Preferred View.

4.2.5 Enter a Reference Value

 Enter a reference value.14. Press $\underset{\text { wer }}{\rightarrow}$ until menu [300], Process is displayed.
15. Press to display menu [310], Set/View reference value.
16. Use the + and - keys to enter, for example, 300 rpm. We select a low value to check the rotation direction without damaging the application.

4.2.6 Run the AC drive

Press the Ω key on the control panel to run the motor forward.
If the motor is running the main connections are OK.

5. Applications

This chapter contains tables giving an overview of many different applications/duties in which it is suitable to use AC drives from CG Drives \& Automation. Further on you will find application examples of the most common applications and solutions.

5.1 Application overview

5.1.1 Cranes

Challenge	Emotron CDX solution	Menu
Starting with heavy load is difficult and risky. Can lead to jerks causing swinging load.	Direct torque control, fast motor pre- magnetization and precise brake control gives instant yet soft start with heavy load.	331-338, 339, 351
Jerky movements can cause load to be dropped, jeopardizing safety of people and goods.	Deviation control immediately detects load change. Signals to parallel safety system to activate mechanical brakes.	3AB, 3AC
Crane is driven slowly when returning empty or with light load. Valuable time is lost.	Speed can be increased by field weakening.	343, 3AA, 3AD, 713
Braking with heavy load is difficult and risky. Can lead to jerks causing swinging load.	Direct torque control and vector brake gradually reduce speed to zero before mechanical brake is activated.	213, 33E,33F, 33G
Operator starts braking long before end position to avoid jerks. Valuable time is lost.	System automatically stops crane at end position. Operator can safely drive at full speed.	3A2-3AA

5.1.2 Crushers

Challenge	Emotron CDX solution	Menu
High start currents require larger fuses and cables, or for mobile crushers larger diesel generators.	Direct torque control reduces start current. Same fuses as those for the motor, or smaller generator.	$331-338,351$
Difficult to start with heavy load.	Possible to boost torque at start to overcome initial torque peak.	$351-353$
Material that could cause damage gets into the crusher.	Load Curve Protection quickly detects deviation. Warning is sent or safety stop activated.	$411-41 \mathrm{C9}$
Process inefficiency due to e.g. broken feeder or worn jaw. Wasted energy, mechanical stress, and risk of process failure.	Load Curve Protection quickly detects deviation from normal load. Warning is sent or safety stop activated.	411-41B, 41C1-41C9

5.1.3 Mills

Challenge	Emotron CDX solution	Menu
High start currents require larger fuses and cables. Cause stress on equipment and higher energy cost.	Direct torque control reduces start current. Same fuses can be used as those required for the motor.	$331-338,350$
Difficult to start with heavy load.	Possible to boost torque at start to overcome initial torque peak.	$351-353$
Material that could cause damage gets into the mill.	Load Curve Protection quickly detects deviation. Warning is sent or safety stop activated.	$411-41 \mathrm{Ca}$
Process inefficiency due to broken or worn equipment. Energy wasted and risk of process failure.	Load Curve Protection quickly detects deviation. Warning is sent or safety stop activated.	411-41B, 41C1-41C9

5.1.4 Mixers

	Challenge	Emotron CDX solution
High start currents require larger fuses and cables. Cause stress on equipment and higher energy cost.	Direct torque control reduces start current. Same fuses can be used as those required for the motor.	$331-338,350$
Difficult to determine when mixing process is ready.	Built-in shaft power monitor determines when viscosity is right.	411-41B
Process inefficiency due to e.g. a damaged or broken blade. Energy wasted and risk of process failure.	Load Curve Protection quickly detects deviation. Warning is sent or safety stop activated.	411-41B, 41C1-41C9

6. Main Features

This chapter contains descriptions of the main features of the AC drive.

6.1 Remote control functions

Operation of the Run/Stop/Enable/Reset functions As default, all the run/stop/reset related commands are programmed for remote operation via the inputs on the terminal strip (terminals 1-22) on the control board. With the function "Run/Stp Ctrl" [215] and "Reset Control" [216], this can be selected for keyboard or serial communication control.

NOTE: The examples in this paragraph do not cover all possibilities. Only the most relevant combinations are given. The starting point is always the default setting (factory) of the AC drive.

Default settings of the Run/Stop/ Enable/Reset functions

The default settings are shown in Fig. 23. In this example the AC drive is started and stopped with DigIn 2 and a reset after trip can be given with DigIn 8.

Fig. 23 Default setting Run/Reset commands
The inputs are default set for level-control. The rotation is determined by the setting of the digital inputs.

Enable and Stop functions

Both functions can be used separately or simultaneously. The choice of which function is to be used depends on the application and the control mode of the inputs (Level/Edge [21A]).

NOTE: In Edge mode, at least one digital input must be programmed to "stop", because the Run commands are only able to start the AC drive.

Enable

Input must be active (HI) to allow any Run signal. If the input is made LOW, the output of the AC drive is immediately disabled and the motor will coast.

CAUTION!

If the Enable function is not programmed to a digital input, it is considered to be active internally.

Stop

If the input is low then the AC drive will stop according to the selected stop mode set in menu [33B] "Stop Mode". Fig. 24 shows the function of the Enable and the Stop input and the Stop Mode=Decel [33B].

To run the input must be high.

NOTE: Stop M ode=Coast [33B] will give the same behaviour as the Enable input.

Fig. 24 Functionality of the Stop and Enable input

Reset and Autoreset operation

If the AC drive is in Stop Mode due to a trip condition, the AC drive can be remotely reset by a pulse ("low" to "high" transition) on the Reset input, default on DigIn 8. Depending on the selected control method, a restart takes place as follows:

Level-control

If the Run inputs remain in their position the AC drive will start immediately after the Reset command is given.

Edge-control

After the Reset command is given a new Run command must be applied to start the AC drive again.
Autoreset is enabled if the Reset input is continuously active. The Autoreset functions are programmed in menu "Autoreset [240]".

NOTE: If the control commands are programmed for Keyboard control or Com, Autoreset is not possible.

Run Inputs Level-controlled.

The inputs are set as default for level-control. This means that an input is activated by making the input continuously "High". This method is commonly used if, for example, PLCs are used to operate the AC drive.

CAUTION!

Level-controlled inputs DO NOT comply with the Machine Directive, if the inputs are directly used to start and stop the machine.

The examples given in this and the following paragraphs follow the input selection shown in Fig. 25.

Fig. 25 Example of wiring for Run/Stop/Enable/Reset inputs
The Enable input must be continuously active in order to accept any run-right or run-left command. If both RunR and RunL inputs are active, then the AC drive stops according to the selected Stop Mode. Fig. 26 gives an example of a possible sequence.

Fig. 26 Input and output status for level-control

Run Inputs Edge-controlled

Menu "[21A] Start signal" Level/Edge must be set to Edge to activate edge control. This means that an input is activated by a "low" to "high" transition or vice versa.

NOTE: Edge-controlled inputs comply with the Machine Directive (see Chapter 7. page 37), if the inputs are directly used for starting and stopping the machine.

See Fig. 25. The Enable and Stop input must be active continuously in order to accept any run-right or run-left command. The last edge (RunR or RunL) is valid. Fig. 27 gives an example of a possible sequence.

Fig. 27 Input and output status for edge-control

6.2 Parameter sets

The chapters 6.2 - Fig. 30 are only valid if the option HCP - Handheld Control Panel is used.

Parameter sets are used if an application requires different settings for different modes. For example, a machine can be used for producing different products and thus requires two or more maximum speeds and acceleration/deceleration times. With the four parameter sets different control options can be configured with respect to quickly changing the behaviour of the AC drive. It is possible to adapt the AC drive online to altered machine behaviour. This is based on the fact that at any desired moment any one of the four parameter sets can be activated during Run or Stop, via the digital inputs or the control panel and menu [241].
Each parameter set can be selected externally via a digital input. Parameter sets can be changed during operation and stored in the control panel.

NOTE: The only data not included in the parameter set is M otor data 1-4, (entered separately), language, communication settings, selected set, local remote, and keyboard locked.

Define parameter sets

When using parameter sets you first decide how to select different parameter sets. The parameter sets can be selected via the control panel, via digital inputs or via serial communication. All digital inputs and virtual inputs can be configured to select parameter set. The function of the digital inputs is defined in the menu [520].
Fig. 28 shows the way the parameter sets are activated via any digital input configured to Set Ctrl 1 or Set Ctrl 2.

Fig. 28 Selecting the parameter sets

Select and copy parameter set

The parameter set selection is done in menu [241], "Select Set". First select the main set in menu [241], normally A. Adjust all settings for the application. Usually most parameters are common and therefore it saves a lot of work by copying set $\mathrm{A}>\mathrm{B}$ in menu [242]. When parameter set A is copied to set B you only change the parameters in the set that need to be changed. Repeat for C and D if used.
With menu [242], Copy Set, it is easy to copy the complete contents of a single parameter set to another parameter set. If, for example, the parameter sets are selected via digital inputs, DigIn 3 is set to Set Ctrl 1 in menu [523] and DigIn 4 is set to Set Ctrl 2 in menu [524], they are activated as in Table 12.

Activate the parameter changes via digital input by setting menu [241], "Select Set" to DigIn.

Table 12 Parameter set

Parameter set	Set Ctrl 1	Set Ctrl 2
A	0	0
B	1	0
C	0	1
D	1	1

NOTE: The selection via the digital inputs is immediately activated. The new parameter settings will be activated on-line, also during Run.

NOTE: The default parameter set is parameter set A .

Examples

Different parameter sets can be used to easily change the setup of a AC drive to adapt quickly to different application requirements. For example when

- a process needs optimized settings in different stages of the process, to
- increase the process quality
- increase control accuracy
- lower maintenance costs
- increase operator safety

With these settings a large number of options are available. Some ideas are given here:

Multi frequency selection

Within a single parameter set the 7 preset references can be selected via the digital inputs. In combination with the parameter sets, 28 preset references can be selected using all 5 digital inputs: DigIn1, 2 and 3 for selecting preset reference within one parameter set and DigIn 4 and DigIn 5 for selecting the parameter sets.

Bottling machine with 3 different products

Use 3 parameter sets for 3 different Jog reference speeds when the machine needs to be set up. The 4th parameter set can be used for "normal" remote control when the machine is running at full production.

Product changing on winding machines

Only applicable with Emotron VFX
If a machine has to change between 2 or 3 different products e.g. winding machine with different gauges of thread, it is important that acceleration, deceleration times, Max Speed and Max Torque are adapted. For each thread size a different parameter set can be used.

Manual - automatic control

If in an application something is filled up manually and then the level is automatically controlled using PID regulation, this is solved using one parameter set for the manual control and one for the automatic control.

6.2.1 One motor and one parameter set

This is the most common application for pumps and fans.
Once default motor M1 and parameter set A have been selected:

1. Enter the settings for motor data.
2. Enter the settings for other parameters e.g. inputs and outputs

6.2.2 One motor and two parameter sets

This application is useful if you for example have a machine running at two different speeds for different products.
Once default motor M1 is selected:

1. Select parameter set A in menu [241].
2. Enter motor data in menu [220].
3. Enter the settings for other parameters e.g. inputs and outputs.
4. If there are only minor differences between the settings in the parameter sets, you can copy parameter set A to parameter set B, menu [242].
5. Enter the settings for parameters e.g. inputs and outputs.

Note: Do not change motor data in parameter set B.

6.2.3 Autoreset at trip

For several non-critical application-related failure conditions, it is possible to automatically generate a reset command to overcome the fault condition. The selection can be made in menu [250]. In this menu the maximum number of automatically generated restarts allowed can be set, see menu [251], after this the AC drive will stay in fault condition because external assistance is required.

Example

The motor is protected by an internal protection for thermal overload. When this protection is activated, the AC drive should wait until the motor is cooled down enough before resuming normal operation. When this problem occurs three times in a short period of time, external assistance is required.

The following settings should be applied:

- Insert maximum number of restarts; set menu [251] to 3.
- Activate Motor $\mathrm{I}^{2} \mathrm{t}$ to be automatically reset; set menu [25A] to 300 s .
- Set relay 1, menu [551] to "AutoRst Trip"; a signal will be available when the maximum number of restarts is reached and the AC drive stays in fault condition.
- The reset input must be constantly activated.

6.2.4 Reference priority

The active speed reference signal can be programmed from several sources and functions. The table below shows the priority of the different functions with regards to the speed reference.

Table 13 Reference priority

Jog Mode	Preset Reference Motor Pot	Ref. Signal	
On/Off	On/Off	On/Off	Option cards
On	On/Off	On/Off	Jog Ref
Off	On	On/Off	Preset Ref
Off	Off	On	Motor pot commands

6.2.5 Preset references

The AC drive is able to select fixed speeds via the control of digital inputs. This can be used for situations where the required motor speed needs to be adapted to fixed values, according to certain process conditions. Up to 7 preset references can be set for each parameter set, which can be selected via all digital inputs that are set to Preset Ctrl1, Preset Ctrl2 or Preset Ctrl3. The amount digital inputs used that are set to Preset Ctrl determines the number of Preset References available; using 1 input gives 1 speed, using 2 inputs gives 3 speeds and using 3 inputs gives 7 speeds.

Example

The use of four fixed speeds, at $50 / 100 / 300 / 800 \mathrm{rpm}$, requires the following settings:

- Set DigIn 5 as first selection input; set [525] to Preset Ctrl1.
- Set DigIn 6 as second selection input; set [526] to Preset Ctrl2.
- Set menu [341] "Min Speed" to 50 rpm .
- Set menu [362] "Preset Ref 1" to 100 rpm .
- Set menu [363] "Preset Ref 2" to 300 rpm .
- Set menu [364] "Preset Ref 3" to 800 rpm.

With these settings, the AC drive switched on and a RUN command given, the speed will be:

- 50 rpm , when both DigIn 5 and DigIn 6 are low.
- 100 rpm, when DigIn 5 is high and DigIn 6 is low.
- 300 rpm , when DigIn 5 is low and DigIn 6 is high.
- 800 rpm , when both DigIn 5 and DigIn 6 are high.

6.3 Performing an Identification Run

Only valid when the option HCP - Handheld Control Panel is used.
To get the optimum performance out of your AC drive/ motor combination, the AC drive must measure the electrical parameters (resistance of stator winding, etc.) of the connected motor. See menu [269] "Motor ID-Run".

For Emotron VFX, it is recommended that the extended ID run is used before the motor is installed in the application.
If this is not possible, the short ID run should be used.

WARNING!

During the extended ID RUN, the motor shaft will rotate. Take safety measures to avoid unforeseen dangerous situations.

6.4 Using the - Handheld control panel - HCP memory (Optional)

With the optional Hand held control panel - HCP, data can be copied from the AC drive to the memory in the control panel and vice versa. To copy all data (including parameter set A-D and motor data) from the AC drive to the control panel, select Copy to CP[234], Copy to CP.

To copy data from the control panel to the AC drive, enter the menu [235], Load from CP and select what you want to copy.
The memory in the control panel is useful in applications with AC drives without a control panel and in applications where several AC drives have the same setup. It can also be used for temporary storage of settings. Use a control panel to upload the settings from one AC drive and then move the control panel to another AC drive and download the settings.

NOTE: Load from and copy to the AC drive is only possible when the AC drive is in stop mode.

Fig. 29 Copy and load parameters between $A C$ drive and HCP-control panel (option)

6.5 Load Monitor and Process Protection [400]

Only valid if the optional HCP - Handheld Control Panel is used.

6.5.1 Load Monitor [410]

The monitor functions enable the AC drive to be used as a load monitor. Load monitors are used to protect machines and processes against mechanical overload and underload, such as a conveyer belt or screw conveyer jamming, belt failure on a fan or a pump dry running. The load is measured in the AC drive by the calculated motor shaft torque. There is an overload alarm (Max Alarm and Max Pre-Alarm) and an underload alarm (Min Alarm and Min Pre-Alarm).

The Basic Monitor type uses fixed levels for overload and underload (pre-)alarms over the whole speed range. This function can be used in constant load applications where the torque is not dependent on the speed, e.g. conveyor belt, displacement pump, screw pump, etc.
For applications with a torque that is dependent on the speed, the Load Curve monitor type is preferred. By measuring the actual load curve of the process, characteristically over the range of minimum speed to maximum speed, an accurate protection at any speed can be established.

The max and min alarm can be set for a trip condition. The pre-alarms act as a warning condition. All the alarms can be monitored on the digital or relay outputs.

The autoset function automatically sets the 4 alarm levels whilst running: maximum alarm, maximum pre-alarm, minimum alarm and minimum pre-alarm.

Fig. 30 gives an example of the monitor functions for constant torque applications

Fig. 30

7. EMC and standards

7.1 EMC standards

The AC drive complies with the following standards:
EN(IEC)61800-3:2004 Adjustable speed electronic power drive systems, part 3, EMC product standards:
Standard: category C3, for systems of rated supply voltage < 1000 VAC, intended for use in the second environment.
Optional: Category C2 and even Category C1 for frame size C drives, for systems of rated supply voltage $<1.000 \mathrm{~V}$, which is neither a plug in device nor a movable device and, when used in the first environment, is intended to be installed and commissioned only by experienced person with the necessary skills in installing and/or commissioning AC drives including their EMC aspects.

7.2 Stop categories and emergency stop

The following information is important if emergency stop circuits are used or needed in the installation where a AC drive is used. EN 60204-1 defines 3 stop categories:

Category 0: Uncontrolled STOP:

Stopping by switching off the supply voltage. A mechanical stop must be activated. This STOP may not be implemented with the help of a AC drive or its input/output signals.

Category 1: Controlled STOP:

Stopping until the motor has come to rest, after which the mains supply is switched off. This STOP may not be implemented with the help of a AC drive or its input/output signals.

Category 2: Controlled STOP:

Stopping while the supply voltage is still present. This STOP can be implemented with each of the AC drives STOP command.

WARNING!

EN 60204-1 specifies that every machine must be provided with a category 0 stop. If the application prevents this from being implemented, this must be explicitly stated. Furthermore, every machine must be provided with an Emergency Stop function. This emergency stop must ensure that the voltage at the machine contacts, which could be dangerous, is removed as quickly as possible, without resulting in any other danger. In such an Emergency Stop situation, a category 0 or 1 stop may be used. The choice will be decided on the basis of the possible risks to the machine.

NOTE: With option Safe Stop, a "Safe Torque Off (STO)" stop according EN-IEC 62061:2005 SIL 3 \& EN-ISO 13849-1:2006, can be achieved.
See chapter, Safe Stop option

8. Operation via the Control Panel

This chapter describes how to use the control panel on the front of the AC drive.
As an option, the AC drive can be delivered with an handheld control panel - HCP see further chapter, Hand held Control Panel -HCP (Option).

8.1 General

The AC drive is operated by means of the control panel on the front. There are 4 control keys and a 3 LED indications.

Fig. 31 CDX with control panel

8.1.1 LED indications and control keys

On the front of the AC drive there are a 3 LED's and 4 control keys.

Fig. 32 LED indication and control keys.

The symbols on the control panel have the following functions:

Fig. 33 LED indication symbols
Table 14 LED indication

Symbol	Function		
	ON	FLASHING	OFF
POWER (green)	Power on	--------	Power off
TRIP (red)	AC drive tripped	Warning/Limit	No warning or trip
RUN (green)	Motor shaft rotates	Motor speed increase/ decrease	Motor stopped

With the control keys it is possible to operate the AC drive see Table 15.

Table 15 Control keys

	Start key	Press to start the motor
key	RTOP/RESET	Press to stop the motor or reset the AC drive after a trip
	- key	Press to increase he speed

8.2 Hand held Control Panel HCP (Option)

As an option it is possible to connect an hand held control panel - HCP. For information regarding how to connect the HCP, see separate instruction manual.
The HCP is intended for temporary use at setup or fault finding. The HCP displays the status of the AC drive and is used to set all the parameters. It is also possible to control the motor directly from the control panel.Furthermore it is possible to use the HCP to read data/settings of the AC drive and copy it to another AC drive see chapter, Using the Control Panel Memory.

8.3 Hand held Control Panel - HCP (Option)

Fig. 34 Control panel display, LEDs and Keys.

8.3.1 The display

The display is back lit and consists of 2 rows, each with space for 16 characters. The display is divided into six areas. The different areas in the display are described below:

Fig. 35 The display
Area A: Shows the actual menu number (3 or 4 digits).
Area B Shows if the menu is in the toggle loop or the AC drive is set for Local operation.
Area C: Shows the heading of the active menu.
Area D: \quad Shows the status of the AC drive (3 digits). The following status indications are possible:
Acc : Acceleration
Dec : Deceleration
$\mathbf{I}^{2} \mathbf{t} \quad$: Active $\mathrm{I}^{2} \mathrm{t}$ protection
Run : Motor runs
Trp : Tripped
Stp : Motor is stopped
VL : Operating at Voltage limit
slp : Sleep mode
SL : Operating at Speed limit
CL : Operating at Current limit
TL : Operating at Torque limit
OT : Operating at Temperature Limit
LV : Operating at Low Voltage
Sby : Operating from Standby power supply
SST : Operating Safe Stop, is flashing when activated
LCL : Operating with low cooling liquid level
Area E: Shows active parameter set and if it is a motor parameter.

Area F: Shows the setting or selection in the active menu. This area is empty at the 1 st level and 2 nd level menu. This area also shows warnings and alarm messages. In some situations this area could indicate "+++" or " - - -" please see further information in Chapter 8.3.2 page 41

300 Process
 Stp \mathbf{A}

Fig. 36 Example 1st level menu
220 Motor Data
Stp \boldsymbol{A}

Fig. 37 Example 2nd level menu

221 Motor Volt
Stp $\mathrm{A}^{21}:$

Fig. 38 Example 3d level menu
4161MaxAlarm Mar
Stp \boldsymbol{A}

Fig. 39 Example 4th level menu

8.3.2 Indications on the display

The display can indicate " +++ " or "- - -" if a parameter is out of range. In the AC drive there are parameters which are dependent on other parameters. For example, if the speed reference is 500 and the maximum speed value is set to a value below 500 , this will be indicated with " +++ " on the display. If the minimum speed value is set over 500, "- - -" is displayed.

8.3.3 LED indicators

The symbols on the control panel have the following functions:

Fig. 40 LED indications
Table 16 LED indication

Symbol	Function		
	ON	FLASHING	OFF
POWER (green)	Power on	-----	Power off
TRIP (red)	AC drive tripped	Warning/Limit	No warning or trip
RUN (green)	Motor shaft rotates	Motor speed increase/ decrease	Motor stopped

8.3.4 Control keys

The control keys are used to give the Run, Stop or Reset commands directly. As default these keys are disabled, set for remote control. Activate the control keys by selecting Keyboard in the menus "Ref Control [214]",
"Run/Stop Control [215]" and "Reset Ctrl [216]".
If the Enable function is programmed on one of the digital inputs, this input must be active to allow Run/Stop commands from the control panel.

Table 17 Control keys

	RUN L:	gives a start with left rotation
RESET	STOP/RESET:	stops the motor or resets the AC drive after a trip
	RUN R:	gives a start with right rotation

NOTE: It is not possible to simultaneously activate the Run/ Stop commands from the keyboard and remotely from the terminal strip (terminals 1-22). Exception is the JOG-function which can give start command, see " Jog Speed [348]" on page 98

8.3.5 The Toggle and Loc/ Rem Key

This key has two functions: Toggle and switching between Loc/Rem function.
Press one second to use the toggle function
Press and hold the toggle key for more than five seconds to switch between Local and Remote function, depending on the settings in [2171] and [2172].
When editing values, the toggle key can be used to change the sign of the value, see section 8.6 , page 44.

Toggle function

Using the toggle function makes it possible to easily step through selected menus in a loop. The toggle loop can contain a maximum of ten menus. As default the toggle loop contains the menus needed for Quick Setup. You can use the toggle loop to create a quick-menu for the parameters that are most importance to your specific application.

NOTE: Do not keep the Toggle key pressed for more than five seconds without pressing either the + , - or Esc key, as this may activate the Loc/ Rem function of this key instead. See menu [217].

Add a menu to the toggle loop

1. Go to the menu you want to add to the loop.
2. Press the Toggle key and keep it pressed while pressing the + key.

Delete a menu from the toggle loop

1. Go to the menu you want to delete using the toggle key.
2. Press the Toggle key and keep it pressed while pressing the - key.

Delete all menus from the toggle loop

1. Press the Toggle key and keep it pressed while pressing the Esc key.
2. Confirm with Enter.

Default toggle loop

Fig. 41 shows the default toggle loop. This loop contains the necessary menus that need to be set before starting. Press Toggle to enter menu [211] then use the Next key to enter the sub menus [212] to [21A] and enter the parameters. When you press the Toggle key again, menu [221] is displayed.

Fig. 41 Default toggle loop

Indication of menus in toggle loop

Menus included in the toggle loop are indicated with a in area B in the display.

Loc/Rem function

The Loc/Rem function of this key is disabled as default. Enable the function in menu [2171] and/or [2172].
With the function Loc/Rem you can change between local and remote control of the AC drive from the control panel. The function Loc/Rem can also be changed via the DigIn, see menu "Digital inputs [520]".

Change control mode

1. Press the Loc/Rem key for five seconds, until Local? or Remote? is displayed.
2. Confirm with Enter.
3. Cancel with Esc.

Local mode

Local mode is used for temporary operation. When switched to LOCAL operation, the AC drive is controlled via the defined Local operation mode, i.e. [2171] and [2172]. The actual status of the AC drive will not change, e.g. Run/Stop conditions and the actual speed will remain exactly the same. When the AC drive is set to Local operation, the display will show \mathbf{I} in area B in the display.

Remote mode

When the AC drive is switched to REMOTE operation, the AC drive will be controlled according to selected control methods in the menu's "Reference Control [214]", "Run/ Stop Control [215]" and "Reset Control [216]".
To monitor the actual Local or Remote status of the AC drive control, a "Loc/Rem" signal is available on the Digital Outputs or Relays. When the AC drive is set to Local, the signal on the DigOut or Relay will be active/high, in Remote the signal will be inactive/low. See menu "Digital Outputs [540]" and "Relays [550]".

8.3.6 Function keys

The function keys operate the menus and are also used for programming and read-outs of all the menu settings.

Table 18 Function keys

$\underset{\text { ENTER }}{\text { den }}$	ENTER key:	- step to a lower menu level - confirm a changed setting
$\underset{\text { ESC }}{\boldsymbol{\tau}}$	ESCAPE key:	- step to a higher menu level ignore a changed setting, without confirming
PREV	PREVIOUS key:	- step to a previous menu within the same level - go to more significant digit in edit mode
$\underset{\text { NEXT }}{\longrightarrow}$	NEXT key:	- step to a next menu within the same level - go to less significant digit in edit mode
-	- key:	- decrease a value - change a selection
F	+ key:	- increase a value - change a selection
	TOGGLE and LOC/REM key:	- Toggle between menus in the toggle loop - Switching between local and remote control - Change the sign of a value

8.4 The menu structure

The menu structure consists of 4 levels:

Main Menu 1st level	The first character in the menu number.
2nd level	The second character in the menu number.
3rd level	The third character in the menu number.
4th level	The fourth character in the menu number.

This structure is consequently independent of the number of menus per level.
For instance, a menu can have one selectable menu (Set/ View Reference Value [310]), or it can have 17 selectable menus (menu Speeds [340]).

NOTE: If there are more than 10 menus within one level, the numbering continues in alphabetic order.

Fig. 42 Menu structure

8.4.1 The main menu

This section gives you a short description of the functions in the Main Menu.

100 Preferred View

Displayed at power-up. It displays the actual process value as default. Programmable for many other read-outs.

200 Main Setup

Main settings to get the AC drive operable. The motor data settings are the most important. Also option utility and settings.

300 Process and Application Parameters

Settings more relevant to the application such as Reference Speed, torque limitations, PID control settings, etc.

400 Shaft Power Monitor and Process Protection

The monitor function enables the AC drive to be used as a load monitor to protect machines and processes against mechanical overload and underload.

500 Inputs/Outputs and Virtual Connections

All settings for inputs and outputs are entered here.

600 Logical Functions and Timers

All settings for conditional signals are entered here.

700 View Operation and Status

Viewing all the operational data like frequency, load, power, current, etc.

800 View Trip Log

Viewing the last 10 trips in the trip memory.
900 Service Information and AC drive Data Electronic type label for viewing the software version and AC drive type.

8.5 Programming during operation

Most of the parameters can be changed during operation without stopping the AC drive. Parameters that can not be changed are marked with a lock symbol in the display.

NOTE: If you try to change a function during operation that only can be changed when the motor is stopped, the message "Stop First" is displayed.

8.6 Editing values in a menu

Most values in the second row in a menu can be changed in two different ways. Enumerated values like the baud rate can only be changed with alternative 1 .

2621	Baudrate
Stp	38400

Alternative 1

When you press the + or - keys to change a value, the cursor is flashing to the left in the display and the value is increased or decreased when you press the appropriate key. If you keep the + or - keys pressed, the value will increase or decrease continuously. When you keep the key pressed the change speed will increase. The Toggle key is used to change the sign of the entered value. The sign of the value will also change when zero is passed. Press Enter to confirm the value.

Alternative 2

Press the + or - key to enter edit mode. Then press the Prev or Next key to move the cursor to the right most position of the value that should be changed. The cursor will make the selected character flashes. Move the cursor using the Prev or Next keys. When you press the + or - keys, the character at the cursor position will increase or decrease. This alternative is suitable when you want to make large changes, i.e. from 2 s to 400 s.

To change the sign of the value, press the toggle key. This makes it possible to enter negative values (Only valid for certain parameters).
Example: When you press Next the 4 will flash.

Press Enter to save the setting and Esc to leave the edit mode.

8.7 Copy current parameter to all sets

When a parameter is displayed, press the Enter key for 5 seconds. Now the text To all sets? is displayed. Press Enter to copy the setting for current parameter to all sets.

8.8 Programming example

This example shows how to program a change of the Acc. Time set from 2.0 s to 4.0 s .

The flashing cursor indicates that a change has taken place but is not saved yet. If at this moment, the power fails, the change will not be saved.

Use the ESC, Prev, Next or the Toggle keys to proceed and to go to other menus.

Fig. 43 Programming example

9. Serial communication

The AC drive provides possibility for different types of serial communication.

- Modbus RTU via RS232/485
- Fieldbuses as Profibus DP and DeviceNet
- Industrial Ethernet as Modbus/TCP, Profinet IO, EtherCAT and EtherNet/IP

9.1 Modbus RTU

The AC drive has an asynchronous serial communication interface behind the Hand held Control Panel - HCP (optional) control panel. It is also possible to use the isolated RS232/485 option board (if installed).
The protocol used for data exchange is based on the Modbus RTU protocol, originally developed by Modicon. The physical connection is RS232. The AC drive acts as a slave with address 1 in a master-slave configuration. The communication is half-duplex. It has a standard non return zero (NRZ) format.
The baud rate is fixed to 9600 (Control panel RS232 port).
The character frame format (always 11 bits) has:

- one start bit
- eight data bits
- two stop bits
- no parity

It is possible to temporarily connect a personal computer with for example the software EmoSoftCom (programming and monitoring software) to the RS232 connector on the control panel. This can be useful when copying parameters between AC drives etc. For permanent connection of a personal computer you have to use one of the communication option boards.

NOTE: This RS232 port is not isolated.

WARNING! Correct and safe use of a RS232 connection depends on the ground pins of both ports being the same potential. Problems can occur when connecting two ports of e.g. machinery and computers where both ground pins are not the same potential. This may cause hazardous ground loops that can destroy the RS232 ports.

The RS232 connection behind the HCP control panel (optional) is not galvanically isolated.

The RS232/ 485 option board from CG Drives \& Automation is galvanically isolated.

Note that the control panel RS232 connection can safely be used in combination with commercial available isolated USB to RS232 converters.

Fig. 44 RS232 connector behind the HCP control panel (Optional)

Fig. 45

9.2 Parameter sets

Communication information for the different parameter sets.

The different parameter sets in the AC drive have the following DeviceNet instance numbers, Profibus slot/index numbers, Profinet IO index and EtherCAT index numbers:
$\left.\begin{array}{|l|l|l|l|l|}\hline \text { Param. } \\ \text { set }\end{array} \begin{array}{c}\text { Modbus/ } \\ \begin{array}{c}\text { DeviceNet } \\ \text { Instance } \\ \text { number }\end{array}\end{array} \begin{array}{c}\text { Profibus } \\ \text { Slot/ Index }\end{array} \begin{array}{c}\text { Profinet IO } \\ \text { index }\end{array} \quad \begin{array}{c}\text { EtherCAT } \\ \text { index } \\ \text { (hex) }\end{array}\right]$

Parameter set A contains parameters 43001 to 43899 . The parameter sets B, C and D contains the same type of information. For example parameter 43123 in parameter set A contain the same type of information as 44123 in parameter set B.

9.3 Motor data

Communication information for the different motors.

Motor	Modbus/ DeviceNet Instance number	Profibus Slot/ Index	Profinet IO index	EtherCAT index (hex)
M1	$43041-$ 43048	$168 / 200$ to $168 / 207$	$19425-$ 19432	4be1-4be8

M1 contains parameters 43041 to 43048.

9.4 Start and stop commands

Set start and stop commands via serial communication.

Modbus/ DeviceNet Instance number	Function
42901	Reset
42902	Run, active together with either RunR or RunL to perform start.
42903	RunR
42904	RunL

Note! Bipolar reference mode is activated if both RunR and RunL is active.

9.5 Reference signal

When menu "Reference Control [214]" is set to "Com" the following parameter data should be used:

Default	0
Range	-16384 to 16384
Corresponding to	-100% to 100% ref

Communication information

Modbus /DeviceNet Instance number	42905
Profibus slot /Index	$168 / 64$
EtherCAT index (hex)	$4 \mathrm{b59}$
Profinet IO index	19289
Fieldbus format	Int
Modbus format	Int

9.5.1 Process value

It is also possible to send the Process value feedback signal over a bus (e.g. from a process or temperature sensor) for use with PID Process controller [380].
Set menu "Process Source [321]" to F(Bus). Use following parameter data for the process value:

Default	0
Range	-16384 to 16384
Corresponding to	-100% to 100% process value

Communication information

Modbus /DeviceNet Instance number	42906
Profibus slot /Index	$168 / 65$
EtherCAT index (hex)	$4 \mathrm{b5a}$
Profinet IO index	19290
Fieldbus format	Int
Modbus format	Int

Example:

(See Emotron Fielbus manual for detailed information)
We would like to control the AC drive over a bus system using the first two bytes of the Basic Control Message by setting menu "[2661] FB Signal 1" to 49972. Further, we also want to transmit a 16 bit signed reference and a 16 bit process value. This is done by setting menu
"[2662] FB Signal 2" to 42905 and menu "[2663] FB Signal 3" to 42906.

NOTE! It is possible to view the transmitted process value in control panel menu Operation [710]. The presented value is depending on settings in menus "Process Min [324]" and "Process Max [325]".

9.6 Description of the Elnt formats

A parameter with Eint format can be represented in two different formats (F). Either as a 15 bit unsigned integer format ($\mathrm{F}=0$) or a Emotron floating point format $(\mathrm{F}=1)$. The most significant bit (B15) indicates the format used. See detailed description below.
All parameters written to a register may be rounded to the number of significant digits used in the internal system.

The matrix below describes the contents of the 16 -bit word for the two different EInt formats:

> | B 15 | B 14 | B 13 | B 12 | B 11 | B 10 | B 9 | B 8 | B 7 | B 6 | B 5 | B 4 | B 3 | B 2 | B 1 | $\mathrm{B0}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{~F}=1$ | e 3 | e 2 | e 1 | e 0 | m 10 | m 9 | m 8 | m 7 | m 6 | m 5 | m 4 | m 3 | m 2 | m 1 | m 0 |
| $\mathrm{~F}=0$ | B 14 | B 13 | B 12 | B 11 | B 10 | B 9 | B 8 | B 7 | B 6 | B 5 | B 4 | B 3 | B 2 | B 1 | B 0 |

If the format bit (B15) is 0 , then all bits may be treated as a standard unsigned integer (UInt)

If the format bit is 1 , then is the number interpreted as this:
Value $=M^{*} 10^{\wedge} E$, where $M=m 10 . . m 0$ represents a
two- complement signed mantissa and $\mathrm{E}=\mathrm{e} 3$..e0 represents a two- complement signed exponent.

NOTE: Parameters with EInt format may return values both as 15 bit unsigned int ($\mathrm{F}=0$) or in Emotron floating point ($F=1$).

Example, resolution

If you write the value 1004 to a register and this register has 3 significant digits, it will be stored as 1000 .

In the Emotron floating point format ($\mathrm{F}=1$), one 16 -bit word is used to represent large (or very small numbers) with 3 significant digits.
If data is read or written as a fixed point (i.e. no decimals) number between 0-32767, the 15 bit Unsigned integer format ($\mathrm{F}=0$) may be used.

Detailed description of Emotron floating point format

```
e3-e0 4-bit signed exponent. Gives a value
range:
-8..+7 (binary 1000 .. 0111)
m10-m0 11-bit signed mantissa.Gives a value
range:
-1024..+1023 (binary
10000000000..01111111111)
```

A signed number should be represented as a two complement binary number, like below:

Value Binary

-8	1000
-7	1001
\cdots	
-2	1110
-1	1111
0	0000
1	0001
2	0010
\cdots	
6	0110
7	0111

The value represented by the Emotron floating point format is $\mathrm{m} \cdot 10 \mathrm{e}$.
To convert a value from the Emotron floating point format to a floating point value, use the formula above.

To convert a floating point value to the Emotron floating point format, see the C-code example below.

Example, floating point format

The number 1.23 would be represented by this in Emotron floating point format,

```
F EEEE MMMMMMMMMMM
1 1110 00001111011
F=1 -> floating point format used
E=-2
M=123
```

The value is then $123 \times 10^{-2}=1.23$

Example 15bit unsigned int format

The value 72.0 can be represented as the fixed point number 72. It is within the range $0-32767$, which means that the 15-bit fixed point format may be used.

The value will then be represented as:

B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0
$\begin{array}{llllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0\end{array}$

Where bit 15 indicates that we are using the fixed point format ($\mathrm{F}=0$).

Programming example:

```
typedef struct
{
    int m:11; // mantissa, -1024..1023
    int e: 4; // exponent -8..7
    unsigned int f: 1; // format, 1->special emoint format
}
//-----------------------------------------------------------------------------
unsigned short int float_to_eint16(float value)
{
    eint16 etmp;
    int dec=0;
    while (floor(value) != value && dec<16)
    {
        dec++; value*=10;
    }
    if (value>=0 &&& value<=32767 && dec==0)
        *(short int *) &etmp=(short int)value;
    else if (value>=-1000 && value<0 && dec==0)
    {
        etmp.e=0;
        etmp.f=1;
        etmp.m=(short int)value;
    }
    else
    {
        etmp.m=0;
        etmp.f=1;
        etmp.e=-dec;
        if (value>=0)
            etmp.m=1; // Set sign
        else
                etmp.m=-1; // Set sign
            value=fabs(value);
            while (value>1000)
        {
            etmp.e++; // increase exponent
            value=value/10;
        }
            value+=0.5; // round
            etmp.m=etmp.m*value; // make signed
    }
    return (*(unsigned short int *) &etmp);
}
//-------------------------------------------------------------------------------
float eint16_to_float(unsigned short int value)
{
    float f;
    eint16 evalue;
    evalue=*(eint16 *)&value;
    if (evalue.f)
    {
        if (evalue.e>=0)
                f=(int)evalue.m*pow10(evalue.e);
            else
                f=(int)evalue.m/pow10(abs(evalue.e));
    }
    else
            f=value;
    return f;
}
//--------------------------------------------------------------------------------
```


10. Functional Description for Hand held Control Panel-HCP (option)

With the Hand held Control Panel- HCP (option) connected it is possible to access all parameters and menus provided by the software. This chapter describes the menus and parameters in the software. You will find a short description of each function and information about default values, ranges, etc. There are also tables containing communication information. You will find the parameter number for all available fieldbus options as well as the enumeration for the data.
On our home page in the download area, you could find a
"Communication information" list and a list to note
"Parameter set" information.

NOTE: Functions marked with the sign
cannot be changed during Run Mode.

Description of menu table layout
Following two kinds of tables are used in this chapter.

(1) (1) Read-only (2) (3)332 Stp囯Init Torque 10%		
Default:	(4)	
(5)	0	(7)

(1) Read-only (2)	(3)222 Stp囯 M1	Motor Frequ $50 \mathrm{~Hz} \mathrm{\%}$
Default:	(4)	
Resolution	(7)	

1. Parameter cannot be changed during operation.
2. Parameter only for viewing.
3. Menu information as displayed on control panel. For explanation of display text and symbols, see Chapter 8.2 page 40 .
4. Factory setting of parameter (also showed on display).
5. Available settings for the menu, listed selections.
6. Communication integer value for the selection. For use with communication bus interface (only if selection type parameters).
7. Description of selection alternative, setting or range (min - max value).

Resolution of settings

The resolution for all range settings described in this chapter is 3 significant digits. Exceptions are speed values which are presented with 4 significant digits. Table 19 shows the resolutions for 3 significant digits.

Table 19

3 Digit	Resolution
$0.01-9.99$	0.01
$10.0-99.9$	0.1
$100-999$	1
$1000-9990$	10
$10000-99900$	100

10.1 Preferred View [100]

This menu is displayed at every power-up. During operation, the menu [100] will automatically be displayed when the keyboard is not operated for 5 minutes. The automatic return function will be switched off when the Toggle and Stop key is pressed simultaneously. As default it displays the reference and torque values.

Menu "[100] Preferred View" displays the settings made in menu "[110], 1st line", and "[120], 2nd line". See Fig. 46.

Fig. 46 Display functions

10.1.1 1st Line [110]

Sets the content of the upper row in the menu "[100] Preferred View."

		110 1st Line Stp A Proces Val Proc\|
Default:	Process Val	
Dependent on menu		
Process Val	0	Process value
Speed	1	Speed
Torque	2	Torque
Process Ref	3	Process reference
Shaft Power	4	Shaft power
El Power	5	Electrical power
Current	6	Current
Output volt	7	Output voltage
Frequency	8	Frequency
DC Voltage	9	DC voltage
Heatsink Tmp	10	Heatsink temperature
Motor Temp *	11	Motor temperature
AC drive Status	12	AC drive status
Run Time	13	Run Time
Energy	14	Energy
Mains Time	15	Mains time

* The "Motor temp" is only visible if you have the option PTC/PT100 card installed and a PT100 input is selected in menu[236].

Communication information

Modbus Instance no/DeviceNet no:	43001
Profibus slot/index	$168 / 160$
EtherCAT index (hex)	$4 \mathrm{bb9}$
Profinet IO index	19385
Fieldbus format	UInt
Modbus format	UInt

10.1.2 2nd Line [120]

Sets the content of the lower row in the menu "[100] Preferred View". Same selection as in menu [110].

Communication information

Modbus Instance no/DeviceNet no:	43002
Profibus slot/index	$168 / 161$
EtherCAT index (hex)	4 bba
Profinet IO index	19386
Fieldbus format	UInt
Modbus format	UInt

10.2 Main Setup [200]

The Main Setup menu contains the most important settings to get the AC drive operational and set up for the application. It includes different sub menus concerning the control of the unit, motor data and protection, utilities and automatic resetting of faults. This menu will instantaneously be adapted to build in options and show the required settings.

10.2.1 Operation [210]

Selections concerning the used motor, AC drive mode, control signals and serial communication are described in this submenu and is used to set the AC drive up for the application.

Language [211]

Select the language used on the LC Display. Once the language is set, this selection will not be affected by the Load Default command.

		211 Language Stp a
English		
Default:	English	
English	0	English selected
Svenska	1	Swedish selected
Nederlands	2	Dutch selected
Deutsch	3	German selected
Français	4	French selected
Español	5	Spanish selected
Pyсский	6	Russian selected
Italiano	7	Italian selected
Сesky	8	Czech selected
Turkish	9	Turkish selected

Communication information

Modbus Instance no/DeviceNet no:	43011
Profibus slot/index	$168 / 170$
EtherCAT index (hex)	4 bc 3
Profinet IO index	19395
Fieldbus format	Ulnt
Modbus format	Ulnt

Select Motor [212]

This menu is not to be used in your Emotron CDU/CDX application. Only possible to use the default set M1.
\(\left.$$
\begin{array}{|l|l|l|}\hline & & \begin{array}{l}212 \\
\text { Stp } \mathbf{A}\end{array}
$$

\hline Default: \& \& Select Motor

M1\end{array}\right] .\)| M1 |
| :--- |
| M1 |

Communication information

Modbus Instance no/DeviceNet no:	43012
Profibus slot/index	$168 / 171$
EtherCAT index (hex)	4 bc 4
Profinet IO index	19396
Fieldbus format	Ulnt
Modbus format	Ulnt

Drive Mode [213]

This menu is used to set the control mode for the motor. Settings for the reference signals and read-outs is made in menu "Process source, [321]".

- Speed Mode offers an accurate control of the motor speed independently of the load. The Speed mode also increases the accuracy of the different analogue output signals that are related to the motor speed. Speed mode can also be used if several motors of same type and size are connected in parallel. Requires all motors to be mechanically connected to the load.
- Torque Mode can be selected for applications where the motor shaft torque needs to be controlled independently of the speed.
- V/Hz Mode (output speed [712] in rpm) is used when several motors in parallel of different type or size are connected or if parallel motors are not mechanically connected to the load.

Communication information

Modbus Instance no/DeviceNet no:	43013
Profibus slot/index	$168 / 172$
EtherCAT index (hex)	$4 \mathrm{bc5}$
Profinet IO index	19397
Fieldbus format	Ulnt
Modbus format	Ulnt

Reference control [214]

To control the speed of the motor, the AC drive needs a reference signal. This reference signal can be controlled by a remote source from the installation, the keyboard of the AC drive, or by serial or fieldbus communication. Select the required reference control for the application in this menu.

		214 Ref Control Stp \boldsymbol{A}
Refault:	Remote	
Remote	0	The reference signal comes from the analogue inputs of the terminal strip (terminals 1-22).
Keyboard	1	Reference is set with the + and - keys on the Control Panel. Can only be done in menu "Set/View reference [310]".
Com	2	The reference is set via the serial communication (RS 485, Fieldbus.) See section 9.5, page 48 for further information.
Option	3	The reference is set via an option. Only available if the option can control the reference value.

NOTE: If the reference is switched from Remote to Keyboard, the last remote reference value will be the default value for the control panel.

Communication information

Modbus Instance no/DeviceNet no:	43014
Profibus slot/index	$168 / 173$
EtherCAT index (hex)	$4 \mathrm{bc6}$
Profinet IO index	19398
Fieldbus format	Ulnt
Modbus format	Ulnt

Run/Stop Control [215]

This function is used to select the source for run and stop commands. This is described on page 96 .
Start/stop via analogue signals can be achieved by using function "Stp<MinSpd [342]".

215 Run/Stp Ctrl Stp \boldsymbol{A} Remote		
Default:		Remote
Remote	0	The start/stop signal comes from the digital inputs of the terminal strip (terminals 1-22) For settings, see menu group [330] and [520].
Keyboard	1	Start and stop is set on the Control Panel.
Com	2	The start/stop is set via the serial communication (RS 485, Fieldbus.) See Fieldbus or RS232/485 option manual for details.
Option	3	The start/stop is set via an option.

Communication information

Modbus Instance no/DeviceNet no:	43015
Profibus slot/index	$168 / 174$
EtherCAT index (hex)	4 bc 7
Profinet IO index	19399
Fieldbus format	UInt
Modbus format	UInt

Reset Control [216]

When the AC drive is stopped due to a failure, a reset command is required to make it possible to restart the AC drive. Use this function to select the source of the reset signal.

		216 Reset Ctrl Stp A	
Default:		Remote	
Remote	0	The command comes from the inputs of the terminal strip (terminals 1-22).	
Keyboard	1	The command comes from the command keys of the Control Panel.	
Com	2	The command comes from the serial communication (RS 485, Fieldbus).	
Remote + Keyb	3	The command comes from the inputs of the terminal strip (terminals 1-22) or the keyboard.	
Com + Keyb	4	The command comes from the serial communication (RS485, Fieldbus) or the keyboard.	
Rem+Keyb			
+Com	5	The command comes from the inputs of the terminal strip (terminals 1-22), the keyboard or the serial communication (RS485, Fieldbus).	
Option	6	The command comes from an option. Only available if the option can control the reset command.	

