INOVANCE

Advanced User Guide SV660N Series Servo Drive

A00 Data code 19011236

Preface

Thank you for purchasing the SV660N series servo drive developed by Inovance.

The SV660N series high-performance AC servo drive covers a power range from 200 W to 7.5 kW. It supports EtherCAT communication protocol and carries Ethernet communication interfaces to work with the host controller in achieving a networked operation of multiple servo drives.

The SV660N series servo drive supports stiffness level setting, inertia auto-tuning and vibration suppression to simplify the operation process. It allows a quiet and stable operation through cooperating with the MS1 series medium- and small-inertia high-response servo motor configured with a 23-bit single-turn absolute encoder or 23-bit multi-turn absolute encoder.

The SV660N series servo drive aims to deliver fast and accurate control in automation equipment such as semi-conductor manufacturing equipment, chip mounters, PCB punching machines, transport machineries, food processing machineries, machine tools, and transmission machineries.

This user guide provides product information and instructions on installation, wiring, commissioning, and fault diagnosis. First-time users must read through this user guide. For concerns regarding product functions or performance, contact Inovance for technical support.

Safety Instructions

- The drawings in the user guide are sometimes shown without covers or protective guards. Remember to install the covers or protective guards as specified first, and then perform operations in accordance with the instructions described in the user guide.
- The drawings in the user guide are shown for descriptions only and may not match the product you purchased.
- This user guide is subject to change without notice due to product upgrade, specification modifications as well as efforts to improve the accuracy and convenience of the user guide.
- If the user guide is damaged or lost, contact our regional agents or customer service centers to order the user guide.
- Contact our customer service centers for concerns during use.

Unpacking Inspection

Check the following items upon unpacking.

Items	Description
Check whether the delivered product complies with your order.	Check whether the motor model and specifications shown on the packing box comply with your order.
Check whether the product is intact.	Check whether the overall appearance of the product is intact. If there is any part missing or damaged, contact Inovance or your supplier immediately.

Revision History

Date	Version	Description
January 2020	A00	First edition

Standards Compliance

■ The SV660N series servo drive and the MS1 series servo motor have passed CE certification and comply with the following international standards.

Certification	Mark	Direct	ive		Standard
		EMC directive	2014/30/EU	Servo drive	EN 61800-3 IEC 61800-3 IEC 61800-5-2
CE	(\mathbf{F})			Servo motor	EN 60034-1
certification		LVD directive		Servo drive	EN 61800-5-1 IEC 61800-5-1
	RoHS direc			Servo motor	EN 60034-1
		RoHS directive	2011/65/EU	EN 50581	

• The preceding certification are complied with only when the EMC-related electrical installation requirements described in this user guide are observed.

- The integrator who integrates this drive into other products and attaches the CE mark to the final assembly has the responsibility of ensuring compliance with CE standards and the European Norm.
- For more information on product certifications, contact our agents or sales representatives.

Contents

Preface	1
Unpacking Inspection	1
Revision History	1
Standards Compliance	2
Safety Instructions	10
Safety Precautions	10
Safety Levels and Definitions	10
Safety Instructions	10
Safety Signs	14
1 Product Information	15
1.1 Introduction to the Servo Drive	15
1.1.1 Nameplate and Model Number	15
1.1.2 Components	16
1.1.3 Technical Specifications	19
1.1.4 Specifications of the Regenerative Resistor	23
1.2 Introduction to the Servo Motor	24
1.2.1 Motor Nameplate and Model Number	
	24
1.2.1 Motor Nameplate and Model Number	24 25
1.2.1 Motor Nameplate and Model Number	24 25 26
 1.2.1 Motor Nameplate and Model Number 1.2.2 Components 1.2.3 Technical Specifications 	24 25 26 31
 1.2.1 Motor Nameplate and Model Number 1.2.2 Components 1.2.3 Technical Specifications 1.3 Servo System Configurations	24 25 26 31 32
 1.2.1 Motor Nameplate and Model Number 1.2.2 Components 1.2.3 Technical Specifications 1.3 Servo System Configurations 1.4 Cable Models 	24 25 31 32 34
 1.2.1 Motor Nameplate and Model Number 1.2.2 Components 1.2.3 Technical Specifications 1.3 Servo System Configurations 1.4 Cable Models 1.5 Communication Cable Options 	24 25 31 32 34 34
 1.2.1 Motor Nameplate and Model Number	24 25 31 32 34 34 35
 1.2.1 Motor Nameplate and Model Number 1.2.2 Components	24 25 31 32 34 34 35 37
 1.2.1 Motor Nameplate and Model Number	24 25 31 32 34 35 37 37
 1.2.1 Motor Nameplate and Model Number	24 25 31 32 34 34 35 37 37 37
 1.2.1 Motor Nameplate and Model Number	24 25 26 31 32 34 34 35 37 37 37 37 37 37
 1.2.1 Motor Nameplate and Model Number	24 25 26 31 32 34 34 35 37 37 37 37 37 38 38
 1.2.1 Motor Nameplate and Model Number	24 25 26 31 32 34 34 35 37 37 37 37 37 37 38 38 40