Communication information

Modbus Instance no/DeviceNet no:	43016
Profibus slot/index	$168 / 175$
EtherCAT index (hex)	$4 \mathrm{bc8}$
Profinet IO index	19400
Fieldbus format	Ulnt
Modbus format	Ulnt

Local/Remote key function [217]

The Toggle key on the keyboard, see section 8.3.5, page 42, has two functions and is activated in this menu. As default the key is just set to operate as a Toggle key that moves you easily through the menus in the toggle loop. The second function of the key allows you to easily swap between Local and normal operation (set up via [214] and [215]) of the AC drive. Local mode can also be activated via a digital input. If both [2171] and [2172] is set to Standard, the function is disabled.

		$\begin{array}{l}\text { 2171 LocRefCtrl } \\ \text { Stp } \boldsymbol{A}\end{array}$
Standard		

Communication information

Modbus Instance no/DeviceNet no:	43009
Profibus slot/index	$168 / 168$
EtherCAT index (hex)	4 bc 1
Profinet IO index	19393
Fieldbus format	Ulnt
Modbus format	Ulnt

		2172 Stp \boldsymbol{A}
LocRunCtrl		
Standard		

Communication information

Modbus Instance no/DeviceNet no:	43010
Profibus slot/index	$168 / 169$
EtherCAT index (hex)	4 bc 2
Profinet IO index	19394
Fieldbus format	Ulnt
Modbus format	Ulnt

Lock Code? [218]

To prevent the keyboard being used or to change the setup of the AC drive and/or process control, the keyboard can be locked with a password. This menu, "Lock Code [218]", is used to lock and unlock the keyboard. Enter the password " 291 " to lock/unlock the keyboard operation. If the keyboard is not locked (default) the selection "Lock Code?" will appear. If the keyboard is already locked, the selection "Unlock Code?" will appear.
When the keyboard is locked, parameters can be viewed but not changed. The reference value can be changed and the AC drive can be started, stopped and reversed if these functions are set to be controlled from the keyboard.

	218 Lock Code? Stp A
Default:	0
Range:	$0-9999$

Communication information

Modbus Instance no/DeviceNet no:	43018
Profibus slot/index	$168 / 177$
EtherCAT index (hex)	4 bca
Profinet IO index	19402
Fieldbus format	Ulnt, 1=1
Modbus format	Ulnt

Rotation [219]

Overall limitation of motor rotation direction

This function limits the overall rotation, either to left or right or both directions. This limit is prior to all other selections, e.g.: if the rotation is limited to right, a Run-Left command will be ignored. To define left and right rotation we assume that the motor is connected U-U, V-V and W-W.

Speed Direction and Rotation

The speed direction can be controlled by:

- RunR/RunL commands on the control panel.
- RunR/RunL commands on the terminal strip (terminals 1-22).
- Via the serial interface options.
- The parameter sets.

Fig. 47 Rotation
In this menu you set the general rotation for the motor.

		219 Rotation Stp
Default:		$\mathrm{R}+\mathrm{L}$
R	1	Speed direction is limited to right rotation. The input and key RunL are disabled.
L	2	Speed direction is limited to left rotation. The input and key RunR are disabled.
$\mathrm{R}+\mathrm{L}$	3	Both speed directions allowed.

Communication information

Modbus Instance no/DeviceNet no:	43019
Profibus slot/index	$168 / 178$
EtherCAT index (hex)	4 bcb
Profinet IO index	19403
Fieldbus format	Ulnt
Modbus format	Ulnt

10.2.2 Remote Signal Level/ Edge [21A]

In this menu you select the way to control the inputs for RunR, RunL and Reset that are operated via the digital inputs on the terminal strip. The inputs are default set for level-control, and will be active as long as the input is made and kept high. When edge-control is selected, the input will be activated by the low to high transition of the input. See Chapter 6.2 page 38 for more information.

		21A Level/Edge Stp A
Default:	Level	
Level	0	The inputs are activated or deactivated by a continuous high or low signal. Is commonly used if, for example, a PLC is used to operate the AC drive.
Edge	1	The inputs are activated by a transition; for Run and Reset from "low" to "high" and for Stop from "high" to "low".

Communication information

Modbus Instance no/DeviceNet no:	43020
Profibus slot/index	$168 / 179$
EtherCAT index (hex)	4 bcc
Profinet IO index	19404
Fieldbus format	Ulnt
Modbus format	Ulnt

CAUTION!

Level controlled inputs DO NOT comply with the Machine Directive if the inputs are directly used to start and stop the machine.

NOTE: Edge controlled inputs can comply with the Machine Directive (see the Chapter 7. page 37) if the inputs are directly used to start and stop the machine.

10.2.3 Mains supply voltage [21B]

WARNING!

This menu must be set according to the AC drive product lable and the supply voltage used. Wrong setting might damage the AC drive or brake resistor.

In this menu the nominal mains supply voltage connected to the AC drive can be selected. The setting will be valid for all parameter sets. The default setting, Not defined, is never selectable and is only visible until a new value is selected.
Once the supply voltage is set, this selection will not be affected by the Load Default command [243].
Brake chopper activation level is adjusted using the setting of [21B].

NOTE: The setting is affected by the "Load from CP" command [245] and if loading parameter file via EmoSoftCom.

		21B Supply Volts Stp $\boldsymbol{A} \quad$ Not defined
Default:	Not defined	
Not Defined	0	Inverter default value used. Only valid if this parameter is never set.
$220-240 \mathrm{~V}$	1	Only valid for CDX48/52
$380-415 \mathrm{~V}$	3	Only valid for CDX48/52
$440-480 \mathrm{~V}$	4	Only valid for CDX48/52
$500-525 \mathrm{~V}$	5	Only valid for CDX52

Communication information

Modbus Instance no/DeviceNet no:	43381
Profibus slot/index	$170 / 30$
EtherCAT index (hex)	4 d 35
Profinet IO index	19765
Fieldbus format	Ulnt
Modbus format	Ulnt

10.2.4 Motor Data [220]

In this menu you enter the motor data to adapt the AC drive to the connected motor. This will increase the control accuracy as well as different read-outs and analogue output signals.
EmotronCDX AC drive can control both Asynchronous motors and PMSM-Permanent magnet synchronous motor select type of motor in menu [22I].

WARNING!

Do not work on a drive when a rotating PMSM - permanent magnet motor is connected to it. A rotating PMSM motor energizes the drive including its power terminals.

Motor M1 is selected as default and motor data entered will be valid for motor M1. If you have more than one motor you need to select the correct motor in menu [212] before entering motor data.

NOTE 1: The parameters for motor data cannot be changed during run mode.

NOTE 2: The default settings are for a standard 4-pole motor according to the nominal power of the AC drive.

NOTE 3: Parameter set cannot be changed during run if the parameter set is set for different motors.

WARNING!
Enter the correct motor data to prevent dangerous situations and assure correct control.

Motor Voltage [221]

Set the nominal motor voltage.

\bigcirc	
Default:	400 V for CDX48 500 V for CDX52
Range:	100-700 V
Resolution	1 V

NOTE: The M otor Volts value will always be stored as a 3 digit value with a resolution of 1 V .

Communication information

Modbus Instance no/DeviceNet no:	43041
Profibus slot/index	$168 / 200$
EtherCAT index (hex)	4 be 1
Profinet IO index	19425
Fieldbus format	Long, $1=0.1 \mathrm{~V}$
Modbus format	Elnt

When a permanent magnet synchronous motor (PMSM) is connected, the "Motor Voltage" setting in parameter [221] should be according the BackEMF voltage at nominal speed of the permanent magnet motor.
If the voltage mentioned on the permanent magnet motor type plate is given as a voltage per speed (no-load voltage/"xx rpm"), e.g. 205V/1000 rpm, the "Motor Voltage" for a nominal synchronous speed of 1500 rpm then can be calculated according to following example:
Motor synchronous speed $=1500 \mathrm{rpm}$
No-load voltage $\quad=205 \mathrm{~V} / 1000 \mathrm{rpm}$
Calculation of Motor Voltage setting:
MotorVoltage[221]=

$$
\left(\frac{\text { Nmotorsynchronous }}{\text { Nmotornoload }}\right) \times \text { NoLoadVoltage }
$$

MotorVoltag[221] $=\left(\frac{1500 \mathrm{rpm}}{1000 \mathrm{rpm}}\right) \times 205 \mathrm{~V}=3 \dot{3} 15 \mathrm{~V}$

Note: The "Motor Voltage" is not equal to the Equivalent DC M otor (EDCM) voltage as specified by some motor manufacturers. The "M otor Voltage" setting then can be calculated by:

$$
\text { MotorVoltage }[221]=\frac{E D C M}{\sqrt{3}} M M
$$

Motor Frequency [222]
Set the nominal motor frequency.

	222 Motor Freq Stp A $^{\text {M1: }}$ (50.0 Hz
Default:	50 Hz
Range:	$24.0-300.0$ Hz
Resolution	0.1 Hz

Communication information

Modbus Instance no/DeviceNet no:	43060
Profibus slot/index	$168 / 219$
EtherCAT index (hex)	$4 \mathrm{bf4}$
Profinet IO index	19444
Fieldbus format	Long, $1=0.1 \mathrm{~Hz}$
Modbus format	Elnt

Motor Power [223]

Set the nominal motor power. If parallel motors, set the value as sum of motors power. The nominal motorpower must be within the range of $1-150 \%$ of the AC drives nominal power.

	223 Motor Power Stp AM1: $^{\text {M }}$ $\left(\mathrm{P}_{\text {NOM }}\right) \mathrm{kW}$
Default:	$\mathrm{P}_{\text {NOM }}{ }^{\text {AC drive }}$
Range:	1-150 \% x $\mathrm{P}_{\mathrm{NOM}}$
Resolution	3 significant digits

NOTE: The Motor Power value will always be stored as a 3 digit value in W up to 999 W and in kW for all higher powers.

Communication information

Modbus Instance no/DeviceNet no:	43043
Profibus slot/index	$168 / 202$
EtherCAT index (hex)	$4 \mathrm{be3}$
Profinet IO index	19427
Fieldbus format	Long, 1=1 W
Modbus format	Elnt

$\mathrm{P}_{\mathrm{NOM}}$ is the nominal AC drive power.

Motor Current [224]

Set the nominal motor current. If parallel motors, set the value as sum of motors current.

	224 Motor Curr Stp AM1:
(IMOT) A	

Communication information

Modbus Instance no/DeviceNet no:	43044
Profibus slot/index	$168 / 203$
EtherCAT index (hex)	$4 \mathrm{be4}$
Profinet IO index	19428
Fieldbus format	Long, $1=0.1 \mathrm{~A}$
Modbus format	Elnt

NOTE: The default settings are for a standard 4-pole motor according to the nominal power of the AC drive.

Motor Speed [225]

Set the nominal asynchronous motor speed.

Default:	$\mathrm{n}_{\text {MOT }}$ (see Note 2 page 58)
Range:	50-18000 rpm
Resolution	$1 \mathrm{rpm}, 4$ sign digits

WARNING!
Do NOT enter a synchronous (no-load) motor speed.

NOTE: M aximum speed [343] is not automatically changed when the motor speed is changed.

NOTE: Entering a wrong, too low value can cause a dangerous situation for the driven application due to high speeds.

Communication information

Modbus Instance no/DeviceNet no:	43045
Profibus slot/index	$168 / 204$
EtherCAT index (hex)	$4 \mathrm{be5}$
Profinet IO index	19429
Fieldbus format	Ulnt. $1=1$ rpm
Modbus format	Ulnt

Motor Poles [226]

When the nominal speed of the motor is $\leq 500 \mathrm{rpm}$, the additional menu for entering the number of poles, [226], appears automatically. In this menu the actual pole number can be set which will increase the control accuracy of the AC drive.

	226 Motor Poles Stp AM1 :
Default:	4
Range:	$2-144$

Communication information

Modbus Instance no/DeviceNet no:	43046
Profibus slot/index	$168 / 205$
EtherCAT index (hex)	$4 \mathrm{be6}$
Profinet IO index	19430
Fieldbus format	Long, 1=1 pole
Modbus format	Elnt

Motor $\operatorname{Cos} \varphi$ [227]

Set the nominal Motor cosphi (power factor).

	227 Motor $\operatorname{Cos} \varphi$ Stp AM1 $: \operatorname{Cos} \varphi$ NOM
Default:	$\operatorname{Cos} \varphi_{\text {NOM }}$ (see Note 2 page 58)
Range:	$0.45-1.00$

Communication information

Modbus Instance no/DeviceNet no:	43047
Profibus slot/index	$168 / 206$
EtherCAT index (hex)	4 be7
Profinet IO index	19431
Fieldbus format	Long, 1=0.01
Modbus format	Elnt

Motor ventilation [228]

Parameter for setting the type of motor ventilation. Affects the characteristics of the $I^{2} t$ motor protection by lowering the actual overload current at lower speeds.

-		228 Motor Vent Stp ลㅗM1: Self
Default:		Self
None	0	Limited $\mathrm{I}^{2} \mathrm{t}$ overload curve.
Self	1	Normal 1^{2} t overload curve. Means that the motor stands lower current at low speed.
Forced	2	Expanded I^{2} t overload curve. Means that the motor stands almost the whole current also at lower speed.

Communication information

Modbus Instance no/DeviceNet no:	43048
Profibus slot/index	$168 / 207$
EtherCAT index (hex)	$4 \mathrm{be8}$
Profinet IO index	19432
Fieldbus format	Ulnt
Modbus format	Ulnt

When the motor has no cooling fan, None is selected and the current level is limited to 55% of rated motor current.

With a motor with a shaft mounted fan, Self is selected and the current for overload is limited to 87% from 20% of synchronous speed. At lower speed, the overload current allowed will be smaller.
When the motor has an external cooling fan, Forced is selected and the overload current allowed starts at 90% from rated motor current at zero speed, up to nominal motor current at 70% of synchronous speed.
Fig. 48 shows the characteristics with respect for Nominal Current and Speed in relation to the motor ventilation type selected.

Motor Identification Run [229]

This function is used when the AC drive is put into operation for the first time. To achieve an optimal control performance, fine tuning of the motor parameters using a motor ID run is needed. During the test run the display shows "Test Run" flashing.

To activate the Motor ID run, select either "Short" or "Extended" and press Enter. Then press RunL or RunR on the control panel to start the ID run. If menu
"[219] Rotation" is set to L the RunR key is inactive and vice versa. The ID run can be aborted by giving a Stop command via the control panel or Enable input. The parameter will automatically return to OFF when the test is completed. The message "Test Run OK!" is displayed. Before the AC drive can be operated normally again, press the STOP/RESET key on the control panel.

During the Short ID run the motor shaft does not rotate. The AC drive measures the rotor and stator resistance.

During the Extended ID run the motor is powered on and rotates. The AC drive measures the rotor and stator resistance as well as the induction and the inertia for the motor.

		229 Motor ID-Run Stp AM1 :
Default:	Off, see Note	
Off	0	Not active
Short	1	Parameters are measured with injected DC current. No rotation of the shaft will occur.
Extended	2	Additional measurements, not possible to perform with DC current, are done directly after a short ID run. The shaft will rotate and must be disconnected from the load.

Communication information

Modbus Instance no/DeviceNet no:	43049	
Profibus slot/index	$168 / 208$	
EtherCAT index (hex)	$4 \mathrm{be9}$	
Profinet IO index	19433	
Fieldbus format	Ulnt	
Modbus format	Ulnt	
WARNING! During the extended ID RUN, the motor will rotate. Take safety measures to avoid unforeseen dangerous situations.		

NOTE: To run the AC drive it is not mandatory for the ID RUN to be executed, but without it the performance will not be optimal.

Fig. $48 \quad I^{2}$ tcurves

NOTE: If the ID Run is aborted or not completed the message "Interrupted!" will be displayed. The previous data do not need to be changed in this case. Check that the motor data are correct.

Encoder Feedback [22B]

Only visible if the Encoder option board is installed. This parameter enables or disables the encoder feedback from the motor to the AC drive.

	6	22 B Encoder Stp A M : $^{\text {: }}$ Off
Defa		Off
Off	0	Encoder feedback disabled
On	1	Encoder feedback enabled

Communication information

Modbus Instance no/DeviceNet no:	43051
Profibus slot/index	$168 / 210$
EtherCAT index (hex)	4 beb
Profinet IO index	19435
Fieldbus format	UInt
Modbus format	UInt

Encoder Pulses [22C]

Only visible if the Encoder option board is installed. This parameter describes the number of pulses per rotation for your encoder, i.e. it is encoder specific. For more information please see the encoder manual.

	22 C Enc Pulses Stp $\mathbf{A}_{\text {M1 }}$: 1024
Default:	1024
Range:	5-16384

Communication information

Modbus Instance no/DeviceNet no:	43052
Profibus slot/index	$168 / 211$
EtherCAT index (hex)	4 bec
Profinet IO index	19436
Fieldbus format	Long, 1=1 pulse
Modbus format	Elnt

Encoder Speed [22D]

Only visible if the Encoder option board is installed. This parameter shows the measured motor speed. To check if the encoder is correctly installed, set Encoder Feedback [22B] to Off, run the AC drive at any speed and compare with the value in this menu. The value in this menu [22D] should be
about the same as the motor speed [230]. If you get the wrong sign for the value, swap encoder input A and B.

	22D Enc Speed Stp AM1 : XXrpm
Unit:	rpm
Resolution:	speed measured via the encoder

Communication information

Modbus Instance no/DeviceNet no:	42911
Profibus slot/index	$168 / 70$
EtherCAT index (hex)	4 b 5 f
Profinet IO index	19295
Fieldbus format	Int, 1=1 rpm
Modbus format	Int

Encoder Pulse counter [22F]

Only visible if the Encoder option is installed. Added menu/ parameter for accumulated QEP (Quadrature Encoder Pulse) encoder pulses. Can be preset to any value within bus format used (Int $=2$ byte, Long $=4$ byte).

	$22 F$ Stp Enc Puls Ctr	
Default:	0	0
Resolution	1	

Communication information

Modbus Instance no/DeviceNet no:	42912
Profibus slot/index	$168 / 71$
EtherCAT index (hex)	4 b 60
Profinet IO index	19296
Fieldbus format	Long, 1=1 quad encoder pulse
Modbus format	Int

Note: For a 1024 pulse encoder [22F] will count 1024 * $4=4096$ pulses per turn.

Encoder fault and speed monitoring [22G]

Parameters for encoder fault monitoring and speed supervision by use of the encoder feedback for detecting speed deviation compared to internal speed reference signal. Similar speed deviation functionality is also available in the Crane option, with parameters for speed bandwidth and delay time.
Encoder fault trip conditions:

1. No encoder board detected after power up and AC drive is setup to use encoder.
2. Lost communication to encoder board for more than 2 seconds.
3. If no pulses detected for set delay time [22G1] and drive in Torque Limit (TL) or Current Limit (CL).

Note: If encoder signals are missing or encoder cable disconnected, the measured speed will then be 0 rpm and the AC drive will run with Torque Limit (TL) at very low speed.

Note: Other likely scenarios when encoder signals are lost during operation are tripped drive due to
"Overcurrent Fast" or "Desat".

Encoder speed deviation trip condition:
Encoder speed outside set speed deviation band [22G2] for set delay time [22G1].

Note: Encoder speed deviation trip re-uses "Deviation 2" trip message with ID $=2$.

Encoder fault delay time [22G1]

Define the encoder fault and speed deviation delay time.

	22G1 Enc Stp \mathbf{A}
Default:	Delay M1 : Off
Range	Off

Communication information

Modbus Instance no/DeviceNet no:	43056
Profibus slot/index	$168 / 215$
EtherCAT index (hex)	4 bf0
Profinet IO index	19440
Fieldbus format	Long, $1=0.01 \mathrm{~s}$
Modbus format	Elnt

Encoder fault speed deviation band [22G2]
Defines the max allowed speed deviation band = difference between measured encoder speed and speed ramp output.

	22G2 Enc Stp \mathbf{A}
Fefault:	10%
Range	$0-400 \%$

Communication information

Modbus Instance no/DeviceNet no:	43057
Profibus slot/index	$168 / 216$
EtherCAT index (hex)	4 bf1
Profinet IO index	19441
Fieldbus format	Long, 1=1 \%
Modbus format	Elnt

Encoder max fault counter [22G3]

This is a measured signal showing the maximum time that the speed deviation has exceeded the allowed speed deviation band level, set in [22G2]. The parameter is intended to be used during commissioning for setting up [22G1] and [22G2] to avoid nuisance trips and can be cleared by setting it to 0 .

	22G3 Max EncFCtr Stp
Default:	0.000 s
Range	$0.00-10.00 \mathrm{~s}$

Communication information

Modbus Instance no/DeviceNet no:	42913
Profibus slot/index	$168 / 78$
EtherCAT index (hex)	$4 \mathrm{b61}$
Profinet IO index	19297
Fieldbus format	Long, $1=0.001 \mathrm{~s}$
Modbus format	Elnt

NOTE: The value is volatile and lost at power down. It is possible to reset the value by clearing the parameter.

Phase order[22H]

Phase sequence for motor output. In this menu you can correct rotation direction on the motor by selecting "reverse" instead of switching the motor cables..

				22H Phase order Stp \mathbf{A}
Default:	Normal			
Normal	0	Normal phase order (U,V,W)		
Reverse	1	Reverse phase order (U, W, V)		

Communication information

Modbus Instance no/DeviceNet no:	43058
Profibus slot/index	$168 / 217$
EtherCAT index (hex)	4 bf 2
Profinet IO index	19442
Fieldbus format	Ulnt
Modbus format	Ulnt

Motor type[22I]

In this menu select type of motor. Emotron AC drives can control both Asynchronous motors and PMSM-Permanent Magnet Synchronous Motor.

				22I Motor Type Stp \mathbf{A}
		Async		

Communication information

Modbus Instance no/DeviceNet no:	43059
Profibus slot/index	$168 / 218$
EtherCAT index (hex)	$4 \mathrm{bf3}$
Profinet IO index	19443
Fieldbus format	Ulnt
Modbus format	Ulnt

NOTE: If PMSM is selected in menu [22I], following will be set automatically:

- "Drive mode [213]" is set to V / Hz and can not be changed
- Menu "Spin start [33A] " will be hidden. Means that spinstart is not possible.

10.2.5 Motor Protection [230]

This function protects the motor against overload based on the standard IEC 60947-4-2.

Motor $\mathrm{I}^{2} \mathrm{t}$ Type [231]

The motor protection function makes it possible to protect the motor from overload as published in the standard IEC 60947-4-2. It does this using "Motor I2t Current [232]" as a reference. The "Motor I2t Time [233]" is used to define the time behaviour of the function. The current set in [232] can be delivered infinite in time. If for instance in [233] a time of 1000 s is chosen the upper curve of Fig. 49 is valid. The value on the x -axis is the multiple of the current chosen in [232]. The time [233] is the time that an overloaded motor is switched off or is reduced in power at 1.2 times the current set in [232].

		231 Mot I ${ }^{2} \mathrm{t}$ Type Stp A
Default:	Trip	
Off	0	I^{2} t motor protection is not active.
Trip	1	When the I ${ }^{2} \mathrm{t}$ time is exceeded, the AC drive will trip on "Motor I I^{2} ".
Limit	2	This mode helps to keep the inverter running when the Motor I2t function is just before tripping the AC drive. The trip is replaced by current limiting with a maximum current level set by the value out of the menu [232]. In this way, if the reduced current can drive the load, the AC drive continues running. If there is no reduction in thermal load, the drive will trip.

Communication information

Modbus Instance no/DeviceNet no:	43061
Profibus slot/index	$168 / 220$
EtherCAT index (hex)	4 bf5
Profinet IO index	19445
Fieldbus format	Ulnt
Modbus format	Ulnt

NOTE: When M ot I2t Type=Limit, the AC drive can control the speed < M inSpeed to reduce the motor current.

Motor $\mathrm{I}^{2} \mathrm{t}$ Current [232]

Sets the current limit for the motor $\mathrm{I}^{2} \mathrm{t}$ protection.

	232 Mot I^{2} t Curr Stp \mathbf{A}
Default:	100% of $\mathrm{I}_{\text {MOT }}$
Range:	$0-150 \%$ of $\mathrm{I}_{\mathrm{M}} 0$ (set in menu [224])

Communication information

Modbus Instance no/DeviceNet no:	43062
Profibus slot/index	$168 / 221$
EtherCAT index (hex)	$4 \mathrm{bf6}$
Profinet IO index	19446
Fieldbus format	Long, 1=1\%
Modbus format	Elnt

NOTE: When the selection Limit is set in menu [231], the value must be above the no-load current of the motor.

Motor $\mathrm{I}^{2} \mathrm{t}$ Time [233]

Sets the time of the $I^{2} t$ function. After this time the limit for the $I^{2} t$ is reached if operating with 120% of the $I^{2} t$ current value. Valid when start from 0 rpm .

NOTE: Not the time constant of the motor.

	233 Mot $\mathrm{I}^{2} \mathrm{t}$ Time Stp \boldsymbol{A}
Default:	60 s
Range:	$60-1200 \mathrm{~s}$

Communication information

Modbus Instance no/DeviceNet no:	43063
Profibus slot/index	$168 / 222$
EtherCAT index (hex)	$4 \mathrm{bf7}$
Profinet IO index	19447
Fieldbus format	Long, 1=1 s
Modbus format	Elnt

Fig. $49 I^{2}$ t function

Fig. 49 shows how the function integrates the square of the motor current according to the "Mot I^{2} t Curr [232]" and the "Mot I ${ }^{2}$ t Time [233]".
When the selection Trip is set in menu [231] the AC drive trips if this limit is exceeded.
When the selection Limit is set in menu [231] the AC drive reduces the torque if the integrated value is 95% or closer to the limit, so that the limit cannot be exceeded.

NOTE: If it is not possible to reduce the current, the AC drive will trip after exceeding 110% of the limit.

Example

In Fig. 49 the thick grey line shows the following example.

- Menu "[232] Mot I^{2} t Curr" is set to 100%.
$1.2 \times 100 \%=120 \%$
- Menu "[233] Mot $\mathrm{I}^{2} \mathrm{t}$ Time" is set to 1000 s.

This means that the AC drive will trip or reduce after 1000 s if the current is 1.2 times of 100% nominal motor current.

Thermal Protection [234]

Only visible if the PTC/PT100 option board is installed. Set the PTC input for thermal protection of the motor. The motor thermistors (PTC) must comply with DIN 44081/ 44082. Please refer to the manual for the PTC/PT100 option board.
Menu [234] Thermal Prot" contains functions to enable or disable the PTC input. Here you can select and activate PTC and/or PT100.

		234 Thermal Prot Stp \boldsymbol{A}
Default:		Off
Off	0	PTC and PT100 motor protection are disabled.
PTC	1	Enables the PTC protection of the motor via the insulated option board.
PT100	2	Enables the PT100 protection for the motor via the insulated option board.
PTC+PT100	3	Enables the PTC protection as well as the PT100 protection for the motor via the insulated option board.

Communication information

Modbus Instance no/DeviceNet no:	43064
Profibus slot/index	$168 / 223$
EtherCAT index (hex)	$4 \mathrm{bf8}$
Profinet IO index	19448
Fieldbus format	Ulnt
Modbus format	Ulnt

NOTE: PTC option and PT100 selections can only be selected in menu [234] if the option board is mounted.

NOTE: If you select the PTC option, the PT100 inputs as motor protection are ignored.

Motor Class [235]

Only visible if the PTC/PT100 option board is installed. Set the class of motor used. The trip levels for the PT100 sensor will automatically be set according to the setting in this menu.

		235 Mot Class Stp \boldsymbol{A} F $140{ }^{\circ} \mathrm{C}$
Default:		F $140^{\circ} \mathrm{C}$
A $100^{\circ} \mathrm{C}$	0	
E $115^{\circ} \mathrm{C}$	1	
B $120^{\circ} \mathrm{C}$	2	
F $140^{\circ} \mathrm{C}$	3	
F Nema $145^{\circ} \mathrm{C}$	4	
H $165{ }^{\circ} \mathrm{C}$	5	

Communication information

Modbus Instance no/DeviceNet no:	43065
Profibus slot/index	$168 / 224$
EtherCAT index (hex)	4 bf9
Profinet IO index	19449
Fieldbus format	Ulnt
Modbus format	Ulnt

NOTE: This menu is only valid for PT 100.

PT100 Inputs [236]

Sets which of PT100 inputs that should be used for thermal protection. Deselecting not used PT100 inputs on the PTC/ PT100 option board in order to ignore those inputs, i.e. extra external wiring is not needed if port is not used.

		236 PT100 Inputs Stp \boldsymbol{A} PT100 $1+2+3$
Default:		PT100 1+2+3
Selection:		PT100 1, PT100 2, PT100 1+2, PT100 3, PT100 1+3, PT100 2+3, PT100 $1+2+3$
PT100 1	1	Channel 1 used for PT100 protection
PT100 2	2	Channel 2 used for PT100 protection
PT100 1+2	3	Channel 1+2 used for PT100 protection
PT100 3	4	Channel 3 used for PT100 protection
PT100 1+3	5	Channel 1+3 used for PT100 protection
PT100 2+3	6	Channel 2+3 used for PT100 protection
PT100 1+2+3	7	Channel 1+2+3 used for PT100 protection

Communication information

Modbus Instance no/DeviceNet no:	43066
Profibus slot/index	$168 / 225$
EtherCAT index (hex)	4 bfa
Profinet IO index	19450
Fieldbus format	Ulnt
Modbus format	Ulnt

NOTE: This menu is only valid for PT 100 thermal protection if PT100 is enabled in menu [234].

Motor PTC [237]

For AC drive sizes B toC(CDX48/52-003-046) there is optional possibility to directly connect motor PTC (not to be mixed up with PTC/PT100 option board, see Chapter 12.7 page 182).

In this menu the internal motor PTC hardware option is enabled. This PTC input complies with DIN 44081/44082. For electrical specification please refer to the separate manual for the PTC/PT100 option board, same data applies (could be found on www.emotron.com/www.cgglobal.com).

This menu is only visible if a PTC (or resistor $<2 \mathrm{kOhm}$) is connected to terminals X1: 78-79. See Chapter 4.5 page 41 and Chapter 4.5.1 page 41.

NOTE: This function is not related to PTC/ PT100 option board.

To enable the function:

1. When the thermistor wires are connected.Use resistor value between 50 and 2000 ohm.
Menu [237] will now appear.
2. Enable input by setting menu "[237] Motor PTC"=On.

If enabled and <50 ohm a sensor error trip will occur. The fault message "Motor PTC" is shown.

If the function is disabled and the PTC or resistor is removed, the menu will disappear after the next power on

				237 Motor PTC Stp \mathbf{A}
Default:		Off		
Off	0	Motor PTC protection is disabled		
On	1	Motor PTC protection is enabled		

Communication information

Modbus Instance no/DeviceNet no:	43067
Profibus slot/index	$168 / 226$
EtherCAT index (hex)	4 bfb
Profinet IO index	19451
Fieldbus format	Ulnt
Modbus format	Ulnt

10.2.6 Parameter Set Handling [240]

There are four different parameter sets available in the AC drive. These parameter sets can be used to set the AC drive up for different processes or applications such as different motors used and connected, activated PID controller, different ramp time settings, etc.

A parameter set consists of all parameters with the exception of the Global parameters. The Global parameters are only able to have one value for all parameter sets.
Following parameters are Global: [211] Language, [217] Local Remote, [218] Lock Code, [220] Motor Data, [241] Select Set, [260] Serial Communication and [21B]Mains Supply Voltage.

NOTE: Actual timers are common for all sets. When a set is changed the timer functionality will change according to the new set, but the timer value will stay unchanged.

Select Set [241]

Here you select the parameter set. Every menu included in the parameter sets is designated $\mathrm{A}, \mathrm{B}, \mathrm{C}$ or D depending on the active parameter set. Parameter sets can be selected from the keyboard, via the programmable digital inputs or via serial communication. Parameter sets can be changed during the run. If the sets are using different motors (M1 to M4) the set will be changed only when the motor is stopped.

		241 Select Set Stp A
Default:		A
Selection:		A, B, C, D, Digln, Com, Option
A	0	
B	1	Fixed selection of one of the 4 parameter sets A, B, C or D.
C	2	

Communication information

Modbus Instance no/DeviceNet no:	43022
Profibus slot/index	$168 / 181$
EtherCAT index (hex)	4 bce
Profinet IO index	19406
Fieldbus format	Ulnt
Modbus format	Ulnt

The active set can be viewed with function [721] VSD status.

NOTE: Parameter set cannot be changed during run if the parameter set includes change of the motor set (M2-M 4). In this case always stop the motor before changing parameter set.

Prepare parameter Set when different Motor data M1-M4:

1. Select desired parameter Set to be set in [241] A - D.
2. Select "Motor Set [212]" if other than the default Set M1.
3. Set relevant motor data in the Menu group [220].
4. Set other desired parameter settings to belong to this parameter Set.
To prepare a Set for another motor, repeat these steps.

Copy Set [242]

This function copies the content of a parameter set into another parameter set.

		242 Copy Set Stp A
Default:		A>B
A>B	0	Copy set A to set B
A>C	1	Copy set A to set C
A>D	2	Copy set A to set D
B>A	3	Copy set B to set A
B>C	4	Copy set B to set C
B>D	5	Copy set B to set D
C>A	6	Copy set C to set A
C>B	7	Copy set C to set B
C>D	8	Copy set C to set D
$D>A$	9	Copy set D to set A
D>B	10	Copy set D to set B
D>C	11	Copy set D to set C

Communication information

Modbus Instance no/DeviceNet no:	43021
Profibus slot/index	$168 / 180$
EtherCAT index (hex)	4 bcd
Profinet IO index	19405
Fieldbus format	Ulnt
Modbus format	Ulnt

NOTE: The actual value of menu [310] will not be copied into the other set.
$\mathrm{A}>\mathrm{B}$ means that the content of parameter set A is copied into parameter set B.

Load Default Values Into Set [243]

With this function three different levels (factory settings) can be selected for the four parameter sets. When loading the default settings, all changes made in the software are set to factory settings. This function also includes selections for loading default settings to the four different Motor Data Sets.

		243 Default>Set Stp \boldsymbol{A}
Default:		A
A	0	Only the selected parameter set will revert to its default settings.
B	1	
C	2	
D	3	
ABCD	4	All four parameter sets will revert to the default settings.
Factory	5	All settings, except [211], [221]-[228], [261], [3A1] and [923], will revert to the default settings.
M1	6	Only the selected motor set will revert to its default settings.
M2	7	
M3	8	
M4	9	
M1234	10	All four motor sets will revert to default settings.

Communication information

Modbus Instance no/DeviceNet no:	43023
Profibus slot/index	$168 / 182$
EtherCAT index (hex)	4 bcf
Profinet IO index	19407
Fieldbus format	Ulnt
Modbus format	Ulnt

NOTE: Trip log hour counter and other VIEW ONLY menus are not regarded as settings and will be unaffected.

NOTE: If "Factory" is selected, the message "Sure?" is displayed. Press the + key to display "Yes" and then Enter to confirm.

NOTE: The parameters in menu "[220] M otor data", are not affected by loading defaults when restoring parameter sets A-D.

Copy All Settings to Control Panel [244]

All the settings can be copied into the control panel including the motor data. Start commands will be ignored during copying.

(2)		244 Copy to Stp CP No Copy
Default:		No Copy
No Copy	0	Nothing will be copied
Copy	1	Copy all settings

Communication information

Modbus Instance no/DeviceNet no:	43024
Profibus slot/index	$168 / 183$
EtherCAT index (hex)	4 bd0
Profinet IO index	19408
Fieldbus format	Ulnt
Modbus format	Ulnt

NOTE: The actual value of menu [310] will not be copied into control panel memory set.

Load Settings from Control Panel [245]

This function can load all four parameter sets from the control panel to the AC drive. Parameter sets from the source AC drive are copied to all parameter sets in the target $A C$ drive, i.e. A to A, B to B, C to C and D to D.

Start commands will be ignored during loading.

(0)		245 Load from CP Stp A
Default:		No Copy
No Copy	0	Nothing will be loaded.
A	1	Data from parameter set A is loaded.
B	2	Data from parameter set B is loaded.
C	3	Data from parameter set C is loaded.
D	4	Data from parameter set D is loaded.
ABCD	5	Data from parameter sets A, B, C and D are loaded.
A+Mot	6	Parameter set A and Motor data are loaded.
B+Mot	7	Parameter set B and Motor data are loaded.
C+Mot	8	Parameter set C and Motor data are loaded.
D+Mot	9	Parameter set D and Motor data are loaded.
ABCD+Mot	10	Parameter sets A, B, C, D and Motor data are loaded.
M1	11	Data from motor 1 is loaded.
M2	12	Data from motor 2 is loaded.
M3	13	Data from motor 3 is loaded.
M4	14	Data from motor 4 is loaded.
$\begin{aligned} & \text { M1M2M3 } \\ & \text { M4 } \end{aligned}$	15	Data from motor 1, 2, 3 and 4 are loaded.
All	16	All data is loaded from the control panel.

Communication information

Modbus Instance no/DeviceNet no:	43025
Profibus slot/index	$168 / 184$
EtherCAT index (hex)	4 bd1
Profinet IO index	19409
Fieldbus format	Ulnt
Modbus format	Ulnt

NOTE: Loading from the control panel will not affect the value in menu [310].

10.2.7 Trip Autoreset/ Trip Conditions [250]

The benefit of this feature is that occasional trips that do not affect the process will be automatically reset. Only when the failure keeps on coming back, recurring at defined times and therefore cannot be solved by the AC drive, will the unit give an alarm to inform the operator that attention is required.
For all trip functions that can be activated by the user you can select to control the motor down to zero speed according to set deceleration ramp to avoid water hammer.

Also see section 11.2, page 174.

Autoreset example:

In an application it is known that the main supply voltage sometimes disappears for a very short time, a so-called "dip". That will cause the AC drive to trip an "Undervoltage alarm". Using the Autoreset function, this trip will be acknowledged automatically.

- Enable the Autoreset function by making the reset input continuously high.
- Activate the Autoreset function in the menu [251], Number of trips.
- Select in menus [252] to [25N] the Trip condition that are allowed to be automatically reset by the Autoreset function after the set delay time has expired.

Number of Trips [251]

Any number set above 0 activates the Autoreset. This means that after a trip, the AC drive will restart automatically according to the number of attempts selected. No restart attempts will take place unless all conditions are normal.
If the Autoreset counter (not visible) contains more trips than the selected number of attempts, the Autoreset cycle will be interrupted. No Autoreset will then take place.
If there are no trips for more than 10 minutes, the Autoreset counter decreases by one.

If the maximum number of trips has been reached, the trip message hour counter is marked with an " A ".

If the Autoreset is full then the AC drive must be reset by a normal Reset.

Example:

- Number of allowed autoreset attempts [251]=5.
- Within 10 minutes 6 trips occur.
- At the 6th trip there is no autoreset, because the autoreset counter is set to allow only 5 attempts to autoreset a trip.
- To reset the autoreset counter, give a new reset command (from one of the sources for reset control selected in menu [216]).
- The autoreset counter is now zeroed.

	251 No of Trips Stp \boldsymbol{A}
Default:	0 (no Autoreset)
Range:	$0-10$ attempts

Communication information

Modbus Instance no/DeviceNet no:	43071
Profibus slot/index	$168 / 230$
EtherCAT index (hex)	4 bff
Profinet IO index	19455
Fieldbus format	Ulnt, 1=1
Modbus format	Ulnt

NOTE: An auto reset is delayed by the remaining ramp time.

Over temperature [252]

Delay time starts counting when the fault is gone. When the time delay has elapsed, the alarm will be reset if the function is active.

		252 Overtemp Stp \mathbf{A}	Off
Default:		Off	
Off	0	Off	
1-3600	1-3600	1-3600 s	

Communication information

Modbus Instance no/DeviceNet no:	43072
Profibus slot/index	$168 / 231$
EtherCAT index (hex)	4 c 00
Profinet IO index	19456
Fieldbus format	Long, 1=1 s
Modbus format	Elnt

NOTE: An auto reset is delayed by the remaining ramp time.

Overvolt D [253]

Delay time starts counting when the fault is gone. When the time delay has elapsed, the alarm will be reset if the function is active.

				253 Overvolt D Stp \mathbf{A}	Off

Communication information

Modbus Instance no/DeviceNet no:	43075
Profibus slot/index	$168 / 234$
EtherCAT index (hex)	4 c 03
Profinet IO index	19459
Fieldbus format	Long, 1=1 s
Modbus format	Elnt

NOTE: An auto reset is delayed by the remaining ramp time.

Overvolt G [254]

Delay time starts counting when the fault is gone When the time delay has elapsed, the alarm will be reset if the function is active.

254 Overvolt G Stp \boldsymbol{A}		Off	
Default:	Off		
Off	0	Off	
$1-3600$	$1-3600$	$1-3600 \mathrm{~s}$	

Communication information

Modbus Instance no/DeviceNet no:	43076
Profibus slot/index	$168 / 235$
EtherCAT index (hex)	4 c 04
Profinet IO index	19460
Fieldbus format	Long, 1=1 s
Modbus format	Elnt

Overvolt [255]

Delay time starts counting when the fault is gone. When the time delay has elapsed, the alarm will be reset if the function is active.

				255 Overvolt Stp \boldsymbol{A}	Off

Communication information

Modbus Instance no/DeviceNet no:	43077
Profibus slot/index	$168 / 236$
EtherCAT index (hex)	4 c 05
Profinet IO index	19461
Fieldbus format	Long, 1=1 s
Modbus format	Elnt

Motor Lost [256]

Delay time starts counting when the fault is gone. When the time delay has elapsed, the alarm will be reset if the function is active.

256 Motor Lost Stp $\boldsymbol{\Lambda}$	Off		

NOTE: Only visible when Motor Lost is selected in menu [423].

Communication information

Modbus Instance no/DeviceNet no:	43083
Profibus slot/index	$168 / 242$
EtherCAT index (hex)	4 c 0 b
Profinet IO index	19467
Fieldbus format	Long, 1=1 s
Modbus format	Elnt

Locked Rotor [257]

Delay time starts counting when the fault is gone. When the time delay has elapsed, the alarm will be reset if the function is active.

		257 Lo Stp A	Off
Default:		Off	
Off	0	Off	
1-3600	1-3600	1-3600 s	

Communication information

Modbus Instance no/DeviceNet no:	43086
Profibus slot/index	$168 / 245$
EtherCAT index (hex)	4 cOe
Profinet IO index	19470
Fieldbus format	Long, 1=1 s
Modbus format	Elnt

Power Fault [258]

Delay time starts counting when the fault is gone. When the time delay has elapsed, the alarm will be reset if the function is active.

		258 Power Fault Stp \boldsymbol{A}	Off
Default:	Off		
Off	0	Off	
$1-3600$	$1-3600$	$1-3600 \mathrm{~s}$	

Communication information

Modbus Instance no/DeviceNet no:	43087
Profibus slot/index	$168 / 246$
EtherCAT index (hex)	4 cOf
Profinet IO index	19471
Fieldbus format	Long, $1=1 \mathrm{~s}$
Modbus format	Elnt

Undervoltage [259]

Delay time starts counting when the fault is gone. When the time delay has elapsed, the alarm will be reset if the function is active.

| | | | | $\begin{array}{l}\text { 259 Undervoltage } \\ \text { Stp } \mathbf{A}\end{array}$ | Off |
| :--- | :--- | :--- | :---: | :---: | :---: |$]$

Communication information

Modbus Instance no/DeviceNet no:	43088
Profibus slot/index	$168 / 247$
EtherCAT index (hex)	4 c 10
Profinet IO index	19472
Fieldbus format	Long, 1=1 s
Modbus format	Elnt

Motor $I^{2} \mathrm{t}$ [25A]

Delay time starts counting when the fault is gone. When the time delay has elapsed, the alarm will be reset if the function is active.

	25A Motor $\mathrm{I}^{2} \mathrm{t}$ Stp $\boldsymbol{\Lambda}$	Off

Communication information

Modbus Instance no/DeviceNet no:	43073
Profibus slot/index	$168 / 232$
EtherCAT index (hex)	4 c 01
Profinet IO index	19457
Fieldbus format	Long, 1=1 s
Modbus format	Elnt

Motor 1^{2} t Trip Type [25B]
Select the preferred way to react to a Motor $\mathrm{I}^{2} \mathrm{t}$ trip.

				25B Motor $\mathrm{I}^{2} \mathrm{t}$ TT Stp \boldsymbol{A}
Default:	Trip			
Trip	0	The motor will trip		
Deceleration	1	The motor will decelerate		

Communication information

Modbus Instance no/DeviceNet no:	43074
Profibus slot/index	$168 / 233$
EtherCAT index (hex)	$4 \mathrm{cO2}$
Profinet IO index	19458
Fieldbus format	Ulnt
Modbus format	Ulnt

PT100 [25C]

Delay time starts counting when the fault is gone. When the time delay has elapsed, the alarm will be reset if the function is active.

		25C PT100 Stp A
Default:	Off	
Off	0	Off
$1-3600$	$1-3600$	$1-3600 \mathrm{~s}$

Communication information

Modbus Instance no/DeviceNet no:	43078
Profibus slot/index	$168 / 237$
EtherCAT index (hex)	4 c 06
Profinet IO index	19462
Fieldbus format	Long, $1=1 \mathrm{~s}$
Modbus format	Elnt

PT100 Trip Type [25D]

Delay time starts counting when the fault is gone. When the time delay has elapsed, the alarm will be reset if the function is active.

	25D PT100 TT Stp \boldsymbol{A}	Trip

Communication information

Modbus Instance no/DeviceNet no:	43079
Profibus slot/index	$168 / 238$
EtherCAT index (hex)	4 c 07
Profinet IO index	19463
Fieldbus format	Uint
Modbus format	Ulnt

PTC [25E]

Delay time starts counting when the fault is gone. When the time delay has elapsed, the alarm will be reset if the function is active.

		25E PTC Stp \mathbf{A}	Off
Default:		Off	
Off	0	Off	
1-3600	1-3600	1-3600 s	

Communication information

Modbus Instance no/DeviceNet no:	43084
Profibus slot/index	$168 / 243$
EtherCAT index (hex)	4 c 0 c
Profinet IO index	19468
Fieldbus format	Long, 1=1 s
Modbus format	Elnt

PTC Trip Type [25F]

Select the preferred way to react to a PTC trip.

| | 25F PTC TT
 Stp A |
| :--- | :--- |\quad Trip \quad.

Communication information

Modbus Instance no/DeviceNet no:	43085
Profibus slot/index	$168 / 244$
EtherCAT index (hex)	4 cOd
Profinet IO index	19469
Fieldbus format	Ulnt
Modbus format	Ulnt

External Trip [25G]

Delay time starts counting when the fault is gone. When the time delay has elapsed, the alarm will be reset if the function is active.

				25G Ext Trip Stp \mathbf{A}	Off

Communication information

Modbus Instance no/DeviceNet no:	43080
Profibus slot/index	$168 / 239$
EtherCAT index (hex)	4 c 08
Profinet IO index	19464
Fieldbus format	Long, 1=1 s
Modbus format	Elnt

External Trip Type [25H]

Select the preferred way to react to an alarm trip.

	25H Ext Trip TT Stp \mathbf{A}
Default:	Trip
Selection:	Same as menu [25B]

Communication information

Modbus Instance no/DeviceNet no:	43081
Profibus slot/index	$168 / 240$
EtherCAT index (hex)	4 c 09
Profinet IO index	19465
Fieldbus format	Ulnt
Modbus format	Ulnt

Communication Error [25I]

Delay time starts counting when the fault is gone. When the time delay has elapsed, the alarm will be reset if the function is active.

		25I Com Error Stp \boldsymbol{A}
Default:	Off	

Communication information

Modbus Instance no/DeviceNet no:	43089
Profibus slot/index	$168 / 248$
EtherCAT index (hex)	4 c 11
Profinet IO index	19473
Fieldbus format	Long, 1=1 s
Modbus format	Elnt

Communication Error Trip Type [25J]

Select the preferred way to react to a communication trip.