2.2.2 Environment Conditions	42
2.2.3 Installation Precautions	43
2.2.4 Dimension Drawings	45
3 Wiring	
3.1 Terminal Pin Layout	51
3.2 Wiring of the Main Circuit	52
3.2.1 Main Circuit Terminals	
3.2.2 Wiring Example of the Regenerative Resistor	54
3.2.3 Recommended Models and Specifications of Main Circuit Cables	54
3.2.4 Power Supply Wiring Example	57
3.2.5 Precautions for Main Circuit Wiring	
3.2.6 Specifications of Main Circuit Options	
3.3 Connection of the Servo Drive and Servo Motor Power Cables	60
3.4 Connection of the Servo Drive and Servo Motor Encoder Cables	62
3.5 Connection of the Control Signal Terminal CN1	68
3.5.1 DI/DO signals	69
3.5.2 Wiring of the Brake	72
3.6 Wiring of Communication Signals CN3/CN4	74
3.6.1 Pin Definition of the Communication Signal Connector	75
3.6.2 Selection of Communication Cables	75
3.6.3 Communication Connection with PC (RS232 Communication)	76
3.7 Definition and Connection of STO terminal	78
3.8 Anti-interference Measures for Electrical Wiring	80
3.8.1 Anti-interference Wiring Example and Grounding	81
3.8.2 Instructions for Use of the Noise Filter	82
3.9 Precautions for Use of Cables	83
4 Keypad Display and Operations	
4.1 Introduction to the Keypad	85
4.2 Display	
4.2.1 Transition Relation Between Keypad Display and Operation Objects	
4.2.2 Display Mode Switchover	
4.2.3 Status Display	
4.2.4 Parameter Display	
4.2.5 Fault Display	
4.2.6 Monitoring Display	90

4.3 Parameter Setting	97
4.4 User Password	98
4.5 General Functions	99
4.5.1 Jog	
4.5.2 Forced DI/DO Signals	100
5 Commissioning and Operation	108
5.1 Pre-running Check	109
5.2 Power-on	109
5.3 Jog	109
5.4 General Parameter Settings	110
5.4.1 Rotation Direction	110
5.4.2 Brake Settings	111
5.4.3 Regenerative Resistor Settings	116
5.5 Servo Running	122
5.6 Servo Stop	128
5.7 Conversion Factor Setting	132
6 Gain Tuning	135
6.1 Overview	135
6.2 Inertia Auto-tuning	136
6.2.1 Offline Inertia Auto-tuning	137
6.2.2 Online Auto-tuning	139
6.3 Instructions for ETune Operations	139
6.3.1 Overview	140
6.3.2 Description of Operations	140
6.3.3 Precautions	
6.3.4 Troubleshooting	145
6.4 Instructions for STune Operations	145
6.4.1 Overview	145
6.4.2 Description of Operations	146
6.4.3 Precautions	147
6.5 Manual Gain Tuning	149
6.5.1 Basic Parameters	149
6.5.2 Gain Switchover	152
6.5.3 Comparison of Filters	156
6.5.4 Feedforward Gain	157

6.5.5 Pseudo Derivative Feedback and Feedforward Control	
6.5.6 Torque Disturbance Observation	159
6.5.7 Speed observer	160
6.5.8 Model Tracking	
6.5.9 Friction Compensation	165
6.6 Parameter Adjustment in Different Control Modes	166
6.6.1 Parameter Adjustment in the Position Control Mode	
6.6.2 Parameter Adjustment in the Speed Control Mode	
6.6.3 Parameter Adjustment in the Torque Control Mode	
6.7 Vibration Suppression	168
6.7.1 Suppression of Mechanical Resonance	
6.7.2 Low Frequency Suppression at the Mechanical End	173
6.8 Mechanical Characteristic Analysis	175
6.8.1 Overview	175
6.8.2 Operating Procedures	176
7 Control Mode	
7.1 Servo Drive State Setting	179
7.1.1 Control Word 6040h	181
7.1.2 Status Word 6041h	
7.2 Servo Mode Setting	
7.2.1 Introduction to Servo Drive Modes	183
7.2.2 Communication Cycle	185
7.3 Cyclic Synchronous Position Mode (CSP)	
7.3.1 Configuration Block Diagram	185
7.3.2 Related Objects	185
7.3.3 Related Function Settings	186
7.3.4 Recommended Configuration	186
7.3.5 Related Parameters	187
7.3.6 Function Block Diagram	189
7.4 Cyclic Synchronous Velocity (CSV) Mode	190
7.4.1 Configuration Block Diagram	190
7.4.2 Related Objects	190
7.4.3 Related Function Settings	190
7.4.4 Recommended Configuration	191
7.4.5 Related Parameters	

7.4.6 Function Block Diagram	193
7.5 Cyclic Synchronous Torque Mode (CST)	194
7.5.1 Configuration Block Diagram	194
7.5.2 Related Objects	
7.5.3 Related Function Settings	195
7.5.4 Recommended Configuration	197
7.5.5 Related Parameters	197
7.5.6 Function Block Diagram	
7.6 Profile Position (PP) Mode	199
7.6.1 Configuration Block Diagram	
7.6.2 Related Objects	
7.6.3 Related Function Settings	
7.6.4 Recommended Configuration	
7.6.5 Related Parameters	
7.6.6 Function Block Diagram	
7.7 Profile Velocity Mode (PV)	209
7.7.1 Configuration Block Diagram	
7.7.2 Related Objects	
7.7.3 Related Function Settings	
7.7.4 Recommended Configuration	
7.7.5 Related Parameters	
7.7.6 Function Block Diagram	215
7.8 Profile Torque Mode (PT)	215
7.8.1 Configuration Block Diagram	
7.8.2 Related Objects	
7.8.3 Related Function Settings	
7.8.4 Related Parameters	
7.8.5 Recommended Configuration	
7.8.6 Function Block Diagram	
7.9 Homing Mode (HM)	222
7.9.1 Configuration Block Diagram	
7.9.2 Related Objects	
7.9.3 Related Function Settings	
7.9.4 Homing Operation	
7.9.5 Related Parameters	

7.9.6 Recommended Configuration	
7.9.7 Function Block Diagram	
7.10 Auxiliary Functions	267
7.10.1 Touch Probe Function (Latch Function))	
7.10.2 Software Limit	
7.10.3 Position Comparison	
7.11 Absolute System	278
7.11.1 Descriptions for Use of the Absolute System	
7.11.2 Absolute Position Linear Mode	
7.11.3 Absolute Position Rotation Mode	
7.11.4 Single-Turn Absolute Mode	
7.11.5 Precautions for Use of the Battery Box	
8 Communication Configurations	
8.1 Overview of the EtherCAT Protocol	
8.2 System Parameters	
8.2.1 Parameter Address Structure	
8.2.2 System Parameter Settings	
8.3 EtherCAT Communication Basis	290
8.3.1 EtherCAT Communication Specifications	
8.3.2 Communication Structure	
8.3.3 State Machine	
8.3.4 Process Data	
8.3.5 Service Data Object (SDO)	
8.3.6 Distributed Clock (DC)	
8.3.7 Status Indication	
8.3.8 Overview of CiA402	
8.3.9 Basic Characteristics	
9 Troubleshooting	
9.1 Faults and Warnings	
9.2 Communication Faults and Warning Codes	
9.3 Solutions to Faults	
9.4 Solutions to Warnings	
9.5 Solutions to Communication Faults	
10 Application Cases	