	25J Com Error TT Stp \boldsymbol{A}
	Trip
Default:	Trip

Communication information

Modbus Instance no/DeviceNet no:	43090
Profibus slot/index	$168 / 249$
EtherCAT index (hex)	4 c 12
Profinet IO index	19474
Fieldbus format	UInt
Modbus format	UInt

Min Alarm [25K]

Delay time starts counting when the fault is gone. When the time delay has elapsed, the alarm will be reset if the function is active.

				25K Min Alarm Stp \boldsymbol{A}	Off
Default:	Off				
Off	0	Off			
$1-3600$	$1-3600$	$1-3600 \mathrm{~s}$			

Communication information

Modbus Instance no/DeviceNet no:	43091
Profibus slot/index	$168 / 250$
EtherCAT index (hex)	4 c 13
Profinet IO index	19475
Fieldbus format	Long, 1=1 s
Modbus format	Elnt

Min Alarm Trip Type [25L]

Select the preferred way to react to a min alarm trip.

	25L Min Alarm TT Stp \mathbf{A}
Default:	Trip
Selection:	Same as menu [25B]

Communication information

Modbus Instance no/DeviceNet no:	43092
Profibus slot/index	$168 / 251$
EtherCAT index (hex)	4 c 14
Profinet IO index	19476
Fieldbus format	Ulnt
Modbus format	Ulnt

Max Alarm [25M]

Delay time starts counting when the fault is gone. When the time delay has elapsed, the alarm will be reset if the function is active.

25M Max Alarm Stp \boldsymbol{A} Off			
Default:	Off		
Off	0	Off	
$1-3600$	$1-3600$	$1-3600 \mathrm{~s}$	

Communication information

Modbus Instance no/DeviceNet no:	43093
Profibus slot/index	$168 / 252$
EtherCAT index (hex)	4 c 15
Profinet IO index	19477
Fieldbus format	Long, 1=1 s
Modbus format	Elnt

Max Alarm Trip Type [25N]

Select the preferred way to react to a max alarm trip.

	25N Max Alarm TT Stp A
	Trip
Default:	Trip
Selection:	Same as menu [25B]

Communication information

Modbus Instance no/DeviceNet no:	43094
Profibus slot/index	$168 / 253$
EtherCAT index (hex)	4 c 16
Profinet IO index	19478
Fieldbus format	UInt
Modbus format	UInt

Over current F [250]

Delay time starts counting when the fault is gone. When the time delay has elapsed, the alarm will be reset if the function is active.

		250 Over $\mathrm{Stp} \boldsymbol{\mathbf { A }}$	Off
Default:		Off	
Off	0	Off	
1-3600	1-3600	1-3600 s	

Communication information

Modbus Instance no/DeviceNet no:	43082
Profibus slot/index	$168 / 241$
EtherCAT index (hex)	4 c 0 a
Profinet IO index	19466
Fieldbus format	Long, 1=1 s
Modbus format	Elnt

Pump [25P]

Delay time starts counting when the fault is gone. When the time delay has elapsed, the alarm will be reset if the function is active.

		25P Pump Stp A
Default:	Off	
Off	0	Off
$1-3600$	$1-3600$	$1-3600 \mathrm{~s}$

Communication information

Modbus Instance no/DeviceNet no:	43095
Profibus slot/index	$168 / 254$
EtherCAT index (hex)	4 c 17
Profinet IO index	19479
Fieldbus format	Long, 1=1 s
Modbus format	Elnt

Over Speed [25Q]

Delay time starts counting when the fault is gone. When the time delay has elapsed, the alarm will be reset if the function is active.

				25Q Over speed Stp A	Off

Communication information

Modbus Instance no/DeviceNet no:	43096
Profibus slot/index	$169 / 0$
EtherCAT index (hex)	4 c 18
Profinet IO index	19480
Fieldbus format	Long, 1=1 s
Modbus format	Elnt

External Motor Temperature [25R]

Delay time starts counting when the fault disappears. When the time delay has elapsed, the alarm will be reset if the function is active.

				25R Ext Mot Temp Stp \boldsymbol{A}
Default:	Off			
Off	0	Off		
$1-3600$	$1-3600$	$1-3600 \mathrm{~s}$		

Communication information

Modbus Instance no/DeviceNet no:	43097
Profibus slot/index	$168 / 239$
EtherCAT index (hex)	4 c 19
Profinet IO index	19481
Fieldbus format	Long, 1=1 s
Modbus format	Elnt

External Motor Trip Type [25S]

Select the preferred way to react to an alarm trip.

	25S Ext Mot TT Stp A
	Trip
Default:	Trip
Selection:	Same as menu [25B]

Communication information

Modbus Instance no/DeviceNet no:	43098
Profibus slot/index	$168 / 240$
EtherCAT index (hex)	4 c 1 a
Profinet IO index	19482
Fieldbus format	Ulnt
Modbus format	Ulnt

Liquid cooling low level [25T]

Delay time starts counting when the fault disappears. When the time delay has elapsed, the alarm will be reset if the function is active.

				25T LC Level Stp \boldsymbol{A}	Off

Communication information

Modbus Instance no/DeviceNet no:	43099
Profibus slot/index	$169 / 3$
EtherCAT index (hex)	4 c 1 b
Profinet IO index	19483
Fieldbus format	Long, 1=1 s
Modbus format	Elnt

Liquid Cooling Low level Trip Type [25U]

Select the preferred way to react to an alarm trip.

	25U LC Level TT Stp \boldsymbol{A}
Default:	Trip
Selection:	Same as menu [25B]

Communication information

Modbus Instance no/DeviceNet no:	43100
Profibus slot/index	$169 / 4$
EtherCAT index (hex)	4 c 1 c
Profinet IO index	19484
Fieldbus format	Ulnt
Modbus format	Ulnt

Brake Fault [25V]

Delay time starts counting when the fault disappears. When the time delay has elapsed, the alarm will be reset if the function is active.

		25V Brk Fault Stp \boldsymbol{B}
Default	Off	
Off	0	Autoreset not activated.
$1-3600 s$	$1-3600$	Brake fault auto reset delay time.

Communication information

Modbus Instance no/DeviceNet no:	43070
Profibus slot/index	$168 / 229$
EtherCAT index (hex)	4 bfe
Profinet IO index	19454
Fieldbus format	Long, 1=1s
Modbus format	Elnt

Encoder [25W]

Encoder delay time, starts counting when the fault disappears. When the time delay has elapsed, the alarm will be reset if the function is active.

		25W Encoder Stp \boldsymbol{A}
Default:	Off	
Off	0	Off
$1-3600$	$1-3600$	$1-3600 \mathrm{~s}$

Communication information

Modbus Instance no/DeviceNet no:	43561
Profibus slot/index	$170 / 210$
EtherCAT index (hex)	$4 \mathrm{de9}$
Profinet IO index	19945
Fieldbus format	Long, 1=1s
Modbus format	Elnt

Crane Communication [25Y]

Crane Communication delay time, starts counting when the fault is gone. When the time delay has elapsed, the alarm will be reset if the function is active.

		25Y Crane Comm Stp A A	Off

Communication information

Modbus Instance no/DeviceNet no:	43563
Profibus slot/index	$170 / 212$
EtherCAT index (hex)	4 deb
Profinet IO index	19947
Fieldbus format	Long, 1=1s
Modbus format	Elnt

Crane deviation [25X]

Deviation delay time, starts counting when the fault is gone.
When the time delay has elapsed, the alarm will be reset if the function is active.

		25x Crane Deviat Stp \mathbf{A}
Default:	Off	
Off	0	Off
$1-3600$	$1-3600$	$1-3600 \mathrm{~s}$

Communication information

Modbus Instance no/DeviceNet no:	43562
Profibus slot/index	$170 / 211$
EtherCAT index (hex)	4 dea
Profinet IO index	19946
Fieldbus format	Long, 1=1s
Modbus format	Elnt

10.2.8 Serial Communication [260]

This function is to define the communication parameters for serial communication. There are two types of options available for serial communication, RS232/485 (Modbus/ RTU) and fieldbus modules (Profibus, DeviceNet, Modbus/TCP, Profinet IO, EtherCAT and EtherNet/IP). For more information see Chapter 9. page 47 and respective option manual.

Comm Type [261]

Select RS232/485 [262] or Fieldbus [263].

	6	261 Com Type Stp $\boldsymbol{\Lambda}$ RS232/485
Default:		RS232/485
RS232/485	0	RS232/485 selected
Fieldbus	1	Fieldbus selected (Profibus, DeviceNet, Modbus/TCP, Profinet IO, EtherCAT or EtherNet/IP)

Communication information

Modbus Instance no/DeviceNet no:	43031
Profibus slot/index	$168 / 190$
EtherCAT index (hex)	$4 \mathrm{bd7}$
Profinet IO index	19415
Fieldbus format	Ulnt
Modbus format	Ulnt

NOTE: Toggling the setting in this menu will perform a soft reset (re-boot) of the Fieldbus module.

RS232/485 [262]

Press Enter to set up the parameters for RS232/485 (Modbus/RTU) communication.

Baud rate [2621]
Set the baud rate for the communication.

NOTE: This baud rate is only used for the isolated RS232/ 485 option.

		2621 Baudrat Stp A	9600
Default:		9600	
2400	0	Selected baud rate	
4800	1		
9600	2		
19200	3		
38400	4		

Communication information

Modbus Instance no/DeviceNet no:	43032
Profibus slot/index	$168 / 191$
EtherCAT index (hex)	$4 \mathrm{bd8}$
Profinet IO index	19416
Fieldbus format	Ulnt
Modbus format	Ulnt

Address [2622]

Enter the unit address for the AC drive.

NOTE: This address is only used for the isolated RS232/ 485 option.

	2622 Address Stp A
Default:	1
Selection:	$1-247$

Communication information

Modbus Instance no/DeviceNet no:	43033
Profibus slot/index	$168 / 192$
EtherCAT index (hex)	4 bd 9
Profinet IO index	19417
Fieldbus format	Ulnt, 1=1
Modbus format	Ulnt

Fieldbus [263]

Press Enter to set up the parameters for fieldbus communication.

Address [2631]

Enter/view the unit/node address of the AC drive. Read \& write access for Profibus, DeviceNet. Read - only for EtherCAT.

	2631 Address Stp \boldsymbol{A} 62
Default:	62
Range:	Profibus 0-126, DeviceNet 0-63
Node address valid for Profibus(RW), DeviceNet (RW) and EtherCAT (RO).	

Communication information

Modbus Instance no/DeviceNet no:	43034
Profibus slot/index	$168 / 199$
EtherCAT index (hex)	4 bda
Profinet IO index	19418
Fieldbus format	Ulnt, 1=1
Modbus format	Ulnt

Process Data Mode [2632]
Enter the mode of process data (cyclic data). For further information, see the Fieldbus option manual.

		2632 PrData Mode Stp A
Default:		Basic
None	0	Control/status information is not used.
Basic	4	4 byte process data control/status information is used.
Extended	8	4 byte process data (same as Basic setting) + additional proprietary protocol for advanced users is used.

Communication information

Modbus Instance no/DeviceNet no:	43035
Profibus slot/index	$168 / 194$
EtherCAT index (hex)	4 bdb
Profinet IO index	19419
Fieldbus format	Ulnt
Modbus format	Ulnt

Read/Write [2633]

Select read/write to control the inverter over a fieldbus network. For further information, see the Fieldbus option manual.

Communication information

Modbus Instance no/DeviceNet no:	43036
Profibus slot/index	$168 / 195$
EtherCAT index (hex)	4 bdc
Profinet IO index	19420
Fieldbus format	Ulnt
Modbus format	Ulnt

Additional Process Values [2634]

Define the number of additional process values sent in cyclic messages.

	2634 AddPrValues Stp A	0
Default:	0	
Range:	$0-8$	

Communication information

Modbus Instance no/DeviceNet no:	43039
Profibus slot/index	$168 / 198$
EtherCAT index (hex)	4 bdf
Profinet IO index	19423
Fieldbus format	Ulnt, 1=1
Modbus format	Ulnt

Communication Fault [264]

Main menu for communication fault/warning settings. For further details please see the Fieldbus option manual.
Communication Fault Mode [2641]]
Selects action if a communication fault is detected.

		2641 ComFlt Mode Stp \mathbf{A}
Default:	Off	
Off	0	No communication supervision.
Trip	1	RS232/485 selected: The AC drive will trip if there is no communication for time set in parameter [2642]. Fieldbus selected: The AC drive will trip if: 1. The internal communication between the control board and fieldbus option is lost for time set in parameter [2642]. 2. If a serious network error has occurred.
Warning	2	RS232/485 selected: The AC drive will give a warning if there is no communication for time set in parameter [2642]. Fieldbus selected: The AC drive will give a warning if: 1. The internal communication between the control board and fieldbus option is lost for time set in parameter [2642]. 2. If a serious network error has occurred.

NOTE: Menu [214] and/ or [215] must be set to COM to activate the communication fault function.

Communication information

Modbus Instance no/DeviceNet no:	43037
Profibus slot/index	$168 / 196$
EtherCAT index (hex)	4bdd
Profinet IO index	19421
Fieldbus format	Ulnt
Modbus format	Ulnt

Communication Fault Time [2642]]

Defines the delay time for the trip/warning.

	2642 ComFlt Time Stp \mathbf{A}
Default:	0.5 s
Range:	$0.1-15 \mathrm{~s}$

Communication information

Modbus Instance no/DeviceNet no:	43038
Profibus slot/index	$168 / 197$
EtherCAT index (hex)	4 bde
Profinet IO index	19422
Fieldbus format	Long, $1=0.1 \mathrm{~s}$
Modbus format	Elnt

Ethernet [265]

Settings for Ethernet module (Modbus/TCP, Profinet IO). For further information, see the Fieldbus option manual.

NOTE: The Ethernet module must be re-booted to activate the below settings. For example by toggling parameter [261]. Non-initialized settings indicated by flashing display text.

IP Address [2651]

Communication information

Modbus Instance no/DeviceNet no:	$42701,42702,42703$, 42704
Profibus slot/index	$167 / 115,167 / 116$, $167 / 117,167 / 118$
EtherCAT index (hex)	$4 \mathrm{a} 8 \mathrm{~d}, 4 \mathrm{a} 8 \mathrm{e}, 4 \mathrm{a} 8 \mathrm{f}, 4 \mathrm{a} 90$
Profinet IO index	$19085,19086,19087$, 19088
Fieldbus format	Ulnt, 1=1
Modbus format	Ulnt

MAC Address [2652]

	2652 MAC Address Stp $\boldsymbol{A} \quad 000000000000$
Default:	An unique number for the Ethernet module.

Communication information

Modbus Instance no/DeviceNet no:	$42705,42706,42707$, $42708,42709,42710$
Profibus slot/index	$167 / 119,167 / 120$,
	$167 / 121,167 / 122$,
	$167 / 123,167 / 124$
EtherCAT index (hex)	$4 a 91,4 a 92,4 a 93$,
	$4 a 94,4 \mathrm{a} 95,4 a 96$,
Profinet IO index	$19089,19090,19091$, $19092,19093,19094$ Fieldbus format Modbus format

Subnet Mask [2653]

Communication information

Modbus Instance no/DeviceNet no:	$42711,42712,42713$, 42714
Profibus slot/index	$167 / 125,167 / 126$,
	$167 / 127,167 / 128$
EtherCAT index (hex)	$4 \mathrm{a} 97,4 \mathrm{a} 98,4 \mathrm{a99}, 4 \mathrm{a9a}$
Profinet IO index	$19095,19096,19097$,
	19098
Fieldbus format	Ulnt, 1=1
Modbus format	Ulnt

Gateway [2654]

| | 2654

 Gateway
 0. 0. 0. 0 |
| :--- | :--- | :--- | :--- |
| Default: | 0.0 .0 .0 |

Communication information

Modbus Instance no/DeviceNet no:	$42715, ~ 42716, ~ 42717, ~$ 42718
Profibus slot/index	$167 / 129,167 / 130$,
	$167 / 131,167 / 132$
EtherCAT index (hex)	$4 a 9 \mathrm{~b}, 4 \mathrm{a} 9 \mathrm{c}, 4 \mathrm{a} 9 \mathrm{e}, 4 \mathrm{a} 9 \mathrm{f}$
Profinet IO index	$19099,19100,19101$,
	19102
Fieldbus format	Ulnt, 1=1
Modbus formatPicknik	Ulnt

DHCP [2655]

	2655 DHCP Stp \boldsymbol{A}
Default:	Off
Selection:	On/Off

Communication information

Modbus Instance no/DeviceNet no:	42719
Profibus slot/index	$167 / 133$
EtherCAT index (hex)	4 a 9 f
Profinet IO index	19103
Fieldbus format	Ulnt
Modbus format	Ulnt

Fieldbus Signals [266]

Defines modbus mapping for additional process values. For further information, see the Fieldbus option manual.

FB Signal 1-16 [2661]-[266G]
Used to create a block of parameters which are read/written via communication. 1 to 8 read +1 to 8 write parameters possible.

| | 2661 FB Signal 1
 Stp A | |
| :--- | :--- | :--- | :--- |
| Default: | 0 | 0 |
| Range: | $0-65535$ | |

Communication information

Modbus Instance no/DeviceNet no:	$42801-42816$
Profibus slot/index	$167 / 215-167 / 230$
EtherCAT index (hex)	4 af1 - 4b00
Profinet IO index	$19185-19200$
Fieldbus format	Ulnt, 1=1
Modbus format	Ulnt

FB Status [269]

Sub menus showing status of fieldbus parameters. Please see the Fieldbus manual for detailed information.

269 FB Status
Stp \mathbf{A}

10.3 Process and Application Parameters [300]

These parameters are mainly adjusted to obtain optimum process or machine performance.
The read-out, references and actual values depends on selected process source, [321\}:

Table 20

Selected process source	Unit for reference and actual value	Resolution
Speed	rpm	4 digits
Torque	$\%$	3 digits
PT100	${ }^{\circ} \mathrm{C}$	3 digits
Frequency	Hz	3 digits

10.3.1 Set/ View Reference Value [310]

View reference value

As default the menu [310] is in view operation. The value of the active reference signal is displayed. The value is displayed according to selected process source, [321] or the process unit selected in menu [322].

Set reference value

If the function "Reference Control [214]" is set to
"Keyboard", the reference value can be set in menu "Set/
View Ref [310]" or as a motor potentiometer with the + and

- keys (default) on the control panel. Selection is made with parameter Keyboard Reference Mode in menu [369]. The ramp times used when setting the reference value with MotPot function selected in [369] are according to menus "Acc MotPot [333]" and "Dec MotPot [334]".
The ramp times used for the reference value when Normal function is selected in menu [369], are according to "Acc Time [331]" and "Dec Time [332]".
Menu [310] displays on-line the actual reference value according to the Mode Settings in Table 20.

	310 Set/View ref Stp \boldsymbol{A}
Default:	0 rpm
Dependent on:	Process Source [321] and Process Unit [322]
Speed mode	0 - max speed [343]
Torque mode	0-max torque [351]
Other modes	Min according to menu [324] - max according to menu [325]

Communication information

Modbus Instance no/DeviceNet no:	42991
Profibus slot/index	$168 / 150$
EtherCAT index (hex)	4 baf
Profinet IO index	19375
	Long, $1=1 \mathrm{rpm}$,
Fieldbus format	$1 \%,{ }^{\circ} \mathrm{C}$ or
	0.001 if Process
	Value/Process Ref
	using a [322] unit
Modbus format	Elnt

NOTE: The actual value in menu [310] is not copied, or loaded from the control panel memory when Copy Set [242], Copy to CP [244] or Load from CP [245] is performed.

NOTE: If the M otPot function is used, the reference value ramp times are according to the "Acc MotPot [333]" and "Dec MotPot [334]" settings. Actual speed ramp will be limited according to "Acc Time [331]" and "Dec Time [332]".

NOTE: Write access to this parameter is only allowed when menu "Ref Control [214]" is set to Keyboard. When Reference control is used, see section " 9 . Serial communication" on page 47

10.3.2 Process Settings [320]

With these functions, the AC drive can be set up to fit the application. The menus [110], [120], [310], [362]-[368] and [711] use the process unit selected in [321] and [322] for the application, e.g. rpm, bar or $\mathrm{m} 3 / \mathrm{h}$. This makes it possible to easily set up the AC drive for the required process requirements, as well as for copying the range of a feedback sensor to set up the Process Value Minimum and Maximum in order to establish accurate actual process information.

Process Source [321]

Select the signal source for the process value that controls the motor. The Process Source can be set to act as a function of the process signal on AnIn F(AnIn), a function of the motor speed F (Speed), a function of the shaft torque F (Torque) or as a function of a process value from serial communication F (Bus). The right function to select depends on the characteristics and behaviour of the process. If the selection Speed, Torque or Frequency is set, the AC drive will use speed, torque or frequency as reference value.

Example

An axial fan is speed-controlled and there is no feedback signal available. The process needs to be controlled within fixed process values in " $\mathrm{m}^{3} / \mathrm{hr}$ " and a process read-out of the air flow is needed. The characteristic of this fan is that the air flow is linearly related to the actual speed. So by selecting F (Speed) as the Process Source, the process can easily be controlled.

The selection $\mathrm{F}(\mathrm{xx})$ indicates that a process unit and scaling is needed, set in menus [322]-[328]. This makes it possible to e.g. use pressure sensors to measure flow etc. If $\mathrm{F}(\mathrm{AnIn})$ is selected, the source is automatically connected to the AnIn which has Process Value as selected.

		321 Proc Stp \mathbf{A} Source
Default:		Speed
F(AnIn)	0	Function of analogue input. E.g. via PID control, [380].
Speed	1	Speed as process reference ${ }^{1}$.
Torque	2	Torque as process reference ${ }^{2}$.
PT100	3	Temperature as process reference.
F(Speed)	4	Function of speed
F(Torque)	5	Function of torque ${ }^{2}$
F(Bus)	6	Function of communication reference
Frequency	7	Frequency as process reference ${ }^{1}$.

${ }^{1}$. Only when Drive mode [213] is set to Speed or V/Hz.
${ }^{2}$. Only when Drive mode [213] is set to Torque.

NOTE: When PT100 is selected, use PT100 channel 1 on the PTC/ PT100 option board.

NOTE: If Speed, Torque or Frequency is chosen in menu "[321] Proc Source", menus [322]-[328] are hidden.

NOTE: The motor control method depends on the selection of drive mode [213], regardless of selected process source, [321].

NOTE: If F (Bus) is chosen in menu [321] see section 10.5.1 Process value.

Communication information

Modbus Instance no/DeviceNet no:	43302
Profibus slot/index	$169 / 206$
EtherCAT index (hex)	$4 \mathrm{ce6}$
Profinet IO index	19686
Fieldbus format	Ulnt
Modbus format	Ulnt

Process Unit [322]

	322 Proc Unit Stp A	
Default:	rpm	
Off	0	No unit selection
$\%$	1	Percent
${ }^{\circ} \mathrm{C}$	2	Degrees Centigrade
${ }^{\circ} \mathrm{F}$	3	Degrees Fahrenheit
bar	4	bar
Pa	5	Pascal
Nm	6	Torque
Hz	7	Frequency
rpm	8	Revolutions per minute
$\mathrm{m}^{3} / \mathrm{h}$	9	Cubic meters per hour
gal/h	10	Gallons per hour
$\mathrm{ft}{ }^{3} / \mathrm{h}$	11	Cubic feet per hour
User	12	User defined unit

Communication information

Modbus Instance no/DeviceNet no:	43303
Profibus slot/index	$169 / 207$
EtherCAT index (hex)	4 ce7
Profinet IO index	19687
Fieldbus format	Ulnt
Modbus format	Ulnt

NOTE: In case of conflicting setup between this Process Source, [321], selection and drive mode [213] the software will automatically overrule the selection in menu [321] according to the following:
[213]=Torque and [321]=Speed; internally [321]=Torque will be used.
[213]=Speed or V/ Hz and [321]=Torque; internally [321]=Speed will be used.

User-defined Unit [323]

This menu is only displayed if User is selected in menu [322]. The function enables the user to define a unit with six symbols. Use the Prev and Next key to move the cursor to required position. Then use the + and - keys to scroll down the character list. Confirm the character by moving the cursor to the next position by pressing the Next key.

Character	No. for serial comm.	Character	No. for serial comm.
Space	0	m	58
0-9	1-10	n	59
A	11	ñ	60
B	12	o	61
C	13	ó	62
D	14	ô	63
E	15	p	64
F	16	q	65
G	17	r	66
H	18	S	67
1	19	t	68
J	20	u	69
K	21	ü	70
L	22	v	71
M	23	w	72
N	24	X	73
0	25	y	74
P	26	z	75
Q	27	a	76
R	28	ä	77
S	29	ӧ	78
T	30	!	79
U	31	*	80
Ü	32	\#	81
V	33	\$	82
W	34	\%	83
X	35	\&	84
Y	36		85
Z	37	(86
Å	38)	87
Ä	39	*	88
Ö	40	+	89
a	41	,	90
á	42	-	91
b	43	.	92
c	44	/	93
d	45	:	94
e	46	;	95
é	47	<	96

Character	No. for serial comm.	Character	No. for serial comm.
ê	48	$=$	97
ë	49	$>$	98
f	50	$?$	99
g	51	@	100
h	52	\wedge	101
i	53	-	102
í	54	\circ	103
j	55	2	104
k	56	3	105
l	57		

Example:

Create a user unit named kPa .

1. When in the menu [323] press + to show the cursor.
2. Press $\underset{\text { wer }}{ }$ to move the cursor to the right most position.
3. Press + until the character a is displayed.
4. Press ${ }_{\text {max }}$.
5. Then press the + until P is displayed and press \leftarrow.
6. Repeat until you have entered kPa , confirm with $\stackrel{\text { sime }}{\text {. }}$

Communication information

Modbus Instance no/DeviceNet no:	$43304-43309$
Profibus slot/index	$169 / 208-$
EtherCAT index (hex)	4ce8 - 4ced
Profinet IO index	$19688-19693$
Fieldbus format	Ulnt
Modbus format	Ulnt

Process Min [324]

This function sets the minimum process value allowed.

	324 Stp Arocess Min
Refault:	0
Range:	$0.000-10000$ (Speed, Torque, F(Speed),
	F(Torque)) $-10000-+10000 ~(F(A n I n, ~ P T 100, ~ F(B u s)) ~$

Communication information

Modbus Instance no/DeviceNet no:	43310
Profibus slot/index	$169 / 214$
EtherCAT index (hex)	4 cee
Profinet IO index	19694
	Long, $1=1 \mathrm{rpm}$,
Fieldbus format	$1 \%, 1{ }^{\circ} \mathrm{C}$ or
	0.001 if Process
	Value/Process Ref
	using a [322] unit
Modbus format	Elnt

Process Max [325]

This menu is not visible when speed, torque or frequency is selected. The function sets the value of the maximum process value allowed.

| | 325
 Stp \boldsymbol{A} |
| :--- | :--- | :--- |
| Defacess Max | |
| Range: | 0 |

Communication information

Modbus Instance no/DeviceNet no:	43311
Profibus slot/index	$169 / 215$
EtherCAT index (hex)	4cef
Profinet IO index	19695
	Long, $1=1$ rpm,
Fieldbus format	$1 \%, 1^{\circ} \mathrm{C}$ or
	0.001 if Process
	Value/Process Ref
	using a [322] unit
Modbus format	Elnt

Ratio [326]

This menu is not visible when speed, frequency or torque is selected. The function sets the ratio between the actual process value and the motor speed so that it has an accurate process value when no feedback signal is used. See Fig. 50.

							326 Ratio Stp A
Default:	Linear						
Linear	0	Process is linear related to speed/torque					
Quadratic	1	Process is quadratic related to speed/ torque					

Communication information

Modbus Instance no/DeviceNet no:	43312
Profibus slot/index	$169 / 216$
EtherCAT index (hex)	4 cf0
Profinet IO index	19696
Fieldbus format	Ulnt
Modbus format	Ulnt

Fig. 50 Ratio

F(Value), Process Min [327]

This function is used for scaling if no sensor is used. It offers you the possibility of increasing the process accuracy by scaling the process values. The process values are scaled by linking them to known data in the AC drive. With "F(Value) Proc Min [327]" the precise value at which the entered "Process Min [324]" is valid can be entered.

NOTE: If Speed, Torque or Frequency is chosen in menu "[321] Proc Source", menus [322]- [328] are hidden.

		327 F(Val) PrMin Stp A
Default:	Min	
Min	-1	According to Min Speed setting in [341].
Max	-2	According to Max Speed setting in [343].
$0.000-10000$	$0-10000$	$0.000-10000$

Communication information

Modbus Instance no/DeviceNet no:	43313
Profibus slot/index	$169 / 217$
EtherCAT index (hex)	$4 \mathrm{cf1}$
Profinet IO index	19697
Fieldbus format	Long, 1=1 rpm,
	1%
Modbus format	Elnt

F(Value), Process Max [328]

This function is used for scaling if no sensor is used. It offers you the possibility of increasing the process accuracy by scaling the process values. The process values are scaled by linking them to known data in the AC drive. With F (Value), Proc Max the precise value at which the entered "Process Max [525]" is valid can be entered.

NOTE: If Speed, Torque or Frequency is chosen in menu "[321] Proc Source", menus [322]- [328] are hidden.

				328 F(Val) PrMax Stp \boldsymbol{A}	
Default:		Max			
Min	-1	Min			
Max	-2	Max			
$0.000-$ 10000	$0-10000$	$0.000-10000$			

Communication information

Modbus Instance no/DeviceNet no:	43314
Profibus slot/index	$169 / 218$
EtherCAT index (hex)	4 cf 2
Profinet IO index	19698
Fieldbus format	Long, 1=1 rpm, 1%
Modbus format	Elnt

Example

A conveyor belt is used to transport bottles. The required bottle speed needs to be within 10 to 100 bottles/s. Process characteristics:

10 bottles/s = 150 rpm
100 bottles $/ \mathrm{s}=1500 \mathrm{rpm}$
The amount of bottles is linearly related to the speed of the conveyor belt.
Set-up:
"Process Min [324]" $=10$
"Process Max [325]" = 100
"Ratio [326]" = linear
"F(Value), ProcMin [327]" = 150
$" F($ Value $)$, ProcMax [328]" $=1500$
With this set-up, the process data is scaled and linked to known values which results in an accurate control.

Fig. 51

10.3.3 Start/ Stop settings [330]

Submenu with all the functions for acceleration, deceleration, starting, stopping, etc.

Acceleration Time [331]

The acceleration time is defined as the time it takes for the motor to accelerate from 0 rpm to nominal motor speed.

NOTE: If the Acc Time is too short, the motor is accelerated according to the Torque Limit. The actual Acceleration Time may then be longer than the value set.

	331 Acc Time Stp A
Default:	10.0 s
Range:	$0-3600 \mathrm{~s}$

Communication information

Modbus Instance no/DeviceNet no:	43101
Profibus slot/index	$169 / 5$
EtherCAT index (hex)	4c1d
Profinet IO index	19485
Fieldbus format	Long, $1=0.01 \mathrm{~s}$
Modbus format	Elnt

Fig. 52 shows the relationship between nominal motor speed $/ \mathrm{max}$ speed and the acceleration time. The same is valid for the deceleration time.

Fig. 52 Acceleration time and maximum speed
Fig. 53 shows the settings of the acceleration and deceleration times with respect to the nominal motor speed.

Fig. 53 Acceleration and deceleration times

Deceleration Time [332]

The deceleration time is defined as the time it takes for the motor to decelerate from nominal motor speed to 0 rpm .

	332 Dec Time Stp A
Default:	10.0 s
Range:	$0-3600 \mathrm{~s}$

Communication information

Modbus Instance no/DeviceNet no:	43102
Profibus slot/index	$169 / 6$
EtherCAT index (hex)	4 c 1 e
Profinet IO index	19486
Fieldbus format	Long, $1=0.01 \mathrm{~s}$
Modbus format	Elnt

NOTE: If the Dec Time is too short and the generator energy cannot be dissipated in a brake resistor, the motor is decelerated according to the overvoltage limit. The actual deceleration time may be longer than the value set.

Acceleration Time Motor Potentiometer [333]

It is possible to control the speed of the AC drive using the motor potentiometer function. This function controls the speed with separate up and down commands, over remote signals. The MotPot function has separate ramps settings which can be set in "Acc MotPot [333]" and "Dec MotPot [334]".

If the MotPot function is selected, this is the acceleration time for the MotPot up command. The acceleration time is defined as the time it takes for the motor potentiometer value to increase from 0 rpm to nominal speed.

	333 Acc MotPot Stp \boldsymbol{A}
Default:	16.0 s
Range:	$0.50-3600 \mathrm{~s}$

Communication information

Modbus Instance no/DeviceNet no:	43103
Profibus slot/index	$169 / 7$
EtherCAT index (hex)	4 c 1 f
Profinet IO index	19487
Fieldbus format	Long, 1=0.01 s
Modbus format	Elnt

Deceleration Time Motor Potentiometer [334]

If the MotPot function is selected, this is the deceleration time for the "MotPot" down command. The deceleration time is defined as the time it takes for the motor potentiometer value to decrease from nominal speed to 0 rpm.

	334 Dec MotPot Stp \boldsymbol{A}
Default:	16.0 s
Range:	$0.50-3600 \mathrm{~s}$

Communication information

Modbus Instance no/DeviceNet no:	43104
Profibus slot/index	$169 / 8$
EtherCAT index (hex)	4 c 20
Profinet IO index	19488
Fieldbus format	Long, $1=0.01 \mathrm{~s}$
Modbus format	Elnt

Acceleration Time to Minimum Speed [335]

If minimum speed, [341]>0 rpm, is used in an application, the AC drive uses separate ramp times below this level. With "Acc>MinSpeed [335]" and "Dec<MinSpeed [336]" you can set the required ramp times. Short times can be used to prevent damage and excessive pump wear due too little lubrication at lower speeds. Longer times can be used to fill up a system smoothly and prevent water hammer due to rapidly exhausting air from the pipe system.

If a Minimum speed is programmed, this parameter will be used to select the acceleration time parameter [335] for speeds up to minimum speed at a run command. The ramp time is defined as the time it takes for the motor to accelerate from 0 rpm to nominal motor speed.

	335 Acc>Min Spd Stp \mathbf{A}
Default:	10.0 s
Range:	$0-3600 \mathrm{~s}$

Communication information

Modbus Instance no/DeviceNet no:	43105
Profibus slot/index	$169 / 9$
EtherCAT index (hex)	4 c 21
Profinet IO index	19489
Fieldbus format	Long, 1=0.01 s
Modbus format	Elnt

Fig. 54 Calculation example of accelerating times (graphics not proportional).

Example:

"Motor speed [225]"
3000 rpm
Minimum speed [341]
Maximum speed [343]
Acceleration time [331]
Deceleration time [332]
Acc>Min speed[335]
Dec<Min speed[336]

600 rpm
3000 rpm
10 seconds
10 seconds
40 seconds
40 seconds
A. The drive will start from 0 rpm and accelerate to Minimum speed [341] = 600 rpm in 8 seconds according to ramp time parameter
Acc>Min speed [335].
Calculated as following: 600 rpm is 20% of $3000 \mathrm{rpm}=>20 \%$ of $40 \mathrm{~s}=8 \mathrm{~s}$.
B. The acceleration continues from minimum speed level 600 rpm to maximum speed level 3000 rpm with acceleration rate according to ramp time Acceleration time [331].
Calculate by following:
$3000-600=2400 \mathrm{rpm}$ which is 80% of $3000 \mathrm{rpm}=>$ acceleration tim is $80 \% \times 10 \mathrm{~s}=8 \mathrm{~s}$.
This means that the total acceleration time from 0 3000 rpm will take $8+8=16$ seconds.

Deceleration Time from Minimum Speed [336]

If a minimum speed is programmed, this parameter will be used to set the deceleration time from the minimum speed to 0 rpm at a stop command. The ramp time is defined as the time it takes for the motor to decelerate from the nominal motor speed to 0 rpm .

	336 Dec<Min Spd Stp \mathbf{A}
Default:	10.0 s
Range:	$0-3600 \mathrm{~s}$

Communication information

Modbus Instance no/DeviceNet no:	43106
Profibus slot/index	$169 / 10$
EtherCAT index (hex)	4 c 22
Profinet IO index	19490
Fieldbus format	Long, $1=0.01 \mathrm{~s}$
Modbus format	Elnt

Acceleration Ramp Type [337]

Sets the type of all the acceleration ramps in a parameter set. See Fig. 55. Depending on the acceleration and deceleration requirements for the application, the shape of both the ramps can be selected. For applications where speed changes need to be started and stopped smoothly, such as a conveyor belt with materials that can drop following a quick speed change, the ramp shape can be adapted to a S-shape and prevent speed change shocks. For applications that are not critical in this, the speed change can be fully linear over the complete range.

				337 Acc Rmp Stp A
Default:	Linear			
Linear	0	Linear acceleration ramp.		
S-Curve	1	S-shape acceleration ramp.		

NOTE: For S-curve ramps the ramp times, [331] and [332], defines the maximum acceleration and deceleration rated, i.e. linear part of S-curve, just as for the linear ramps. The S-curves are implemented so that for a speed step below sync speed the ramps are fully S -shaped while for larger steps the middle part will be linear. Therefore will a S-curve ramp from 0 -sync speed take $2 \times$ Time while a step from 0-2 \times sync speed will take $3 \times$ Time (middle part 0.5 sync speed -1.5 sync speed linear). Also valid for menu [338], Deceleration ramp type.

Communication information

Modbus Instance no/DeviceNet no:	43107
Profibus slot/index	$169 / 11$
EtherCAT index (hex)	4 c 23
Profinet IO index	19491
Fieldbus format	Ulnt
Modbus format	Ulnt

Fig. 55 Shape of acceleration ramp

Deceleration Ramp Type [338]

Sets the ramp type of all deceleration parameters in a parameter set Fig. 56.
$\left.\begin{array}{|l|ll|}\hline & \begin{array}{ll}338 \text { Dec Rmp } \\ \text { Stp } \mathbf{A}\end{array} & \text { Linear }\end{array}\right]$

Communication information

Modbus Instance no/DeviceNet no:	43108
Profibus slot/index	$169 / 12$
EtherCAT index (hex)	4 c 24
Profinet IO index	19492
Fieldbus format	UInt
Modbus format	UInt

Fig. 56 Shape of deceleration ramp

Start Mode [339]

Sets the way of starting the motor when a run command is given.

		339 Start Mode Stp ANormal DC
Default:	Normal DC	
Fast	0	The motor flux increases gradually. The motor shaft starts rotating immediately once the Run command is given.
Normal DC	1	After a Run command the motor will be magnetised first and the stator resistance is measured. Depending on the motor time constant and the size of the motor it can take up to 1.3 s before the motor shaft starts to rotate. This will provide better control of the motor when starting.

Communication information

Modbus Instance no/DeviceNet no:	43109
Profibus slot/index	$169 / 13$
EtherCAT index (hex)	4 c 25
Profinet IO index	19493
Fieldbus format	UInt
Modbus format	Ulnt

Spinstart [33A]

The spinstart will smoothly start a motor which is already rotating by catching the motor at the actual speed and control it to the desired speed. If in an application, such as an exhausting fan, the motor shaft is already rotating due to external conditions, a smooth start of the application is required to prevent excessive wear. With the spinstart=On, the actual control of the motor is delayed due to detecting the actual speed and rotation direction, which depend on motor size, running conditions of the motor before the Spinstart, inertia of the application, etc. Depending on the motor electrical time constant and the size of the motor, it can take maximum a couple of minutes before the motor is caught.

		33A Spinstart Stp A	
Default:	Off		
Off	0	No spinstart. If the motor is already running the AC drive can trip or will start with high current.	
On		Spinstart will allow the start of a running motor without tripping or high inrush currents. If encoder feedback is used, both encoder speed and current signals are used to perform spinstart function.	
Use			
Encoder	2	Only encoder speed used for detecting rotating machine, i.e. no rotating machine detection via initial motor current. Note: Only active if encoder is present. If no Encoder, functionality is equal to selection Off.	

Communication information

Modbus Instance no/DeviceNet no:	43110
Profibus slot/index	$169 / 14$
EtherCAT index (hex)	4 c 26
Profinet IO index	19494
Fieldbus format	Ulnt
Modbus format	Ulnt

Stop Mode [33B]

When the AC drive is stopped, different methods to come to a standstill can be selected in order to optimize the stop and prevent unnecessary wear. Stop Mode sets the way of stopping the motor when a Stop command is given.

		33B Stop Mode Stp A
Default:		Decel
Decel	0	The motor decelerates to 0 rpm according to the set deceleration time.
Coast	1	The motor freewheels naturally to 0 rpm.

Communication information

Modbus Instance no/DeviceNet no:	43111
Profibus slot/index	$169 / 15$
EtherCAT index (hex)	4 c 27
Profinet IO index	19495
Fieldbus format	Ulnt
Modbus format	Ulnt

10.3.4 Mechanical brake control

The four brake-related menus [33C] to [33F] can be used to control mechanical brakese.g. to handle basic hoisting functions. When hoisting a load generally a mechanical brake holds the load when the AC drive is not running. To prevent the load from falling down a holding torque must be initiated before the mechanical brake is released. On the other hand when stopping hoisting the brake must be activated before the holding torque is removed.
Support is included for a Brake Acknowledge signal via a digital input. It is monitored using a brake fault time parameter. Additional output and trip/warning signals are also included. The acknowledge signal is either connected from the brake contactor or from a proximity switch on the brake.

The brake acknowledge signal can also be used to improve safety by preventing hoist falling load in case the brake is not engaged when stopping.

Brake not released - Brake Fault trip

During start and running the brake acknowledge signal is compared to the actual brake output signal and if no acknowledge, i.e. brake not released, while brake output is high for the Brake Fault time [33H], then a Brake trip is generated.

Brake not engaged - Brake Warning and continued operation (keep torque)

The brake acknowledge signal is compared to the actual brake output signal at stop. If acknowledge is still active, i.e. brake not engaged, while brake output is low for the Brake Engage time [33E] then a Brake warning is generated and the torque is kept, i.e. prolonging normal brake engage mode, until brake closes or an emergency action is needed by the operator, such as setting down the load.

Brake Release Time [33C]

The Brake Release Time sets the time the AC drive delays before ramping up to whatever final reference value is selected. During this time a predefined speed can be generated to hold the load where after the mechanical brake finally releases. This speed can be selected at Release Speed, [33D]. Immediate after the brake release time expiration the brake lift signal is set. The user can set a digital output or relay to the function Brake. This output or relay can control the mechanical brake.

	33C Brk Release Stp \boldsymbol{A}
Default:	0.00 s
Range:	$0.00-3.00 \mathrm{~s}$

Communication information

Modbus Instance no/DeviceNet no:	43112
Profibus slot/index	$169 / 16$
EtherCAT index (hex)	4 c 28
Profinet IO index	19496
Fieldbus format	Long, $1=0.01 \mathrm{~s}$
Modbus format	Elnt

Fig. 57 shows the relation between the four Brake functions.

- Brake Release Time [33C]
- Start Speed [33D]
- Brake Engage Time [33E]
- Brake Wait Time [33F]

The correct time setting depends on the maximum load and the properties of the mechanical brake. During the brake release time it is possible to apply extra holding torque by setting a start speed reference with the function start speed [33D].

Fig. 57 Brake Output functions

NOTE: Although this function is designed to operate a mechanical brake via the digital outputs or relays (set to brake function) controlling a mechanical brake, it can also be used without a mechanical brake and hold the load in a fixed position.

Release Speed [33D]

The release speed only operates with the brake function: brake release [33C]. The release speed is the initial speed reference during the brake release time. The torque reference is initialized to 90% of $\mathrm{T}_{\mathrm{NOM}}$ to ensure that the load is held in place.

33D Release Spd Stp \boldsymbol{A}	
Default:	0 rpm
Range:	$-4 x$ Sync. Speed to 4x Sync.
Depend on:	$4 x m o t o r ~ s y n c ~ s p e e d, ~ 1500 ~ r p m ~ f o r ~ 1470 ~$ rpm motor.

Communication information

Modbus Instance no/DeviceNet no:	43113
Profibus slot/index	$169 / 17$
EtherCAT index (hex)	4 c 29
Profinet IO index	19497
Fieldbus format	Int, $1=1 \mathrm{rpm}$
Modbus format	Int, $1=1 \mathrm{rpm}$

Brake Engage Time [33E]

The brake engage time is the time the load is held while the mechanical brake engages. It is also used to get a firm stop when transmissions, etc. cause "whiplash" effects. In other words, it compensates for the time it takes to engage a mechanical brake.

	33 E Brk Engage Stp A
Default:	0.00 s
Range:	$0.00-3.00 \mathrm{~s}$

Communication information

Modbus Instance no/DeviceNet no:	43114
Profibus slot/index	$169 / 18$
EtherCAT index (hex)	4 c 2 a
Profinet IO index	19498
Fieldbus format	Long, $1=0.01 \mathrm{~s}$
Modbus format	Elnt

Wait Before Brake Time [33F]

The brake wait time is the time to keep brake open and to hold the load, either in order to be able to speed up immediately, or to stop and engage the brake.

	33 F Brk Wait Stp A
Default:	0.00 s
Range:	$0.00-30.0 \mathrm{~s}$

Communication information

Modbus Instance no/DeviceNet no:	43115
Profibus slot/index	$169 / 19$
EtherCAT index (hex)	4 c 2 b
Profinet IO index	19499
Fieldbus format	Long, $1=0.01 \mathrm{~s}$
Modbus format	Elnt

Vector Brake [33G]

Braking by increasing the internal electrical losses in the motor.

				33G Vector Brake Stp \boldsymbol{A}
Default:		Off		
Off	0	Vector brake switched off. AC drive brakes normal with voltage limit on the DC link.		
On	1	Maximum AC drive current $\left(I_{\mathrm{CL}}\right)$ is available for braking.		

Communication information

Modbus Instance no/DeviceNet no:	43116
Profibus slot/index	$169 / 20$
EtherCAT index (hex)	4 c 2 c
Profinet IO index	19500
Fieldbus format	Ulnt
Modbus format	Ulnt

Brake Fault trip time [33H]

The "Brake Fault trip time" for "Brake not released" function is specified in this menu.

	33H Brk Fault Stp A
Default:	1.00 s
Range	$0.00-5.00 \mathrm{~s}$

Communication information

Modbus Instance no/DeviceNet no:	43117
Profibus slot/index	$169 / 21$
EtherCAT index (hex)	4 c 2 d
Profinet IO index	19501
Fieldbus format	Long, $1=0.01 \mathrm{~s}$
Modbus format	Elnt

Note: The Brake Fault trip time should be set to longer time than the Brake release time[33C].

The "Brake not engaged" warning is using the setting of parameter "Brake Engaged time [33E]".
Following Figure shows principle of brake operation for fault during run (left) and during stop (right).

Release torque [331]

The Brake Release Time [33C] sets the time the AC drive delays before ramping up to whatever final speed reference value is selected, to allow the brake to be fully opened. During this time a holding torque to prevent roll-back of the load can be activated. The parameter Release Torque [33I] is used for this purpose.
The release torque initiates the torque reference from the speed controller during the Brake Release Time [33C]. The release torque defines a minimum level of release (holding) torque. The set release torque is internally overruled if the actual required holding torque measured at the previous closing of brake is higher.

The release torque is set with sign in order to define the holding torque direction.

	33I Release Trq Stp A
Default:	0%
Range	-400% to 400%

Communication information

Modbus Instance no/DeviceNet no:	43118
Profibus slot/index	$169 / 22$
EtherCAT index (hex)	4 c 2 e
Profinet IO index	19502
Fieldbus format	Long, 1=1\%
Modbus format	Elnt

Note! Function is deactivated if set to 0%.

Note! Release Torque [33I] has priority over torque reference initialization by Release Speed [33D].

Fig. 58 Principle of Brake operation for fault during run and during stop

10.3.5 Speed [340]

Menu with all parameters for settings regarding to speeds, such as Min/Max speeds, Jog speeds, Skip speeds.

Minimum Speed [341]

Sets the minimum speed. The minimum speed will operate as an absolute lower limit. Used to ensure the motor does not run below a certain speed and to maintain a certain performance.
$\left.\begin{array}{|l|l|}\hline & \begin{array}{l}341 \\ \text { Stp A }\end{array} \\ \hline \text { Default: } & \begin{array}{r}\text { Min } \\ \hline\end{array} \\ \hline \text { Range: } & \text { 0 rpm } \\ \text { 0rpm }\end{array}\right]$

NOTE: A lower speed value than the set minimum speed can be shown in the display due to motor slip.