Case 1 AM600 series controller as the host controller	337
Case 2 Omron NX1P2 controller as the host controller	343
Case 3 Beckhoff TwinCAT3 as the host controller	355
11 Appendix	370
11.1 Standards Compliance	370
11.1.1 CE Certification	370
11.1.2 Low Voltage Directive Compliance	370
11.1.3 EMC Directive Compliance	371
11.1.4 Definition of EMC Terms	372
11.1.5 Selection of EMC Filters	372
11.1.6 Cable Requirements and Routing	377
11.1.7 Solutions to Leakage Current	378
11.1.8 Solutions to Common EMC Problems	379
11.1.9 UL Certification	380
11.2 List of Object Groups	381
Description of Object Groups	381
Object Group 1000h	381
Object Group 2000h	387
Object Group 6000h	405
SDO Abort Transfer Code	409
11.3 Safety Protection Function: STO	410
11.3.1 Description of Technical Terms	410
11.3.2 Standards Compliance	413
11.3.3 General Safety Information	414
11.3.4 Specifications	415
11.3.5 Installation	416
11.3.6 Terminal and Wiring	416
11.3.7 Requirement for Commission, Operation and Maintenance	416
11.3.8 Safety Function: STO	418
11.3.9 Trouble Shooting	421
11.3.10 Product Information	421
11.3.11 Precautions	423

Safety Instructions

Safety Precautions

- 1) Before installing, using, and maintaining this equipment, read the safety information and precautions thoroughly, and comply with them during operations.
- 2) To ensure the safety of humans and equipment, follow the signs on the equipment and all the safety instructions in this user guide.
- 3) "CAUTION", "WARNING", and "DANGER" items in the user guide do not indicate all safety precautions that need to be followed; instead, they just supplement the safety precautions.
- 4) Use this equipment according to the designated environment requirements. Damage caused by improper usage is not covered by warranty.
- 5) Inovance shall take no responsibility for any personal injuries or property damage caused by improper usage.

Safety Levels and Definitions

Indicates that failure to comply with the notice will result in severe personal injuries or even death.

Indicates that failure to comply with the notice may result in severe personal injuries or even death.

N Indicates that failure to comply with the notice may result in minor or moderate personal injuries or equipment damage.

Safety Instructions

Unpacking CAUTION • Check whether the packing is intact and whether there is damage, water seepage, damp, and deformation. • Unpack the package by following the package sequence. Do not hit the package with force. • Check whether there are damage, rust, or injuries on the surface of the equipment or equipment accessories. • Check whether the number of packing materials is consistent with the packing list. • Check whether the number of packing materials is consistent with the packing list. • Do not install the equipment if you find damage, rust, or indications of use on the equipment or accessories.

- ◆ Do not install the equipment if you find water seepage, component missing or damage upon unpacking.
- Do not install the equipment if you find the packing list does not conform to the equipment you received.

Storage and Transportation

- Store and transport this equipment based on the storage and transportation requirements for humidity and temperature.
- Avoid transporting the equipment in environments such as water splashing, rain, direct sunlight, strong electric field, strong magnetic field, and strong vibration.
- Avoid storing this equipment for more than three months. Long-term storage requires stricter protection and necessary inspections.
- ◆ Pack the equipment strictly before transportation. Use a sealed box for long-distance transportation.
- Never transport this equipment with other equipment or materials that may harm or have negative impacts on this equipment.

🛝 WARNING

- Use professional loading and unloading equipment to carry large-scale or heavy equipment.
- When carrying this equipment with bare hands, hold the equipment casing firmly with care to prevent parts falling. Failure to comply may result in personal injuries.
- ◆ Handle the equipment with care during transportation and mind your step to prevent personal injuries or equipment damage.
- Never stand or stay below the equipment when the equipment is lifted by hoisting equipment.