Communication information

Modbus Instance no/DeviceNet no:	43121
Profibus slot/index	$169 / 25$
EtherCAT index (hex)	4 c 31
Profinet IO index	19505
Fieldbus format	Int, $1=1 \mathrm{rpm}$
Modbus format	Int, 1=1 rpm

Stop/Sleep when less than Minimum Speed [342]

With this function it is possible to put the AC drive in "sleep mode" when it is running at minimum speed for the length of time set in menu "Stp<MinSpd [342]". The AC drive will go into sleep mode after programmed time.
When the reference signal or PID Process controller output value (if PID Process controller is used) raises the required speed value above the min speed value, the AC drive will automatically wake up and ramp up to the required speed.

Fig. 59

If you want to use this function when having "process reference" signal via an analogue input, you need to make sure that the concerning analogue input is set up correct, meaning that AnIn Advanced parameter "AnIn1 FcMin [5134]" should be set from "Min" (=default) to "User defined" and "AnIn1 VaMin[5135]" set to a value less than "Min Speed [341]" to make it possible that the analogue input reference can go below the "Min Speed" level to activate the "Sleep mode". This applies when PID Process controller is not used.

NOTE: If [381] PID Process controller is used, then the PID sleep functionality [386] - [389] is recommended instead of [342]. See further page 104.

NOTE: Menu [386] has higher priority than menu [342].

| | | $\begin{array}{l}342 \\ \text { Stp A }\end{array}$ |
| :--- | :--- | :--- | \(\left.\begin{array}{r}Stp<MinSpd

Off\end{array}\right]\)

Communication information

Modbus Instance no/DeviceNet no:	43122
Profibus slot/index	$169 / 26$
EtherCAT index (hex)	4 c 32
Profinet IO index	19506
Fieldbus format	Long, 1=0.01 s
Modbus format	Elnt

Maximum Speed [343]

Sets the maximum speed. The maximum speed will operate as an absolute maximum limit. This parameter is used to prevent damage due to high speed.
The synchronous speed (Sync-spd) is determined by the parameter motor speed [225].

		$\begin{array}{l}343 \\ \text { Stp } \mathbf{A}\end{array}$
Default:		$\begin{array}{r}\text { Max Speed } \\ \text { Sync }\end{array}$
Speed		

Communication information

Modbus Instance no/DeviceNet no:	43123
Profibus slot/index	$169 / 27$
EtherCAT index (hex)	4 c 33
Profinet IO index	19507
Fieldbus format	Int, 1=1 rpm
Modbus format	Int, 1=1 rpm

NOTE: It is not possible to set the maximum speed lower than the minimum speed.

Note: Maximum speed [343] has priority over M in Speed [341], i.e. if [343] is set below [341] then the drive will run at [343] Max Speed with acceleration times given by [335] and [336] respectively.

Skip Speed 1 Low [344]

Within the Skip Speed range High to Low, the speed cannot be constant in order to avoid mechanical resonance in the AC drive system.
When Skip Speed Low \leq Ref Speed \leq Skip Speed High, then Output Speed=Skip Speed HI during deceleration and Output Speed=Skip Speed LO during acceleration. Fig. 60 shows the function of skip speed hi and low.
Between Skip Speed HI and LO, the speed changes with the set acceleration and deceleration times. Skipspd1 LO sets the lower value for the 1st skip range.

	344 SkipSpd 1 Lo Stp \boldsymbol{A}
Default:	0 rpm
Range:	$0-4 \times$ Motor Sync Speed

Communication information

Modbus Instance no/DeviceNet no:	43124
Profibus slot/index	$169 / 28$
EtherCAT index (hex)	4 c 34
Profinet IO index	19508
Fieldbus format	Int, $1=1 \mathrm{rpm}$
Modbus format	Int, $1=1 \mathrm{rpm}$

Fig. 60 Skip Speed

NOTE: The two Skip Speed ranges may be overlapped.

Skip Speed 1 High [345]

Skipspd1 HI sets the higher value for the 1st skip range.

	345 Stp SkipSpd 1
Default:	0 rpm
Range:	$0-4 \times$ Sync Speed

Communication information

Modbus Instance no/DeviceNet no:	43125
Profibus slot/index	$169 / 29$
EtherCAT index (hex)	4 c 35
Profinet IO index	19509
Fieldbus format	Int, $1=1 \mathrm{rpm}$
Modbus format	Int, $1=1 \mathrm{rpm}$

Skip Speed 2 Low [346]

The same function as menu [344] for the 2nd skip range.

	346 SkipSpd 2 Lo Stp \boldsymbol{A}
	Orpm

Communication information

Modbus Instance no/DeviceNet no:	43126
Profibus slot/index	$169 / 30$
EtherCAT index (hex)	4 c 36
Profinet IO index	19510
Fieldbus format	Int, $1=1 \mathrm{rpm}$
Modbus format	Int, 1=1 rpm

Skip Speed 2 High [347]

The same function as menu [345] for the 2nd skip range.

	347 SkipSpd 2 Hi Stp \boldsymbol{A}
	0 Orpm
Default:	0 rpm
Range:	$0-4 \times$ Motor Sync Speed

Communication information

Modbus Instance no/DeviceNet no:	43127
Profibus slot/index	$169 / 31$
EtherCAT index (hex)	4 c 37
Profinet IO index	19511
Fieldbus format	Int, $1=1 \mathrm{rpm}$
Modbus format	Int, 1=1 rpm

Jog Speed [348]

The Jog Speed function is activated by one of the digital inputs. The digital input must be set to the Jog function [520]. The Jog command/function will automatically generate a run command as long as the Jog command/ function is active. This is valid independent of settings in menu [215]. The rotation is determined by the polarity of the set Jog Speed.

Example

If Jog Speed $=-10$, this will give a Run Left command at 10 rpm regardless of RunL or RunR commands. Fig. 61 shows the function of the Jog command/function.

	348 Jog Speed Stp A
Default:	50 rpm
Range:	$-4 \times$ motor sync speed to $+4 \times$ motor sync speed
Dependent on:	Defined motor sync speed. Max $=400 \%$, normally max=AC drive $I_{\max } /$ motor $I_{\text {nom }} x$ 100%.

Communication information

Modbus Instance no/DeviceNet no:	43128
Profibus slot/index	$169 / 32$
EtherCAT index (hex)	4 c 38
Profinet IO index	19512
Fieldbus format	Int, 1=1 rpm
Modbus format	Int, 1=1 rpm

Fig. 61 Jog command

10.3.6 Torques [350]

Menu with all parameters for torque settings.

Maximum Torque [351]

Sets the maximum motor torque (according to menu group "Motor Data [220]"). This Maximum Torque operates as an upper torque limit. A Speed Reference is always necessary to run the motor.
$\mathrm{T}_{\mathrm{MOT}}(N m)=\frac{\mathrm{P}_{\mathrm{MOT}}(k w) \mathrm{x} 9550}{\mathrm{n}_{\mathrm{MOT}}(r p m)}=100 \%$

	351 Max Torque Stp \mathbf{A}
120\%	

Communication information

Modbus Instance no/DeviceNet no:	43141
Profibus slot/index	$169 / 45$
EtherCAT index (hex)	4 c 45
Profinet IO index	19525
Fieldbus format	Long, 1=1\%
Modbus format	Elnt

NOTE: The Max Torque parameter will limit the maxmum output current of the AC drive following the relation: 100% Tmot corresponds to 100% Imot.
The maximum possible setting for parameter 351 is limited by Inom/ Imot x 120\%, but not higher than 400\%.

NOTE: The power loss in the motor will increase by the square of the torque when operating above $100 \% .400 \%$ torque will result in 1600% power loss, which will increase the motor temperature very quickly.

IxR Compensation [352]

This function compensates for the drop in voltage over different resistances such as (very) long motor cables, chokes and motor stator by increasing the output voltage at a constant frequency. IxR Compensation is most important at low frequencies and is used to obtain a higher starting torque. The maximum voltage increase is 25% of the nominal output voltage. See Fig. 62.
Selecting "Automatic" will use the optimal value according to the internal model of motor. "User-Defined" can be selected when the start conditions of the application do not change and a high starting torque is always required. A fixed IxR Compensation value can be set in the menu [353].

NOTE: This menu is visible only in V / Hz mode.

Communication information

Modbus Instance no/DeviceNet no:	43142
Profibus slot/index	$169 / 46$
EtherCAT index (hex)	4 c 46
Profinet IO index	19526
Fieldbus format	UInt
Modbus format	Ulnt

Fig. 62 IxR Comp at Linear V/Hz curve

IxR Comp_user [353]

Only visible if User-Defined is selected in previous menu.

	353 IxR CompUsr Stp \boldsymbol{A}
Default:	0.0%
Range:	$0-25 \% \times \mathrm{U}_{\mathrm{NOM}}(0.1 \%$ of resolution $)$

Communication information

Modbus Instance no/DeviceNet no:	43143
Profibus slot/index	$169 / 47$
EtherCAT index (hex)	4 c 47
Profinet IO index	19527
Fieldbus format	Long, 1= 0.1 \%
Modbus format	Elnt

NOTE: A too high level of IxR Compensation could cause motor saturation. This can cause a "Power Fault" trip. The effect of IxR Compensation is stronger with higher power motors.

NOTE: The motor may be overheated at low speed.
Therefore it is important that the Motor $I^{2} \mathrm{t}$ Current [232] is set correctly.

Flux Optimization [354]

Flux Optimization reduces the energy consumption and the motor noise, at low or no load conditions.

Flux Optimization automatically decreases the V/Hz ratio, depending on the actual load of the motor when the process is in a steady situation. Fig. 63 shows the area within which the Flux Optimization is active.

				354 Flux Optim Stp \boldsymbol{A}	Off

Communication information

Modbus Instance no/DeviceNet no:	43144
Profibus slot/index	$169 / 48$
EtherCAT index (hex)	4 c 48
Profinet IO index	19528
Fieldbus format	Ulnt
Modbus format	Ulnt

Fig. 63 Flux Optimizing

NOTE: Flux optimization works best at stable situations in slow changing processes.

Maximum power [355]

Sets maximum power. Can be used for limiting motor power in field weakening operation. This function operates as an upper power limit and internally limits the parameter "Max Torque [351]" according to :
Tlimit $=$ Plimit[\%] / (Actual Speed / Sync Speed $)$

		355 Max Power Stp $\boldsymbol{\Lambda}$
Default:	Off	

NOTE: The maximum possible setting for parameter [355] is limited by $\mathrm{I}_{\text {NOM }} / \mathrm{I}_{\text {MOT }} \times 120 \%$, but not higher than 400%.

Communication information

Modbus Instance no/DeviceNet no:	43145
Profibus slot/index	$169 / 49$
EtherCAT index (hex)	4 c 49
Profinet IO index	19529
Fieldbus format	Long, 1=1\%
Modbus format	Elnt

10.3.7 Preset References [360]

Motor Potentiometer [361]

Sets the properties of the motor potentiometer function. See the parameter "DigIn1 [521]" for the selection of the motor potentiometer function.

		361 Motor Pot Stp $\boldsymbol{A} \quad$ Non Volatie
Default:	Non Volatile	
Volatile	0	After a stop, trip or power down, the AC drive will start always from zero speed (or minimum speed, if selected).
Non volatile	1	Non Volatile. After a stop, trip or power down of the AC drive, the reference value at the moment of the stop will be memorized. After a new start command the output speed will resume to this saved value.

Communication information

Modbus Instance no/DeviceNet no:	43131
Profibus slot/index	$169 / 35$
EtherCAT index (hex)	4 c 3 b
Profinet IO index	19515
Fieldbus format	Ulnt
Modbus format	Ulnt

Fig. 64 MotPot function

Preset Ref 1 [362] to Preset Ref 7 [368]

Preset speeds have priority over the analogue inputs. Preset speeds are activated by the digital inputs. The digital inputs must be set to the function Pres. Ref 1, Pres. Ref 2 or Pres. Ref 4.

Depending on the number of digital inputs used, up to 7 preset speeds can be activated per parameter set. Using all the parameter sets, up to 28 preset speeds are possible.

	362 Preset Ref 1 Stp \boldsymbol{A} 0 rpm
Default:	Speed, 0 rpm
Dependent on:	Process Source [321] and Process Unit [322]
Speed mode	0 - max speed [343]
Torque mode	0 - max torque [351]
Other modes	Min according to menu [324] - max according to menu [325]

Communication information

Modbus Instance no/DeviceNet no:	$43132-43138$
Profibus slot/index	$169 / 36-169 / 42$
EtherCAT index (hex)	$4 \mathrm{c} 3 \mathrm{c}-4 \mathrm{c} 42$
Profinet IO index	$19516-19522$
	Long, $1=1 \mathrm{rpm}, 1 \%$,
Fieldbus format	$1^{\circ} \mathrm{C}$ or
	0.001 if Process Value/Process Ref using a [322] unit Modbus format

The same settings are valid for the menus:
"[363] Preset Ref 2", with default 250 rpm
"[364] Preset Ref 3", with default 500 rpm
"[365] Preset Ref 4", with default 750 rpm
"[366] Preset Ref 5", with default 1000 rpm
"[367] Preset Ref 6", with default 1250 rpm
"[368] Preset Ref 7", with default 1500 rpm
The selection of the presets is as in Table 21.

Table 21

Preset Ctrl3	Preset Ctrl2	Preset Ctrl1	Output Speed
0	0	0	Analogue reference
0	0	$1^{1)}$	Preset Ref 1
0	$1^{1)}$	0	Preset Ref 2
0	1	1	Preset Ref 3
$1^{1)}$	0	0	Preset Ref 4
1	0	1	Preset Ref 5
1	1	0	Preset Ref 6
1	1	1	Preset Ref 7

1) $=$ selected if only one preset reference is active

1 = active input
$0=$ non active input

NOTE: If only Preset Ctrl3 is active, then the Preset Ref 4 can be selected. If Presets Ctrl 2 and 3 are active, then the Preset Ref 2, 4 and 6 can be selected.

Keyboard reference mode [369]

This parameter sets how the reference value [310] is edited.

Communication information

Modbus Instance no/DeviceNet no:	43139
Profibus slot/index	$169 / 43$
EtherCAT index (hex)	4 c 43
Profinet IO index	19523
Fieldbus format	Ulnt
Modbus format	Ulnt

NOTE: When Key Ref Mode is set to MotPot, the reference value ramp times are according to the "Acc MotPot [333]" and "Dec MotPot [334]" settings. Actual speed ramp will be limited according to "Acc Time [331]" and "Dec Time [332]".

10.3.8 PI Speed Control [370]

The AC drive has an internal speed controller, which is used to keep the shaft speed equal to the set speed reference. This internal speed controller works without an external feedback.

With the parameters speed P gain [372] and speed I time [373] the controller can be optimized manually.

Speed PI Autotune [371]

The function speed autotune will perform a torque step change, and measures the reaction on shaft speed.
It automatically sets the internal speed I time to its optimum value. The speed PI autotune must be done during operation with the motor load connected and the motor running. "Spd PI Auto" will be flashing in the display during the autotune operation. When the test is successfully concluded, the display will show "Spd PI OK!" for 3 s .

		371 Spd PI Auto Stp \boldsymbol{A} Off
Def		Off
Off	0	
On	1	

Communication information

Modbus Instance no/DeviceNet no:	43151
Profibus slot/index	$169 / 55$
EtherCAT index (hex)	4 c 4 f
Profinet IO index	19535
Fieldbus format	Ulnt
Modbus format	Ulnt

NOTE: Run the autotune at speed lower than 80% of the nominal motor speed. Otherwise autotune will fail.

NOTE: RUN command must be activated manually via Keyboard button.

NOTE: The setting will automatically return to Off when the autotuning is finished.

NOTE: This menu is only visible if AC drive Mode = Speed or V / Hz.

Speed P Gain [372]

For adjusting the P gain of the internal speed controller. The speed P gain must be manually tuned for a faster reaction to load changes. The speed P gain can be increased until there is audible noise from the motor and then decreased until the noise disappears.

	372 Spd P Gain Stp \mathbf{A}
Default:	See note
Range:	$0.0-60.0$

Communication information

Modbus Instance no/DeviceNet no:	43152
Profibus slot/index	$169 / 56$
EtherCAT index (hex)	$4 c 50$
Profinet IO index	19536
Fieldbus format	Long, 1=0.1
Modbus format	Elnt

Speed I Time [373]

To adjust the time of the internal speed controller see parameter Speed PI Autotune [371].

	373 Spd I Time Stp A
Default:	See note
Range:	$0.05-100 \mathrm{~s}$

Communication information

Modbus Instance no/DeviceNet no:	43153
Profibus slot/index	$169 / 57$
EtherCAT index (hex)	$4 c 51$
Profinet IO index	19537
Fieldbus format	Long, $1=0.01 \mathrm{~s}$
Modbus format	Elnt

NOTE: The default settings are calculated for a standard 4 -pole motor without load according to the nominal power of the AC drive.

10.3.9 PID Process Control [380]

The PID controller is used to control an external process via a feedback signal. The reference value can be set via analogue input AnIn1, at the Control Panel [310] by using a Preset Reference, or via serial communication. The feedback signal (actual value) must be connected to an analogue input that is set to the function Process Value.

Process PID Control [381]

This function enables the PID controller and defines the response to a changed feedback signal.

		381 PID Control Stp
Default:	Off	
Off	0	PID control deactivated.
On	1	The speed increases when the feedback value decreases. PID settings according to menus [381] to [385].
Invert	2	The speed decreases when the feedback value decreases. PID settings according to menus [383] to [385].

Communication information

Modbus Instance no/DeviceNet no:	43154
Profibus slot/index	$169 / 58$
EtherCAT index (hex)	$4 c 52$
Profinet IO index	19538
Fieldbus format	UInt
Modbus format	Ulnt

PID P Gain [383]

Setting the P gain for the PID controller.

	383 PID P Gain Stp A
Default:	1.0
Range:	$0.0-30.0$

Communication information

Modbus Instance no/DeviceNet no:	43156
Profibus slot/index	$169 / 60$
EtherCAT index (hex)	$4 c 54$
Profinet IO index	19540
Fieldbus format	Long, 1=0.1
Modbus format	Elnt

Fig. 65 Closed loop PID control

PID I Time [384]

Setting the integration time for the PID controller.

	384 PID I Time Stp \boldsymbol{A}
Default:	1.00 s
Range:	$0.01-300 \mathrm{~s}$

Communication information

Modbus Instance no/DeviceNet no:	43157
Profibus slot/index	$169 / 61$
EtherCAT index (hex)	$4 \mathrm{c55}$
Profinet IO index	19541
Fieldbus format	Long, $1=0.01 \mathrm{~s}$
Modbus format	Elnt

Process PID D Time [385]

Setting the differentiation time for the PID controller.

	385 PID D Time Stp \mathbf{A}
Default:	0.00 s
Range:	$0.00-30 \mathrm{~s}$

Communication information

Modbus Instance no/DeviceNet no:	43158
Profibus slot/index	$169 / 62$
EtherCAT index (hex)	4 c 56
Profinet IO index	19542
Fieldbus format	Long, $1=0.01 \mathrm{~s}$
Modbus format	Elnt

PID sleep functionality

This function is controlled via a wait delay and a separate wake-up margin condition. With this function it is possible to put the AC drive in "sleep mode" when the process value is at it's set point and the motor is running at minimum speed for the length of the time set in [386]. By going into sleep mode, the by the application consumed energy is reduced to a minimum. When the process feedback value goes below the set margin on the process reference as set in [387], the AC drive will wake up automatically and normal PID operation continues, see examples.

NOTE: When the drive is in Sleep mode, this is indicated with "slp" in the lower left corner of the display.

PID sleep when less than minimum speed [386]

If the PID output is equal to or less than minimum speed for given delay time, the AC drive will go to sleep.

	386 PID<MinSpd slp \boldsymbol{A}
Default:	Off
Range:	Off, $0.01-3600$ s

Communication information

Modbus Instance no/DeviceNet no:	43371
Profibus slot/index	$170 / 20$
EtherCAT index (hex)	4 d 2 b
Profinet IO index	19755
Fieldbus format	Long, $1=0.01 \mathrm{~s}$
Modbus format	Elnt

NOTE: Menu [386] has higher priority than menu [342].

PID Activation Margin [387]

The PID activation (wake-up) margin is related to the process reference and sets the limit when the AC drive should wake-up/start again.

	387 PID Act Marg Stp A
Default:	0
Range:	$0-10000$ in Process unit

Communication information

Modbus Instance no/DeviceNet no:	43372
Profibus slot/index	$170 / 21$
EtherCAT index (hex)	4 d 2 c
Profinet IO index	19756
	Long, 1 $=1 \mathrm{rpm}, 1$ $\%, 1^{\circ} \mathrm{C}$ or Fieldbus format Value/Process Ref using a [322] unit
Modbus format	Elnt

NOTE: The margin is always a positive value.

Example 1 PID control = normal (flow or pressure control)
[321] = F (AnIn)
[322] = Bar
$[310]=20 \mathrm{Bar}$
[342] $=2 \mathrm{~s}$ (inactive since [386] is activated and have higher priority)
[381]= On
$[386]=10 \mathrm{~s}$
[387] = 1 Bar
The AC drive will stop/sleep when the speed (PID output) is below or equal to Min Speed for 10 seconds. The AC drive will activate/wake up when the "Process value" goes below the PID Activation Margin which is related to the process reference, i.e. goes below (20-1) Bar. See Fig. 66.

Fig. 66 PID Stop/sleep with normal PID

Example 2 PID control = inverted (tank level control)
$[321]=\mathrm{F}($ AnIn $)$
$[322]=\mathrm{m}$
$[310]=7 \mathrm{~m}$
$[342]=2 \mathrm{~s}$ (inactive since [386] is activated and have higher
priority
$[381]=$ Inverted
$[386]=30 \mathrm{~s}$
$[387]=1 \mathrm{~m}$

The AC drive will stop/sleep when the speed (PID output) is below or equal to Min Speed for 30 seconds. The AC drive will activate/wake up when the "Process value" goes above the PID Activation Margin which is related to the process reference, i.e. goes above $(7+1)$ m. See Fig. 67.

Fig. 67 PID Stop/sleep with inverted PID

PID Steady State Test [388]

In application situations where the feedback can become independent of the motor speed, this PID Steady Test function can be used to overrule the PID operation and force the AC drive to go in sleep mode i.e. the AC drive automatically reduces the output speed while at the same time ensures the process value.
Example: pressure controlled pump systems with low/no flow operation and where the process pressure has become independent of the pump speed, e.g. due to slowly closed valves. By going into Sleep mode, heating of the pump and motor will be avoided and no energy is spilled.

PID Steady state test delay.

NOTE: It is important that the system has reached a stable situation before the Steady State Test is initiated.

	388 PID Stdy Tst Stp \boldsymbol{A}
Default:	Off
Range:	Off, 0.01-3600 s

Communication information

Modbus Instance no/DeviceNet no:	43373
Profibus slot/index	$170 / 22$
EtherCAT index (hex)	4 d 2 d
Profinet IO index	19757
Fieldbus format	Long, $1=0.01 \mathrm{~s}$
Modbus format	Elnt

PID Steady State Margin [389]

PID steady state margin defines a margin band around the reference that defines "steady state operation". During the steady state test the PID operation is overruled and the AC drive is decreasing the speed as long as the PID error is within the steady state margin. If the PID error goes outside the steady state margin the test failed and normal PID operation continues, see example.

	389 PID Stdy Mar Stp \mathbf{A}	0
Default:	0	
Range:	$0-10000$ in process unit	

Communication information

Modbus Instance no/DeviceNet no:	43374
Profibus slot/index	170/23
EtherCAT index (hex)	4d2e
Profinet IO index	19758
Fieldbus format	Long, $1=1 \mathrm{rpm}, 1$ $\%, 1^{\circ} \mathrm{C}$ or 0.001 if Process Value/Process Ref using a [322] unit
Modbus format	Elnt

Example: The PID Steady Test starts when the process value [711] is within the margin and Steady State Test Wait Delay has expired. The PID output will decrease speed with a step value which corresponds to the margin as long as the Process value [711] stays within steady state margin. When Min Speed [341] is reached the steady state test was successful and stop/sleep is commanded if PID sleep function [386] and [387] is activated. If the Process value [711] goes outside the set steady state margins then the test
failed and normal PID operation will continue, see Fig. 68.

Fig. 68 Steady state test

10.3.10Pump/ Fan Control [390]

The Pump Control functions are in menu [390]. The function is used to control a number of drives (pumps, fans, etc.) of which one is always driven by the AC drive.

Pump enable [391]

This function will enable the pump control to set all relevant pump control functions.

	391 Pump enable Stp af	
Default:	Off	
Off	0	Pump control is switched off.
On	1	Pump control is on: - Pump control parameters [392] to [39G] appear and are activated according to default settings. - View functions [39H] to [39M] are added in the menu structure.

Communication information

Modbus Instance no/DeviceNet no:	43161
Profibus slot/index	$169 / 65$
EtherCAT index (hex)	4 c 59
Profinet IO index	19545
Fieldbus format	UInt
Modbus format	UInt

Number of Drives [392]

Sets the total number of drives which are used, including the Master AC drive. The setting here depends on the parameter "Select Drive [393]". After the number of drives is chosen it is important to set the relays for the pump control. If the digital inputs are also used for status feedback, these must be set for the pump control according to; Pump 1 OK- Pump6 OK in menu [520].

	392 No of Drives Stp
Default:	2
$1-3$	Number of drives if I/O Board is not used.
$1-6$	Number of drives if 'Alternating MASTER' is used, see Select Drive [393]. (I/O Board is used.)
$1-7$	Number of drives if 'Fixed MASTER' is used, see Select Drive [393]. (I/O Board is used.)

NOTE: Used relays must be defined as Slave Pump or Master Pump. Used digital inputs must be defined as Pump Feedback.

Communication information

Modbus Instance no/DeviceNet no:	43162
Profibus slot/index	$169 / 66$
EtherCAT index (hex)	4 c 5 a
Fieldbus format	UInt
Modbus format	Ulnt

Select Drive [393]

Sets the main operation of the pump system. 'Sequence' and 'Runtime' are Fixed MASTER operation.

	393 Select Drive Stp A	
Sequence		

Communication information

Modbus Instance no/DeviceNet no:	43163
Profibus slot/index	$169 / 67$
EtherCAT index (hex)	4 c 5 b
Profinet IO index	19547
Fieldbus format	UInt, 1=1
Modbus format	UInt

NOTE: This menu will NOT be active if only one drive is selected.

.Upper Band [397]

If the speed of the master drive comes into the upper band, an additional drive will be added after a delay time that is set in "Start delay [399]".

	397 Upper Band Stp \mathbf{A}
Default:	10%
Range:	$0-100 \%$ of total min speed to max speed

Communication information

Modbus Instance no/DeviceNet no:	43167
Profibus slot/index	$169 / 71$
EtherCAT index (hex)	4 c 5 f
Profinet IO index	19551
Fieldbus format	Long, 1=1\%
Modbus format	Elnt

Example:

Max Speed $=1500 \mathrm{rpm}$
Min Speed $=300 \mathrm{rpm}$
Upper Band $=10 \%$
Start delay will be activated:
Range $=$ Max Speed to Min Speed $=1500-300=1200 \mathrm{rpm}$
10% of $1200 \mathrm{rpm}=120 \mathrm{rpm}$
Start level $=1500-120=1380 \mathrm{rpm}$

Fig. 69 Upper band

Lower Band [398]

If the speed of the master drive comes into the lower band an additional drive will be stopped after a delay time. This delay time is set in the parameter "Stop Delay [39A]".

398 Lower Band Stp			
Default:	10%		
Range:	$0-100 \%$ of total min speed to max speed		

Communication information

Modbus Instance no/DeviceNet no:	43168
Profibus slot/index	$169 / 72$
EtherCAT index (hex)	4 c 60
Profinet IO index	19552
Fieldbus format	Long, 1=1\%
Modbus format	Elnt

Example:

Max Speed $=1500 \mathrm{rpm}$
Min Speed $=300 \mathrm{rpm}$
Lower Band $=10 \%$
Stop delay will be activated:
Range $=$ Max Speed - Min Speed $=1500-300=1200 \mathrm{rpm}$
10% of $1200 \mathrm{rpm}=120 \mathrm{rpm}$
Start level $=300+120=420 \mathrm{rpm}$

Fig. 70 Lower band

Start Delay [399]

This delay time must have elapsed before the next pump is started. A delay time prevents the nervous switching of pumps.

	399 Stp Start Delay	$0 \mathbf{s}$
Default:	0 s	
Range:	$0-999 \mathrm{~s}$	

Communication information

Modbus Instance no/DeviceNet no:	43169
Profibus slot/index	$169 / 73$
EtherCAT index (hex)	4 c 61
Profinet IO index	19553
Fieldbus format	Long, 1=1s
Modbus format	Elnt

Stop Delay [39A]

This delay time must have elapsed before the 'top' pump is stopped. A delay time prevents the nervous switching of pumps.

	39A Stop Delay Stp \mathbf{A}
Default:	0 s
Range:	$0-999 \mathrm{~s}$

Communication information

Modbus Instance no/DeviceNet no:	43170
Profibus slot/index	$169 / 74$
EtherCAT index (hex)	4 c 62
Profinet IO index	19554
Fieldbus format	Long, 1=1 s
Modbus format	Elnt

Upper Band Limit [39B]

If the speed of the pump reaches the upper band limit, the next pump is started immediately without delay. If a start delay is used this delay will be ignored. Range is between 0%, equalling max speed, and the set percentage for the "UpperBand [397]".

	39 B Upp Band Lim Stp $\boldsymbol{\mathbf { A }}$ 0%
Default:	0\%
Range:	0 to Upper Band level. 0\% (=max speed) means that the Limit function is switched off.

Communication information

Modbus Instance no/DeviceNet no:	43171
Profibus slot/index	$169 / 75$
EtherCAT index (hex)	4 c 63
Profinet IO index	19555
Fieldbus format	Long, 1=1\%
Modbus format	Elnt

Lower Band Limit [39C]

If the speed of the pump reaches the lower band limit, the 'top' pump is stopped immediately without delay. If a stop delay is used this delay will be ignored. Range is from 0%, equalling min speed, to the set percentage for the "Lower Band [398]".

	39C Low Band Lim Stp A
Default:	0%
Range:	O to Lower Band level. 0\% (=min speed) means that he Limit function is switched off.

Communication information

Modbus Instance no/DeviceNet no:	43172
Profibus slot/index	$169 / 76$
EtherCAT index (hex)	4 c 64
Profinet IO index	19556
Fieldbus format	Long, 1=1\%
Modbus format	Elnt

Fig. 72 Lower band limit

Fig. 71 Upper band limit

Settle Time Start [39D]

The settle start allows the process to settle after a pump is switched on before the pump control continues. If an additional pump is started D.O.L. (Direct On Line) or Y/ Δ, the flow or pressure can still fluctuate due to the 'rough' start/stop method. This could cause unnecessary starting and stopping of additional pumps.

During the Settle start:

- PID controller is off.
- The speed is kept at a fixed level after adding a pump.

	39 D Settle Start Stp \boldsymbol{A}
Default:	0 s
Range:	0-999 s

Communication information

Modbus Instance no/DeviceNet no:	43173
Profibus slot/index	$169 / 77$
EtherCAT index (hex)	4 c 65
Profinet IO index	19557
Fieldbus format	Long, 1=1 s
Modbus format	Elnt

Transition Speed Start [39E]

The transition speed start is used to minimize a flow/ pressure overshoot when adding another pump. When an additional pump needs to be switched on, the master pump will slow down to the set transition speed start value, before the additional pump is started. The setting depends on the dynamics of both the master drive and the additional drives.
The transition speed is best set by trial and error.

In general:

- If the additional pump has 'slow' start/stop dynamics, then a higher transition speed should be used.
- If the additional pump has 'fast' start/stop dynamics, then a lower transition speed should be used.

	39E TransS Start Stp A
Default:	60%
Range:	$0-100 \%$ of total min speed to max speed

Communication information

Modbus Instance no/DeviceNet no:	43174
Profibus slot/index	$169 / 78$
EtherCAT index (hex)	4 c 66
Profinet IO index	19558
Fieldbus format	Long, 1=1\%
Modbus format	Elnt

NOTE: If set to 100%, the transition speed, when starting pumps, is ignored and no speed adaption is made.
I.e. the slave pump is started directly and speed of the master pump is maintained.

Example

Max Speed $=1500 \mathrm{rpm}$
Min Speed $=200 \mathrm{rpm}$
TransS Start $=60 \%$
When an additional pump is needed, the speed will be controlled down to min speed $+(60 \% \times(1500 \mathrm{rpm}-200$ $\mathrm{rpm}))=200 \mathrm{rpm}+780 \mathrm{rpm}=980 \mathrm{rpm}$. When this speed is reached, the additional pump with the lowest run time hours will be switched on.

Fig. 73 Transition speed start

Fig. 74 Effect of transition speed

Settle Time Stop [39F]

The settle stop allows the process to settle after a pump is switched off before the pump control continues. If an additional pump is stopped D.O.L. (Direct On Line) or Y/ Δ, the flow or pressure can still fluctuate due to the 'rough' start/stop method. This could cause unnecessary starting and stopping of additional pumps.

During the Settle stop:

- PID controller is off.
- the speed is kept at a fixed level after stopping a pump

| | 39 F
 Stp Settle Stop |
| :--- | :--- | :--- |
| Default: | 0 s |
| Range: | $0-999 \mathrm{~s}$ |

Communication information

Modbus Instance no/DeviceNet no:	43175
Profibus slot/index	$169 / 79$
EtherCAT index (hex)	4 c 67
Profinet IO index	19559
Fieldbus format	Long, 1=1 s
Modbus format	Elnt

Transition Speed Stop [39G]

The transition speed stop is used to minimize a flow/ pressure overshoot when shutting down an additional pump. The setting depends on the dynamics of both the master drive and the additional drives.

In general:

- If the additional pump has 'slow' start/stop dynamics, then a higher transition speed should be used.
- If the additional pump has 'fast' start/stop dynamics, then a lower transition speed should be used.

	39G Transs Stop Stp A
Default:	60%
Range:	$0-100 \%$ of total min speed to max speed

Communication information

Modbus Instance no/DeviceNet no:	43176
Profibus slot/index	$169 / 80$
EtherCAT index (hex)	4 c 68
Profinet IO index	19560
Fieldbus format	Long, 1=1\%
Modbus format	Elnt

NOTE: If set to 0%, the transition speed when stopping pumps, is ignored and no speed adaption is made.
l.e. the slave pump is stopped directly and speed of the master pump is continued.

Example

Max Speed $=1500 \mathrm{rpm}$
Min Speed $=200 \mathrm{rpm}$
TransS Start $=60 \%$
When less additional pumps are needed, the speed will be controlled up to min speed $+(60 \% \times(1500 \mathrm{rpm}-200$ $\mathrm{rpm}))=200 \mathrm{rpm}+780 \mathrm{rpm}=980 \mathrm{rpm}$. When this speed is reached, the additional pump with the highest run time hours will be switched off.

Fig. 75 Transition speed stop

Run Times 1-6 [39H] to [39M]

	39 H Run Time 1 Stp \boldsymbol{A}
Unit:	h:mm:ss (hours:minutes:seconds)
Range:	0:00:00-262143:59:59

Communication information

	$31051: 31052: 31053(\mathrm{hr}: \mathrm{min}: \mathrm{sec})$
Modbus Instance no/	$31054: 31055: 31056(\mathrm{hr}: \mathrm{min}: \mathrm{sec})$
DeviceNet no:	$31057: 31058: 31059(\mathrm{hr}: \mathrm{min}: \mathrm{sec})$
	$31060: 31061: 31062(\mathrm{hr}: \mathrm{min}: \mathrm{sec})$
	$31066: 31064: 31065(\mathrm{hr}: \mathrm{min}: \mathrm{sec})$
	$121 / 195,121 / 196,121 / 197$,
	$121 / 198,121 / 199,121 / 200$,
Profibus slot/index	$121 / 201,121 / 202,121 / 203$,
	$121 / 204,121 / 205,121 / 206$,
	$121 / 207,121 / 208,121 / 209$,
	$121 / 210,121 / 211,121 / 212$
	$241 \mathrm{~b}: 241 \mathrm{c}: 241 \mathrm{~d}$
	$241 \mathrm{e}: 241 \mathrm{f}: 2420$
	$2421: 2422: 2423$
EtherCAT index (hex)	$2424: 2425: 2426$
	$2427: 2428: 2429$
	$242 \mathrm{a}: 242 \mathrm{~b}: 242 \mathrm{c}$
Profinet IO index	$1051: 1052: 1053$
Fieldbus format	Long, 1=1h/m/s
Modbus format	Elnt

Reset Run Times 1-6 [39H1] to [39M1]

					39H1 Rst Run Tm1 Stp \mathbf{A}	

Communication information

Modbus Instance no/DeviceNet no:	$38-43$, pump 1-6
Profibus slot/index	$0 / 37-0 / 42$
EtherCAT index (hex)	$2026-202 \mathrm{~b}$
Profinet IO index	$38-43$
Fieldbus format	UInt
Modbus format	Ulnt

Pump Status [39N]

Indication	Description
C	Control, master pump, only when alternating master is used
D	Direct control
O	Pump is off
E	Pump error

Communication information

Modbus Instance no/DeviceNet no:	31069
Profibus slot/index	$121 / 213$
EtherCAT index (hex)	242 d
Profinet IO index	1069
Fieldbus format	Ulnt
Modbus format	Ulnt

Number backup/reserve [39P]

Sets the number of pumps used for backup/reserve which in normal conditions can not be selected. This function can be used for increasing redundancy in the pump system by having pumps in reserve that can be activated when some pumps indicate fault or are shut off for maintenance.

	39P No of Backup Stp $\boldsymbol{\Lambda}$
Default:	0
Range:	$0-3$

Communication information

Modbus Instance no/DeviceNet no:	43177
Profibus slot/index	$169 / 81$
EtherCAT index (hex)	4 c 69
Profinet IO index	19561
Fieldbus format	Ulnt
Modbus format	Ulnt

10.3.11 Crane Option [3A0]

Settings for the optional Crane board (Crane Remote Input/ Output card). See also the Crane option instruction manual.

NOTE: This menu is only visible if the crane board is connected to the AC drive.

Crane enable [3A1]

When the crane option board is connected, it is possible to (de)activate the crane option board inputs.

NOTE: Deviation function is active even if [3A1]=off.

				3A1 Crane enable Stp \mathbf{A}
Default:		Off		
Off	0	Crane option board deactivated		
On	1	Crane option board activated		

Communication information

Modbus Instance no/DeviceNet no:	43181
Profibus slot/index	$169 / 85$
EtherCAT index (hex)	4 c 6 d
Profinet IO index	19565
Fieldbus format	Ulnt
Modbus format	Ulnt

Control [3A2]

To select the type of crane joystick control.

				3A2 Control Stp \boldsymbol{A}	4-Speeds

Communication information

Modbus Instance no/DeviceNet no:	43182
Profibus slot/index	$169 / 86$
EtherCAT index (hex)	4 c 6 e
Profinet IO index	19566
Fieldbus format	Ulnt
Modbus format	Ulnt

Crane Relay CR1 [3A3]

Crane Relay CR1 on the Crane option board is fixed to the No Trip function.
$\left.\begin{array}{|l|l|}\hline & \begin{array}{ll}\text { 3A3 Crane Relay1 } \\ \text { Stp A }\end{array} \\ \hline \text { No Trip }\end{array}\right]$

Communication information

Modbus Instance no/DeviceNet no:	43183
Profibus slot/index	$169 / 87$
EtherCAT index (hex)	4 c 6 f
Profinet IO index	19567
Fieldbus format	Ulnt
Modbus format	Ulnt

Crane Relay CR2 [3A4]

To select the function of Crane Relay CR2 on the Crane option board. Same selections as for the relays on the control board.

	3A4 Crane Relay2 Stp A
Default:	Brake
Selections	Same selections as for the relays on the control board

Communication information

Modbus Instance no/DeviceNet no:	43184
Profibus slot/index	$169 / 88$
EtherCAT index (hex)	$4 c 70$
Profinet IO index	19568
Fieldbus format	Ulnt
Modbus format	Ulnt

Pre Limit Switch Speed [3A5]

To set the speed used when Pre-Limit Switch on the Crane option board is active.

	3A5 PreLimSwSpd Stp \boldsymbol{A}
Default:	0 rpm
Range:	$0-4 \times$ Motor Sync speed

Communication information

Modbus Instance no/DeviceNet no:	43185
Profibus slot/index	$169 / 89$
EtherCAT index (hex)	4 c 71
Profinet IO index	19569
Fieldbus format	Int, $1=1 \mathrm{rpm}$
Modbus format	Int, 1=1 rpm

Crawl speed H/R [3A6]

To set the speed used when crawling (min. speed) during a hoisting operation. Activated with input A1, Crawl H/
$\mathrm{R}=$ Start in positive speed direction

	3A6 CrawlSpd H/R Stp $\boldsymbol{\Lambda}$
Default:	0
Range:	$0-4 \times$ Sync speed

Communication information

Modbus Instance no/DeviceNet no:	43189
Profibus slot/index	$169 / 93$
EtherCAT index (hex)	4 c 75
Profinet IO index	19573
Fieldbus format	Int, 1=1 rpm
Modbus format	Int, 1=1 rpm

Crawl speed L/L [3A7]

To set the speed used when crawling (min. speed) during lowering operation. Activated with input A2, Crawl L/ $\mathrm{L}=$ Start in negative speed direction.

	3A7 CrawlSpd L/L Stp \boldsymbol{A}
Default:	0
Range:	$0-4 \times$ Sync speed

Communication information

Modbus Instance no/DeviceNet no:	43190
Profibus slot/index	$169 / 94$
EtherCAT index (hex)	4 c 76
Profinet IO index	19574
Fieldbus format	Int, 1=1 rpm
Modbus format	Int, 1=1 rpm

Speed 2 [3A8]

To set the speed used when the input B1, Speed 2 on the Crane option board is active.

	3A8 Speed 2 Stp \boldsymbol{A}
Default:	0
Range:	$0-4 \times$ Sync speed

Communication information

Modbus Instance no/DeviceNet no:	43186
Profibus slot/index	$169 / 90$
EtherCAT index (hex)	4 c 72
Profinet IO index	19570
Fieldbus format	Int, 1=1 rpm
Modbus format	Int, 1=1 rpm

Speed 3 [3A9]

To set the speed used when the input B2, Speed 3 on the Crane option board is active.

	3A9 Speed 3 Stp A
Default:	0
Range:	$0-4 \times$ Motor Sync speed

Communication information

Modbus Instance no/DeviceNet no:	43187
Profibus slot/index	$169 / 91$
EtherCAT index (hex)	4 c 73
Profinet IO index	19571
Fieldbus format	Int, $1=1 \mathrm{rpm}$
Modbus format	Int, 1=1 rpm

Speed 4 [3AA]

To set the speed used when the input B3, Speed 4 on the Crane option board is active.

	3AA Speed 4 Stp \boldsymbol{A}
Default:	0
Range:	$0-4 \times$ Motor Sync speed

Communication information

Modbus Instance no/DeviceNet no:	43188
Profibus slot/index	$169 / 92$
EtherCAT index (hex)	4 c 74
Profinet IO index	19572
Fieldbus format	Int, $1=1 \mathrm{rpm}$
Modbus format	Int, $1=1 \mathrm{rpm}$

Deviation Band width [3AB]

To define the speed deviation window within which the AC drive is in control of the motor.

	3AB Dev Bandwidt Stp \boldsymbol{A}
Default:	0
Range:	$0-4 \times$ Sync speed

Communication information

Modbus Instance no/DeviceNet no:	43191
Profibus slot/index	$169 / 95$
EtherCAT index (hex)	4 c 77
Profinet IO index	19575
Fieldbus format	Int, $1=1 \mathrm{rpm}$
Modbus format	Int, $1=1 \mathrm{rpm}$

Deviation Time [3AC]

To set the time during which the deviation condition must be active, before the inverter trips.

	3AC Dev. Time Stp \mathbf{A}
Default:	0.10 s
Range:	$0.05-1 \mathrm{~s}$

Communication information

Modbus Instance no/DeviceNet no:	43192
Profibus slot/index	$169 / 96$
EtherCAT index (hex)	4 c 78
Profinet IO index	19576
Fieldbus format	Long, $1=0.001 \mathrm{~s}$
Modbus format	Elnt

LAFS Load [3AD]

To set the load below which the VFB/VFX goes into load dependent field weakening operation.

				3AD LAFS Load Stp \mathbf{A}	Off

Communication information

Modbus Instance no/DeviceNet no:	43193
Profibus slot/index	$169 / 97$
EtherCAT index (hex)	4 c 79
Profinet IO index	19577
Fieldbus format	Long, 1=1\%
Modbus format	Elnt

When set to OFF, the load dependent field weakening function is switched off.

CRIO N input function [3AG]

Sets the function of CRIO/Crane I/O interface $\mathrm{N}(\mathrm{Null})$ input.

		3AG Crane N Func Stp A
Zero Pos		

Communication information

Modbus Instance no/DeviceNet no:	43194
Profibus slot/index	$169 / 98$
EtherCAT index (hex)	4 c 7 a
Profinet IO index	19578
Fieldbus format	Ulnt
Modbus format	Ulnt

Note: Brake Acknowledge via Crane I/ O has priority (and overrules) Brake acknowledge via control board I/ O ([521 Digln1]-[528 Dig In8]).

10.4 Load Monitor and Process Protection [400]

10.4.1 Load Monitor [410]

The monitor functions enable the AC drive to be used as a load monitor. Load monitors are used to protect machines and processes against mechanical overload and underload, e.g. a conveyer belt or screw conveyer jamming, belt failure on a fan and a pump dry running. See explanation in Chapter 6.5 page 41.

Alarm Select [411]

Selects the types of alarms that are active.

		411 Alarm Select Stp A	
Default:		Off	
Off	0	No alarm functions active.	
Min	1	Min Alarm active. The alarm output functions as an underload alarm.	
Max	2	Max Alarm active. The alarm output functions as an overload alarm.	
Max+Min	3	Both Max and Min alarm are active. The alarm outputs function as overload and underload alarms.	

Communication information

Modbus Instance no/DeviceNet no:	43321
Profibus slot/index	$169 / 225$
EtherCAT index (hex)	$4 \mathrm{cf9}$
Profinet IO index	19705
Fieldbus format	Ulnt
Modbus format	Ulnt

Alarm Trip [412]

Selects which alarm must cause a trip to the AC drive.

	412 Alarm trip Stp \boldsymbol{A}
Default:	Off
Selection:	Same as in menu [411]

Communication information

Modbus Instance no/DeviceNet no:	43322
Profibus slot/index	$169 / 226$
EtherCAT index (hex)	4cfa
Profinet IO index	19706
Fieldbus format	Ulnt
Modbus format	Ulnt

Ramp Alarm [413]

This function inhibits the (pre) alarm signals during acceleration/deceleration of the motor to avoid false alarms.

				$\begin{array}{l}\text { 413 Ramp Alarm } \\ \text { Stp } \boldsymbol{A}\end{array}$
Default:	Off			
Off	0			

acceleration/deceleration.\end{array}\right]\)

Communication information

Modbus Instance no/DeviceNet no:	43323
Profibus slot/index	$169 / 227$
EtherCAT index (hex)	4 cfb
Profinet IO index	19707
Fieldbus format	Ulnt
Modbus format	Ulnt

Alarm Start Delay [414]

This parameter is used if, for example, you want to override an alarm during the start-up procedure.
Sets the delay time after a run command, after which the alarm may be given.

- If Ramp Alarm=On. The start delay begins after a RUN command.
- If Ramp Alarm=Off. The start delay begins after the acceleration ramp.

	414 Start Delay Stp A
Default:	2 s
Range:	$0-3600 \mathrm{~s}$

Communication information

Modbus Instance no/DeviceNet no:	43324
Profibus slot/index	$169 / 228$
EtherCAT index (hex)	4 cfc
Profinet IO index	19708
Fieldbus format	Long, $1=1 \mathrm{~s}$
Modbus format	Elnt

Load Type [415]

In this menu you select monitor type according to the load characteristic of your application. By selecting the required monitor type, the overload and underload alarm function can be optimized according to the load characteristic.
When the application has a constant load over the whole speed range, i.e. extruder or screw compressor, the load type can be set to basic. This type uses a single value as a reference for the nominal load. This value is used for the complete speed range of the AC drive. The value can be set or automatically measured. See Autoset Alarm [41A] and "Normal Load [41B]" about setting the nominal load reference.
The load curve mode uses an interpolated curve with 9 load values at 8 equal speed intervals. This curve is populated by a test run with a real load. This can be used with any smooth load curve including constant load.