Installation

WARNING

- Thoroughly read the safety instructions and user guide before installation.
- Do not modify this equipment.
- Do not rotate the equipment components or loosen fixed bolts (especially those marked in red) on equipment components.
- Do not install this equipment in places with strong electric or magnetic fields.
- When this equipment is installed in a cabinet or final equipment, protection measures such as a fireproof enclosure, electrical enclosure, or mechanical enclosure must be provided. The IP rating must meet IEC standards and local laws and regulations.

A DANGER

- Equipment installation, wiring, maintenance, inspection, or parts replacement must be performed by only professionals.
- Installation, wiring, maintenance, inspection, or parts replacement must be performed by only experienced personnel who have been trained with necessary electrical information.
- Installation personnel must be familiar with equipment installation requirements and relevant technical materials.
- Before installing equipment with strong electromagnetic interference, such as a transformer, install an
 electromagnetic shielding device for this equipment to prevent malfunctions.

Wiring DANGER Equipment installation, wiring, maintenance, inspection, or parts replacement must be performed by only professionals. Never perform wiring at power-on. Failure to comply will result in an electric shock. Before wiring, cut off all equipment power supplies. Wait at least 15 minutes before further operations because residual voltage exists after power-off. Make sure that the equipment is well grounded. Failure to comply will result in an electric shock. • During wiring, follow the proper electrostatic discharge (ESD) procedures, and wear an antistatic wrist strap. Failure to comply will result in damage to internal equipment circuits. WARNING Never connect the power cable to output terminals of the equipment. Failure to comply may cause equipment damage or even a fire. When connecting a drive with the motor, make sure that the phase sequences of the drive and motor terminals are consistent to prevent reverse motor rotation. Wiring cables must meet diameter and shielding requirements. The shielding layer of the shielded cable must be reliably grounded at one end. ◆ After wiring, make sure that no screws are fallen and cables are exposed in the equipment. Power-on DANGER Before power-on, make sure that the equipment is installed properly with reliable wiring and the motor can be restarted. Before power-on, make sure that the power supply meets equipment requirements to prevent equipment damage or even a fire. ◆ At power-on, unexpected operations may be triggered on the equipment. Therefore, stay away from the equipment. After power-on, do not open the cabinet door and protective cover of the equipment. Failure to comply will result in an electric shock. Do not touch any wiring terminals at power-on. Failure to comply will result in an electric shock. ◆ Do not remove any part of the equipment at power-on. Failure to comply will result in an electric shock. Operation DANGER Do not touch any wiring terminals during operation. Failure to comply will result in an electric shock. Do not remove any part of the equipment during operation. Failure to comply will result in an electric shock. ◆ Do not touch the equipment shell, fan, or resistor for temperature detection. Failure to comply will result in heat injuries. Signal detection must be performed by only professionals during operation. Failure to comply will result in personal injuries or equipment damage. WARNING

- Prevent metal or other objects from falling into the device during operation. Failure to comply may result in equipment damage.
- Do not start or stop the equipment using the contactor. Failure to comply may result in equipment damage.

Maintenance DANGER Equipment installation, wiring, maintenance, inspection, or parts replacement must be performed by only professionals. ◆ Do not maintain the equipment at power-on. Failure to comply will result in an electric shock. Before maintenance, cut off all equipment power supplies and wait at least 15 minutes. WARNING Perform daily and periodic inspection and maintenance for the equipment according to maintenance requirements and keep a maintenance record. Repair DANGER Equipment installation, wiring, maintenance, inspection, or parts replacement must be performed by only professionals. • Do not repair the equipment at power-on. Failure to comply will result in an electric shock. Before inspection and repair, cut off all equipment power supplies and wait at least 15 minutes. WARNING • Require for repair services according to the product warranty agreement. When the equipment is faulty or damaged, require professionals to perform troubleshooting and repair by following repair instructions and keep a repair record. • Replace quick-wear parts of the equipment according to the replacement guide. Do not operate damaged equipment. Failure to comply may result in worse damage. ◆ After the equipment is replaced, perform wiring inspection and parameter settings again. Disposal

WARNING

٠

- Dispose of retired equipment by following local regulations or standards. Failure to comply may result in property damage, personal injuries, or even death.
- Recycle retired equipment by following industry waste disposal standards to avoid environmental pollution.