Fig. 76

		415 Load Type Stp A
Default:		Basic
Basic	0	Uses a fixed maximum and minimum load level over the full speed range. Can be used in situations where the torque is independent of the speed.
Load Curve	1	Uses the measured actual load characteristic of the process over the speed range.

Communication information

Modbus Instance no/DeviceNet no:	43325
Profibus slot/index	$169 / 229$
EtherCAT index (hex)	4 cfd
Profinet IO index	19709
Fieldbus format	Ulnt
Modbus format	Ulnt

Max Alarm [416]

Max Alarm Margin [4161]

With load type Basic, [415], used the Max Alarm Margin sets the band above the "Normal Load [41B]" menu that does not generate an alarm. With load type Load Curve [415], used the Max Alarm Margin sets the band above the Load Curve [41 C], that does not generate an alarm. The Max Alarm Margin is a percentage of nominal motor torque.

	4161 MaxAlarmMar Stp A
Default:	15%
Range:	$0-400 \%$

Communication information

Modbus Instance no/DeviceNet no:	43326
Profibus slot/index	$169 / 230$
EtherCAT index (hex)	4cfe
Profinet IO index	19710
Fieldbus format	Long, 1=1\%
Modbus format	Eint

Max Alarm delay [4162]

When the load level without interruption exceeds the alarm level longer than set "Max Alarm delay" time, an alarm is activated.

	4162 MaxAlarmDel Stp A
Default:	0.1 s
Range:	$0-90 \mathrm{~s}$

Communication information

Modbus Instance no/DeviceNet no:	43330
Profibus slot/index	$169 / 234$
EtherCAT index (hex)	$4 \mathrm{dO2}$
Profinet IO index	19714
Fieldbus format	Long, $1=0.1 \mathrm{~s}$
Modbus format	Elnt

Max Pre Alarm [417]

Max Pre AlarmMargin [4171]

With load type Basic [415], used the Max Pre-Alarm Margin sets the band above the Normal Load, [41B], menu that does not generate a pre-alarm. With load type Load Curve, [415], used the Max Pre-Alarm Margin sets the band above the Load Curve, [41C], that does not generate a pre-alarm.

The Max Pre-Alarm Margin is a percentage of nominal motor torque.

	4171 MaxPreAlMar Stp \mathbf{A}
10\%	

Communication information

Modbus Instance no/DeviceNet no:	43327
Profibus slot/index	$169 / 231$
EtherCAT index (hex)	4 cff
Profinet IO index	19711
Fieldbus format	Long, 1=1\%
Modbus format	Elnt

Max Pre Alarm delay [4172]

When the load level without interruption exceeds the alarm level longer than set "Max PreAlarm delay" time, a warning is activated.

	4172 MaxPreAlDel Stp \mathbf{A}^{2}
Default:	0.1 s
Range:	$0-90 \mathrm{~s}$

Communication information

Modbus Instance no/DeviceNet no:	43331
Profibus slot/index	$169 / 235$
EtherCAT index (hex)	$4 \mathrm{dO3}$
Profinet IO index	19715
Fieldbus format	Long, $1=0.1 \mathrm{~s}$
Modbus format	Elnt

Min Pre Alarm [418]

Min Pre Alarm Margin [4181]

With load type Basic, [415], used the Min Pre-Alarm Margin sets the band under the Normal Load, [41B], menu that does not generate a pre-alarm. With load type Load Curve, [415], used the Min Pre-Alarm Margin sets the band under the Load Curve, [41 C], that does not generate a pre-alarm. The Min Pre-Alarm Margin is a percentage of nominal motor torque.

	4181 MinPreAlMar Stp \boldsymbol{A}
10\%	

Communication information

Modbus Instance no/DeviceNet no:	43328
Profibus slot/index	$169 / 232$
EtherCAT index (hex)	$4 \mathrm{d00}$
Profinet IO index	19712
Fieldbus format	Long, $1=1 \%$
Modbus format	Elnt

Min Pre Alarm Response delay [4182]

When the load level without interruption is below the alarm level longer than set "Min PreAlarm delay" time, a warning is activated.

	4182 MinPreAlDel Stp \mathbf{A}
Default:	0.1 s
Range:	$0-90 \mathrm{~s}$

Communication information

Modbus Instance no/DeviceNet no:	43332
Profibus slot/index	$169 / 236$
EtherCAT index (hex)	$4 \mathrm{d04}$
Profinet IO index	19716
Fieldbus format	Long, $1=0.1 \mathrm{~s}$
Modbus format	Elnt

Min Alarm [419]

Min Alarm Margin [4191]

With load type Basic, [415], used the Min Alarm Margin sets the band under the "Normal Load [41B]", menu that does not generate an alarm. With load type "Load Curve [415]", used the Min Alarm Margin sets the band under the "Load Curve [41C]", that does not generate an alarm. The Max Alarm Margin is a percentage of nominal motor torque.

	4191 MinAlarmMar Stp A
Default:	15%
Range:	$0-400 \%$

Communication information

Modbus Instance no/DeviceNet no:	43329
Profibus slot/index	$169 / 233$
EtherCAT index (hex)	$4 \mathrm{d01}$
Profinet IO index	19713
Fieldbus format	Long, 1=1\%
Modbus format	Elnt

Min Alarm Response delay [4192]

When the load level without interruption is below the alarm level longer than set "Min Alarm delay" time, an alarm is activated.

	4192 MinAlarmDel Stp \mathbf{A}
Default:	0.1 s
Range:	$0-90 \mathrm{~s}$

Communication information

Modbus Instance no/DeviceNet no:	43333
Profibus slot/index	$169 / 237$
EtherCAT index (hex)	$4 \mathrm{dO5}$
Profinet IO index	19717
Fieldbus format	Long, $1=0.1 \mathrm{~s}$
Modbus format	Elnt

Autoset Alarm [41A]

The Autoset Alarm function can measure the nominal load that is used as reference for the alarm levels. If the selected "Load Type [415]" is Basic it copies the load the motor is running with to the menu "Normal Load [41B]". The motor must run on the speed that generates the load that needs to be recorded. If the selected "Load Type [415]" is Load Curve it performs a test-run and populates the "Load Curve [41C]" with the found load values.

WARNING!
When autoset does a test run the motor and application/ machine will ramp up to maximum speed.

NOTE: The motor must be running for the Autoset Alarm function to succeed. A not running motor generates a "Failed!" message.

						41A Autoset Alrm Stp A
Default:		No				
No	0					
Yes	1					

Communication information

Modbus Instance no/DeviceNet no:	43334
Profibus slot/index	$169 / 238$
EtherCAT index (hex)	4 d 06
Profinet IO index	19718
Fieldbus format	UInt
Modbus format	UInt

The default set levels for the (pre)alarms are:

Overload	Max Alarm	menu [4161] + [41B]
	Max Pre Alarm	menu [4171] + [41B]
Underload	Min Pre Alarm	menu [41B] - [4181]
	Min Alarm	menu [41B] - [4191]

These default set levels can be manually changed in menus [416] to [419]. After execution the message "Autoset OK!" is displayed for 1 s and the selection reverts to "No".

Normal Load [41B]

Set the level of the normal load. The alarm or pre alarm will be activated when the load is above/under normal load \pm margin.

	41B Normal Load Stp A
Default:	100%
Range:	$0-400 \%$ of max torque

NOTE: 100% Torque means: $I_{\text {NOM }}=I_{\text {MOT }}$. The maximum depends on the motor current and AC drive max current settings, but the absolute maximum adjustment is 400\%.

Communication information

Modbus Instance no/DeviceNet no:	43335
Profibus slot/index	$169 / 239$
EtherCAT index (hex)	$4 \mathrm{d07}$
Profinet IO index	19719
Fieldbus format	Long, 1=1\%
Modbus format	Elnt

Load Curve [41C]

The load curve function can be used with any smooth load curve. The curve can be populated with a test-run or the values can be entered or changed manually.

Load Curve 1-9 [41C1]-[41C9]

The measured load curve is based on 9 stored samples. The curve starts at minimum speed and ends at maximum speed, the range in between is divided into 8 equal steps. The measured values of each sample are displayed in [41C1] to [41C9] and can be adapted manually. The value of the 1st sampled value on the load curve is displayed.

	41C1 Load Curve1 Stp \mathbf{A}
Orpm 100\%	

Communication information

Modbus Instance no/DeviceNet no:	$43336 \%, 43337 \mathrm{rpm}$, $43338 \%, 43339 \mathrm{rpm}$, $43340 \%, 43341 \mathrm{rpm}$, $43342 \%, 43343 \mathrm{rpm}$, $43344 \%, 43345 \mathrm{rpm}$, $43346 \%, 43347 \mathrm{rpm}$, $43348 \%, 43349 \mathrm{rpm}$, $43350 \%, 43351 \mathrm{rpm}$, $43352 \%, 43353 \mathrm{rpm}$
Profibus slot/index	$\begin{aligned} & 169 / 240,169 / 242,169 / \\ & 244,169 / 246,169 / 248, \\ & 169 / 250,169 / 252,169 / \\ & 254,170 / 1 \end{aligned}$
EtherCAT index (hex)	4d08 \%, 4d09 rpm, 4dOa \%, 4dOb rpm, 4dOc \%, 4dOd rpm, 4d0e \%, 4dOf rpm, 4d10 \%, 4d11 rpm, $4 \mathrm{~d} 12 \%$, 4d13 rpm, 4d14 \%, 4d15 rpm, 4d16 \%, 4d17 rpm, 4d18 \%, 4d19 rpm
Profinet IO index	$19720 \%, 19721 \mathrm{rpm}$, $19722 \%, 19723 \mathrm{rpm}$, $19724 \%, 19725 \mathrm{rpm}$, $19726 \%, 19727 \mathrm{rpm}$, $19728 \%, 19729 \mathrm{rpm}$, $19730 \%, 19731 \mathrm{rpm}$, $19732 \%, 19733 \mathrm{rpm}$, $19734 \%, 19735 \mathrm{rpm}$, $19736 \%, 19738 \mathrm{rpm}$,
Fieldbus format	$\begin{aligned} & \text { Long, 1= } 1 \text { \%, } \\ & \text { Int 1=1 rpm } \end{aligned}$
Modbus format	Elnt

NOTE: The speed values depend on the Min- and Max Speed values. they are read only and cannot be changed.

Fig. 77

10.4.2 Process Protection [420]

Submenu with settings regarding protection functions for the AC drive and the motor.

Low Voltage Override [421]

If a dip in the mains supply occurs and the low voltage override function is enabled, the AC drive will automatically decrease the motor speed to keep control of the application and prevent an under voltage trip until the input voltage rises again. Therefore the rotating energy in the motor/load is used to keep the DC link voltage level at the override level, for as long as possible or until the motor comes to a standstill. This is dependent on the inertia of the motor/load combination and the load of the motor at the time the dip occurs, see Fig. 78.

421 Low Volt OR Stp A		
Default:	On	
Off	0	At a voltage dip the low voltage trip will protect.
On	1	At mains dip, AC drive ramps down until voltage rises.

Communication information

Modbus Instance no/DeviceNet no:	43361
Profibus slot/index	$170 / 10$
EtherCAT index (hex)	4 d 21
Profinet IO index	19745
Fieldbus format	Ulnt
Modbus format	Ulnt

Fig. 78 Low voltage override

NOTE: During the low voltage override the LED trip/ limit blinks.

Rotor locked [422]

With the rotor locked function enabled, the AC drive will protect the motor and application when this is stalled whilst increasing the motor speed from standstill. This protection will coast the motor to stop and indicate a fault when the Torque Limit has been active at very low speed for more than 5 seconds.

				422 Rotor locked Stp A
Default:		Off		
Off	0	No detection		
On	1	AC drive will trip when locked rotor is detected. Trip message "Locked Rotor".		

Communication information

Modbus Instance no/DeviceNet no:	43362
Profibus slot/index	$170 / 11$
EtherCAT index (hex)	4 d 22
Profinet IO index	19746
Fieldbus format	Ulnt
Modbus format	Ulnt

Motor lost [423]

With the motor lost function enabled, the AC drive is able to detect a fault in the motor circuit: motor, motor cable, thermal relay or output filter. Motor lost will cause a trip, and the motor will coast to standstill, when a missing motor phase is detected during a period of 5 s .

	 423 Motor lost Stp \mathbf{A}	
Default:		Off
Off	0	Function switched off to be used if no motor or very small motor connected.
Trip	1	AC drive will trip when the motor is disconnected. Trip message "Motor Lost".
Start	2	Test for disconnected motor will only be performed during start routine.

Communication information

Modbus Instance no/DeviceNet no:	43363
Profibus slot/index	$170 / 12$
EtherCAT index (hex)	4 d 23
Profinet IO index	19747
Fieldbus format	UInt
Modbus format	Ulnt

Overvolt control [424]

Used to switch off the overvoltage control function when only braking by brake chopper and resistor is required. The overvoltage control function, limits the braking torque so that the DC link voltage level is controlled at a high, but safe, level. This is achieved by limiting the actual deceleration rate during stopping. In case of a defect at the brake chopper or the brake resistor the AC drive will trip for "Overvoltage" to avoid a fall of the load e.g. in crane applications.

NOTE: Overvoltage control should not be activated if brake chopper is used.

		424 Over Volt Ctl Stp \boldsymbol{A}
Default:		On
On	0	Overvoltage control activated
Off	1	Overvoltage control off

Communication information

Modbus Instance no/DeviceNet no:	43364
Profibus slot/index	$170 / 13$
EtherCAT index (hex)	4 d 24
Profinet IO index	19748
Fieldbus format	Ulnt
Modbus format	Ulnt

10.5 I/ Os and Virtual Connections [500]

Main menu with all the settings of the standard inputs and outputs of the AC drive.

10.5.1 Analogue Inputs [510]

Submenu with all settings for the analogue inputs.

AnIn1 Function [511]

Sets the function for Analogue input 1. Scale and range are defined by AnIn1 Advanced settings [513].

		511 AnIn1 Fc Stp A Process Ref
Default:	Process Ref	
Off	0	Input is not active
Max Speed	1	The input acts as an upper speed limit.
Max Torque	2	The input acts as an upper torque limit.
Process Val	3	The input value equals the actual process value (feedback) and is compared to the reference signal (set point) by the PID controller, or can be used to display and view the actual process value.
Process Ref	4	Reference value is set for control in process units, see Process Source [321] and Process Unit [322].
Min Speed	5	The input acts as a lower speed limit.

Communication information

Modbus Instance no/DeviceNet no:	43201
Profibus slot/index	$169 / 105$
EtherCAT index (hex)	4 c 81
Profinet IO index	19585
Fieldbus format	UInt
Modbus format	Ulnt

NOTE: When AnInX Func=Off, the connected signal will still be available for Comparators [610].

Adding analogue inputs

If more than one analogue input is set to the same function, the values of the inputs can be added together. In the following examples we assume that Process Source [321] is set to Speed.
Example 1: Add signals with different weight (fine tuning).
Signal on AnIn1 $=10 \mathrm{~mA}$
Signal on AnIn2 $=5 \mathrm{~mA}$
[511] AnIn1 Function $=$ Process Ref.
[512] AnIn1 Setup $=4-20 \mathrm{~mA}$
[5134] AnIn1 Function Min $=$ Min (0 rpm)
[5136] AnIn1 Function Max $=\operatorname{Max}(1500 \mathrm{rpm})$
[5138] AnIn1 Operation = Add+
[514] AnIn2 Function = Process Ref.
[515] AnIn2 Setup $=4-20 \mathrm{~mA}$
[5164] AnIn2 Function Min $=\operatorname{Min}(0 \mathrm{rpm})$
[5166] AnIn2 Function Max = User defined
[5167] AnIn2 Value Max $=300 \mathrm{rpm}$
[5168] AnIn2 Operation = Add+
Calculation:
AnIn $1=(10-4) /(20-4) \times(1500-0)+0=562.5 \mathrm{rpm}$
AnIn2 $=(5-4) /(20-4) \times(300-0)+0=18.75 \mathrm{rpm}$
The actual process reference will be:
$+562.5+18.75=581 \mathrm{rpm}$

Analogue Input Selection via Digital Inputs:

When two different external Reference signals are used, e.g. $4-20 \mathrm{~mA}$ signal from control centre and a $0-10 \mathrm{~V}$ locally mounted potentiometer, it is possible to switch between these two different analogue input signals via a Digital Input set to "AnIn Select".

AnIn1 is $4-20 \mathrm{~mA}$
AnIn2 is $0-10 \mathrm{~V}$
DigIn3 is controlling the AnIn selection; HIGH is $4-20 \mathrm{~mA}$, LOW is $0-10 \mathrm{~V}$
"[511] AnIn1 Fc" = Process Ref; set AnIn1 as reference signal input
"[512] AnIn1 Setup" = 4-20mA; set AnIn1 for a current reference signal
"[513A] AnIn1 Enabl" = DigIn; set AnIn1 to be active when DigIn3 is HIGH
"[514] AnIn2 Fc" = Process Ref;
set AnIn2 as reference signal input
"[515] AnIn2 Setup" = 0-10V; set AnIn2 for a voltage reference signal
"[516A] AnIn2 Enabl" = !DigIn;
set AnIn2 to be active when DigIn3 is LOW
"[523] DigIn3=AnIn";
set DIgIn3 as input fot selection of AI reference

Subtracting analogue inputs

Example 2: Subtract two signals
Signal on AnIn1 $=8 \mathrm{~V}$
Signal on AnIn2 $=4 \mathrm{~V}$
[511] AnIn1 Function = Process Ref.
[512] AnIn1 Setup $=0-10 \mathrm{~V}$
[5134] AnIn1 Function Min $=\operatorname{Min}(0 \mathrm{rpm})$
[5136] AnIn1 Function Max $=\operatorname{Max}(1500 \mathrm{rpm})$
[5138] AnIn1 Operation = Add+
[514] AnIn2 Function = Process Ref.
[515] AnIn2 Setup $=0-10 \mathrm{~V}$
[5164] AnIn2 Function Min $=\operatorname{Min}(0 \mathrm{rpm})$
[5166] AnIn2 Function Max $=\operatorname{Max}(1500 \mathrm{rpm})$
[5168] AnIn2 Operation = Sub-

Calculation:

AnIn1 $=(8-0) /(10-0) \times(1500-0)+0=1200 \mathrm{rpm}$
AnIn2 $=(4-0) /(10-0) \times(1500-0)+0=600 \mathrm{rpm}$
The actual process reference will be:
$+1200-600=600 \mathrm{rpm}$

AnIn1 Setup [512]

The analogue input setup is used to configure the analogue input in accordance with the signal used that will be connected to the analogue input. With this selection the input can be determined as current ($4-20 \mathrm{~mA}$) or voltage ($0-10 \mathrm{~V}$) controlled input. Other selections are available for using a threshold (live zero), a bipolar input function, or a user defined input range. With a bipolar input reference signal, it is possible to control the motor in two directions. See Fig. 79.

NOTE: The selection of voltage or current input is done with S1. When the switch is in voltage mode only the voltage menu items are selectable. With the switch in current mode only the current menu items are selectable.

		512 AnIn1 Setup Stp A
Default:	4-20 mA	
Dependent on	Setting of switch S1	
4-20mA	0	The current input has a fixed threshold (Live Zero) of 4 mA and controls the full range for the input signal. See Fig. 81.
0-20mA	1	Normal full current scale configuration of the input that controls the full range for the input signal. See Fig. 80.
User mA	2	The scale of the current controlled input, that controls the full range for the input signal. Can be defined by the advanced AnIn Min and AnIn Max menus.
User Bipol	3	Sets the input for a bipolar current input, where the scale controls the range for the input signal. Scale can be defined in advanced menu AnIn Bipol.
mA	4	Normal full voltage scale configuration of the input that controls the full range for the input signal. See Fig. 80.
2-10V	5	The voltage input has a fixed threshold (Live Zero) of 2 V and controls the full range for the input signal. See Fig. 81.
User V	6	The scale of the voltage controlled input, that controls the full range for the input signal. Can be defined by the advanced AnIn Min and AnIn Max menus.
User Bipol	7	Sets the input for a bipolar voltage input, where the scale controls the range for the input signal. Scale can be defined in advanced menu AnIn Bipol.
V		

NOTE: For bipol function, input RunR and RunL needs to be active and Rotation, [219] must be set to "R+L".

NOTE: Always check the needed set up when the setting of S1 is changed; selection will not adapt automatically.

Communication information

Modbus Instance no/DeviceNet no:	43202
Profibus slot/index	$169 / 106$
EtherCAT index (hex)	4 c 82
Profinet IO index	19586
Fieldbus format	Ulnt
Modbus format	Ulnt

Fig. 79

Fig. 80 Normal full-scale configuration

Fig. 81 2-10 V/4-20 mA (Live Zero)

AnIn1 Advanced [513]

NOTE: The different menus will automatically be set to either "mA" or " V ", based on the selection in AnIn 1 Setup [512].

```
513 AnIn1 Advan
Stp A
```


AnIn1 Min [5131]

Parameter to set the minimum value of the external reference signal. Only visible if [512] = User mA/V.

	5131 AnIn1 Min Stp $\boldsymbol{A}$$\quad$ 0V/4.00mA

Communication information

Modbus Instance no/DeviceNet no:	43203
Profibus slot/index	$169 / 107$
EtherCAT index (hex)	4 c 83
Profinet IO index	19587
Fieldbus format	Long, 1=0.01 mA,
	0.01 V
Modbus format	Elnt

AnIn1 Max [5132]

Parameter to set the maximum value of the external reference signal. Only visible if [512] = User mA/V.

	5132 Stp\quadAnIn1 Max $10.0 \mathrm{~V} / 20.00 \mathrm{~mA}$
Default:	$10.00 \mathrm{~V} / 20.00 \mathrm{~mA}$
Range:	$0.00-20.00 \mathrm{~mA}$ $0-10.00 \mathrm{~V}$

Communication information

Modbus Instance no/DeviceNet no:	43204
Profibus slot/index	$169 / 108$
EtherCAT index (hex)	4 c 84
Profinet IO index	19588
Fieldbus format	Long, $1=0.01 \mathrm{~mA}$, 0.01 V
Modbus format	Elnt

Special function: Inverted reference signal

If the AnIn minimum value is higher than the AnIn maximum value, the input will act as an inverted reference input, see Fig. 82.

Fig. 82 Inverted reference

AnIn1 Bipol [5133]

This menu is automatically displayed if AnIn1 Setup is set to User Bipol mA or User Bipol V. The window will automatically show mA or V range according to selected function. The range is set by changing the positive maximum value; the negative value is automatically adapted accordingly. Only visible if [512] = User Bipol mA/V. The inputs RunR and RunL input need to be active, and "Rotation [219]", must be set to " $R+L$ ", to operate the bipolar function on the analogue input.

	5133 AnIn1 Bipol Stp $\mathbf{A 1 0 . 0 0 \mathrm { V } / 2 0 . 0 0 \mathrm { mA }}$
Default:	$10.00 \mathrm{~V} / 20.00 \mathrm{~mA}$
Range:	$0.0-20.0 \mathrm{~mA}, 0.00-10.00 \mathrm{~V}$

Communication information

Modbus Instance no/DeviceNet no:	43205
Profibus slot/index	$169 / 109$
EtherCAT index (hex)	4 c 85
Profinet IO index	19589
Fieldbus format	Long, $1=0.01 \mathrm{~mA}$, 0.01 V
Modbus format	Elnt

AnIn1 Function Min [5134]

With AnIn1 Function Min the physical minimum value is scaled to selected process unit. The default scaling is dependent of the selected function of AnIn 1 [511].

		5134 AnIn1 FcMin Stp \mathbf{A}
Default:		
Min	0	Min
Max	1	Min value
User- defined	2	Define user value in menu [5135]

Table 22 shows corresponding values for the min and max selections depending on the function of the analogue input [511].

Table 22

AnIn Function	Min	Max
Speed	Min Speed [341]	Max Speed [343]
Torque	0\%	Max Torque [351]
Process Ref	Process Min [324]	Process Max [325]
Process Value	Process Min [324]	Process Max [325]

Communication information

Modbus Instance no/DeviceNet no:	43206
Profibus slot/index	$169 / 110$
EtherCAT index (hex)	4 c 86
Profinet IO index	19590
Fieldbus format	Ulnt
Modbus format	Ulnt

AnIn1 Function Value Min [5135]
With AnIn1 Function ValMin you define a user-defined value for the signal. Only visible when user-defined is selected in menu [5134].

	5135 AnIn1 VaMin Stp A
Default:	0.000
Range:	$-10000.000-10000.000$

Communication information

Modbus Instance no/DeviceNet no:	43541
Profibus slot/index	$170 / 190$
EtherCAT index (hex)	$4 \mathrm{dd5}$
Profinet IO index	19925
Fieldbus format	Long, 1=1 rpm, 1 \%, 1 or 0.001 if Process Value/ Process Ref using a [322] unit
Modbus format	Elnt

AnIn1 Function Max [5136]

With AnIn1 Function Max the physical maximum value is scaled to selected process unit. The default scaling is dependent of the selected function of AnIn1 [511]. See Table 22.

		5136 AnIn1 FcMax Stp A Max
Default:	Max	
Min	0	Min value
Max	1	Max value
User-defined	2	Define user value in menu [5137]

Communication information

Modbus Instance no/DeviceNet no:	43207
Profibus slot/index	$169 / 111$
EtherCAT index (hex)	4 c 87
Profinet IO index	19591
Fieldbus format	UInt
Modbus format	UInt

AnIn1 Function Value Max [5137]

With AnIn1 Function VaMax you define a user-defined value for the signal. Only visible when user-defined is selected in menu [5136].

	5137 AnIn1 VaMax Stp \mathbf{A}
Default:	0.000
Range:	$-10000.000-10000.000$

Communication information

Modbus Instance no/DeviceNet no:	43551
Profibus slot/index	$170 / 200$
EtherCAT index (hex)	4 ddf
Profinet IO index	19935
Fieldbus format	Long, 1=1 rpm, 1 \%, 1 or 0.001 if Process Value/ Process Ref using a [322] unit
Modbus format	Elnt

NOTE: With AnIn Min, AnIn Max, AnIn Function Min and AnIn Function Max settings, loss of feedback signals (e.g. voltage drop due to long sensor wiring) can be compensated to ensure an accurate process control.

Example:

Process sensor is a sensor with the following specification:
$\begin{array}{ll}\text { Range: } & 0-3 \text { bar } \\ \text { Output: } & 2-10 \mathrm{~mA}\end{array}$
Output: $\quad 2-10 \mathrm{~mA}$
Analogue input should be set up according to:
[512] AnIn1 Setup $=$ User mA
[5131] AnIn1 Min $=2 \mathrm{~mA}$
[5132] AnIn1 Max $=10 \mathrm{~mA}$
[5134] AnIn1 Function Min = User-defined
[5135] AnIn1 VaMin = 0.000 bar
[5136] AnIn 1 Function Max = User-defined
[5137] AnIn1 VaMax $=3.000$ bar

AnIn1 Operation [5138]

		5138 AnIn1 Oper Stp Ad
Default:		Add+
Add+	0	Analogue signal is added to selected function in menu [511].
Sub-	1	Analogue signal is subtracted from selected function in menu [511].

Communication information

Modbus Instance no/DeviceNet no:	43208
Profibus slot/index	$169 / 112$
EtherCAT index (hex)	4 c 88
Profinet IO index	19592
Fieldbus format	Ulnt
Modbus format	Ulnt

AnIn1 Filter [5139]

If the input signal is unstable (e.g. fluctuation reference value), the filter can be used to stabilize the signal. A change of the input signal will reach 63% on AnIn1 within the set AnIn1 Filter time. After 5 times the set time, AnIn1 will have reached 100% of the input change. See Fig. 83.

	5139 AnIn1 Filt Stp A
Default:	0.1 s
Range:	$0.001-10.0 \mathrm{~s}$

Communication information

Modbus Instance no/DeviceNet no:	43209
Profibus slot/index	$169 / 113$
EtherCAT index (hex)	4 c 89
Profinet IO index	19593
Fieldbus format	Long, $1=0.001 \mathrm{~s}$
Modbus format	Elnt

Fig. 83

AnIn1 Enable [513A]

Parameter for enable/disable analogue input selection via digital inputs (DigIn set to function AnIn Select).

				513A AnIn1 Enabl Stp A
Default:		On		
On	0	Anln1 is always active		
!Digln	1	Anln1 is only active if the digital input is low.		
Digln	2	Anln1 is only active if the digital input is high.		

Communication information

Modbus Instance no/DeviceNet no:	43210
Profibus slot/index	$169 / 114$
EtherCAT index (hex)	4 c 8 a
Profinet IO index	19594
Fieldbus format	Ulnt
Modbus format	Ulnt

AnIn2 Function [514]

Parameter for setting the function of Analogue Input 2.
Same function as "AnIn1 Fc [511]".

514 AnIn2 Fc Stp \mathbb{A}	Off

Communication information

Modbus Instance no/DeviceNet no:	43211
Profibus slot/index	$169 / 115$
EtherCAT index (hex)	4 c 8 b
Profinet IO index	19595
Fieldbus format	Ulnt
Modbus format	Ulnt

AnIn2 Setup [515]
Parameter for setting the function of Analogue Input 2.
Same functions as "AnIn1 Setup [512]".

	515 AnIn2 Stp A
Default:	$4-20 \mathrm{~mA}$
Dependent on	Setting of switch S2
Selection:	Same as in menu [512].

Communication information

Modbus Instance no/DeviceNet no:	43212
Profibus slot/index	$169 / 116$
EtherCAT index (hex)	4 c 8 c
Profinet IO index	19596
Fieldbus format	Ulnt
Modbus format	Ulnt

AnIn2 Advanced [516]

Same functions and submenus as under "AnIn1 Advan [513]".

Communication information

Modbus Instance no/DeviceNet no:	$43213-43220$,
	43542,
Profibus slot/index	$169 / 117-124$,
	$170 / 191$,
	$170 / 201$
EtherCAT index (hex)	$4 \mathrm{c} 8 \mathrm{~d}-4 \mathrm{c} 94$,
	$4 \mathrm{dd6}$,
	$4 \mathrm{de0}$
Profinet IO index	$19597-19604$,
	19926,
Fieldbus format	See [5131] - [5137].
Modbus format	

AnIn3 Function [517]

Parameter for setting the function of Analogue Input 3.
Same function as "AnIn1 Fc [511]".

517 Stp AnIn3 Fc Off	
Default:	Off
Selection:	Same as in menu [511]

Communication information

Modbus Instance no/DeviceNet no:	43221
Profibus slot/index	$169 / 125$
EtherCAT index (hex)	4 c 95
Profinet IO index	19605
Fieldbus format	Ulnt
Modbus format	Ulnt

AnIn3 Setup [518]

Same functions as "AnIn1 Setup [512]".

	518 AnIn3 Setup Stp A
	$4-20 \mathrm{~mA}$

Communication information

Modbus Instance no/DeviceNet no:	43222
Profibus slot/index	$169 / 126$
EtherCAT index (hex)	4 c 96
Profinet IO index	19606
Fieldbus format	Ulnt
Modbus format	Ulnt

AnIn3 Advanced [519]
Same functions and submenus as under "AnIn1 Advan [513]".

Communication information

Modbus Instance no/DeviceNet no:	$\begin{aligned} & 43223-43230, \\ & 43543, \\ & 43553 \end{aligned}$
Profibus slot/index	$\begin{array}{\|l} \hline 169 / 127-169 / 134, \\ 170 / 192, \\ 170 / 202 \\ \hline \end{array}$
EtherCAT index (hex)	$\begin{aligned} & 4 \mathrm{c} 97-4 \mathrm{c} 9 \mathrm{e}, \\ & 4 \mathrm{dd7}, \\ & 4 \mathrm{de} 1 \end{aligned}$
Profinet IO index	$\begin{aligned} & 19607-19614, \\ & 19927, \\ & 19937 \end{aligned}$
Fieldbus format	
Modbus format	

AnIn4 Function [51A]

Parameter for setting the function of Analogue Input 4.
Same function as "AnIn1 Fc [511]."

	51A AnIn4 Fc Stp \boldsymbol{A}
Default:	Off
Selection:	Same as in menu [511]

Communication information

Modbus Instance no/DeviceNet no:	43231
Profibus slot/index	$169 / 135$
EtherCAT index (hex)	4 c 9 f
Profinet IO index	19615
Fieldbus format	UInt
Modbus format	Ulnt

AnIn4 Set-up [51B]

Same functions as "AnIn1 Setup [512]".

	51B AnIn4 Setup Stp \boldsymbol{A} $4-20 \mathrm{~mA}$
Default:	4-20 mA
Dependent on	Setting of switch S4
Selection:	Same as in menu [512].

Communication information

Modbus Instance no/DeviceNet no:	43232
Profibus slot/index	$169 / 136$
EtherCAT index (hex)	$4 \mathrm{ca0}$
Profinet IO index	19616
Fieldbus format	Ulnt
Modbus format	Ulnt

AnIn4 Advanced [51C]

Same functions and submenus as under "AnIn1 Advan[513]".

Communication information

Modbus Instance no/DeviceNet no:	$43233-43240$, 43544,
Profibus slot/index	$169 / 137-144$,
	$170 / 193$,
	$170 / 203$
EtherCAT index (hex)	$4 \mathrm{ca1}-4 \mathrm{ca8}$,
	$4 \mathrm{dd8}$,
	$4 \mathrm{de2}$
Profinet IO index	$19617-19624$,
	19928,
	19938
Fieldbus format	See [5131] - [5137].
Modbus format	

10.5.2 Digital Inputs [520]

Submenu with all the settings for the digital inputs.

NOTE: Additional inputs will become available when the I/ O option boards are connected.

Digital Input 1 [521]

To select the function of the digital input.
On the standard control board there are eight digital inputs.
If the same function is programmed for more than one input that function will be activated according to "OR" logic if nothing else is stated.

		521 DigIn 1 Stp \boldsymbol{A} RunL
Default:		RunL
Off	0	The input is not active.
Lim Switch+	1	AC drive ramps to stop and prevents rotation in " R " direction (clockwise), when the signal is low! NOTE: The Lim Switch+ is active low. NOTE: Activated according to "AND" logic.
Lim Switch -	2	AC drive ramps to stop and prevents rotation in "L" direction (counter clockwise) when the signal is low! NOTE: The Lim Switch- is active low. NOTE: Activated according to "AND" logic.
Ext. Trip	3	Be aware that if there is nothing connected to the input, the AC drive will trip at "External trip" immediately. NOTE: The External Trip is active low. NOTE: Activated according to "AND" logic.
Stop	4	Stop command according to the selected Stop mode in menu [33B]. NOTE: The Stop command is active low. NOTE: Activated according to "AND" logic.
Enable	5	Enable command. General start condition to run the AC drive. If made low during running the output of the AC drive is cut off immediately, causing the motor to coast to zero speed. NOTE: If none of the digital inputs are programmed to "Enable", the internal enable signal is active. NOTE: Activated according to "AND" logic.
RunR	6	Run Right command (positive speed). The output of the AC drive will be a clockwise rotary field.
RunL	7	Run Left command (negative speed). The output of the AC drive will be a counter-clockwise rotary field.
Reset	9	Reset command. To reset a Trip condition and to enable the Autoreset function.
Preset Ctr11	10	To select the Preset Reference.

Preset Ctri2	11	To select the Preset Reference.
Preset Ctri3	12	To select the Preset Reference.
MotPot Up	13	Increases the internal reference value according to the set AccMotPot time [333]. Has the same function as a "real" motor potentiometer, see Fig. 64.
MotPot Down	14	Decreases the internal reference value according to the set DecMotPot time [334]. See MotPot Up.
Pump1 Feedb	15	Feedback input pump1 for Pump/Fan control and informs about the status of the auxiliary connected pump/fan.
Pump2 Feedb	16	Feedback input pump 2 for Pump/Fan control and informs about the status of the auxiliary connected pump/fan.
Pump3 Feedb	17	Feedback input pump3 for Pump/Fan control and informs about the status of the auxiliary connected pump/fan.
Pump4 Feedb	18	Feedback input pump 4 for Pump/Fan control and informs about the status of the auxiliary connected pump/fan.
Pump5 Feedb	19	Feedback input pump5 for Pump/Fan control and informs about the status of the auxiliary connected pump/fan.
Pump6 Feedb	20	Feedback input pump 6 for Pump/Fan control and informs about the status of the auxiliary connected pump/fan.
Timer 1	21	Timer 1 Delay [643] will be activated on the rising edge of this signal.
Timer 2	22	Timer 2 Delay [653] will be activated on the rising edge of this signal.
Set Ctrl 1	23	Activates other parameter set. See Table 23 for selection possibilities.
Set Ctrl 2	24	Activates other parameter set. See Table 23 for selection possibilities.
Mot PreMag	25	Pre-magnetises the motor. Used for faster motor start.
Jog	26	To activate the Jog function. Gives a Run command with the set Jog speed and Direction, page 100.
Ext Mot Temp	27	Be aware that if there is nothing connected to the input, the AC drive will trip at "External Motor Temp" immediately. NOTE: The External Motor Temp is active low.
Loc/Rem	28	Activate local mode defined in [2171] and [2172].
AnIn select	29	Activate/deactivate analogue inputs defined in [513A], [516A], [519A] and [51CA]
LC Level	30	Liquid cooling low level signal. NOTE: The Liquid Cooling Level is active low.

NOTE: For bipol function, input RunR and RunL needs to be active and "Rotation [219]" must be set to "R +L ".

Communication information

Modbus Instance no/DeviceNet no:	43241
Profibus slot/index	$169 / 145$
EtherCAT index (hex)	$4 \mathrm{ca9}$
Profinet IO index	19625
Fieldbus format	UInt
Modbus format	Ulnt

Table 23

Parameter Set	Set Ctrl 1	Set Ctrl 2
A	0	0
B	1	0
C	0	1
D	1	1

NOTE: To activate the parameter set selection, menu 241 must be set to Digln.

Digital Input 2 [522] to Digital Input 8 [528]

Same function as "DigIn 1[521]". Default function for DigIn 8 is Reset. For DigIn 3 to 7 the default function is Off.

522 DigIn 2 Stp \mathbf{A}	
Default:	RunR
Selection:	Same as in menu [521]

Communication information

Modbus Instance no/DeviceNet no:	$43242-43248$
Profibus slot/index	$169 / 146-169 / 152$
EtherCAT index (hex)	4caa - 4cb0
Profinet IO index	$19626-19632$
Fieldbus format	Ulnt
Modbus format	Ulnt

Additional digital inputs [529] to [52H]

Additional digital inputs with I/O option board installed, "B1 DigIn 1 [529]" - "B3 DigIn 3 [52H]". B stands for board and 1 to 3 is the number of the board which is related to the position of the I/O option board on the option mounting plate. The functions and selections are the same as "DigIn 1 [521]".
Communication information

Modbus Instance no/DeviceNet no:	$43501-43509$
Profibus slot/index	170/150-170/158
EtherCAT index (hex)	4dad - 4db5
Profinet IO index	$19885-19893$
Fieldbus format	Ulnt
Modbus format	Ulnt

10.5.3 Analogue Outputs [530]

Submenu with all settings for the analogue outputs. Selections can be made from application and AC drive values, in order to visualize actual status. Analogue outputs can also be used as a mirror of the analogue input. Such a signal can be used as:

- a reference signal for the next AC drive in a Master/Slave configuration (see Fig. 84).
- a feedback acknowledgement of the received analogue reference value.

AnOut1 Function [531]

Sets the function for the Analogue Output 1. Scale and range are defined by AnOut1 Advanced settings [533].

		531 AnOut1 Fc Stp \mathbf{A}
		Speed
Default:		Speed

NOTE: When selections AnIn1, Anln2 Anln4 is selected, the setup of the AnOut (menu [532] or [535]) has to be set to $0-10 \mathrm{~V}$ or $0-20 \mathrm{~mA}$. When the AnOut Setup is set to e.g. $4-20 \mathrm{~mA}$, the mirroring is not working correct.

Communication information

Modbus Instance no/DeviceNet no:	43251
Profibus slot/index	$169 / 155$
EtherCAT index (hex)	$4 \mathrm{cb3}$
Profinet IO index	19635
Fieldbus format	Ulnt
Modbus format	Ulnt

AnOut 1 Setup [532]

Preset scaling and offset of the output configuration.

		532 AnOut1 Setup Stp A
Default:		4-20mA
4-20mA	0	The current output has a fixed threshold (Live Zero) of 4 mA and controls the full range for the output signal. See Fig. 81.
0-20mA	1	Normal full current scale configuration of the output that controls the full range for the output signal. See Fig. 80.
User mA	2	The scale of the current controlled output that controls the full range for the output signal. Can be defined by the advanced AnOut Min and AnOut Max menus.
User Bipol	3	Sets the output for a bipolar current output, where the scale controls the range for the output signal. Scale can be defined in advanced menu AnOut Bipol.
mA	4	Normal full voltage scale configuration of the output that controls the full range for the output signal. See Fig. 80.
0-10V	5	The voltage output has a fixed threshold (Live Zero) of 2 V and controls the full range for the output signal. See Fig. 81.
2-10V	The scale of the voltage controlled output that controls the full range for the output signal. Can be defined by the advanced AnOut Min and AnOut Max menus.	
User Bipol V	7	Sets the output for a bipolar voltage output, where the scale controls the range for the output signal. Scale can be defined in advanced menu AnOut Bipol.

Communication information

Modbus Instance no/DeviceNet no:	43252
Profibus slot/index	$169 / 156$
EtherCAT index (hex)	$4 \mathrm{cb4}$
Profinet IO index	19636
Fieldbus format	Ulnt
Modbus format	Ulnt

Fig. 84

AnOut1 Advanced [533]

With the functions in the AnOut1 Advanced menu, the output can be completely defined according to the application needs. The menus will automatically be adapted to " mA " or " V ", according to the selection in "AnOut1 Setup [532]".

AnOut1 Min [5331]

This parameter is automatically displayed if User mA or User V is selected in menu "AnOut 1 Setup [532]". The menu will automatically adapt to current or voltage setting according to the selected setup. Only visible if [532] = User mA / V.

Communication information

Modbus Instance no/DeviceNet no:	43253
Profibus slot/index	$169 / 157$
EtherCAT index (hex)	$4 \mathrm{cb5}$
Profinet IO index	19637
Fieldbus format	Long, $1=0.01 \mathrm{~V}$, $0.01 ~ \mathrm{~mA}$
Modbus format	Elnt

AnOut1 Max [5332]

This parameter is automatically displayed if User mA or User V is selected in menu "AnOut1 Setup [532]". The menu will automatically adapt to current or voltage setting a ccording to the selected setup. Only visible if [532] = User mA / V.

	5332 AnOut 1 Max Stp \mathbf{A}
Default:	20.00 mA
Range:	$0.00-20.00 \mathrm{~mA}, 0-10.00 \mathrm{~V}$

Communication information

Modbus Instance no/DeviceNet no:	43254
Profibus slot/index	$169 / 158$
EtherCAT index (hex)	$4 \mathrm{cb6}$
Profinet IO index	19638
Fieldbus format	Long, $1=0.01 \mathrm{~V}$, $0.01 ~ m A ~$
Modbus format	Elnt

AnOut1 Bipol [5333]

Automatically displayed if User Bipol mA or User Bipol V is selected in menu AnOut1 Setup. The menu will automatically show mA or V range according to the selected function. The range is set by changing the positive maximum value; the negative value is automatically adapted accordingly. Only visible if [512] = User Bipol mA/V.

	5333 AnOut1Bipol Stp $\mathbf{A}-10.00-10.00 \mathrm{~V}$
Default:	$-10.00-10.00 \mathrm{~V}$
Range:	$-10.00-10.00 \mathrm{~V},-20.0-20.0 \mathrm{~mA}$

Communication information

Modbus Instance no/DeviceNet no:	43255
Profibus slot/index	$169 / 159$
EtherCAT index (hex)	$4 \mathrm{cb7}$
Profinet IO index	19639
Fieldbus format	Long, $1=0.01 \mathrm{~V}$,
	0.01 mA
Modbus format	Elnt

AnOut1 Function Min [5334]

With AnOut1 Function Min the physical minimum value is scaled to selected presentation. The default scaling is dependent of the selected function of "AnOut1 [531]".

		5334 AnOut1FCMin Stp \boldsymbol{A}
Default:		Min
Min	0	Min value
Max	1	Max value
User-defined	2	Define user value in menu [5335]

Table 24 shows corresponding values for the min and max selections depending on the function of the analogue output [531].

Table 24

AnOut Function	Min Value	Max Value
Process Value	Process Min [324]	Process Max [325]
Speed	Min Speed [341]	Max Speed [343]
Torque	0\%	Max Torque [351]
Process Ref	Process Min [324]	Process Max [325]
Shaft Power	0\%	Motor Power [223]
Frequency	Fmin *	Motor Frequency [222]
Current	0 A	Motor Current [224]
El Power	0 W	Motor Power [223]
Output Voltage	0 V	Motor Voltage [221]
DC voltage	0 V	1000 V
Anln1	AnIn1 Function Min	AnIn1 Function Max
Anln2	AnIn2 Function Min	AnIn2 Function Max
Anln3	AnIn3 Function Min	AnIn3 Function Max
Anln4	AnIn4 Function Min	AnIn4 Function Max

${ }^{*}$) Fmin is dependent on the set value in menu
"Minimum Speed [341]".
Communication information

Modbus Instance no/DeviceNet no:	43256
Profibus slot/index	$169 / 160$
EtherCAT index (hex)	$4 \mathrm{cb8}$
Profinet IO index	19640
Fieldbus format	Ulnt
Modbus format	Ulnt

Example

Set the AnOut function for Motorfrequency to 0 Hz , set AnOut functionMin [5334] to "User-defined" and AnOut1 $\operatorname{VaMin}[5335]=0.0$. This results in an anlogue output signal from $0 / 4 \mathrm{~mA}$ to 20 mA : 0 Hz to Fmot.
This principle is valid for all Min to Max settings.

AnOut1 Function Value Min [5335]

With AnOut1 Function VaMin you define a user-defined value for the signal. Only visible when user-defined is selected in menu [5334].

	5335 AnOut1VaMin Stp \boldsymbol{A}
Default:	0.000
Range:	$-10000.000-10000.000$

Communication information

Modbus Instance no/DeviceNet no:	43545
Profibus slot/index	$170 / 194$
EtherCAT index (hex)	$4 \mathrm{dd9}$
Profinet IO index	19929
	Long, $1=1 \mathrm{rpm}, 1$ \%, 1W,
Fieldbus format	$0.1 \mathrm{~Hz}, 0.1 \mathrm{~V}, 0.1 \mathrm{~A}$ or
	0.001 via process value
	$[322]$
Modbus format	Elnt

AnOut1 Function Max [5336]

With AnOut1 Function Min the physical minimum value is scaled to selected presentation. The default scaling is dependent on the selected function of AnOut1 [531]. See Table 24.

		5336 AnOut1FCMax Stp $\boldsymbol{\Lambda}$ Max
Default:		Max
Min	0	Min value
Max	1	Max value
User defined	2	Define user value in menu [5337]

Communication information

Modbus Instance no/DeviceNet no:	43257
Profibus slot/index	$169 / 161$
EtherCAT index (hex)	$4 \mathrm{cb9}$
Profinet IO index	19641
Fieldbus format	Ulnt
Modbus format	Ulnt

NOTE: It is possible to set AnOut1 up as an inverted output signal by setting AnOut1 Min > AnOut1 Max. See Fig. 82.

AnOut1 Function Value Max [5337]

With AnOut1 Function VaMax you define a user-defined value for the signal. Only visible when user-defined is selected in menu [5334].

	5337 AnOut1VaMax Stp \mathbf{A}
Default:	0.000
Range:	$-10000.000-10000.000$

Communication information

Modbus Instance no/DeviceNet no:	43555
Profibus slot/index	$170 / 204$
EtherCAT index (hex)	$4 \mathrm{de3}$
Profinet IO index	19939
	Long, 1=1 rpm, 1 \%, 1W, $0.1 \mathrm{~Hz}, 0.1 \mathrm{~V}, 0.1 \mathrm{~A}$ or Fieldbus format Modbus format $\mathrm{Eln2}$ Elnt

AnOut2 Function [534]

Sets the function for the Analogue Output 2.

	534 AnOut2 Fc Stp A
Default:	Torque
Selection:	Same as in menu [531]

Communication information

Modbus Instance no/DeviceNet no:	43261
Profibus slot/index	$169 / 165$
EtherCAT index (hex)	4cbd
Profinet IO index	19645
Fieldbus format	Ulnt
Modbus format	Ulnt

AnOut2 Setup [535]

Preset scaling and offset of the output configuration for analogue output 2.
$\left.\begin{array}{|l|l|}\hline & \begin{array}{l}\text { 535 AnOut2 } \\ \text { Stp } \boldsymbol{A}\end{array}\end{array} \begin{array}{r}\text { Setup } \\ 4-20 \mathrm{~mA}\end{array}\right]$

Communication information

Modbus Instance no/DeviceNet no:	43262
Profibus slot/index	$169 / 166$
EtherCAT index (hex)	4cbe
Profinet IO index	19646
Fieldbus format	Ulnt
Modbus format	Ulnt

AnOut2 Advanced [536]

Same functions and submenus as under AnOut1 Advanced [533].

Communication information

Modbus Instance no/DeviceNet no:	$43263-43267$,
	43546,
	43556
Profibus slot/index	$169 / 167-169 / 171$,
	$170 / 195$,
	$170 / 205$
EtherCAT index (hex)	$4 \mathrm{cbf}-4 \mathrm{cc3}$,
	4 dda,
Profinet IO index	$4 \mathrm{de4}$
Fieldbus format	19647 - 19651,
Modbus format	19930,
	19940

10.5.4 Digital Outputs [540]

Submenu with all the settings for the digital outputs.

Digital Out 1 [541]

Sets the function for the digital output 1 .
NOTE: The definitions described here are valid for the active output condition.

Max Alarm	20	The max alarm level has been reached.
Max PreAlarm	21	The max pre alarm level has been reached.
Min Alarm	22	The min alarm level has been reached.
Min PreAlarm	23	The min pre alarm Level has been reached.
LY	24	Logic output Y.
!LY	25	Logic output Y inverted.
LZ	26	Logic output Z.
!LZ	27	Logic output Z inverted.
CA 1	28	Analogue comparator 1 output.
!A1	29	Analogue comp 1 inverted output.
CA 2	30	Analogue comparator 2 output.
!A2	31	Analogue comp 2 inverted output.
CD 1	32	Digital comparator 1 output.
!D1	33	Digital comp 1 inverted output.
CD 2	34	Digital comparator 2 output.
!D2	35	Digital comp 2 inverted output.
Operation	36	Run command is active or AC drive running. The signal can be used to control the mains contactor if the AC drive is equipped with Standby supply option.
T1Q	37	Timer1 output
!T1Q	38	Timer1 inverted output
T2Q	39	Timer2 output
!T2Q	40	Timer2 inverted output
Sleeping	41	Sleeping function activated
Crane Deviat	42	Tripped on deviation
PumpSlave1	43	Activate pump slave 1
PumpSlave2	44	Activate pump slave 2
PumpSlave3	45	Activate pump slave 3
PumpSlave4	46	Activate pump slave 4
PumpSlave5	47	Activate pump slave 5
PumpSlave6	48	Activate pump slave 6
PumpMaster1	49	Activate pump master 1
PumpMaster2	50	Activate pump master 2
PumpMaster3	51	Activate pump master 3
PumpMaster4	52	Activate pump master 4
PumpMaster5	53	Activate pump master 5
PumpMaster6	54	Activate pump master 6
All Pumps	55	All pumps are running
Only Master	56	Only the master is running
Loc/Rem	57	Local/Rem function is active

Standby	58	Standby supply option is active
PTC Trip	59	Trip when function is active
PT100 Trip	60	Trip when function is active
Overvolt	61	Overvoltage due to high main voltage
Overvolt G	62	Overvoltage due to generation mode
Overvolt D	63	Overvoltage due to deceleration
Acc	64	Acceleration along the acc. ramp
Dec	65	Deceleration along the dec. ramp
$\mathrm{I}^{2} \mathrm{t}$	66	$\mathrm{I}^{2} \mathrm{t}$ limit protection active
V-Limit	67	Overvoltage limit function active
C-Limit	68	Overcurrent limit function active
Overtemp	69	Over temperature warning
Low voltage	70	Low voltage warning
Digln 1	71	Digital input 1
Digln 2	72	Digital input 2
Digln 3	73	Digital input 3
Digln 4	74	Digital input 4
Digln 5	75	Digital input 5
Digln 6	76	Digital input 6
Digln 7	77	Digital input 7
Digln 8	78	Digital input 8
ManRst Trip	79	Active trip that needs to be manually reset
Com Error	80	Serial communication lost
External Fan	81	The AC drive requires external cooling. Internal fans are active.
LC Pump	82	Activate liquid cooling pump
LC HE Fan	83	Activate liquid cooling heat exchanger fan
LC Level	84	Liquid cooling low level signal active
Run Right	85	Positive speed (>0.5\%), i.e. forward/ clockwise direction.
Run Left	86	Negative speed (<0.5\%), i.e. reverse counter clockwise direction.
Com Active	87	Fieldbus communication active.
Brk Fault	88	Tripped on brake fault (not released)
BrkNotEngage	89	Warning and continued operation (keep torque) due to Brake not engaged during stop.
Option	90	Failure occurred in built-in option board.
CA3	91	Analogue comparator 3 output
!A3	92	Analogue comparator 3 inverted output
CA4	93	Analogue comparator 4 output
!A4	94	Analogue comparator 4 inverted output

CD3	95	Digital comparator 3 output
!D3	96	Digital comparator 3 inverted output
CD4	97	Digital comparator 4 output
!D4	98	Digital comparator 4 inverted output
C1Q	99	Counter 1 output
!C1Q	100	Counter 1 inverted output
C2Q	101	Counter 2 output
!C2Q	102	Counter 2 Inverted output
Enc Error	103	Tripped on Encoder error
Crane Comm	104	CRIO Communication lost

Communication information

Modbus Instance no/DeviceNet no:	43271
Profibus slot/index	$169 / 175$
EtherCAT index (hex)	4 cc 7
Profinet IO index	19655
Fieldbus format	Ulnt
Modbus format	Ulnt

Digital Out 2 [542]

NOTE: The definitions described here are valid for the active output condition.

Sets the function for the digital output 2 .

	542 DigOut2 Stp \boldsymbol{A}
Default:	Brake
Selection:	Same as in menu [541]

Communication information

Modbus Instance no/DeviceNet no:	43272
Profibus slot/index	$169 / 176$
EtherCAT index (hex)	4 cc 8
Profinet IO index	19656
Fieldbus format	UInt
Modbus format	Ulnt

10.5.5 Relays [550]

Submenu with all the settings for the relay outputs. The relay mode selection makes it possible to establish a "fail safe" relay operation by using the normal closed contact to function as the normal open contact.

NOTE: Additional relays will become available when I/ O option boards are connected. Maximum 3 boards with 3 relays each.

Relay 1 [551]

Sets the function for the relay output 1 . Same function as digital output 1 [541] can be selected.

	551 Relay 1 Stp \boldsymbol{A}
	Trip
Default:	Trip
Selection:	Same as in menu [541]

Communication information

Modbus Instance no/DeviceNet no:	43273
Profibus slot/index	$169 / 177$
EtherCAT index (hex)	4 cc 9
Profinet IO index	19657
Fieldbus format	Ulnt
Modbus format	Ulnt

Relay 2 [552]

NOTE: The definitions described here are valid for the active output condition.

Sets the function for the relay output 2 .

	552 Relay 2 Stp \boldsymbol{A}
Sefault:	Run
Selection:	Same as in menu [541]

Communication information

Modbus Instance no/DeviceNet no:	43274
Profibus slot/index	$169 / 178$
EtherCAT index (hex)	4 cca
Profinet IO index	19658
Fieldbus format	UInt
Modbus format	UInt

Relay 3 [553]
Sets the function for the relay output 3 .

	553 Relay 3 Stp \boldsymbol{A}

Communication information

Modbus Instance no/DeviceNet no:	43275
Profibus slot/index	$169 / 179$
EtherCAT index (hex)	4 ccb
Profinet IO index	19659
Fieldbus format	Ulnt
Modbus format	Ulnt

Board Relay [554] to [55C]

These additional relays are only visible if an I/O option board is fitted in slot 1,2 , or 3 . The outputs are named B1 Relay 1-3, B2 Relay 1-3 and B3 Relay 1-3. B stands for board and $1-3$ is the number of the board which is related to the position of the I/O option board on the option mounting plate.

NOTE: Visible only if optional board is detected or if any input/ output is activated.

Communication information

Modbus Instance no/DeviceNet no:	$43511-43519$
Profibus slot/index	$170 / 160-170 / 168$
EtherCAT index (hex)	$4 \mathrm{db7}-4 \mathrm{dbf}$
Profinet IO index	$19895-19903$
Fieldbus format	Ulnt
Modbus format	Ulnt

Relay Advanced [55D]

This function makes it possible to ensure that the relay will also be closed when the AC drive is malfunctioning or powered down.

Example

A process always requires a certain minimum flow. To control the required number of pumps by the relay mode NC , the e.g. the pumps can be controlled normally by the pump control, but are also activated when the AC drive is tripped or powered down.

Relay 1 Mode [55D1]

		55D1 Relay1 Mode Stp
Default:	N.O	
N.O	0	The normal open contact of the relay will be activated when the function is active.
N.C	1	The normally closed contact of the relay will act as a normal open contact. The contact will be opened when function is not active and closed when function is active.

Communication information

Modbus Instance no/DeviceNet no:	43276
Profibus slot/index	$169 / 180$
EtherCAT index (hex)	4 ccc
Profinet IO index	19660
Fieldbus format	UInt
Modbus format	UInt

Relay Modes [55D2] to [55DC]
Same function as for "Relay 1 Mode [55D1]".
Communication information

Modbus Instance no/DeviceNet no:	43277,43278, $43521-43529$
Profibus slot/index	$169 / 181,169 / 182$,
	$170 / 170-170 / 178$
EtherCAT index (hex)	$4 \mathrm{ccd}, 4 \mathrm{cce}$,
	$4 \mathrm{dc} 1-4 \mathrm{dc} 9$
Profinet IO index	19661,19662,
	$19905-19913$
Fieldbus format	UInt
Modbus format	Ulnt

10.5.6 Virtual Connections [560]

Functions to enable eight internal connections of comparator, timer and digital signals, without occupying physical digital in/outputs. Virtual connections are used to wireless connection of a digital output function to a digital input function. Available signals and control functions can be used to create your own specific functions.

Example of start delay

The motor will start in RunR 10 seconds after DigIn1 gets high. DigIn 1 has a time delay of 10 s .

Menu	Parameter	Setting
$[521]$	Digln1	Timer 1
$[561]$	VIO 1 Dest	RunR
$[562]$	VIO 1 Source	T1Q
$[641]$	Timer1 Trig	Digln 1
$[642]$	Timer1 Mode	Delay
$[643]$	Timer1 Delay	0:00:10

NOTE: When a digital input and a virtual destination are set to the same function, this function will act as an OR logic function.

Virtual Connection 1 Destination [561]

With this function the destination of the virtual connection is established. When a function can be controlled by several sources, e.g. VC destination or Digital Input, the function will be controlled in conformity with "OR logic". See DigIn for descriptions of the different selections.

	561 VIO 1 Dest Stp \mathbf{A}
Default:	Off
Selection:	Same selections as for Digital Input 1, menu [521].

Communication information

Modbus Instance no/DeviceNet no:	43281
Profibus slot/index	$169 / 185$
EtherCAT index (hex)	$4 \mathrm{cd1}$
Profinet IO index	19665
Fieldbus format	UInt
Modbus format	UInt

Virtual Connection 1 Source [562]

With this function the source of the virtual connection is defined. See DigOut 1 for description of the different selections.

Communication information

Modbus Instance no/DeviceNet no:	43282
Profibus slot/index	$169 / 186$
EtherCAT index (hex)	4 cd 2
Profinet IO index	19666
Fieldbus format	UInt
Modbus format	UInt

Virtual Connections 2-8 [563] to [56G]

Same function as virtual connection 1 [561] and [562].
Communication information for virtual connections 2-8
Destination.

Modbus Instance no/DeviceNet no:	$43283,43285, ~ 43287$, $43289, ~ 43291, ~ 43293, ~$ 43295
Profibus slot/index	$169 / 187,189, ~ 191, ~ 193, ~$ $195, ~ 197, ~ 199 ~$
EtherCAT index (hex)	$4 \mathrm{cd3}, 4 \mathrm{cd5}, 4 \mathrm{cd17}, 4 \mathrm{~cd} 9$, $4 \mathrm{cdb}, 4 \mathrm{cdd}, 4 \mathrm{cdf}$
Profinet IO index	$19667,19669,19671$, Fieldbus format Modbus format

Communication information for virtual connections 2-8
Source.

Modbus Instance no/DeviceNet no:	$\begin{aligned} & 43284,43286,43288, \\ & 43290,43292,43294, \\ & 43296 \end{aligned}$
Profibus slot/index	$\begin{aligned} & \text { 169/ 188, 190, 192, 194, } \\ & 196,198,200 \end{aligned}$
EtherCAT index (hex)	4cd4, 4cd6, 4cd8, 4cda, 4cdc, 4cde, 4ce0
Profinet IO index	$\begin{aligned} & 19668,19670,19672, \\ & 19674,19676,19678, \\ & 19680 \end{aligned}$
Fieldbus format	Ulnt
Modbus format	Ulnt

10.6 Logical Functions and Timers [600]

With the Comparators, Logic Functions and Timers, conditional signals can be programmed for control or signalling features. This gives you the ability to compare different signals and values in order to generate monitoring/ controlling features.

10.6.1 Comparators [610]

The comparators available make it possible to monitor different internal signals and values, and visualize via digital relay outputs, when a specific value or status is reached or established.

Analogue comparators [611] - [614]

There are 4 analogue comparators that compare any available analogue value (including the analogue reference inputs) with two adjustable levels. The two levels available are Level HI and Level LO. There are two analogue comparator types selectable, an analogue comparator with hysteresis and an analogue window comparator. The analogue hysteresis type comparator uses the two available levels to create a hysteresis for the comparator between setting and resetting the output. This function gives a clear difference in switching levels, which lets the process adapt until a certain action is started. With such a hysteresis, even an unstable analogue signal can be monitored without getting a nervous comparator output signal. Another feature is the possibility to get a fixed indication that a certain level has been passed. The comparator can latch by setting Level LO to a higher value than Level HI.

The analogue window comparator uses the two available levels to define the window in which the analogue value should be within for setting the comparator output. The input analogue value of the comparator can also be selected as bipolar, i.e. treated as signed value or unipolar, i.e. treated as absolute value.
Refer to Fig. 89, page 148 where these functions are illustrated.

Digital comparators [615]

There are 4 digital comparators that compare any available digital signal.

The output signals of these comparators can be logically tied together to yield a logical output signal.
All the output signals can be programmed to the digital or relay outputs or used as a source for the virtual connections [560].

CA1 Setup [611]
Analogue comparator 1, parameter group.

Analogue Comparator 1, Value [6111]

Selection of the analogue value for Analogue Comparator 1 (CA1).
Analogue comparator 1 compares the selectable analogue value in menu [6111] with the constant Level HI in menu [6112] and constant Level LO in menu [6113]. If Bipolar type[6115] input signal is selected then the comparison is made with sign otherwise if unipolar selected then comparison is made with absolute values.

For Hysteresis comparator type [6114], when the value exceeds the upper limit level high, the output signal CA1 is set high and !A1 low, see Fig. 85. When the value decreases below the lower limit, the output signal CA1 is set low and !A1 high.

Fig. 85 Analogue comparator type Hysteresiss
For Window comparator type [6114], when the value is between the lower and upper levels, the output signal value CA1 is set high and !A1 low, see Fig. 88. When the value is outside the band of lower and upper levels, the output CA1 is set low and !A1 high.

Fig. 86 Analogue comparator type "Window"

The output signal can be programmed as a virtual connection source and to the digital or relay outputs.

		6111 CA1 Value Stp \mathbf{A}
Default:		Speed
Process Val	0	Set by Process settings [321] and [322]
Speed	1	rpm
Torque	2	\%
Shaft Power	3	kW
El Power	4	kW
Current	5	A
Output Volt	6	V
Frequency	7	Hz
DC Voltage	8	V
Heatsink Tmp	9	${ }^{\circ} \mathrm{C}$
PT100_1	10	${ }^{\circ} \mathrm{C}$
PT100_2	11	${ }^{\circ} \mathrm{C}$
PT100_3	12	${ }^{\circ} \mathrm{C}$
Energy	13	kWh
Run Time	14	h
Mains Time	15	h
Anln1	16	\%
Anln2	17	\%
AnIn3	18	\%
AnIn4	19	\%
Process Ref	20	Set by Process settings [321] and [322]
Process Err	21	

Communication information

Modbus Instance no/DeviceNet no:	43401
Profibus slot/index	$170 / 50$
EtherCAT index (hex)	4 d 49
Profinet IO index	19758
Fieldbus format	UInt
Modbus format	Ulnt

Example

Create automatic RUN/STOP signal via the analogue reference signal. Analogue current reference signal, 4-20 mA , is connected to Analogue Input 1. "AnIn1 Setup", menu [512] $=4-20 \mathrm{~mA}$ and the threshold is 4 mA . Full scale (100%) input signal on "AnIn 1 " $=20 \mathrm{~mA}$. When the reference signal on "AnIn1" increases 80% of the threshold $(4 \mathrm{~mA} \times 0.8=3.2 \mathrm{~mA})$, the AC drive will be set in RUN mode. When the signal on "AnIn1" goes below 60% of the threshold ($4 \mathrm{~mA} \times 0.6=2.4 \mathrm{~mA}$) the AC drive is set to STOP mode. The output of CA1 is used as a virtual connection source that controls the virtual connection destination RUN.

Menu	Function	Setting
511	AnIn1 Function	Process reference
512	AnIn1 Set-up	$4-20 \mathrm{~mA}$, threshold is 4 mA
341	Min Speed	0
343	Max Speed	1500
6111	CA1 Value	Anln1
6112	CA1 Level HI	$16 \%(3.2 \mathrm{~mA} / 20 \mathrm{~mA} \times 100 \%)$
6113	CA1 Level LO	$12 \%(2.4 \mathrm{~mA} / 20 \mathrm{~mA} \times 100 \%)$
6114	CA1 Type	Hysteresis
561	VIO 1 Dest	RunR
562	VIO 1 Source	CA1
215	Run/Stp Ctrl	Remote

Fig. 87

No.	Description
1	The reference signal passes the Level LO value from below (positive edge), the comparator CA1 output stays low, mode=RUN.
2	The reference signal passes the Level HI value from below (positive edge), the comparator CA1 output is set high, mode=RUN.
3	The reference signal passes the threshold level of 4 mA, the motor speed will now follow the reference signal.
T	During this period the motor speed will follow the reference signal.
4	The reference signal reaches the threshold level, motor speed is 0 rpm, mode = RUN.
5	The reference signal passes the Level HI value from above (negative edge), the comparator CA1 output stays high, mode =RUN.
6	The reference signal passes the Level LO value from above (negative edge), the comparator CA1 output=STOP.

Analogue Comparator 1, Level High [6112]

Sets the analogue comparator high level, with range according to the selected value in menu [6111].

	6112 CA1 Level HI Stp A
Default:	300 rpm
Range:	See min/max in table below.

Min/Max setting range for menu [6112]

Mode	Min	Max	Decimals
Process Val	Set by Process settings [321] and [322]	3	
Speed, rpm	0	Max speed	0
Torque, \%	0	Max torque	0
Shaft Power, kW	0	Motor $\mathrm{P}_{\mathrm{n}} \times 4$	0
El Power, kW	0	Motor $\mathrm{P}_{\mathrm{n}} \times 4$	0
Current, A	0	Motor $\mathrm{I}_{\mathrm{n}} \times 4$	1
Output volt, V	0	1000	1
Frequency, Hz	0	400	1
DC voltage, V	0	1250	1
Heatsink temp, ${ }^{\circ} \mathrm{C}$	0	100	1
PT 100_1_2_3, ${ }^{\circ} \mathrm{C}$	-100	300	1
Energy, kWh	0	1000000	0
Run time, h	0	65535	0
Mains time, h	0	65535	0
AnIn 1-4\%	0	100	0
Process Ref	Set by Process settings $[321]$ and [322]	3	
Process Err	Set by Process settings		
$[321]$ and [322]	3		

NOTE: If Bipolar selected [6115] then Min value is equal to -Max in the table.

Communication information

Modbus Instance no/DeviceNet no:	43402
Profibus slot/index	$170 / 51$
EtherCAT index (hex)	4 d 4 a
Profinet IO index	19786
	Long,
	$1=1 \mathrm{~W}, 0.1 \mathrm{~A}, 0.1 \mathrm{~V}$,
Fieldbus format	$0.1 \mathrm{~Hz}, 0.1^{\circ} \mathrm{C}, 1 \mathrm{kWh}, 1 \mathrm{H}$,
	$1 \%, 1 \mathrm{rpm}$ or 0.001 via
	process value
Modbus format	Elnt

Example

This example describes, both for hysteresis and window type comparator, the normal use of the constant level high and low.

Menu	Function	Setting
343	Max Speed	1500
6111	CA1 Value	Speed
6112	CA1 Level HI	300 rpm
6113	CA1 Level LO	200 rpm
6114	CA1 Type	Hysteresis
561	VC1 Dest	Timer 1
562	VC1 Source	CA1

Fig. 88

Table 25 Comments to Fig. 88 regarding Hysteresis selection.

No.	Description	Hysteresis
1	The reference signal passes the Level LO value from below (positive edge), the comparator CA1 does not change, output stays low.	-
2	The reference signal passes the Level HI value from below (positive edge), the comparator CA1 output is set high.	-
3	The reference signal passes the Level HI value from above (negative edge), the comparator CA1 does not change, output stays high.	-
4	The reference signal passes the Level LO value from above (negative edge), the comparator CA1 is reset, output is set low.	-
5	The reference signal passes the Level LO value from below (positive edge), the comparator CA1 does not change, output stays low.	-
6	The reference signal passes the Level HI value from below (positive edge), the comparator CA1 output is set high.	-
8	The reference signal passes the Level HI value from above (negative edge), the comparator CA1 does not change, output stays high.	-The reference signal passes the Level LO value from above (negative edge), the comparator CA1 is reset, output is set low.

Table 26 Comments to Fig. 88 regarding Window selection.

No.	Description	Window
1	The reference signal passes the Level LO value from below (signal inside Window band), the comparator CA1 output is set high.	
2	The reference signal passes the Level LO value from above (signal outside Window band), the comparator CA1 is reset, output is set low.	\downarrow
3	The reference signal passes the Level HI value from above (signal inside Window band), the comparator CA1 output is set high.	\dagger
4	The reference signal passes the Level LO value from above (signal outside Window band), the comparator CA1 is reset, output is set low.	\downarrow
5	The reference signal passes the Level LO value from below (signal inside Window band), the comparator CA1 output is set high.	\dagger
6	The reference signal passes the Level HI value from below (signal outside Window band),the comparator CA1 is reset, output is set low.	\downarrow
7	The reference signal passes the Level HI value from above (signal inside Window band), the comparator CA1 output is set high.	
8	The reference signal passes the Level LO value from above (signal outside Window band), the comparator CA1 is reset, output is set low.	\downarrow

Analogue Comparator 1, Level Low [6113]

Sets the analogue comparator low level, with unit and range according to the selected value in menu [6111].

	6113 CA1 Level LO Stp A
	200rpm
Default:	200 rpm
Range:	Range as [6112].

Communication information

Modbus Instance no/DeviceNet no:	43403
Profibus slot/index	$170 / 52$
EtherCAT index (hex)	4 d 4 b
Profinet IO index	19787
	Long,
Fieldbus format	$1=1 \mathrm{~W}, 0.1 \mathrm{~A}, 0.1 \mathrm{~V}$,
	$0.1 \mathrm{~Hz}, 0.1^{\circ} \mathrm{C}, 1 \mathrm{kWh}, 1 \mathrm{H}$,
	$1 \%, 1 \mathrm{rpm}$ or 0.001 via
	process value
Modbus format	Elnt

Analogue Comparator 1, Type [6114]

Selects the analogue comparator type, i.e. Hysteresis or Window type. See Fig. 89 and Fig. 90.

		6114 CA1 Type Stp A Sty Hysteresis
Default:		Hysteresis
Hysteresis	0	Hysteresis type comparator
Window	1	Window type comparator

Communication information

Modbus Instance no/DeviceNet no:	43481
Profibus slot/index	$170 / 130$
EtherCAT index (hex)	4 d 99
Profinet IO index	19865
Fieldbus format	UInt
Modbus format	Ulnt

Analogue Comparator 1, Polarity[6115]

Selects how the selected value in [6111] should be handled prior to the analogue comparator, i.e. as absolute value or handled with sign. See Fig. 89

		6115 CA1 Polar Stp A Unipolar
Default:		Unipolar
Unipolar	0	Absolute value of [6111] used
Bipolar	1	Signed value of [6111] used

Communication information

Modbus Instance no/DeviceNet no:	43486
Profibus slot/index	$170 / 135$
EtherCAT index (hex)	4 d 9 e
Profinet IO index	19870
Fieldbus format	UInt
Modbus format	Ulnt

Example

See Fig. 89 and Fig. 90 for different principle functionality of comparator features 6114 and 6115 .

Fig. 89 Principle functionality of comparator features for "Type [6114] = Hysteresis" and "Polar [6115]".

Fig. 90 Principle functionality of comparator features for "Type [6114] =Window" and "Polar [6115]".

NOTE: When "Unipolar " is selected, absolute value of signal is used.

NOTE: When "Bipolar" is selected in [6115] then:

1. Functionality is not symmetrical .
2. Ranges for high/ Iow are bipolar

CA2 Setup [612]

Analogue comparator 2, parameter group.

Analogue Comparator 2, Value [6121]

Function is identical to analogue comparator 1 , value [6111].

	6121 CA2 Value Stp A
	Torque

Communication information

Modbus Instance no/DeviceNet no:	43404
Profibus slot/index	$170 / 53$
EtherCAT index (hex)	4 d 4 c
Profinet IO index	19788
Fieldbus format	UInt
Modbus format	UInt

Analogue Comparator 2,
Level High [6122]
Function is identical to analogue comparator 1, level high [6112].

	6122 CA2 Level HI Stp \mathbf{A}
Default:	20%
Range:	Enter a value for the high level.

Communication information

Modbus Instance no/DeviceNet no:	43405
Profibus slot/index	$170 / 54$
EtherCAT index (hex)	4 d 4 d
Profinet IO index	19789
	Long
	$1=1 \mathrm{~W}, 0.1 \mathrm{~A}, 0.1 \mathrm{~V}$,
Fieldbus format	$0.1 \mathrm{~Hz}, 0.1^{\circ} \mathrm{C}, 1 \mathrm{kWh}, 1 \mathrm{H}$,
	$1 \%, 1 \mathrm{rpm}$ or 0.001 via
	process value
Modbus format	Elnt

Analogue Comparator 2,

Level Low [6123]

Function is identical to analogue comparator 1, level low [6113].

	6123 CA2 Level LO Stp \boldsymbol{A}
	10\%
Default:	10%
Range:	Enter a value for the low level.

Communication information

Modbus Instance no/DeviceNet no:	43406
Profibus slot/index	$170 / 55$
EtherCAT index (hex)	4 d 4 e
Profinet IO index	19790
	Long,
Fieldbus format	$1=1 \mathrm{~W}, 0.1 \mathrm{~A}, 0.1 \mathrm{~V}$,
	$0.1 \mathrm{~Hz}, 0.1^{\circ} \mathrm{C}, 1 \mathrm{kWh}, 1 \mathrm{H}$,
	$1 \%, 1 \mathrm{rpm}$ or 0.001 via
	process value
Modbus format	Elnt

Analogue Comparator 2, Type [6124]
Function is identical to analogue comparator 1, Type [6114].

		6124 CA2 Type Stp A Hysteresis Default: Hysteresis Hysteresis 0 Hysteresis type comparator
Window	1	Window type comparator

Communication information

Modbus Instance no/DeviceNet no:	43482
Profibus slot/index	$170 / 131$
EtherCAT index (hex)	4 d 9 a
Profinet IO index	19866
Fieldbus format	UInt
Modbus format	UInt

Analogue Comparator 2, Polar [6125]

Function is identical to analogue comparator 1, Polar [6115].

		6125 CA2 Polar Stp A Unipolar
Default:		Unipolar
Unipolar	0	Absolute value of [6111] used
Bipolar	1	Signed value of [6111] used

Communication information

Modbus Instance no/DeviceNet no:	43487
Profibus slot/index	$170 / 136$
EtherCAT index (hex)	4 d 9 f
Profinet IO index	19871
Fieldbus format	Ulnt
Modbus format	Ulnt

CA3 Setup [613]

Analogue comparators 3, parameter group.

Analogue Comparator 3, Value [6131]

Function is identical to analogue comparator 1 , value [6111].

	6131 CA3 Value Stp $\mathbf{A} \quad$ Process Val
Default:	Process Value
Selections:	Same as in menu [6111]

Communication information

Modbus Instance no/DeviceNet no:	43471
Profibus slot/index	$170 / 120$
EtherCAT index (hex)	4 d 8 f
Profinet IO index	19855
Fieldbus format	UInt
Modbus format	Ulnt

Analogue Comparator 3, Level High [6132]

Function is identical to analogue comparator 1, level high [6112].

	6132 CA3 Level HI $\mathrm{Stp} \boldsymbol{\boldsymbol { A }}$ 300 rpm
Default:	300rpm
Range:	Enter a value for the high level.

Communication information

Modbus Instance no/DeviceNet no:	43472
Profibus slot/index	$170 / 121$
EtherCAT index (hex)	4 d 90
Profinet IO index	19856
	Long Fieldbus format Modbus format $0.1 \mathrm{~Hz}, 0.1 \mathrm{~A}, 0.1 \mathrm{C}, 1 \mathrm{kWh}, 1 \mathrm{H}$, $1 \%, 1 \mathrm{rpm}$ or 0.001 via process value

Analogue Comparator 3, Level Low [6133]

Function is identical to analogue comparator 1, level low [6113].

	6133 CA3 Level LO Stp A
Default:	200 rpm
Range:	Enter a value for the low level.

Communication information

Modbus Instance no/DeviceNet no:	43473
Profibus slot/index	$170 / 122$
EtherCAT index (hex)	4 d 91
Profinet IO index	19857
	Long,
	$1=1 \mathrm{~W}, 0.1 \mathrm{~A}, 0.1 \mathrm{~V}$,
Fieldbus format	$0.1 \mathrm{~Hz}, 0.1^{\circ} \mathrm{C}, 1 \mathrm{kWh}, 1 \mathrm{H}$,
	$1 \%, 1 \mathrm{rpm}$ or 0.001 via
	process value
Modbus format	Elnt

Analogue Comparator, 3 Type [6134]

Function is identical to analogue comparator 1, level Type [6114].

		6134 CA3 Type Stp A Hysteresis
Default:		Hysteresis
Hysteresis	0	Hysteresis type comparator
Window	1	Window type comparator

Communication information

Modbus Instance no/DeviceNet no:	43483
Profibus slot/index	$170 / 132$
EtherCAT index (hex)	4 d 9 b
Profinet IO index	19867
Fieldbus format	UInt
Modbus format	UInt

Analogue Comparator 3, Polar [6135]
Function is identical to analogue comparator 1 , Polar [6115].

		6135 CA3 Polar Stp A Unipolar
Default:		Unipolar
Unipolar	0	Absolute value of [6111] used
Bipolar	1	Signed value of [6111] used

Communication information

Modbus Instance no/DeviceNet no:	43488
Profibus slot/index	$170 / 137$
EtherCAT index (hex)	4 da0
Profinet IO index	19872
Fieldbus format	UInt
Modbus format	Ulnt

CA4 Setup [614]

Analogue comparators 4, parameter group.

Analogue Comparator 4, Value [6141]

Function is identical to analogue comparator 1, value [6111].

	6141 CA4 Value Stp A
	Process Err

Communication information

Modbus Instance no/DeviceNet no:	43474
Profibus slot/index	$170 / 123$
EtherCAT index (hex)	4 d 92
Profinet IO index	19858
Fieldbus format	UInt
Modbus format	Ulnt

Analogue Comparator 4, Level High [6142]
Function is identical to analogue comparator 1 level high [6112].

	6142 CA4 Level HI Stp \mathbf{A}
Default:	100rpm
Range:	Enter a value for the high level.

Communication information

Modbus Instance no/DeviceNet no:	43475
Profibus slot/index	$170 / 124$
EtherCAT index (hex)	4 d 93
Profinet IO index	19859
	Long
	$1=1 \mathrm{~W}, 0.1 \mathrm{~A}, 0.1 \mathrm{~V}$,
Fieldbus format	$0.1 \mathrm{~Hz}, 0.1^{\circ} \mathrm{C}, 1 \mathrm{kWh}, 1 \mathrm{H}$,
	$1 \%, 1 \mathrm{rpm}$ or 0.001 via
	process value
Modbus format	Elnt

Analogue Comparator 4,

 Level Low [6143]Function is identical to analogue comparator 1, level low [6113].

	6143 CA4 Level LO Stp A
Default:	-100 rpm
Range:	Enter a value for the low level.

Communication information

Modbus Instance no/DeviceNet no:	43476
Profibus slot/index	$170 / 125$
EtherCAT index (hex)	4 d 94
Profinet IO index	19860
	Long,
	$1=1 \mathrm{~W}, 0.1 \mathrm{~A}, 0.1 \mathrm{~V}$,
Fieldbus format	$0.1 \mathrm{~Hz}, 0.1^{\circ} \mathrm{C}, 1 \mathrm{kWh}, 1 \mathrm{H}$,
	$1 \%, 1 \mathrm{rpm}$ or 0.001 via
	process value
Modbus format	Elnt

Analogue Comparator 4, Type [6144]

Function is identical to analogue comparator 1, level Type [6114]

		6144 CA4 Type Stp \boldsymbol{A}
Default:		Window
Hysteresis	0	Hysteresis type comparator
Window	1	Window type comparator

Communication information

Modbus Instance no/DeviceNet no:	43484
Profibus slot/index	$170 / 133$
EtherCAT index (hex)	4 d 9 c
Profinet IO index	19868
Fieldbus format	Ulnt
Modbus format	Ulnt

Analogue Comparator 4, Polar [6145]

Function is identical to analogue comparator 1, Polar [6115]

		6145 CA4 Polar Stp A Bipolar
Default:		Bipolar
Unipolar	0	Absolute value of [6111] used
Bipolar	1	Signed value of [6111] used

Communication information

Modbus Instance no/DeviceNet no:	43489
Profibus slot/index	$170 / 138$
EtherCAT index (hex)	4 da1
Profinet IO index	19873
Fieldbus format	Ulnt
Modbus format	Ulnt

Digital comparator Setup [615]
Digital comparators, parameter group.

Digital Comparator 1 [6151]

Selection of the input signal for digital comparator 1 (CD1).
The output signal CD1 is set high if the selected input signal is active. See Fig. 91.

The output signal can be programmed to the digital or relay outputs or used as a source for the virtual connections [560].

Fig. 91 Digital comparator

Communication information

Modbus Instance no/DeviceNet no:	43407
Profibus slot/index	$170 / 56$
EtherCAT index (hex)	4 d 4 f
Profinet IO index	19791
Fieldbus format	UInt
Modbus format	UInt

Digital Comparator 2 [6152]
Function is identical to digital comparator 1 [6151].

	6152 CD 2 Stp A
Default:	Digln 1
Selection:	Same selections as for "DigOut 1 [541]".

Communication information

Modbus Instance no/DeviceNet no:	43408
Profibus slot/index	$170 / 57$
EtherCAT index (hex)	4 d 50
Profinet IO index	19792
Fieldbus format	UInt
Modbus format	UInt

Digital Comparator 3 [6153]

Function is identical to digital comparator 1 [6151].

	6153 CD 3 Stp \boldsymbol{A}
Default:	Trip
Selection:	Same selections as for "DigOut 1 [541]".

Communication information

Modbus Instance no/DeviceNet no:	43477
Profibus slot/index	$170 / 126$
EtherCAT index (hex)	4 d 95
Profinet IO index	19861
Fieldbus format	UInt
Modbus format	Ulnt

Digital Comparator 4 [6154]

Function is identical to digital comparator 1 [6151].

	6154 CD 4 Stp \mathbf{A}
	Ready
Default:	Ready

Communication information

Modbus Instance no/DeviceNet no:	43478
Profibus slot/index	$170 / 127$
EtherCAT index (hex)	4 d 96
Profinet IO index	19862
Fieldbus format	UInt
Modbus format	UInt

10.6.2 Logic Output Y [620]

By means of an expression editor, the comparator signals can be logically combined into the Logic Y function.
The expression editor has the following features:

- The following signals can be used: CA1, CA2, CD1, CD2 or LZ (or LY)
- The following signals can be inverted: !A1, !A2, !D1, !D2, or !LZ (or !LY)
- The following logical operators are available:
"+": OR operator
"\&" : AND operator
"^" : EXOR operator
Expressions according to the following truth table can be made:

Input		Result		
A	B	$\&$ (AND)	$+(\mathrm{OR})$	\wedge (EXOR)
0	0	0	0	0
0	1	0	1	1
1	0	0	1	1
1	1	1	1	0

The output signal can be programmed to the digital or relay outputs or used as a Virtual Connection Source [560].

The expression must be programmed by means of the menus [621] to [625].

Example:

Broken belt detection for Logic Y

This example describes the programming for a so-called "broken belt detection" for fan applications.

The comparator CA1 is set for frequency> 10 Hz .
The comparator !A2 is set for load $<20 \%$.
The comparator CD1 is set for Run.
The 3 comparators are all AND-ed, given the "broken belt detection".

In menus [621]-[625] expression entered for Logic Y is visible.

Set menu [621] to CA1
Set menu [622] to \&
Set menu [623] to !A2
Set menu [624] to \&
Set menu [625] to CD1

Menu [620] now holds the expression for Logic Y:

CA1\&!A2\&CD1

which is to be read as:
(CA1\&!A2)\&CD1

NOTE: Set menu [624] to "." to finish the expression when only two comparators are required for Logic Y .

Y Comp 1 [621]

Selects the first comparator for the logic Y function.

		621 Y Comp 1 Stp A	
Default:	CA1		
CA1	0		
!A1	1		
CA2	2		
!A2	3		
CD1	4		
!D1	5		
CD2	6		
!D2	7		
LZ/LY	8		
!LZ/!LY	9		
T1	10		
!T1	11		
T2	12		
!T2	13		
CA3	14		
!A3	15		
CA4	16		
!A4	17		
CD3	18		
!D3	19		
CD4	20		
!D4	21		
C1	22		
!C1	23		
C2	24		
!C2	25		

Communication information

Modbus Instance no/DeviceNet no:	43411
Profibus slot/index	$170 / 60$
EtherCAT index (hex)	4 d 53
Profinet IO index	19795
Fieldbus format	UInt
Modbus format	UInt

Y Operator 1 [622]

Selects the first operator for the logic Y function.

Communication information

Modbus Instance no/DeviceNet no:	43412
Profibus slot/index	$170 / 61$
EtherCAT index (hex)	4 d 54
Profinet IO index	19796
Fieldbus format	UInt
Modbus format	UInt

Y Comp 2 [623]

Selects the second comparator for the logic Y function.

Communication information

Modbus Instance no/DeviceNet no:	43413
Profibus slot/index	$170 / 62$
EtherCAT index (hex)	4 d 55
Profinet IO index	19797
Fieldbus format	UInt
Modbus format	UInt

Y Operator 2 [624]

Selects the second operator for the logic Y function.

		624 Y Operator 2 Stp A
Default:		$\&$
.	0	When • (dot) is selected, the Logic Y expression is finished (when only two expressions are tied together).
$\&$	1	$\&=$ AND
+	2	$+=$ OR
\wedge	3	$\wedge=$ EXOR

Communication information

Modbus Instance no/DeviceNet no:	43414
Profibus slot/index	$170 / 63$
EtherCAT index (hex)	4 d 56
Profinet IO index	19798
Fieldbus format	UInt
Modbus format	UInt

Y Comp 3 [625]

Selects the third comparator for the logic Y function.

	625 Y Comp 3 Stp A
Default:	CD1
Selection:	Same as menu [621]

Communication information

Modbus Instance no/DeviceNet no:	43415
Profibus slot/index	$170 / 64$
EtherCAT index (hex)	4 d 57
Profinet IO index	19799
Fieldbus format	UInt
Modbus format	UInt

10.6.3 Logic Output Z [630]

The expression must be programmed by means of the menus [631] to [635].

Z Comp 1 [631]

Selects the first comparator for the logic Z function.

	631 Z Comp 1 Stp A
Default:	CA1
Selection:	Same as menu [621]

Communication information

Modbus Instance no/DeviceNet no:	43421
Profibus slot/index	$170 / 70$
EtherCAT index (hex)	4 d 5 d
Profinet IO index	19805
Fieldbus format	UInt
Modbus format	UInt

Z Operator 1 [632]

Selects the first operator for the logic Z function.

Default:	
Selection:	Same as menu [622]

Communication information

Modbus Instance no/DeviceNet no:	43422
Profibus slot/index	$170 / 71$
EtherCAT index (hex)	4 d 5 e
Profinet IO index	19806
Fieldbus format	Ulnt
Modbus format	Ulnt

Z Comp 2 [633]

Selects the second comparator for the logic Z function.

	633 Stp \mathbf{A} Stomp 2
Default:	!A2
Selection:	Same as menu [621]

Communication information

Modbus Instance no/DeviceNet no:	43423
Profibus slot/index	$170 / 72$
EtherCAT index (hex)	$4 \mathrm{d5f}$
Profinet IO index	19807
Fieldbus format	UInt
Modbus format	UInt

Z Operator 2 [634]

Selects the second operator for the logic Z function.

Default:	
Selection:	Same as menu [624]

Communication information

Modbus Instance no/DeviceNet no:	43424
Profibus slot/index	$170 / 73$
EtherCAT index (hex)	4 d 60
Profinet IO index	19808
Fieldbus format	Ulnt
Modbus format	Ulnt

Z Comp 3 [635]

Selects the third comparator for the logic Z function.

	635 Z Comp 3 Stp \boldsymbol{A}
Default:	CD1
Selection:	Same as menu [621]

Communication information

Modbus Instance no/DeviceNet no:	43425
Profibus slot/index	$170 / 74$
EtherCAT index (hex)	4 d 61
Profinet IO index	19809
Fieldbus format	Ulnt
Modbus format	Ulnt

10.6.4 Timer1 [640]

The Timer functions can be used as a delay timer or as an interval with separate On and Off times (alternate mode). In delay mode, the output signal T 1 Q becomes high if the set delay time is expired. See Fig. 92.

Fig. 92
In alternate mode, the output signal T1Q will switch automatically from high to low etc. according to the set interval times "Timer1 T1" and "Timer 1 T2". See Fig. 93.
The output signal can be programmed to the digital or relay outputs used in logic functions [620] and [630], or as a virtual connection source [560].

NOTE: The actual timers are common for all parameter sets. If the actual set is changed, the timer functionality [641] to [645] will change according set settings but the timer value will stay unchanged. So initialization of the timer might differ for a set change compared to normal triggering of a timer.

Fig. 93

Timer 1 Trig [641]

Selection of the Timer input trigger signal.

	641 Timer1 Trig Stp \boldsymbol{A}
	Off

Communication information

Modbus Instance no/DeviceNet no:	43431
Profibus slot/index	$170 / 80$
EtherCAT index (hex)	4 d 67
Profinet IO index	19815
Fieldbus format	UInt
Modbus format	Ulnt

Timer 1 Mode [642]

Selection of mode of operation for Timer.

	$\begin{array}{l}\text { 642 Timer1 Mode } \\ \text { Stp } \boldsymbol{A}\end{array}$		
Off			

Communication information

Modbus Instance no/DeviceNet no:	43432
Profibus slot/index	$170 / 81$
EtherCAT index (hex)	4 d 68
Profinet IO index	19816
Fieldbus format	UInt
Modbus format	UInt

Timer 1 Delay [643]

This menu is only visible when timer mode is set to delay.
This menu can only be edited as in alternative 2 , see section 8.6, page 46.

Timer 1 delay sets the time that will be used by the first timer after it is activated. Timer 1 can be activated by a high signal on a DigIn that is set to Timer 1 or via a virtual destination [560].

	643 Timer1Delay Stp A
Default:	$0: 00: 00$

Communication information

Modbus Instance no/DeviceNet no:	43433 hours 43434 minutes 43435 seconds
Profibus slot/index	$170 / 82,170 / 83$,
	$170 / 84$
EtherCAT index (hex)	$4 \mathrm{~d} 69,4 \mathrm{~d} 6 \mathrm{a}, 4 \mathrm{~d} 6 \mathrm{~b}$
Profinet IO index	$19817,19818,19819$
Fieldbus format	Ulnt, $1=1 \mathrm{~h} / \mathrm{m} / \mathrm{s}$
Modbus format	Ulnt, $1=1 \mathrm{~h} / \mathrm{m} / \mathrm{s}$

Timer 1 T1 [644]

When timer mode is set to Alternate and Timer 1 is enabled, this timer will automatically keep on switching according to the independently programmable on and off times. The Timer 1 in Alternate mode can be enabled by a digital input or via a virtual connection. See Fig. 93. Timer 1 T1 sets the on time in the alternate mode.

	644 Timer 1 T1 Stp \mathbf{A}
	$0: 00: 00$

Communication information

Modbus Instance no/DeviceNet no:	43436 hours
	43437 minutes
43438 seconds	
Profibus slot/index	$170 / 85,170 / 86$,
	$170 / 87$
EtherCAT index (hex)	$4 \mathrm{~d} 6 \mathrm{c}, 4 \mathrm{~d} 6 \mathrm{~d}, 4 \mathrm{~d} 6 \mathrm{e}$
Profinet IO index	$19820,19821,19822$
Fieldbus format	Ulnt, $1=1 \mathrm{~h} / \mathrm{m} / \mathrm{s}$
Modbus format	Ulnt, $1=1 \mathrm{~h} / \mathrm{m} / \mathrm{s}$

Timer 1 T2 [645]

Timer 1 T2 sets the off time in the alternate mode.

	645 Timer1 T2 Stp \mathbf{A}
	$0: 00: 00$
Default:	$0: 00: 00$, hr:min:sec
Range:	$0: 00: 00-9: 59: 59$

Communication information

Modbus Instance no/DeviceNet no:	43439 hours 43440 minutes 43441 seconds
Profibus slot/index	$170 / 88,170 / 89$, $170 / 90$
EtherCAT index (hex)	$4 \mathrm{~d} 6 \mathrm{f}, 4 \mathrm{~d} 70,4 \mathrm{~d} 71$
Profinet IO index	$19823,19824,19825$
Fieldbus format	Ulnt, $1=1 \mathrm{~h} / \mathrm{m} / \mathrm{s}$
Modbus format	Ulnt, $1=1 \mathrm{~h} / \mathrm{m} / \mathrm{s}$

NOTE: "Timer 1 T1 [644]" and "Timer 1 T2 [645]" are only visible when Timer M ode is set to Alternate.

Timer 1 Value [649]

Timer 1 Value shows actual value of the timer.