Safety Signs

- Description of safety signs in the user guideImage: Constraint of the system and equipment.Image: Constraint of the system and equipment.<
- Description of safety signs on the equipment

For safe equipment operation and maintenance, comply with safety signs on the equipment, and do not damage or remove the safety labels. The following table describes the safety signs.

Safety Sign	Description
危险 DANGER	Never fail to connect the Protective Earth(PE) terminal. Read the user guide and follow the safety instructions before use.
高压注意 Hazardous Voltage	To prevent the risk of electric shock, do not touch terminals within 15 minutes after cutting off the power supply.
高温注意 High Temperature	To prevent the risk of burning, do not touch the heatsink when the power supply is ON.

1 Product Information

1.1 Introduction to the Servo Drive

1.1.1 Nameplate and Model Number

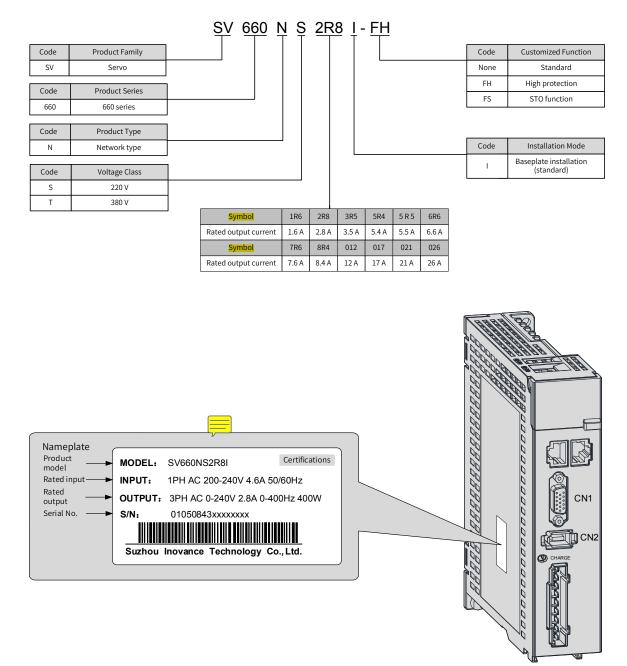


Figure 1-1 Nameplate and model number

1.1.2 Components

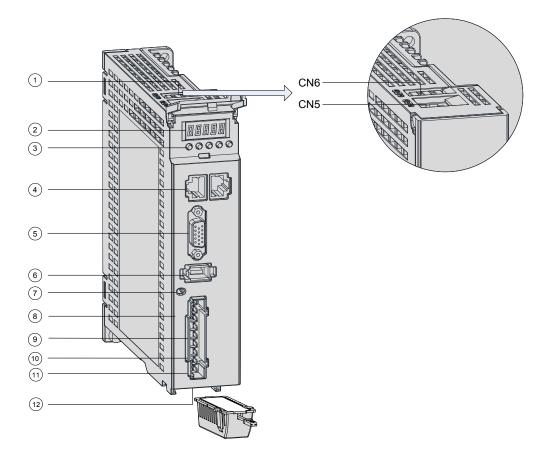


Figure 1-2 Layout of servo drives in size A

No.	Name	Description
1	Terminals CN6 and CN5	CN6: Functional safety terminal mainly used for functional safety purpose and connected to the external functional safety signal
		CN5: Software tool communication port
2	LED display	A five-digit LED display used to show the servo drive running status and parameter settings
		MODE: Used to switch parameters in sequence.
	Operation buttons	riangle : Used to increase the value of the blinking digit.
3		abla : Used to decrease the value of the blinking digit.
5		$\lhd \lhd$: Used to shift the blinking digit leftwards.
		(Hold down: Turning the page when the displayed number exceeds five digits)
		SET: Used to save modifications and enter the next menu.
4	CN3, CN4 (EtherCAT communication terminals)	CN3 (IN): Connected to the master or the last slave device. CN4 (OUT): Connected to the next slave device.
5	CN1 (Control terminal)	Used by reference input signal and other I/O signals.
6	CN2 (Encoder connecting terminal)	Connected to motor encoder terminals.

No.	Name	Description
7	CHARGE (Bus voltage indicator)	Used to indicate that the bus capacitor carries electric charge. When this indicator lights up, it indicates the electric charge may be still present in the internal capacitor of the servo unit even if the main circuit power supply is cut off. To prevent electrical shock, do not touch the power terminals when this indicator lights up.
	L1, L2 (Power input terminals)	See the nameplate for the power input of rated voltage class.
8	P, N (DC bus terminals)	Used as the common DC bus for multiple servo drives.
9	P, C (Terminals for connecting external regenerative resistor)	Connected between P and C when an external regenerative resistor is needed.
10	U, V, W (Servo motor connecting terminals)	Connected to U, V, and W phases of the servo motor.
11	PE (Grounding terminal)	Connected to the grounding terminal of the power supply and the motor.
12	Battery location	Used to hold the battery box of <mark>an</mark> absolute encoder.

SN	Name	Description
1	CN6, CN5 terminals	CN6: Functional safety terminal mainly used for functional safety purpose and connected to external functional safety signal CN5: Software tool communication port
2	LED display	A five-digit LED display used to show the servo drive running status and parameter settings

SN	Name	Description		
3	Operation buttons	 MODE: Used to switch parameters in sequence. △: Used to increase the value of the blinking digit. ▽: Used to decrease the value of the blinking digit. ⊲ ⊲: Used to shift the blinking digit leftwards. (Hold down: Turning the page when the displayed number exceeds five digits) SET: Used to save modifications and enter the next menu. 		
4	CN3, CN4 (EtherCAT communication terminals)	CN3 (IN): Connected to the master or the last slave device. CN4 (OUT): Connected to the next slave device.		
5	CN1 (Control terminal)	Used for reference input signal and other I/O signals.		
6	CN2 (Encoder connecting terminal)	Connected to motor encoder terminals.		
7	CHARGE (Bus voltage indicator)	Used to indicate that the bus capacitor carries electric charge. When this indicator lights up, it indicates the electric charge may be still present in the internal capacitor of the servo unit even if the main circuit power supply is cut off. To prevent electrical shock, do not touch the power terminals when this indicator lights up.		
8	L1, L2, L3 (Power input terminals)	See the nameplate for the power input of the rated voltage class. Note: 750 W servo drives: Single-phase 220 V input, with 220 V power supply connected to L1 and L2 850 W servo drives: Single-phase/Three-phase 220 V input, with 220 V power supply connected to L1, L2, and L3 during three-phase input or connected to any two phases among L1, L2, and L3 during single-phase input (derate 80%)		
	P, N (DC bus terminals)	Used as the common DC bus for multiple servo drives.		
9	P, D, C (Terminals for connecting external regenerative resistor)	Connected between P and C when an external regenerative resistor is needed (Remove the jumper bar between P and D first).		
10	U, V, W (Servo motor connecting terminals)	Connected to U, V, and W phases of the servo motor.		
11	PE (Grounding terminal)	Connected to the grounding terminals of the power supply and the motor.		
12	Battery location	Used to hold the battery box of an absolute encoder.		

• Built-in regenerative resistors or jumper bars are not included in S1R6 and S2R8 models. If an external regenerative resistor is needed, connect it between terminals P and C.

NOTE

To connect an external regenerative resistor to S5R5 models, remove the jumper bar between terminals P and D first and connect the resistor between terminals P and C.

1.1.3 Technical Specifications

1 Electrical specifications

■ Single-phase 220 V servo drives

Item	Size	A	Size B	
Servo drive model: SV660N	S1R6	S2R8	S5R5	
Continuous output current (Arms)	1.6	2.8	4.8	
Maximum output current (Arms)	5.8 10.1		16.9	
Main circuit power supply	Single-phase 200–240 VAC, -10% to +10%, 50/60 Hz			
Control circuit power supply	Single-phase 200–240 VAC, -10% to +10%, 50/60 Hz			
Braking function	External regenerative resistor <mark>available</mark> in size A Built-in regenerative resistor available in size B			

■ Three-phase 220 V servo drives

Item	Size B	Size C	Size D		
Servo drive model: SV660N	