	649 Timer1 Value Stp
A $\quad 0: 00: 00$	

Communication information

Modbus Instance no/DeviceNet no:	42921 hours 42922 minutes 42923 seconds
Profibus slot/index	$168 / 80,168 / 81$,
	$168 / 82$
EtherCAT index (hex)	$4 \mathrm{~b} 69,4 \mathrm{~b} 6 \mathrm{a}, 4 \mathrm{~b} 6 \mathrm{~b}$
Profinet IO index	$19305,19306,19307$
Fieldbus format	Ulnt, $1=1 \mathrm{~h} / \mathrm{m} / \mathrm{s}$
Modbus format	Ulnt, $1=1 \mathrm{~h} / \mathrm{m} / \mathrm{s}$

10.6.5 Timer2 [650]

Refer to the descriptions for Timer1.
Timer 2 Trig [651]

	651 Timer2 Trig Stp \boldsymbol{A}
	Off

Communication information

Modbus Instance no/DeviceNet no:	43451
Profibus slot/index	$170 / 100$
EtherCAT index (hex)	4 d 7 b
Profinet IO index	19835
Fieldbus format	UInt
Modbus format	UInt

Timer 2 Mode [652]

	652 Timer2 Mode Stp \mathbf{A}
	Off

Communication information

Modbus Instance no/DeviceNet no:	43452
Profibus slot/index	$170 / 101$
EtherCAT index (hex)	4 d 7 c
Profinet IO index	19836
Fieldbus format	UInt
Modbus format	UInt

Timer 2 Delay [653]

	653 Timer2Delay Stp \boldsymbol{A}
	$0: 00: 00$
Default:	0:00:00, hr:min:sec
Range:	0:00:00-9:59:59

Communication information

Modbus Instance no/DeviceNet no:	43453 hours 43454 minutes 43455 seconds
Profibus slot/index	$170 / 102,170 / 103$, $170 / 104$
EtherCAT index (hex)	$4 \mathrm{~d} 7 \mathrm{~d}, 4 \mathrm{~d} 7 \mathrm{e}, 4 \mathrm{~d} 7 \mathrm{f}$
Profinet IO index	$19837,19838,19839$
Fieldbus format	Ulnt, $1=1 \mathrm{~h} / \mathrm{m} / \mathrm{s}$
Modbus format	Ulnt, $1=1 \mathrm{~h} / \mathrm{m} / \mathrm{s}$

Timer 2 T1 [654]

	654 Timer 2 Stp \mathbf{A}
S1 $0: 00: 00$	

Communication information

Modbus Instance no/DeviceNet no:	43456 hours 43457 minutes 43458 seconds Profibus slot/index EtherCAT index (hex) Profinet IO index Fieldbus format Modbus format $4 \mathrm{dd80}, 4 \mathrm{~d} 81,4 \mathrm{~d} 82$

Timer 2 T2 [655]
$\left.\begin{array}{|l|l|}\hline & \begin{array}{l}\text { 655 Timer } 2 \\ \text { Stp } \mathbf{A}\end{array} \\ & \text { T2 } \\ & \text { 0:00:00 }\end{array}\right]$

Communication information

Modbus Instance no/DeviceNet no:	43459 hours 43460 minutes 43461 seconds
Profibus slot/index	$170 / 108,170 / 109$,
	$170 / 110$
EtherCAT index (hex)	$4 \mathrm{~d} 83,4 \mathrm{~d} 84,4 \mathrm{~d} 85$
Profinet IO index	$19843,19844,19845$
Fieldbus format	Ulnt, $1=1 \mathrm{~h} / \mathrm{m} / \mathrm{s}$
Modbus format	Ulnt, $1=1 \mathrm{~h} / \mathrm{m} / \mathrm{s}$

Timer 2 Value [659]

Timer 2 Value shows actual value of the timer.

	659 Timer2 Value Stp A
Default:	$0: 00: 00$
Range:	$0: 00: 00-9: 59: 59$

Communication information

Modbus Instance no/DeviceNet no:	42924 hours 42925 minutes 42926 seconds
Profibus slot/index	$168 / 83,168 / 84$,
	$168 / 84$
EtherCAT index (hex)	$4 \mathrm{~b} 6 \mathrm{c}, 4 \mathrm{~b} 6 \mathrm{~d}, 4 \mathrm{~b} 6 \mathrm{f}$
Profinet IO index	$19308,19309,19310$
Fieldbus format	Ulnt, $1=1 \mathrm{~h} / \mathrm{m} / \mathrm{s}$
Modbus format	Ulnt, $1=1 \mathrm{~h} / \mathrm{m} / \mathrm{s}$

10.6.6 Counters [660]

Counter functions for counting pulses and signalling on digital output when counter reaches specified high and low limit levels.
The counter is counting up on positive flanks on the triggered signal, the counter is cleared as long as the Reset signal is active.
The counter can be automatically decremented with specified decrement time, if no new trigger signal has occurred within the decrement time.
The counter value is clamped to the high limit value and the digital output function (C 1 Q or C 2 Q) is active when counter value equals high limit value.
See Fig. 94 for more information of the counters.

Fig. 94 Counters, operating principle.

Counter 1 [661]

Counter 1 parameter group.
Counter 1 Trigger [6611]
Selection of the digital output signal used as trigger signal for counter 1 . Counter 1 is incremented by 1 on every positive flank on the trigger signal.

NOTE: Maximum counting frequency is 8 Hz .

	6611 C1 Trig Stp \mathbf{A}
Default:	Off
Selection:	Same selections as "Digital Out 1 [541]".

Communication information

Modbus Instance no/DeviceNet no:	43571
Profibus slot/index	$170 / 220$
EtherCAT index (hex)	$4 \mathrm{df3}$
Profinet IO index	19955
Fieldbus format	Ulnt
Modbus format	Ulnt

Counter 1 Reset [6612]

Selection of the digital signal used as reset signal for counter 1. Counter 1 is cleared to 0 and held to 0 as long as reset input is active (high).

NOTE: Reset input has top priority.

	6612 C1 Reset Stp A
Default:	Off
Selection:	Same selections as "Digital Out 1 [541]".

Communication information

Modbus Instance no/DeviceNet no:	43572
Profibus slot/index	$170 / 221$
EtherCAT index (hex)	$4 \mathrm{df4}$
Profinet IO index	19956
Fieldbus format	UInt
Modbus format	UInt

Counter 1 High value [6613]

Sets counter 1 high limit value. Counter 1 value is clamped to selected high limit value and the counter 1 output (C1Q) is active (high) when the counter value equals the high value.

NOTE: Value 0 means that counter output is always true (high).

Communication information

Modbus Instance no/DeviceNet no:	43573
Profibus slot/index	$170 / 222$
EtherCAT index (hex)	$4 \mathrm{df5}$
Profinet IO index	19957
Fieldbus format	Long, $1=1$
Modbus format	Elnt

Counter 1 Low value [6614]

Sets counter 1 low limit value. Counter 1 output (C 1 Q) is de-activated (low) when the counter value is equal or smaller than the low value.

NOTE: Counter high value has priority so if high and low values are equal then the counter output is de-activated when the value is smaller than the low value.

	6614 C1 Low Val Stp \mathbf{A}
Default:	0
Range:	$0-10000$

Communication information

Modbus Instance no/DeviceNet no:	43574
Profibus slot/index	$170 / 223$
EtherCAT index (hex)	4 df6
Profinet IO index	19958
Fieldbus format	Long, 1=1
Modbus format	Elnt

Counter 1 Decrement timer [6615]

Sets counter 1 automatic decrement timer value. The counter 1 is decremented by 1 after elapsed decrement time and if no new trigger has happened within the decrement time. The decrement timer is reset to 0 at every counter 1 trig pulse

		6615 C1 DecTimer Stp A
Default:		Off
Off	0	Off
$1-3600$	$1-3600$	$1-3600 \mathrm{~s}$

Communication information

Modbus Instance no/DeviceNet no:	43575
Profibus slot/index	$170 / 224$
EtherCAT index (hex)	4 df7
Profinet IO index	19959
Fieldbus format	Long, $1=1 \mathrm{~s}$
Modbus format	Elnt

Counter 1 Value [6619]

Parameter shows the actual value of counter 1 .

NOTE: Counter 1 value is common for all parameter sets.

NOTE: The value is volatile and lost at power down.

	6619 C1 Value Stp A
Default:	0
Range:	$0-10000$

Communication information

Modbus Instance no/DeviceNet no:	42927
Profibus slot/index	$168 / 86$
EtherCAT index (hex)	4 b 6 f
Profinet IO index	19311
Fieldbus format	UInt, 1=1
Modbus format	UInt

Counter 2 [662]

Refer to description for Counter 1 [661].
Counter 2 Trigger [6621]
Function is identical to Counter 1 Trigger [6611].

	6621 C2 Trig Stp A
Default:	Off
Selection:	Same selections as Digital Out 1 [541].

Communication information

Modbus Instance no/DeviceNet no:	43581
Profibus slot/index	$170 / 230$
EtherCAT index (hex)	4 dfd
Profinet IO index	19965
Fieldbus format	UInt
Modbus format	UInt

Counter 2 Reset [6622]
Function is identical to Counter 1 Reset [6612].

	6622 C2 Reset Stp A
Default:	Off
Selection:	Same selections as Digital Out 1 [541].

Communication information

Modbus Instance no/DeviceNet no:	43582
Profibus slot/index	$170 / 231$
EtherCAT index (hex)	4 dfe
Profinet IO index	19966
Fieldbus format	UInt
Modbus format	UInt

Counter 2 High value [6623]
Function is identical to Counter 1 High value [6613].

	6623 C2 High Val Stp \mathbf{A}
Default:	0
Range:	$0-10000$

Communication information

Modbus Instance no/DeviceNet no:	43583
Profibus slot/index	$170 / 232$
EtherCAT index (hex)	4 dff
Profinet IO index	19967
Fieldbus format	Long, 1=1
Modbus format	Elnt

Counter 2 Low value [6624]

Function is identical to Counter 1 Low value [6614].

	6624 C2 Low Val Stp \mathbf{A}
Default:	0
Range:	$0-10000$

Communication information

Modbus Instance no/DeviceNet no:	43584
Profibus slot/index	$170 / 233$
EtherCAT index (hex)	4 e 00
Profinet IO index	19968
Fieldbus format	Long, 1=1
Modbus format	Elnt

Counter 2 Decrement timer [6625]

Function is identical to Counter 1 Decrement timer [6615].

6625 C2 DecTimer Stp A		
Default:		Off
Off	0	Off
$1-3600$	$1-3600$	$1-3600 \mathrm{~s}$

Communication information

Modbus Instance no/DeviceNet no:	43585
Profibus slot/index	$170 / 234$
EtherCAT index (hex)	4 e 01
Profinet IO index	19969
Fieldbus format	Long, 1=1 s
Modbus format	Elnt

Counter 2 Value [6629]
Parameter shows the actual value of counter 2.

NOTE: Counter 2 value is common for all parameter sets.

NOTE: The value is volatile and lost at power down.

	6629 C2 Value Stp A
Default:	0
Range:	$0-10000$

Communication information

Modbus Instance no/DeviceNet no:	42928
Profibus slot/index	$168 / 87$
EtherCAT index (hex)	4 b 70
Profinet IO index	19312
Fieldbus format	UInt, $1=1$
Modbus format	UInt

10.7 View Operation/ Status [700]

Menu with parameters for viewing all actual operational data, such as speed, torque, power, etc.

10.7.1 Operation [710]

Process Value [711]

The process value is showing the process actual value, depending on selection done in chapter, Process Source [321].

	711 Process Val Stp
Unit	Depends on selected Pocess source [321] and Process Unit [322].
Resolution	Speed: 1 rpm, 4 digits Other units: 3 digits

Communication information

Modbus Instance no/DeviceNet no:	31001
Profibus slot/index	$121 / 145$
EtherCAT index (hex)	$23 e 9$
Profinet IO index	1001
Fieldbus format	Long, 1=1rpm, 1\%, $1^{\circ} \mathrm{C}$ or 0.001 if Process Value/ Process Ref using a [322] unit
	Elnt

Speed [712]

Displays the actual shaft speed.

	712 Stp
Unit:	rpm
Resolution:	$1 \mathrm{rpm}, 4$ digits

Communication information

Modbus Instance no/DeviceNet no:	31002
Profibus slot/index	$121 / 146$
EtherCAT index (hex)	23 ea
Profinet IO index	1002
Fieldbus format	Int, $1=1 \mathrm{rpm}$
Modbus format	Int, 1=1 rpm

Torque [713]
Displays the actual shaft torque.

	713 Stp	Torque
	0%	0.0 Nm
Unit:	$\%, \mathrm{Nm}$	
Resolution:	$1 \%, 0.1 \mathrm{Nm}$	

Communication information

Modbus Instance no/DeviceNet no:	$\begin{aligned} & 31003 \mathrm{Nm} \\ & 31004 \% \end{aligned}$
Profibus slot/index	$\begin{aligned} & 121 / 147 \\ & 121 / 148 \end{aligned}$
EtherCAT index (hex)	$\begin{aligned} & \text { 23eb Nm } \\ & 23 \mathrm{ec} \% \end{aligned}$
Profinet IO index	$\begin{aligned} & 1003 \mathrm{Nm} \\ & 1004 \% \end{aligned}$
Fieldbus format	Long, $1=0.1 \mathrm{Nm}$ Long, 1=1 \%
Modbus format	Elnt

Shaft power [714]

Displays the actual shaft power.

	714 Stp
Unit:	Whaft Power
Resolution:	$1 W$

Communication information

Modbus Instance no/DeviceNet no:	31005
Profibus slot/index	$121 / 149$
EtherCAT index (hex)	23 ed
Profinet IO index	1005
Fieldbus format	Long, 1=1W
Modbus format	Elnt

Electrical Power [715]

Displays the actual electrical output power.

	715 El Power Stp
Unit:	kW
Resolution:	1 W

Communication information

Modbus Instance no/DeviceNet no:	31006
Profibus slot/index	$121 / 150$
EtherCAT index (hex)	$23 e e$
Profinet IO index	1006
Fieldbus format	Long, 1=1W
Modbus format	Elnt

Current [716]

Displays the actual output current.

	716 Current Stp

Communication information

Modbus Instance no/DeviceNet no:	31007
Profibus slot/index	$121 / 151$
EtherCAT index (hex)	23 ef
Profinet IO index	1007
Fieldbus format	Long, 1=0.1 A
Modbus format	Elnt

Output Voltage [717]

Displays the actual output voltage.

	717 Output Volt Stp
Unit:	V
Resolution:	0.1 V

Communication information

Modbus Instance no/DeviceNet no:	31008
Profibus slot/index	$121 / 152$
EtherCAT index (hex)	23 fO
Profinet IO index	1008
Fieldbus format	Long, $1=0.1 \mathrm{~V}$
Modbus format	Elnt

Frequency [718]
Displays the actual output frequency.

	718 Stp
Unit:	Hz
Resolution:	0.1 Hz

Communication information

Modbus Instance no/DeviceNet no:	31009
Profibus slot/index	$121 / 153$
EtherCAT index (hex)	23 f 1
Profinet IO index	1009
Fieldbus format	Long, $1=0.1 \mathrm{~Hz}$
Modbus format	Elnt

DC Link Voltage [719]
Displays the actual DC link voltage.

	719 DC Voltage Stp
Unit:	V
Resolution:	0.1 V

Communication information

Modbus Instance no/DeviceNet no:	31010
Profibus slot/index	$121 / 154$
EtherCAT index (hex)	23 f 2
Profinet IO index	1010
Fieldbus format	Long, $1=0.1 \mathrm{~V}$
Modbus format	Elnt

Heatsink Temperature [71A]

Displays the actual heatsink temperature, measured. The signal is generated by a sensor in the IGBT module.

	71A Heatsink Tmp Stp ${ }^{\circ} \mathrm{C}$
Unit:	${ }^{\circ} \mathrm{C}$
Resolution:	$0.1^{\circ} \mathrm{C}$

Communication information

Modbus Instance no/DeviceNet no:	31011
Profibus slot/index	$121 / 155$
EtherCAT index (hex)	$23 f 3$
Profinet IO index	1011
Fieldbus format	Long, $1=0.1^{\circ} \mathrm{C}$
Modbus format	Elnt

PT100_1_2_3 Temp [71B]

Displays the actual PT100 temperature.

	71 B PT100 $1,2,3$ Stp	
Unit:	${ }^{\circ} \mathrm{C}$	
Resolution:	$1^{\circ} \mathrm{C}$	

Communication information

Modbus Instance no/DeviceNet no:	$31012,31013,31014$
	$121 / 156$
Profibus slot/index	$121 / 157$
	$121 / 158$
EtherCAT index (hex)	$23 f 4,23 f 5,23 f 6$
Profinet IO index	$1012,1013,1014$
Fieldbus format	Long, $1=1^{\circ} \mathrm{C}$
Modbus format	Elnt

10.7.2 Status [720]

VSD Status [721]
Indicates the overall status of the AC drive.

```
721 VSD Status
Stp 1/222/333/44
```

Fig. 95 AC drive status

Display position	Function	Status value
1	Parameter Set	A,B,C,D
222	Source of reference value	-Rem (remote) -Key (keyboard) -Com (Serial comm.) -Opt (option)
333	Source of Run/Stop command	-Rem (remote) -Key (keyboard) -Com (Serial comm.) -Opt (option)
44	Limit functions	--- -No limit active -VL (Voltage Limit) -SL (Speed Limit) -CL (Current Limit) -TL (Torque Limit)

Example: "A/Key/Rem/TL"

This means:
A: \quad Parameter Set A is active.
Key: \quad Reference value comes from the keyboard (CP).
Rem: Run/Stop commands come from terminals 1-22.
TL: Torque Limit active.

Communication information

Modbus Instance no/DeviceNet no:	31015
Profibus slot/index	$121 / 159$
EtherCAT index (hex)	$23 f 7$
Profinet IO index	1015
Fieldbus format	UInt
Modbus format	UInt

Description of communication format Integer values and bits used

Bit	Integer representation
$1-0$	Active Parameter set, where O=A, 1=B, 2=C, 3=D
$4-2$	Source of Reference control value, where $0=$ Rem, 1=Key, 2=Com, 3=Option
$7-5$	Source of Run/Stop/Reset command, where $0=$ Rem, 1=Key, 2=Com, 3=Option
$13-8$	Active limit functions, where O=No limit, 1=VL, 2=SL, 3=CL, 4=TL
14	Inverter is in warning (A warning condition is active)
15	Inverter is tripped (A Trip condition is active)

Example:

Previous example "A/Key/Rem/TL"
is interpreted " $0 / 1 / 0 / 4$ "
In bit format this is presented as

B it	Interpretation	Integer representation	
0 LSB	0	A(0)	Parameter set
1	0		
2	1	Key (1)	Source of control
3	0		
4	0		
5	0	Rem (0)	Source of command
6	0		
7	0		
8	0	TL (4)	Limit functions
9	0		
10	1		
11	0		
12	0		
13	0		
14	0		Warning condition
15 MSB	0		Trip condition

In the example above it is assumed that we have no trip or warning condition (the alarm LED on the control panel is off).

Warning [722]

Display the actual or last warning condition. A warning occurs if the AC drive is close to a trip condition but still in operation. During a warning condition the red trip LED will start to blink as long as the warning is active.

722	Warnings
Stp	warn.msg

The active warning message is displayed in menu [722]. If no warning is active the message "No Error" is displayed.

The following warnings are possible:

Communication integer value	Warning message
0	No Error
1	Motor ${ }^{2} \mathrm{t}$ t
2	PTC
3	Motor lost
4	Locked rotor
5	Ext trip
6	Mon MaxAlarm
7	Mon MinAlarm
8	Comm error
9	PT100
10	Crane Dev
11	Pump
12	Ext Mot Temp
13	LC Level
14	Brake
15	Option
16	Over temp
17	Over curr F
18	Over volt D
19	Over volt G
20	Over volt M
21	Over speed
22	Under voltage
23	Power fault
24	Desat
25	DClink error
26	Int error
27	Ovolt m cut
28	Over voltage
29	Not used
30	CRIO Comm
31	Encoder

Communication information

Modbus Instance no/DeviceNet no:	31016
Profibus slot/index	$121 / 160$
EtherCAT index (hex)	$23 f 8$
Profinet IO index	1016
Fieldbus format	Ulnt
Modbus format	Ulnt

See also the Chapter 11. page 175.

Digital Input Status [723]

Indicates the status of the digital inputs. See Fig. 96.
1 DigIn 1
2 DigIn 2
3 DigIn 3
4 DigIn 4
5 DigIn 5
6 DigIn 6
7 DigIn 7
8 DigIn 8
The positions one to eight (read from left to right) indicate the status of the associated input:
1 High
0 Low
The example in Fig. 96 indicates that DigIn 1, DigIn 3 and DigIn 6 are active at this moment.

723	DigIn	Status
Stp	$1010 \quad 0100$	

Fig. 96 Digital input status example
Communication information

Modbus Instance no/DeviceNet no:	31017
Profibus slot/index	$121 / 161$
EtherCAT index (hex)	$23 f 9$
Profinet IO index	1017
Fieldbus format	Ulnt, bit 0=DigIn1, bit 8=DigIn8
Modbus format	

Digital Output Status [724]

Indicates the status of the digital outputs and relays. See Fig. 97.

RE indicate the status of the relays on position:
Relay1
2 Relay2
3 Relay3
DO indicate the status of the digital outputs on position:

```
1 \text { DigOut1}
2 DigOut2
```

The status of the associated output is shown.
$\begin{array}{ll}1 & \text { High } \\ 0 & \text { Low }\end{array}$

The example in Fig. 97 indicates that DigOut 1 is active and Digital Out 2 is not active. Relay 1 is active, relay 2 and 3 are not active.

Fig. 97 Digital output status example
Communication information

Modbus Instance no/DeviceNet no:	31018
Profibus slot/index	$121 / 162$
EtherCAT index (hex)	$23 f a$
Profinet IO index	1018
Fieldbus format	Ulnt, bit 0=DigOut1,
	bit 1=DigOut2
bit 8=Relay1	
Modbus format	bit 9=Relay2
bit 10=Relay3	

Analogue Input Status [725]

Indicates the status of the analogue inputs 1 and 2.

Fig. 98 Analogue input status
Communication information

Modbus Instance no/DeviceNet no:	31019,31020
Profibus slot/index	$121 / 163,121 / 164$
EtherCAT index (hex)	$23 \mathrm{fb}, 23 \mathrm{fc}$
Profinet IO index	1019,1020
Fieldbus format	Long, 1=1\%
Modbus format	Elnt

The first row indicates the analogue inputs.
1 AnIn 1
2 AnIn 2
Reading downwards from the first row to the second row the status of the belonging input is shown in \%:
-100\% AnIn1 has a negative 100% input value
65\% AnIn2 has a 65% input value
So the example in Fig. 98 indicates that both the Analogue inputs are active.

NOTE: The shown percentages are absolute values based on the full range/ scale of the in- or output; so related to either $0-10 \mathrm{~V}$ or $0-20 \mathrm{~mA}$.

Analogue Input Status [726]

Indicates the status of the analogue inputs 3 and 4 .

726	AnIn	3
Stp		-100%

Fig. 99 Analogue input status
Communication information

Modbus Instance no/DeviceNet no:	31021,31022
Profibus slot/index	$121 / 165,121 / 166$
EtherCAT index (hex)	$23 \mathrm{fd}, 23 \mathrm{fe}$
Profinet IO index	1021,1022
Fieldbus format	Long, $1=1 \%$
Modbus format	Elnt

Analogue Output Status [727]

Indicates the status of the analogue outputs. Fig. 96. E.g. if $4-20 \mathrm{~mA}$ output is used, the value 20% equals to 4 mA .

727	AnOut	1
Stp	-100%	65%

Fig. 100 Analogue output status
Communication information

Modbus Instance no/DeviceNet no:	31023,31024
Profibus slot/index	$121 / 167,121 / 168$
EtherCAT index (hex)	$23 \mathrm{ff}, 2400$
Profinet IO index	1023,1024
Fieldbus format	Long, 1=1\%
Modbus format	Elnt

The first row indicates the Analogue outputs.
1 AnOut 1
2 AnOut 2
Reading downwards from the first row to the second row the status of the belonging output is shown in \%:
-100% AnOutl has a negative 100% output value 65% AnOut 2 has a 65% output value

The example in Fig. 96 indicates that both the Analogue outputs are active.

> NOTE: The shown percentages are absolute values based on the full range/ scale of the in- or output; so related to either $0-10 \mathrm{~V}$ or $0-20 \mathrm{~mA}$.

I/O board Status [728] - [72A]

Indicates the status for the additional I/O on option boards 1 (B1), 2 (B2) and 3 (B3).

728	IO	B1		
Stp		RE	000	DI100

Communication information

Modbus Instance no/DeviceNet no:	$31025-31027$
Profibus slot/index	$121 / 170-172$
EtherCAT index (hex)	$2401-2403$
Profinet IO index	$1025-1027$
Fieldbus format	UInt, bit 0=DigIn1
	bit 1=DigIn2 bit 2=DigIn3 Modbus format
bit 8=Relay1	
bit 9=Relay2	
bit 10=Relay3	

10.7.3 Stored values [730]

The shown values are the actual values built up over time. Values are stored at power down and updated again at power up.

Run Time [731]

Displays the total time that the AC drive has been in the Run Mode.

	731 Run Time Stp
Unit:	h: mm:ss (hours: minutes: seconds)
Range:	00: 00: 00-262143: 59: 59

Communication information

Modbus Instance no/DeviceNet no:	$31028: 31029: 31030$ (hr:min:sec)
Profibus slot/index	$121 / 172: 121 / 173: 121 /$ 174
EtherCAT index (hex)	$2404: 2405: 2406$
Profinet IO index	$1028: 1029: 1030$
Fieldbus format	Long, 1=1h:m:s
Modbus format	Eint

Reset Run Time [7311]

Reset the run time counter. The stored information will be erased and a new registration period will start.

					7311 Reset RunTm Stp \boldsymbol{A}	No

Communication information

Modbus Instance no/DeviceNet no:	7
Profibus slot/index	$0 / 6$
EtherCAT index (hex)	2007
Profinet IO index	7
Fieldbus format	Ulnt
Modbus format	Ulnt

NOTE: After reset the setting automatically reverts to "No".

Mains time [732]

Displays the total time that the AC drive has been connected to the mains supply. This timer cannot be reset.

	732 Mains Time Stp h:mm:ss
Unit:	h: mm:ss (hours: minutes: seconds)
Range:	00: 00: 00-262143: $59: 59$

Communication information

Modbus Instance no/DeviceNet no:	$31031: 31032: 31033$ (hr:min:sec)
Profibus slot/index	$121 / 175: 121 / 176: 121 /$ 177
EtherCAT index (hex)	$2407: 2408:$ 2409
Profinet IO index	$1031: 1032: 1033$
Fieldbus format	Long, 1=1h:m:s
Modbus format	Eint

Energy [733]

Displays the total energy consumption since the last energy reset [7331] took place.

	733 Energy Stp
Unit:	Wh (shows Wh, kWh, MWh or GWh)
Range:	$0.0-999999 G W h$

Communication information

Modbus Instance no/DeviceNet no:	31034
Profibus slot/index	$121 / 178$
EtherCAT index (hex)	240 a
Profinet IO index	1034
Fieldbus format	Long, 1=1 Wh
Modbus format	Elnt

Reset Energy [7331]

Resets the energy counter. The stored information will be erased and a new registration period will start.

	7331 Rst Energy Stp \boldsymbol{A}
	No

Communication information

Modbus Instance no/DeviceNet no:	6
Profibus slot/index	$0 / 5$
EtherCAT index (hex)	2006
Profinet IO index	6
Fieldbus format	Ulnt
Modbus format	Ulnt

NOTE: After reset the setting automatically goes back to "No".

10.8 View Trip Log [800]

Main menu with parameters for viewing all the logged trip data. In total the AC drive saves the last 10 trips in the trip memory. The trip memory refreshes on the FIFO principle (First In, First Out). Every trip in the memory is logged on the time of the "Run Time [731]" counter. At every trip, the actual values of several parameter are stored and available for troubleshooting.

10.8.1 Trip Message log [810]

Display the cause of the trip and what time that it occurred. When a trip occurs the status menus are copied to the trip message log. There are nine trip message logs [810]-[890]. When the tenth trip occurs the oldest trip will disappear.
After reset of occurred trip, the trip message will be removed and menu [100] will be indicated.

	8x0 Stp
Unit:	h: m (hours: minutes)
Range:	Oh: Om-65355h: 59 m

810	Ext
Stip	
Stp	$132: 12: 14$

For fieldbus integer value of trip message, see message table for warnings, [722].

NOTE: Bits 0-5 used for trip message value. Bits 6-15 for internal use.

Communication information

Modbus Instance no/DeviceNet no:	31101
Profibus slot/index	$121 / 245$
EtherCAT index (hex)	244 d
Profinet IO index	1101
Fieldbus format	UInt, 1=1
Modbus format	UInt

Trip message [811]-[810]

The information from the status menus are copied to the trip message \log when a trip occurs.

Trip menu	Copied from	Description
811	711	Process Value
812	712	Speed
813	712	Torque
814	714	Shaft Power
815	715	Electrical Power
816	716	Current
817	717	Output voltage
818	718	Frequency
819	719	DC Link voltage
81A	71A	Heatsink Temperature
81B	71B	PT100_1, 2, 3
81C	721	AC drive Status
81D	723	Digital input status
81E	724	Digital output status
81F	725	Analogue input status 1-2
81G	726	Analogue input status 3-4
81H	727	Analogue output status 1-2
811	728	I/O status option board 1
81J	729	I/O status option board 2
81K	72A	I/O status option board 3
81L	731	Run Time
81M	732	Mains Time
81N	733	Energy
810	310	Process reference

Communication information

Modbus Instance no/DeviceNet no:	$31102-31135$
Profibus slot/index	$121 / 246-254$, $122 / 0-24$
EtherCAT index (hex)	$244 \mathrm{e}-246 \mathrm{f}$
Profinet IO index	$1102-1135$
Fieldbus format	Depends on parameter, see respective parameter.
Modbus format	Depends on parameter, see respective parameter.

Example:

Fig. 97 shows the third trip memory menu [830]: Over temperature trip occurred after 1396 hours and 13 minutes in Run time.

Fig. 101 Trip 3

10.8.2 Trip Messages [820]-[890]

Same information as for menu [810].
Communication information

Modbus Instance no/ DeviceNet no:	$31151-31185$ $31201-31235$ $31251-31285$ $31301-31335$ $31351-31385$ $31401-31435$ $31451-31485$ $31501-31535$	Trip log list 2 3 4 5 6 7 8 9
Profibus slot/index	$\begin{array}{\|l} 122 / 40-122 / 74 \\ 122 / 90-122 / 124 \\ 122 / 140-122 / 174 \\ 122 / 190-122 / 224 \\ 122 / 240-123 / 18 \\ 123 / 35-123 / 68 \\ 123 / 85-123 / 118 \\ 123 / 135-123 / 168 \end{array}$	Trip log list 2 3 4 5 6 7 8 9
EtherCAT index (hex)	$\begin{aligned} & 247 e-24 b 0 \\ & 24 b 1-24 e 2 \\ & 24 e 3-2514 \\ & 2515-2546 \\ & 2547-2578 \\ & 2579-25 a a \\ & 25 a b-25 d c \\ & 25 d d-260 e \end{aligned}$	Trip log list 2 3 4 5 6 7 8 9
Profinet IO index	$1151-1185$ $1201-1235$ $1251-1285$ $1301-1335$ $1351-1385$ $1401-1435$ $1451-1485$ $1501-1535$	Trip log list 2 3 4 5 6 7 8 9
Fieldbus format	See Trip 811-810	
Modbus format		

All nine alarm lists contain the same type of data. For example DeviceNet parameter 31101 in alarm list 1 contains the same data information as 31151 in alarm list 2.

10.8.3 Reset Trip Log [8A0]

Resets the content of the 10 trip memories.

				8A0 Reset Trip Stp
Default:		No		
No	0			
Yes	1			

Communication information

Modbus Instance no/DeviceNet no:	8
Profibus slot/index	$0 / 7$
EtherCAT index (hex)	2008
Profinet IO index	8
Fieldbus format	Ulnt
Modbus format	Ulnt

NOTE: After the reset the setting goes automatically back to "NO". The message "OK" is displayed for 2 sec.

10.9 System Data [900]

Main menu for viewing all the AC drive system data.

10.9.1 VSD Data [920]

VSD Type [921]

Shows the AC drive type according to the type number. The options are indicated on the type plate of the AC drive.

> NOTE: If the control board is not configured, then type type shown is $40-X X X$.

921	CDX2.0
Stp	CDX48-046

Example of type
Communication information

Modbus Instance no/DeviceNet no:	31037
Profibus slot/index	$121 / 181$
EtherCAT index (hex)	240 d
Profinet IO index	1037
Fieldbus format	UInt, $1=1$
Modbus format	UInt

Examples:

CDX48-046AC drive-series suited for 380-480 volt mains supply, and a rated output current of 46 A .

Software [922]

Shows the software version number of the AC drive.
Fig. 102 gives an example of the version number.

Fig. 102 Example of software version
V $4.32=$ Software version

- $03.07=$ option version, is only visible and valid for special software, type OEM adapted software.
$03=$ (major) special software variant number
$07=$ (minor) revision of this special software
Communication information

Modbus Instance no/DeviceNet no:	31038 software version 31039 option version
Profibus slot/index	$121 / 182-183$
EtherCAT index (hex)	$240 \mathrm{e}, 240 \mathrm{f}$
Profinet IO index	1038,1039
Fieldbus format	Ulnt
Modbus format	Ulnt

Table 27 Information for Modbus and Profibus number, software version

Bit	Example	Description
$7-0$	32	minor
$13-8$	4	major
		release
00: V, release version		
01: P, pre-release		
$15-14$		version
		$10: \beta$, Beta version
		$11: \alpha$, Alpha version

Table 28 Information for Modbus and Profibus number, option version

Bit	Example	Description
$7-0$	07	Minor option version
$15-8$	03	Major option version

NOTE: It is important that the software version displayed in menu [922] is the same software version number as the software version number written on the title page of this instruction manual. If not, the functionality as described in this manual may differ from the functionality of the AC drive.

Build Info [9221]
Software version created, Date and time.

	9221 Build Info Stp
Default:	YY:MM:DD:HH:MM:SS

Build ID [9222]
Software identification code.

	9221 Stp Build ID OE1B7F9E
Example:	OE1B7F9E

Unit name [923]

Option to enter a name of the unit for service use or customer identity. The function enables the user to define a name with max 12 characters. Use the Prev and Next key to move the cursor to the required position. Then use the + and - keys to scroll in the character list. Confirm the character by moving the cursor to the next position by pressing the Next key. See section User-defined Unit [323].

Example

Create user name USER 15.

1. When in the menu [923] press Next to move the cursor to the right most position.
2. Press the + key until the character U is displayed.
3. Press Next.
4. Then press the + key until S is displayed and confirm with Next.
5. Repeat until you have entered USER15.

Communication information

Modbus Instance no/DeviceNet no:	$42301-42312$
Profibus slot/index	$165 / 225-236$
EtherCAT index (hex)	$48 \mathrm{fd}-4908$
Profinet IO index	$18685-18696$
Fieldbus format	Ulnt
Modbus format	Ulnt

When sending a unit name you send one character at a time starting at the right most position.

11. Troubleshooting, Diagnoses and Maintenance

11.1 Trips, warnings and limits

In order to protect the AC drive the principal operating variables are continuously monitored by the system. If one of these variables exceeds the safety limit an error/warning message is displayed. In order to avoid any possibly dangerous situations, the inverter sets itself into a stop Mode called Trip and the cause of the trip is shown in the display.
Trips will always stop the AC drive. Trips can be divided into normal and soft trips, depending on the setup Trip Type, see menu "[250] Autoreset". Normal trips are default. For normal trips the AC drive stops immediately, i.e. the motor coasts naturally to a standstill. For soft trips the AC drive stops by ramping down the speed, i.e. the motor decelerates to a standstill.

"Normal Trip"

- The AC drive stops immediately, the motor coasts to a standstill.
- The Trip relay or output is active (if selected).
- The Trip LED is on.
- The accompanying trip message is displayed.
- The "TRP" status indication is displayed (area D of the display).
- After reset command, the trip message will disappear and menu [100] will be indicated.

"Soft Trip"

- the AC drive stops by decelerating to a standstill.

During the deceleration.

- The accompanying trip message is displayed, including an additional soft trip indicator " S " before the trip time.
- The Trip LED is flashing.
- The Warning relay or output is active (if selected).

After standstill is reached.

- The Trip LED is on.
- The Trip relay or output is active (if selected).
- The "TRP" status indication is displayed (area D of the display).
- After reset command, the trip message will disappear and menu [100] will be indicated.
Apart from the TRIP indicators there are two more indicators to show that the inverter is in an "abnormal" situation.

"Warning"

- The inverter is close to a trip limit.
- The Warning relay or output is active (if selected).
- The Trip LED is flashing.
- The accompanying warning message is displayed in window "[722] Warning".
- One of the warning indications is displayed (area F of the display).

"Limits"

- The inverter is limiting torque and/or frequency to avoid a trip.
- The Limit relay or output is active (if selected).
- The Trip LED is flashing.
- One of the Limit status indications is displayed (area D of the display).

Table 29 List of trips and warnings

Trip/ Warning messages	Selections	Trip (Normal/ Soft)	Warning indicators (Area D)
Motor $\mathrm{I}^{2} \mathrm{t}$	Trip/Off/Limit	Normal/Soft	$\mathrm{I}^{2} \mathrm{t}$
PTC	Trip/Off	Normal/Soft	
Motor PTC	On	Normal	
PT100	Trip/Off	Normal/Soft	
Motor lost	Trip/Off	Normal	
Locked rotor	Trip/Off	Normal	
Ext trip	Via Digln	Normal/Soft	
Ext Mot Temp	Via Digln	Normal/Soft	
Mon MaxAlarm	Trip/Off/Warn	Normal/Soft	
Mon MinAlarm	Trip/Off/Warn	Normal/Soft	
Comm error	Trip/Off/Warn	Normal/Soft	
CRIO Dev	Via Option	Normal	
CRIO Comm	Via Option	Normal	
Encoder	Trip/Off	Normal	
Pump	Via Option	Normal	
Over temp	On	Normal	OT
Over curr F	On	Normal	
Over volt D	On	Normal	
Over volt G	On	Normal	
Over volt	On	Normal	
Over speed	On	Normal	
Under voltage	On	Normal	LV
LC Level	Trip/Off/Warn Via Digln	Normal/Soft	LCL
Desat \#\#\# *	On	Normal	
DClink error	On	Normal	
Power Fault PF \#\#\#\# *	On	Normal	
Ovolt m cut	On	Normal	
Over voltage	Warning		VL
Safe stop	Warning		SST
Brake	Trip/Off/Warn	Normal	
OPTION	On	Normal	

*) Refer to table Table 30regarding which Desat or Power Fault is triggered.

11.2 Trip conditions, causes and remedial action

The table later on in this section must be seen as a basic aid to find the cause of a system failure and to how to solve any problems that arise. An AC drive is mostly just a small part of a complete AC drive system. Sometimes it is difficult to determine the cause of the failure, although the AC drive gives a certain trip message it is not always easy to find the right cause of the failure. Good knowledge of the complete drive system is therefore
necessary. Contact your supplier if you have any questions.
The AC drive is designed in such a way that it tries to avoid trips by limiting torque, overvolt etc.

Failures occurring during commissioning or shortly after commissioning are most likely to be caused by incorrect settings or even bad connections.

Failures or problems occurring after a reasonable period of failure-free operation can be caused by changes in the system or in its environment (e.g. wear).

Failures that occur regularly for no obvious reasons are generally caused by Electro Magnetic Interference. Be sure that the installation fulfils the demands for installation stipulated in the EMC directives. See chapter, EMC and standards.

Sometimes the so-called "Trial and error" method is a quicker way to determine the cause of the failure. This can be done at any level, from changing settings and functions to disconnecting single control cables or replacing entire drives.

The Trip Log can be useful for determining whether certain trips occur at certain moments. The Trip Log also records the time of the trip in relation to the run time counter.

WARNING!

If it is necessary to open the AC drive or any part of the system (motor cable housing, conduits, electrical panels, cabinets, etc.) to inspect or take measure-ments as suggested in this instruction manual, it is absolutely necessary to read and follow the safety instructions in the manual.

11.2.1 Technically qualified personnel

Installation, commissioning, demounting, making measurements, etc., of or at the AC drive may only be carried out by personnel technically qualified for the task.

11.2.2 Opening the AC drive

WARNING!
Always switch the mains voltage off if it is necessary to open the AC drive and wait at least 7 minutes to allow the capacitors to discharge.

WARNING!
In case of malfunctioning always check the DC-link voltage, or wait one hour after the mains voltage has been switched off, before dismantling the AC drive for repair.

The connections for the control signals and the switches are isolated from the mains voltage. Always take adequate precautions before opening the AC drive.

11.2.3 Precautions to take with a connected motor

If work must be carried out on a connected motor or on the driven machine, the mains voltage must always first be disconnected from the AC drive. Wait at least 7 minutes before continuing.

11.2.4 Autoreset Trip

If the maximum number of Trips during Autoreset has been reached, the trip message hour counter is marked with an "A".

830 OVERVOLT G
Trp A 345:45:12
Fig. 103 Autoreset trip
Fig. 103 shows the 3rd trip memory menu [830]:
Overvoltage G trip after the maximum Autoreset attempts took place after 345 hours, 45 minutes and 12 seconds of run time.

Table 30 Trip condition, their possible causes and remedial action

Trip condition	Possible Cause	Remedy	Size**
$\begin{aligned} & \text { Motor } \mathrm{I}^{2} \mathrm{t} \\ & { }_{4} \mathrm{I}^{2} \mathrm{t}^{\prime} \end{aligned}$	$1^{2} t$ value is exceeded. Overload on the motor according to the programmed I^{2} t settings.	- Check on mechanical overload on the motor or the machinery (bearings, gearboxes, chains, belts, etc.) Change the Motor I^{2} t Current setting in menu group [230]	
PTC	Motor thermistor (PTC) exceeds maximum level. NOTE: Only valid if option board PTC/ PT100 is used.	- Check on mechanical overload on the motor or the machinery (bearings, gearboxes, chains, belts, etc.) Check the motor cooling system. - Self-cooled motor at low speed, too high load. Set PTC, menu [234] to OFF	
Motor PTC	Motor thermistor (PTC) exceeds maximum level. NOTE: Only valid if [237] is enabled.	- Check on mechanical overload on the motor or the machinery (bearings, gearboxes, chains, belts, etc.) Check the motor cooling system. - Self-cooled motor at low speed, too high load. Set PTC, menu [237] to OFF	$\begin{aligned} & 008- \\ & 046 \end{aligned}$
PT100	Motor PT100 elements exceeds maximum level. NOTE: Only valid if option board PTC/ PT100 is used.	- Check on mechanical overload on the motor or the machinery (bearings, gearboxes, chains, belts, etc.) Check the motor cooling system. - Self-cooled motor at low speed, too high load. - \quad Set PT100 to OFF, menu [234]	
Motor lost	Phase loss or too great imbalance on the motor phases	- Check the motor voltage on all phases. - Check for loose or poor motor cable connections - If all connections are OK, contact your supplier - Set motor lost alarm to OFF.	
Locked rotor	Torque limit at motor standstill: - Mechanical blocking of the rotor.	- Check for mechanical problems at the motor or the machinery connected to the motor - Set locked rotor alarm to OFF.	
Ext trip	External input (Digln 1-8) active: - active low function on the input.	- Check the equipment that initiates the external input Check the programming of the digital inputs Digln 1-8	
Ext Mot Temp	External input (Digln 1-8) active: - active low function on the input.	- Check the equipment that initiates the external input Check the programming of the digital inputs Digln 1-8	
Mon MaxAlarm	Max alarm level (overload) has been reached.	- Check the load condition of the machine Check the monitor setting in section 11.4.1, page 142.	
Mon MinAlarm	Min alarm level (underload) has been reached.	- Check the load condition of the machine Check the monitor setting in section 11.4.1, page 142.	
Comm error	Error on serial communication (option)	- Check cables and connection of the serial communication. Check all settings with regard to the serial communication Restart the equipment including the AC drive	

Table 30 Trip condition, their possible causes and remedial action

Trip condition	Possible Cause	Remedy	Size**
Crane Deviat	CRANE board detecting deviation in motor operation. NOTE: Only used in Crane Control.	- Check encoder signals - Check Deviation jumper on Crane option board. - Check the settings in menus $[3 \mathrm{AB}]$ \& $[3 \mathrm{AC}]$	
CraneComm	Lost communication with CRANE board. NOTE: Only used in Crane Control.	- Check CRIO board - Check CRIO cable and signals.	
Encoder	Lost encoder board, encoder cable or encoder pulses. Motor speed deviation in between reference and measured speed detected. NOTE: Only valid if option board Encoder is used.	- Check encoder board. - Check encoder cable and signals. - Check motor operation. - Check speed deviation settings [22G\#]. - Check speed PI controller settings [37\#]. - Check torque limit setting [351] - Disable encoder, set menu [22B] to OFF.	
Pump	No master pump can be selected due to error in feedback signalling. NOTE: Only used in Pump Control.	- Check cables and wiring for Pump feedback signals Check settings with regard to the pump feedback digital inputs	
Over temp	Heatsink temperature too high: - Too high ambient temperature of the AC drive - Insufficient cooling - Too high current - Blocked or stuffed fans	- Check the cooling of the AC drive cabinet. Check the functionality of the built-in fans. The fans must switch on automatically if the heatsink temperature gets too high. At power up the fans are briefly switched on. - Check AC drive and motor rating - Clean fans	
Over curr F	Motor current exceeds the peak AC drive current: - Too short acceleration time. - Too high motor load - Excessive load change - Soft short-circuit between phases or phase to earth - Poor or loose motor cable connections - Too high IxR Compensation level	- Check the acceleration time settings and make them longer if necessary. - Check the motor load. - Check on bad motor cable connections - Check on bad earth cable connection - Check on water or moisture in the motor housing and cable connections. - Lower the level of IxR Compensation [352]	
Over volt D(eceleration)	Too high DC Link voltage: - Too short deceleration time with respect to motor/machine inertia. - Too small brake resistor malfunctioning Brake chopper	- Check the deceleration time settings and make them longer if necessary. Check the dimensions of the brake resistor and the functionality of the Brake chopper (if used)	
Over volt G(eneration)			
Over volt (Mains)	Too high DC Link voltage, due to too high mains voltage	- Check the main supply voltage - Try to take away the interference cause or use other main supply lines.	
O (ver) volt M(ains) cut			
Over speed	Motor speed measurement exceeds maximum level. 110\% of max speed (all parameter sets).	Check encoder cables, wiring and setup Check motor data setup [22x] Perform short ID-run	
Under voltage	Too low DC Link voltage: - Too low or no supply voltage - Mains voltage dip due to starting other major power consuming machines on the same line.	- Make sure all three phases are properly connected and that the terminal screws are tightened. Check that the mains supply voltage is within the limits of the AC drive. - Try to use other mains supply lines if dip is caused by other machinery - Use the function low voltage override [421]	
LC Level	Low liquid cooling level in external reservoir. External input (Digln 1-8) active: - active low function on the input. NOTE: Only valid for AC drive types with Liquid Cooling option.	- Check liquid cooling - Check the equipment and wiring that initiates the external input - Check the programming of the digital inputs Digln 1-8	

Table 30 Trip condition, their possible causes and remedial action

Trip condition	Possible Cause	Remedy	Size**
OPTION	If an Option specific trip occurs	Check the description of the specific option	
Desat	Failure in output stage, - desaturation of IGBTs - Hard short circuit between phases or phase to earth - Earth fault - Brake IGBT	Check on bad motor cable connections Check on bad earth cable connections Check on water and moisture in the motor housing and cable connections Check that the rating plate data of the motor is correctly entered. Check the brake resistor, brake IGBT and wiring.	008-046
DC link error	DC link voltage ripple exceeds maximum level	- Make sure all three phases are properly connected and that the terminal screws are tightened. - Check that the mains supply voltage is within the limits of the AC drive. - Try to use other mains supply lines if dip is caused by other machinery.	
Power Fault	One of the 10 PF (Power Fault) trips below has occured, but could not be determined.	- Check the PF errors and try to determine the cause. The trip history can be helpful.	
PF Comm Err *	Internal communication error	Contact service	
PF Int Temp *	Internal temperature too high	Check internal fans	
PF Temp Err *	Malfunction in temperature sensor	Contact service	
PF Sup Err *	Mains supply fault	- Check mains supply voltage - Check fuses and line connections.	
Brake	Brake tripped on brake fault (not released) or Brake not engaged during stop.	- Check Brake acknowledge signal wiring to selected digital input. Check programming of digital input Digln 1-8, [520]. Check circuit breaker feeding mechanical brake circuit. - Check mechanical brake if acknowledge signal is wired from brake limit switch. - Check brake contactor. - Check settings [33C], [33D], [33E], [33F].	

* $=2 \ldots 6$ Module number if parallel power units (size 300-3000 A)
${ }^{* *}=$ If no size is mentioned in this column, the information is valid for all sizes.

11.3 Maintenance

The AC drive is designed to require minimum of servicing and maintenance. There are however some things which must be checked regularly in order to optimise product life time.

- Keep the AC drive unit clean and cooling efficient (clean air inlets, heatsink profile, parts, components, etc)
- There is an internal fan that should be inspected and cleaned from dust if necessary.
- If AC drives are built into cabinets, also check and clean the dust filters of the cabinets regularly.
- Check external wiring, connections and control signals.
- Check tightening of all terminal screws regularly, especially important are power and motor cable connections
Preventive maintenance can optimise the product life time and secure trouble free operation without interruptions.

For more information on maintenance, please contact your CG Drives \& Automation service partner.

Precautions to take with a connected motor

NOTE: Refer to motor manufacturers instruction manual for motor maintenance requirements.

If work must be carried out on a connected motor or on the driven machine, the mains voltage must always first be disconnected from the drive unit.

12. Options

The standard options available are described here briefly. Some of the options have their own instruction or installation manual. For more information please contact your supplier. See also in "Technical catalogue AC drives" for more info.

12.1 Handheld Control Panel 2.0

Part number	Description
01-5039-00	Handheld Control Panel 2.0 complete for FDU/VFX2.0 or CDU/CDX 2.0

The Handheld Control Panel - HCP 2.0 is a complete control panel, easy to connect to the AC drive, for temporary use when e.g. commissioning, servicing and so on.

The HCP has full functionality including memory. It is possible to set parameters, view signals, actual values, fault logger information and so on. It is also possible to use the memory to copy all data (such as parameter set data and motor data) from one AC drive to the HCP and then load this data to other AC drives

12.2 Gland kits

Gland kits are available for frame sizes B and C.
Metal EMC glands are used for motor and brake resistor cables.

Part Number	Current (dimension)	Frame size
$01-4399-03$	$7.5-18 \mathrm{~A}(\mathrm{M} 16-\mathrm{M} 25)$	B^{*}
$01-4601-23$	$13-18 \mathrm{~A}(\mathrm{M} 16-\mathrm{M} 32)$	$\mathrm{B}^{* *}$
$01-4399-02$	$26-46 \mathrm{~A}(\mathrm{M} 12-\mathrm{M} 40)$	C

* For Model 008 to 018 with cable entry /outlets on long side.
** For Model 008 to 018 with cable entry /outlets on short side.

12.3 EmoSoftCom

EmoSoftCom is an optional software that runs on a personal computer. It can also be used to load parameter settings from the AC drive to the PC for backup and printing. Recording can be made in oscilloscope mode. Please contact CG Drives \& Automation sales for further information.

12.4 Brake chopper

AC drives with cable inlet on short side can be fitted with an optional built-in brake chopper. The brake resistor must be mounted outside the AC drive. The choice of the resistor depends on the application switch-on duration and dutycycle. This option can not be after mounted.

WARNING!

The table gives the minimum values of the brake resistors. Do not use resistors lower than this value. The AC drive can trip or even be damaged due to high braking currents.

The following formula can be used to define the power of the connected brake resistor:

$$
P_{\text {resistor }}=\frac{\left(\text { Brake level } V_{\mathrm{DC}}\right)^{2}}{R_{\min }} \times \mathrm{ED}
$$

Where:
$P_{\text {resistor }}$ required power of brake
resistor
Brake level VDCDC brake voltage level (see Table 31)
Rminminimum allowable brake resistor
(see Table 32, Table 33

EDeffective braking period. Defined as:

$$
\mathrm{ED}=\frac{\mathrm{t}_{\mathrm{br}}}{120[\mathrm{~s}]}
$$

$t_{b r}$ Active braking time at nominal braking power during a 2 minute operation cycle.

Maximum value of $\mathrm{ED}=1$, meaning continuous braking.
Table 31

Supply voltage $\left(\mathrm{V}_{\mathrm{AC}}\right)$ (set in menu $[21 \mathrm{~B}]$	Brake level ($\left.\mathrm{V}_{\mathrm{DC}}\right)$
$220-240$	380
$380-415$	660
$440-480$	780
$500-525$	860

Table 32 Brake resistor CDX48 V types

Type	Rmin $[0 h m] ~ i f$ supply $380-415$ $V_{A C}$	Rmin [ohm] if supply 440-480 $V_{A C}$
CDX48-008	43	50
-010	43	50
-013	43	50
-018	43	50
-026	26	30
-031	26	30
-037	17	20
-046	17	20

Table 33 Brake resistor CDX52 V types

Type	Rmin [ohm] if supply 440-480 V_{AC}	Rmin [ohm] if supply 500-525 $V_{\text {AC }}$
CDX52- 008	50	55
-010	50	55
-013	50	55
-018	50	55
-026	30	32
-031	30	32
-037	20	22
-046	20	22

NOTE: Although the AC drive will detect a failure in the brake electronics, the use of resistors with a thermal overload which will cut off the power at overload is strongly recommended.

The brake chopper option is built-in by the manufacturer and must be specified when the AC drive is ordered.

12.5 I/ O Board

Part number	Description
01-3876-01	I/O option board 2.0

Each I/O option board 2.0 provides three extra relay outputs and three extra isolated digital inputs (24V). The I/O Board works in combination with the Pump/Fan Control, but can also be used as a separate option. Maximum 3 I/O boards possible. This option is described in a separate manual.

12.6 Encoder

Part number	Description
01-3876-03	Encoder 2.0 option board

The Encoder 2.0 option board, used for connection of feedback signal of the actual motor speed via an incremental encoder is described in a separate manual. For Emotron FDU this function is for speed read-out only or for spin start function. No speed control.

12.7 PTC/ PT100

Part number	Description
01-3876-08	PTC/PT100 2.0 option board

The PTC/PT100 2.0 option board for connecting motor thermistors and max 3 PT100 elements to the AC drive is described in a separate manual.

12.8 Crane option board

Part number	Description
590059	Crane interface board, $230 \mathrm{~V}_{\mathrm{AC}}$
590060	Crane interface board, $24 \mathrm{~V}_{\mathrm{DC}}$

This option is used in crane applications. The crane option board 2.0 is described in a separate manual.

12.9 Serial communication and fieldbus

Part number	Description	From CDXsoftware version (see menu [922])
$01-3876-04$	RS232/485	4.0
$01-3876-05$	Profibus DP	4.0
$01-3876-06$	DeviceNet	4.0
01-3876-09	Modbus/TCP, Industrial Ethernet	4.11
01-3876-10	EtherCAT, Industrial Ethernet	4.32
01-3876-11	Profinet IO, one port Industrial Ethernet	4.32
01-3876-12	Profinet IO, two port Industrial Ethernet	4.32
01-3876-13	EtherNet/IP, two port industrial EtherNet	4.36

For communication with the AC drive there are several option boards for communication. There are different options for Fieldbus communication and one serial communication option with RS232 or RS485 interface which has galvanic isolation.

12.10 Standby supply board option

Part number	Description
01-3954-00	Standby power supply kit for after mounting. Not for frame sizes D \& D2

The standby supply board option provides the possibility of keeping the communication system up and running without having the 3 -phase mains connected. One advantage is that the system can be set up without mains power. The option will also give backup for communication failure if main power is lost.
The standby supply board option is supplied with external $\pm 10 \% 24 \mathrm{~V}_{\mathrm{DC}}$ protected by a 2 A slow acting fuse, from a double isolated transformer. The terminals $\mathrm{X} 1: 1, \mathrm{X} 1: 2$ are voltage polarity independent.

Fig. 104 Connection of standby supply option .

X1 terminal	Name	Function	Specification
1	Ext. supply 1	External, AC drive main power independent, supply voltage for control and communication circuits	$24 \mathrm{~V}_{\mathrm{DC}}$ or V_{AC} $\pm 10 \%$ Double isolated
2	Ext. supply		

12.11 Safe Stop option

To realize a Safe Stop configuration in accordance with Safe Torque Off (STO) EN-IEC 62061:2005 SIL 3 \& EN-ISO 13849-1:2006, the following three parts need to be attended to:

1. Inhibit trigger signals with safety relay K1 (via Safe Stop option board).
2. Enable input and control of AC drive (via normal I/O control signals of AC drive).
3. Power conductor stage (checking status and feedback of driver circuits and IGBT's).
To enable the AC drive to operate and run the motor, the following signals should be active:

- "Inhibit" input, terminals 1 (DC+) and 2 (DC-) on the Safe Stop option board should be made active by connecting $24 \mathrm{~V}_{\mathrm{DC}}$ to secure the supply voltage for the driver circuits of the power conductors via safety relay K1. See also Fig. 107.
- High signal on the digital input, e.g. terminal 10 in Fig. 107, which is set to "Enable". For setting the digital input please refer to section 10.5 .2 , page 132 .

These two signals need to be combined and used to enable the output of the AC drive and make it possible to activate a Safe Stop condition.

NOTE: The "Safe Stop" condition according to EN-IEC 62061:2005 SIL 3 \& EN-ISO 13849-1:2006, can only be realized by de-activating both the "Inhibit" and "Enable" inputs.

When the "Safe Stop" condition is achieved by using these two different methods, which are independently controlled, this safety circuit ensures that the motor will not start running because:

- The 24 VDC signal is disconnected from the "Inhibit" input, terminals 1 and 2 , the safety relay K 1 is switched off.

The supply voltage to the driver circuits of the power conductors is switched off. This will inhibit the trigger pulses to the power conductors.

- The trigger pulses from the control board are shut down.

The Enable signal is monitored by the controller circuit which will forward the information to the PWM part on the Control board.
To make sure that the safety relay K1 has been switched off, this should be guarded externally to ensure that this relay did not refuse to act. The Safe Stop option board offers a feedback signal for this via a second forced switched safety relay K2 which is switched on when a detection circuit has confirmed that the supply voltage to the driver circuits is shut down. See Table 34 for the contacts connections.

To monitor the "Enable" function, the selection "RUN" on a digital output can be used. For setting a digital output, e.g. terminal 20 in the example Fig. 107, please refer to section 10.5.4, page 138 [540].

When the "Inhibit" input is de-activated, the AC drive display will show a flashing "SST" indication in section D (bottom left corner) and the red Trip LED on the Control panel will be flashing.
To resume normal operation, the following steps have to be taken:

- Release "Inhibit" input; $24 \mathrm{~V}_{\mathrm{DC}}$ (High) to terminal 1 and 2.
- Give a STOP signal to the AC drive, according to the set Run/Stop Control in menu [215].
- Give a new Run command, according to the set Run/ Stop Control in menu [215].

NOTE: The method of generating a STOP command is dependent on the selections made in Start Signal Level/ Edge [21A] and the use of a separate Stop input via digital input.

WARNING!

The safe stop function can never be used for electrical maintenance. For electrical maintenance the AC drive should always be disconnected from the supply voltage.

Fig. 105 Connection of safe stop option in size B.
Fig. 106

Table 34 Specification of Safe Stop option board

X1 pin	Name	Function	Specification
1	Inhibit +	Inhibit driver circuits of power conductors	DC 24 V $(20-30 \mathrm{~V})$
2	Inhibit -		NO contact relay K2
4	P contact relay K2	Feedback; confirmation activated inhibit	$48 \mathrm{~V}_{\mathrm{DC}} /$ $30 \mathrm{~V}_{\mathrm{AC}} / 2 \mathrm{~A}$
5	GND	Supply ground	
6	+24 VDC	Supply Voltage for operating Inhibit input only.	$+24 \mathrm{~V}_{\mathrm{DC}}$, 50 mA

Fig. 107 Safe Stop connection

12.12 EMC filter class C1/ C2

EMC filter according to EN61800-3:2004 class C1 (for frame size C types) and C2-1st environment restricted distribution.
For sizes B , and C , the filter is mounted inside the drive module.
Note: EMC filter according to class C3-2nd environment included as standard in all drive units.

12.13 Other options

Following options are also available, for more information regarding these options, see in "Technical catalogue AC drives".

Brake resistors

13. Technical Data

13.1 Electrical specifications related to model

Table 35 Typical motor power at mains voltage 400 V

Model	Max. output current [A]*	Normal duty (120%, 1 min every 10 min)		Heavy duty (150%, 1 min every 10 min)		Frame size
		Power @400V [kW]	Rated current [A]	Power @400V [kW]	Rated current [A]	
CDX48-008	9.0	3	7.5	2.2	6.0	B
CDX48-010	11.4	4	9.5	3	7.6	
CDX48-013	15.6	5.5	13.0	4	10.4	
CDX48-018	21.6	7.5	18.0	5.5	14.4	
CDX48-026	31	11	26	7.5	21	C
CDX48-031	37	15	31	11	25	
CDX48-037	44	18.5	37	15	29.6	
CDX48-046	55	22	46	18.5	37	

* Available during limited time and as long as allowed by drive temperature.

Table 36 Typical motor power at mains voltage 460 V

Model	Max. output current [A]*	Normal duty (120\%, 1 min every 10 min)		Heavy duty (150%, 1 min every 10 min)		Frame size
		Power @460V [hp]	Rated current [A]	Power @460V [hp]	Rated current [A]	
CDX48-008	9.0	3	7.5	3	6.0	B
CDX48-010	11.4	5	9.5	3	7.6	
CDX48-013	15.6	7.5	13.0	5	10.4	
CDX48-018	21.6	10	18.0	7.5	14.4	C
CDX48-026	31	15	26	10	21	
CDX48-031	37	20	31	15	25	
CDX48-037	46	25	37	20	29.6	
CDX48-046	55	30	46	25	37	

[^2]Table 37 Typical motor power at mains voltage 525 V

Model	Max. output current [A]*	Normal duty (120\%, 1 min every 10 min)		Heavy duty (150\%, 1 min every 10 min)		Frame size
		Power @525V [kW]	Rated current [A]	Power @525V [kW]	Rated current [A]	
CDX52-008	9.0	4	7.5	3	6.0	B
CDX52-010	11.4	5.5	9.5	4	7.6	
CDX52-013	15.6	7.5	13.0	5.5	10.4	
CDX52-018	21.6	11	18.0	7.5	14.4	
CDX52-026	31	15	26	11	21	C
CDX52-031	37	18.5	31	15	25	
CDX52-037	44	22	37	18.5	29.6	
CDX52-046	55	30	46	22	37	

* Available during limited time and as long as allowed by drive temperature.

13.2 General electrical specifications

Table 38 General electrical specifications

General

Mains voltage: CDX48	$230-480 \mathrm{~V}+10 \% /-15 \% ~(-10 \%$ at 230 V)
Mains frequency:	$440-525 \mathrm{~V}+10 \% /-15 \%$
Input power factor:	45 to 65 Hz
Output voltage:	0.95
Output frequency:	$0-$ Mains supply voltage:
Output switching frequency:	$0-400 \mathrm{~Hz}$
Efficiency at nominal load:	3 kHz (adjustable $1,5-6 \mathrm{kHz}$)
	97% for models 008 to 018
	98% for models 026 to 046

Control signal inputs:
Analogue (differential)

Analogue Voltage/current: Max. input voltage: Input impedance: Resolution: Hardware accuracy: Non-linearity	$\begin{aligned} & \hline 0- \pm 10 \mathrm{~V} / 0-20 \mathrm{~mA} \text { via switch } \\ & +30 \mathrm{~V} / 30 \mathrm{~mA} \\ & 20 \mathrm{k} \Omega \text { (voltage) } \\ & 250 \Omega \text { (current) } \\ & 11 \text { bits + sign } \\ & 1 \% \text { type }+11 / 2 \mathrm{LSB} \text { fsd } \\ & 11 / 2 \mathrm{LSB} \end{aligned}$
Digital:	
Input voltage: Max. input voltage: Input impedance: Signal delay:	$\begin{aligned} & \text { High: >9 } \mathrm{V}_{\mathrm{DC}}, \text { Low: }<4 \mathrm{~V}_{\mathrm{DC}} \\ & +30 \mathrm{~V}_{\mathrm{DC}} \\ & <3.3 \mathrm{~V}_{\mathrm{DC}}: 4.7 \mathrm{k} \Omega \\ & \geq 3.3 \mathrm{~V}_{\mathrm{DC}}: 3.6 \mathrm{k} \Omega \\ & \leq 8 \mathrm{~ms} \end{aligned}$
Control signal outputs Analogue	
Output voltage/current: Max. output voltage: Short-circuit current (∞): Output impedance: Resolution: Maximum load impedance for current Hardware accuracy: Offset: Non-linearity:	```0-10 V/0-20 mA via software setting +15 V @5 mA cont. +15 mA (voltage), +140 mA (current) 10\Omega (voltage) 10 bit 500\Omega 1.9% type fsd (voltage), 2.4% type fsd (current) 3 LSB 2 LSB```
Digital	
Output voltage: Shortcircuit current(∞):	High: >20 $\mathrm{V}_{\mathrm{DC}} @ 50 \mathrm{~mA},>23 \mathrm{~V}_{\mathrm{DC}}$ open Low: <1 V $\mathrm{V}_{\mathrm{DC}} @ 50 \mathrm{~mA}$ 100 mA max (together with $+24 \mathrm{~V}_{\mathrm{DC}}$)
Relays	
Contacts	$0.1-2 \mathrm{~A} / \mathrm{U}_{\max } 250 \mathrm{~V}_{\mathrm{AC}}$ or $42 \mathrm{~V} \mathrm{~V}^{\text {d }}$
References	
$\begin{aligned} & +10 V_{D C} \\ & -10 V_{D C} \\ & +24 V_{D C} \end{aligned}$	$\begin{aligned} & +10 \mathrm{~V}_{\mathrm{DC}} @ 10 \mathrm{~mA} \text { Short-circuit current }+30 \mathrm{~mA} \text { max } \\ & -10 \mathrm{~V}_{\mathrm{DC}} @ 10 \mathrm{~mA} \\ & +24 \mathrm{~V}_{\mathrm{DC}} \text { Short-circuit current }+100 \mathrm{~mA} \text { max (together with Digital Outputs) } \end{aligned}$

13.3 Operation at higher temperatures

Most Emotron variable speed drives are made for operation at maximum of $40^{\circ} \mathrm{C}$ ambient temperature. However, it is possible to use the AC drive at higher temperatures with little loss in performance. Table 39 shows ambient temperatures as well as derating for higher temperatures.

Table 39 Ambient temperature and derating 400-525 V types

IP55	
Max temp.	Derating: possible
$40^{\circ} \mathrm{C}$	$-2.5 \% /{ }^{\circ} \mathrm{C}$ to $\max +10^{\circ} \mathrm{C}\left(50{ }^{\circ} \mathrm{C}\right)$

Example

In this example we have a motor with the following data that we want to run at the ambient temperature of $45^{\circ} \mathrm{C}$:

Voltage	400 V
Current	29 A
Power	15 kW

Select variable speed drive

The ambient temperature is $5^{\circ} \mathrm{C}$ higher than the maximum ambient temperature. The following calculation is made to select the correct AC drive model.
Derating is possible with loss in current capacity of $2.5 \% /{ }^{\circ} \mathrm{C}$.

Derating will be: $5 \times 2.5 \%=12.5 \%$
Calculation for model CDX 48-031:
$31 \mathrm{~A}-(12.5 \% \times 31)=27.1 \mathrm{~A}$; this is not enough.
Calculation for model CDX 48-037
$37 \mathrm{~A}-(12.5 \% \times 37)=32.4 \mathrm{~A}$
In this example we select the CDX 48-037.

NOTE: For higher switching frequency, contact Emotron.

13.4 Dimensions and Weights

The table below gives an overview of the dimensions and weights. Protection class IP55 is according to the EN 60529 standard

Table 40 Mechanical specifications, CDX48/52

Models	Frame size	$\operatorname{Dim} . \mathrm{W}$ W $\times \mathrm{D}[\mathrm{mm}]$	Weight $[\mathrm{kg}]$
008 to 018	B	$351 \times 203 \times 200$	$12,5 *$
026 to 046	C	$445 \times 290 \times 188$	$24 *$

* Weight without motor and adapter plate.

Fig. 108 CDX48/52: Model $008-018$ (B)

Fig. 109 CDX48/52: Model 026-046 (C)

13.5 Environmental conditions

Table 41 Operation

Parameter	Normal operation
Nominal ambient temperature	$0^{\circ} \mathrm{C}-40^{\circ} \mathrm{C}$ See table, see Table 39 for different conditions
Atmospheric pressure	$86-106 \mathrm{kPa}$
Relative humidity according to IEC 60721-3-3	Class 3K4, 5...95\% and non condensing
Contamination, according to IEC 60721-3-3	No electrically conductive dust allowed. Cooling air must be clean and free from corrosive materials. Chemical gases, class 3C2. Solid particles, class 3S2.
Vibrations	According to IEC 60721-3-3, class 3 M7, Sinusodial vibrations: $\bullet 2-9 ~ H z, ~ m a x ~ d i s p l a c e m e n t ~ a m p l i t u d e ~ o f ~$ $\bullet 9-200 \mathrm{mz}$ Altitude max acceleration amplitude of $30 \mathrm{~m} / \mathrm{s}^{2}$

Table 42 Storage

Parameter	Storage condition
Temperature	-20 to $+60^{\circ} \mathrm{C}$
Atmospheric pressure	$86-106 \mathrm{kPa}$
Relative humidity according to IEC 60721-3-1	Class $1 \mathrm{K4}$, max. 95% and non condensing and no formation of ice.

13.6 Fuses, cable cross-sections and glands

13.6.1 According to IEC ratings

Use mains fuses of the type $\mathrm{gL} / \mathrm{gG}$ conforming to IEC 269 or installation cut-outs with similar characteristics. Check the equipment first before installing the glands.

Max. Fuse = maximum fuse value that still protects the AC drive and upholds warranty.

NOTE: The dimensions of fuse and cable cross-section are dependent on the application and must be determined in accordance with local regulations.

Table 43 Fuses, cable cross-sections and glands

Model	Nominal input current [A]	Maximum value fuse [A]	Cable cross section connector range [mm^{2}] for			Cable glands (clamping range [mm])	
			mains	Brake	PE	mains	Brake*
$\begin{aligned} & \text { CDX**-008 } \\ & \text { CDX**-010 } \end{aligned}$	$\begin{aligned} & 6.9 \\ & 8.7 \end{aligned}$	$\begin{gathered} 8 \\ 10 \end{gathered}$	0.5-10	0.5-10	1.5-16	M32 (12-20)	M25 (10-14)
$\begin{aligned} & \text { CDX**-013 } \\ & \text { CDX**-018 } \end{aligned}$	$\begin{aligned} & \hline 11.3 \\ & 15.6 \end{aligned}$	$\begin{aligned} & 16 \\ & 20 \end{aligned}$				M32 (16-25)	
CDX**-026	22	25	2.5-16	2.5-16	6-35	M32 (15-21)	M25
CDX**-031	26	35					
CDX**-037	31	35				M40 (19-28)	M32
CDX**-046	38	50					

* Brake output only available if the AC drive is ordered with cable entry/exit at short end.

Note: Cable glands are optional.

13.6.2 Fuses and cable dimensions according to NEMA ratings

Table 44 Types and fuses

Model	$\begin{array}{c}\text { Input } \\ \text { current } \\ \text { [Arms] }\end{array}$	{$\begin{array}{c}\text { Mains input fuses } \\$	
Class J TD (A)			\(\left.\begin{array}{c}Ferraz-Shawmut

type\end{array}\right]\)

13.7 Control signals

Table 45

Terminal X1	Name:	Function (Default):	Signal:	Type:
1	+10 V	+10 VDC Supply voltage	+10 VDC, max 10 mA	output
2	AnIn1	Process reference	$\begin{array}{\|l\|} \hline 0-10 \text { VDC or } 0 / 4-20 \mathrm{~mA} \\ \text { bipolar: }-10-+10 \text { VDC or }-20-+20 \mathrm{~mA} \end{array}$	analogue input
3	AnIn2	Off	$0-10$ VDC or $0 / 4-20 \mathrm{~mA}$ bipolar: $-10-+10$ VDC or $-20-+20 \mathrm{~mA}$	analogue input
4	AnIn3	Off	$\begin{array}{\|l\|} \hline 0-10 \text { VDC or } 0 / 4-20 \mathrm{~mA} \\ \text { bipolar: }-10-+10 \mathrm{VDC} \text { or }-20-+20 \mathrm{~mA} \end{array}$	analogue input
5	AnIn4	Off	$\begin{array}{\|l\|} \hline 0-10 \text { VDC or } 0 / 4-20 \mathrm{~mA} \\ \text { bipolar: }-10-+10 \mathrm{VDC} \text { or }-20-+20 \mathrm{~mA} \end{array}$	analogue input
6	-10 V	-10VDC Supply voltage	-10 VDC, max 10 mA	output
7	Common	Signal ground	OV	output
8	Digln 1	RunL	0-8/24 VDC	digital input
9	Digln 2	RunR	0-8/24 VDC	digital input
10	Digln 3	Off	0-8/24 VDC	digital input
11	+24 V	+24VDC Supply voltage	+24 VDC, 100 mA	output
12	Common	Signal ground	0 V	output
13	AnOut 1	Min speed to max speed	$0 \pm 10 \mathrm{VDC}$ or $0 / 4-+20 \mathrm{~mA}$	analogue output
14	AnOut 2	0 to max torque	$0 \pm 10 \mathrm{VDC}$ or $0 / 4-+20 \mathrm{~mA}$	analogue output
15	Common	Signal ground	0 V	output
16	Digln 4	Off	0-8/24 VDC	digital input
17	Digln 5	Off	0-8/24 VDC	digital input
18	Digln 6	Off	0-8/24 VDC	digital input
19	Digln 7	Off	0-8/24 VDC	digital input
20	DigOut 1	Ready	24 VDC, 100 mA	digital output
21	DigOut 2	Brake	24 VDC, 100 mA	digital output
22	Digln 8	RESET	0-8/24 VDC	digital input
Terminal X2				
31	N/C 1	Relay 1 output Trip, active when the AC drive is in a TRIP condition N / C is opened when the relay is active (valid for all relays) N / O is closed when the relay is active (valid for all relays)	potential free change over $0.1-2 \mathrm{~A} / \mathrm{U}_{\max } 250 \mathrm{VAC}$ or 42 VDC	relay output
32	COM 1			
33	N/O 1			
41	N/C 2	Relay 2 Output Run, active when the AC drive is started	potential free change over$0.1-2 \mathrm{~A} / \mathrm{U}_{\max } 250 \mathrm{VAC} \text { or } 42 \mathrm{VDC}$	relay output
42	COM 2			
43	N/O 2			
Terminal X3				
51	COM 3	Relay 3 Output Off	potential free change over$0.1-2 \mathrm{~A} / \mathrm{U}_{\max } 250 \mathrm{VAC} \text { or } 42 \mathrm{VDC}$	relay output
52	N/O 3			

NOTE: Possible potentiometer value in range of 1 kOhm to 10 kOhm ($1 / 4 \mathrm{Watt}$) linear, where we advice to use a linear 1
$\mathrm{kOhm} / 1 / 4 \mathrm{~W}$ type potentiometer for best control linearity..

14. Menu List for Hand held Control Panel 2.0

On our home page in the download area, you could find a "Communication information" list and a list to note Parameter set information .

			Factory setting	Customer	Page
	245	Load from CP	No Copy		
250	Autoreset				70
	251	No of Trips	0		
	252	Overtemp	Off		
	253	Overvolt D	Off		
	254	Overvolt G	Off		
	255	Overvolt	Off		
	256	Motor Lost	Off		
	257	Locked Rotor	Off		
	258	Power Fault	Off		
	259	Undervoltage	Off		
	25A	Motor $\mathrm{I}^{2} \mathrm{t}$	Off		
	25B	Motor $\mathrm{I}^{2} \mathrm{t}$ TT	Trip		
	25C	PT100	Off		
	25D	PT100 TT	Trip		
	25E	PTC	Off		
	25 F	PTC TT	Trip		
	25G	Ext Trip	Off		
	25 H	Ext Trip TT	Trip		
	251	Com Error	Off		
	25J	Com Error TT	Trip		
	25K	Min Alarm	Off		
	25L	Min Alarm TT	Trip		
	25M	Max Alarm	Off		
	25N	Max Alarm TT	Trip		
	250	Over curr F	Off		
	25P	Pump	Off		
	25Q	Over speed	Off		
	25R	Ext Mot Temp	Off		
	25 S	Ext Mot TT	Trip		
	25T	LC Level	Off		
	25 U	LC Level TT	Trip		
	25 V	Brk Fault	Off		
	25W	Encoder	Off		
	25X	Crane Deviat	Off		
	25Y	Crane Comm	Off		
260	Serial Com				79
	261	Com Type	RS232/485		
262	RS232/485				79
	2621	Baudrate	9600		
	2622	Address	1		
263	Fieldbus				80
	2631	Address	62		
	2632	PrData Mode	Basic		
	2633	Read/Write	RW		
	2634	AddPrValue	0		
264	Comm Fault				81
	2641	ComFlt Mode	Off		
	2642	ComFIt Time	0.5 s		
265	Ethernet				81
	2651	IP Address	0.0.0.0		
	2652	MAC Address	000000000000		
	2653	Subnet Mask	0.0.0.0		
	2654	Gateway	0.0.0.0		
	2655	DHCP	Off		
266	FB Signal				82
	2661	FB Signal 1	0		
	2662	FB Signal 2	0		

				Factory setting	Customer	Page
		2663	FB Signal 3	0		
		2664	FB Signal 4	0		
		2665	FB Signal 5	0		
		2666	FB Signal 6	0		
		2667	FB Signal 7	0		
		2668	FB Signal 8	0		
		2669	FB Signal 9	0		
		266A	FB Signal 10	0		
		266B	FB Signal 11	0		
		266C	FB Signal 12	0		
		266D	FB Signal 13	0		
		266E	FB Signal 14	0		
		266F	FB Signal 15	0		
		266G	FB Signal 16	0		
		269	FB Status			
300 Proce 310 320						83
		Set/View ref		Orpm		
		Proc Setting				83
		321	Proc Source	Speed		
		322	Proc Unit	rpm		
		323	User Unit	0		
		324	Process Min	0		
		325	Process Max	0		
		326	Ratio	Linear		
		327	F(Val) PrMin	Min		
		328	F(Val) PrMax	Max		
330		Start/Stop				88
		331	Acc Time	10.00s		
		332	Dec Time	10.00s		
		333	Acc MotPot	16.00s		
		334	Dec MotPot	16.00s		
		335	Acc>Min Spd	10.00s		
		336	Dec<Min Spd	10.00s		
		337	Acc Rmp	Linear		
		338	Dec Rmp	Linear		
		339	Start Mode	Normal DC		
		33A	Spinstart	Off		
		33B	Stop Mode	Decel		
		33C	Brk Release	0.00s		
		33D	Release Spd	Orpm		
		33E	Brk Engage	0.00s		
		33F	Brk Wait	0.00s		
		33G	Vector Brake	Off		
		33H	Brk Fault	1.00s		
		331	Release Torque	0\%		
340		Speed				96
		341	Min Speed	Orpm		
		342	Stp<MinSpd	Off		
		343	Max Speed	Sync Speed		
		344	SkipSpd 1 Lo	Orpm		
		345	SkipSpd 1 Hi	Orpm		
		346	SkipSpd 2 Lo	Orpm		
		347	SkipSpd 2 Hi	Orpm		
		348	Jog Speed	50rpm		
	350	Torques				99
		351	Max Torque	120\%		
		352	IxR Comp	Off		
		353	IxR CompUsr	0\%		

			Factory setting	Customer	Page
	354	Flux optim	Off		
	355	Max Power	Off		
360	Preset Ref				101
	361	Motor Pot	Non Volatile		
	362	Preset Ref 1	0 rpm		
	363	Preset Ref 2	250 rpm		
	364	Preset Ref 3	500 rpm		
	365	Preset Ref 4	750 rpm		
	366	Preset Ref 5	1000 rpm		
	367	Preset Ref 6	1250 rpm		
	368	Preset Ref 7	1500 rpm		
	369	Keyb Ref	Mot Pot		
370	Spd Ctrl PI				102
	371	Spd PI Auto	Off		
	372	Spd P Gain			
	373	Spd I Time			
380	ProcCtrIPID				103
	381	PID Control	Off		
	382	PID Autotune	Off		
	383	PID P Gain	1.0		
	384	PID I Time	1.00s		
	385	PID D Time	0.00s		
	386	PID<MinSpd	Off		
	387	PID Act Marg	0		
	388	PID Stdy Tst	Off		
	389	PID Stdy Mar	0		
390	Pump/Fan Ctrl				107
	391	Pump enable	Off		
	392	No of Drives	2		
	393	Select Drive	Sequence		
	394	Change Cond	Both		
	395	Change Timer	50h		
	396	Drives on Ch	0		
	397	Upper Band	10\%		
	398	Lower Band	10\%		
	399	Start Delay	Os		
	39A	Stop Delay	Os		
	39B	Upp Band Lim	0\%		
	39C	Low Band Lim	0\%		
	39D	Settle Start	Os		
	39E	TransS Start	60\%		
	39F	Settle Stop	Os		
	39G	TransS Stop	60\%		
	39H	Run Time 1	00:00:00		
	39H1	Rst Run Tm1	No		
	391	Run Time 2	00:00:00		
	3911	Rst Run Tm2	No		
	39J	Run Time 3	00:00:00		
	39J1	Rst Run Tm3	No		
	39K	Run Time 4	00:00:00		
	39K1	Rst Run Tm4	No		
	39L	Run Time05	00:00:00		
	39L1	Rst Run Tm5	No		
	39M	Run Time 6	00:00:00		
	39M1	Rst Run Tm6	No		
	39N	Pump 123456			
	39P	No of Backup	0		
3A0	Crane Option				113

			Factory setting	Customer	Page
	5133	Anln1 Bipol	$\begin{aligned} & \hline 10.00 \mathrm{~V} / \\ & 20.00 \mathrm{~mA} \end{aligned}$		
	5134	Anln1 FcMin	Min		
	5135	AnIn1 ValMin	0		
	5136	AnIn1 FcMax	Max		
	5137	Anln1 ValMax	0		
	5138	Anln1 Oper	Add+		
	5139	Anln1 Filt	0.1s		
	513A	AnIn1 Enabl	On		
	514	Anln2 Fc	Off		128
	515	Anln2 Setup	4-20mA		
	516	AnIn2 Advan			128
	5161	AnIn2 Min	4 mA		
	5162	Anln2 Max	20.00 mA		
	5163	AnIn2 Bipol	20.00 mA		
	5164	AnIn2 FcMin	Min		
	5165	AnIn2 ValMin	0		
	5166	Anln2 FcMax	Max		
	5167	AnIn2 ValMax	0		
	5168	Anln2 Oper	Add+		
	5169	AnIn2 Filt	0.1s		
	516A	Anln2 Enabl	On		
	517	AnIn3 Fc	Off		129
	518	AnIn3 Setup	4-20mA		
	519	AnIn3 Advan			
	5191	Anln3 Min	4 mA		
	5192	Anln3 Max	20.00 mA		
	5193	AnIn3 Bipol	20.00 mA		
	5194	AnIn3 FcMin	Min		
	5195	AnIn3 ValMin	0		
	5196	Anln3 FcMax	Max		
	5197	AnIn3 ValMax	0		
	5198	Anln3 Oper	Add+		
	5199	AnIn3 Filt	0.1s		
	519A	AnIn3 Enabl	On		
	51A	AnIn4 Fc	Off		129
	51B	AnIn4 Setup	4-20mA		
	51C	AnIn4 Advan			
	51C1	Anln4 Min	4 mA		
	51C2	AnIn4 Max	20.00 mA		
	51C3	AnIn4 Bipol	20.00 mA		
	51C4	AnIn4 FcMin	Min		
	51C5	Anln4 ValMin	0		
	51C6	Anln4 FcMax	Max		
	$51 \mathrm{C7}$	AnIn4 ValMax	0		
	51C8	AnIn4 Oper	Add+		
	51C9	Anln4 Filt	0.1s		
	51CA	AnIn4 Enabl	On		
520	Dig Inp				130
	521	Digln 1	RunL		
	522	Digln 2	RunR		
	523	Digln 3	Off		
	524	Digln 4	Off		
	525	Digln 5	Off		
	526	Digln 6	Off		
	527	Digln 7	Off		
	528	Digln 8	Reset		
	529	B(oard)1 Digln 1	Off		

A
Abbreviations 11
Acceleration
88, 90
Acceleration ramp 90
Acceleration time 88
Ramp type 90
Alarm trip 117
Ambient temperature and derating 190
Analogue comparators 141
Analogue input 123
AnIn1 123
AnIn2 128, 129
Offset 124, 133
Analogue Output 132, 135, 194
AnOut 1 132, 135
Output configuration 133, 136
AND operator 151
AnIn2 .. 128
AnIn3 .. 129
AnIn4 .. 130
Autoreset2, 30, 70, 175
Autotune 102

B

Baudrate44, 79, 80
Brake chopper 181
Brake function93, 94
Bake release time 93
Brake .. 94
Brake Engage Time 94
Brake wait time 94
Release speed 94
Vector Brake 94
Brake functions
Frequency 123
Brake resistors 181

C

Cable cross-section 192
Cable specifications 16
CE-marking 10
Change Condition 108
change sign of a value 42, 44
Clockwise rotary field 130
Com Type 79
Comparators 141
Connecting control signals 22
Connections
Control signal connections 22
Control Panel memory 33
Copy all settings to Control
Panel
... 69
Frequency 123
Control signal connections 22
Control signals20, 23
Edge-controlled30, 57
Level-controlled30, 57
Counter-clockwise rotary field 130
Current 20
Current control ($0-20 \mathrm{~mA}$) 24
D
DC-link residual voltage 2
Deceleration 88
Deceleration time 88
Ramp type 91
Declaration of Conformity 10
Default 69
Definitions 11
Derating 190
DeviceNet 47
Digital comparators 141
Digital inputs
Board Relay 139
DigIn 1 130
DigIn 2 131
DigIn 3 132
Dismantling and scrapping 11
Display 40
Double-ended connection 23
Drive mode 54
Frequency 23
E
Edge control 30, 57
Electrical 161
Electrical specification 189
EMC
Current control ($0-20 \mathrm{~mA}$) 24
Double-ended connection 23
Single-ended connection 23
Twisted cables 24
Emergency stop 37
EN60204-1 10
EN61800-3 10
EN61800-5-1 10
Enable 29, 41, 130
EtherCAT 47, 183
EtherNet 47
EtherNet IP 47
EXOR operator 151
Expression 151
External Control Panel 181
F
Factory settings 69
Fans 107
Fieldbus 47, 80, 183
Fixed MASTER 107
Flux optimization 100
Frequency
Frequency priority 32
Jog Frequency 98
Maximum Frequency 96
Minimum Frequency 96
Preset Frequency 101
Skip Frequency 97
Frequency priority 32
Fuses, cable cross-sections and glands 192
G
General electrical specifications 189
Global parameters 68
H
Handheld Control Panel 2.0 181
I
I/O Board 182
I2t protection
Motor I2t Current 65, 66
Motor I2t Type 64
ID run 33, 61
Identification Run 33, 61
IEC269 192
Industrial Ethernet 47, 183
Internal speed control 102
Internal speed controller 102
Speed I Time 103
Speed P Gain 103
Interrupt 81, 82
IT Mains supply 2
IxR Compensation 99
J
Jog Frequency 98
K
Keyboard reference 102
Keys 41

- Key 43
+ Key 43
Control keys 41
ENTER key 43
ESCAPE key 43
Function keys 43
NEXT key 43
PREVIOUS key 43
RUN L 39, 41
RUN R 39, 41
STOP/RESET 39, 41
Toggle Key 42
L
LCD display 40
Level control 30, 57
Load default 69
Load monitor 34, 117
Local/Remote 56

Lock code 56	(255) 72	(33C) 93
Low Voltage Directive 10	(256) 72	(33D) 94
Lower Band 108	(257) 72	(33E) 94
Lower Band Limit 109	(258) 72	(33F) 94
	(259) 73	(33G) 94
M	(25A) 73	(33H1) 94
Machine Directive 10	(25B) 73	(341) 96
Main menu 44	(25C) 73	(342) 96
Mains supply 19	(25D) 74	(343) 96
Maintenance 179	(25E) 74	(344) 97
Manis cables 15	(25F) 74	(345) 97
Max Frequency88, 96	(25G) 74	(346) 98
Memory 33	(25H) 74	(347) 98
Menu	(25I) 75	(348) 98
(110) 52	(25J) 75	(351) 99
(120) 52	(25K) 75	(354) 100
(210) 53	(25L) 75	(361) 101
(211) 53	(25M) 76	(362) 101
(212) 53	(25N)70, 76	(363) 101
(213) 54	(25O) 76	(364) 101
(214) 54	(25P) 76	(365) 101
(215) 55	(25Q) 76	(366) 101
(216) 55	(25R) 77	(367) 101
(217) 56	(25S) 77	(368) 101
(218) 56	(25T) 77	(369) 102
(219) 56	(25U) 77	(371) 102
(21A) 57	(260) 79	(372) 103
(21B) 58	(261) 79	(373) 103
(220) 58	(262) 79	(380) 103
(221) 58	(2621) 79	(381) 103
(222) 59	(2622) 79	(383) 103
(223) 59	(263) 80	(384) 104
(224) 60	(2631) 80	(385) 104
(225) 60	(2632) 80	(386) 104
(226) 60	(2633) 80	(387) 105
(227) 60	(2634) 80	(388) 105
(228) 61	(264) 81	(389) 106
(229) 61	(265) 81	(391) 107
(22B) 62	(269) 82	(392) 107
(22C) 62	(310) 83	(393) 107
(22D) 62	(320) 83	(398) 108
(230) 64	(321) 83	(399) 108
(231) 64	(322) 84	(39A) 109
(232) 65	(323) 85	(39B) 109
(233) 65	(324) 86	(39C) 109
(234) 66	(325) 86	(39D) 110
(235) 66	(326) 86	(39E) 110
(236) 67	(327) 87	(39F) 111
(237) 67	(328) 87	(39G) 111
(240) 68	(331) 88	(39H-39M) 112
(241) 68	(332) 88	(410) 117
(242) 68	(333) 89	(411) 117
(243) 69	(334) 89	(412) 117
(244) 69	(335) 89	(413) 117
(245) 70	(336) 90	(414) 117
(250) 70	(337) 90	(415) 118
(251) 70	(338) 91	(416) 118
(252) 71	(339) 91	(4162) 118
(253) 71	(33A) 91	(417) 118
(254) 71	(33B) 92	(4171) 118

72)	19
(418)	119
(4181)	119
(4182) 119
(419)	119
(4191) 119
(4192)	120
(41A)	120
(41B)	.. 120
(41C)	. 120
(421)	. 121
(422)	122
(423)	.. 122
(424)	.. 122
(511)	. 123
(512)	. 124
(513)	. 125
(514)	.. 128
(515)	.. 128
(516)	. 128
(517)	129
(518)	.. 129
(519)	.. 129
(51A)	.. 129
(51B)	.. 130
(51C)	.. 130
(521)95, 130
(522)	.. 131
(529-52H)	H) 132
(531)	.. 132
(532)	. 133
(533)	... 133
(534)	. 135
(535)	. 136
(536)	. 136
(541)	.. 136
(542)	.. 138
(551)	. 138
(552)	. 138
(553)	. 139
(55D)	.. 139
(561)	... 140
(562)	.. 140
(563-56G)	G) 140
(610)	. 141
(6111)	... 141
(6112)	... 143
(6113)	.. 145
(6114)	.. 145
(6115)	.. 146
(6121)	... 146
(6122) 147
(6123)	.. 147
(6124)	. 147
(6125)	.. 147
(6131)	... 148
(6132)	. 148
(6133) 148
(6134) 148
(6135) 149

(6141)	49
(6142)	149
(6143) 149
(6144)) 150
(6145)	150
(6151)	150
(6152)	150
(6153)) 151
(6154)	. 151
(620)	. 151
(621)151, 152
(622)	.151, 152
(623)151, 152
(624)	.. 151
(625)	. 151
(630)	. 153
(631)	. 153
(632)	.. 153
(633)	.. 154
(634)	. 154
(635)	. 154
(640)	.. 154
(641)	.. 155
(642)	.. 155
(643)	.. 155
(644)	. 155
(645)	.. 156
(649)	. 156
(650)	. 156
(651)	. 156
(652)	. 156
(653)	... 157
(654)	. 157
(655)	. 157
(659)	. 157
(711)	.. 161
(712)	.. 161
(713)	. 161
(714)	. 161
(715)	. 161
(716)	. 162
(717)	. 162
(718)	. 162
(719)	. 162
(71A)	. 163
(71B)	.. 163
(720)	. 163
(721)	. 163
(722)	. 164
(723)	. 165
(724)	. 165
(725)	. 165
(726)	. 166
(727)	. 166
(728-7	72A) 166
(730)	... 167
(731)	. 167
(7311)	.. 167
(732)	. 167
(733)	

(7331) 168
(800) 168
(810) 168
(811-81N) 169
(820) 169
(830) 169
(8A0) 170
(900) 170
(920) 170
(922) 171
33F 94
616 147
Minimum Frequency 90
Modbus 47
Modbus/TCP 47, 183Monitor function
Alarm Select 120
Auto set 120
Delay time 117
Max Alarm 117
Overload 34, 117
Ramp Enable 117
Response delay 118, 120
Start delay 117
Motor cos phi (power factor) 60
Motor data 58
Motor frequency 60
Motor I2t Current 176
Motor identification run 61
Motor Lost 72
Motor lost 122
Motor Potentiometer 101, 131
Motor potentiometer 131
Motor PTC 67
Motor ventilation 61
Motors 7
MotPot 89
N
Nominal motor frequency 96
Number of drives 107
0
Operation 53
Options 24, 181
Brake chopper 181
External Control Panel (ECP) 181
I/O Board 182
OR operator 151
Output Voltage 162
Overload 34, 117
Overload alarm 34
P
Parameter sets
Load default values 69
Load parameter sets from ControlPanel70
Parameter Set Selection 31
Select a Parameter set 68
PI Autotune 102
PID Controller 103Closed loop PID control104Feedback signal
PID D Time 104 Stop categories 37
PID I Time 104 Stop command 130
PID P Gain 103 Stop Delay 109
Priority 32
Stripping lengths 16
Process Protection 121
Process Value 161
Product standard, EMC 9 T
T
T
Profibus DP 47 Technical Data 187
Profinet IO 47 Terminal connections 20
Programming 44 Test Run 61
PT100 Inputs 67 Torque 51, 99
PTC input 66 Transition Frequency 110
Pump/Fan Control 107 Trip 39, 41
Q Trip Message log 168
Quick Setup Card . 7 Trips, warnings and limits 173
R
Reference
Frequency 121
Motor potentiometer 131 Underload 34
Reference signal 54, 83 Underload alarm 117
Set reference value .83 Unlock Code 56
Torque 122 Upper Band 108
View reference value 83
Upper Band Limit 109
Reference control 54
Reference signal 54, 55
V
Relay output 138
Relay 1 138
Relay 2 138
Relay 3 139
Release speed 94
Remote control 29
Reset command 130
Reset control 55
Resolution 51
Rotation 56
RS232/485 47, 79
RUN 39, 41
Run command 41
Run Left command 130
Run Right command 130
Running motor 91

S

Select Drive 107
Settle Time 110
Setup menu 44
Menu structure 43
Shaft power 161
Signal ground 194
Single-ended connection 23
Software 171
Speed 161
Spinstart 91
Standards 9103 Stas idication108103 Status indications88
Trip causes and remedial action 174
Twisted cables 24
Type code number 9
Standby supply board 83
Switches 20
U
54V/Hz Mode
Vector Brake 94
Ventilation 61
View reference value 83
Voltage 20
VSD Data 70
echnical Data

[^3]20
U
SD Data ...

49

[^4]6

路
相 0

4

[^0]: Alarms
 Never disregard an alarm. Always check and remedy the cause of an alarm.

[^1]: WARNING! In a domestic environment this product may
 cause radio interference, in which case it In a domestic environment this product may
 cause radio interference, in which case it may be necessary to take adequate additional measures.

[^2]: * Available during limited time and as long as allowed by drive temperature.

[^3]:

[^4]:

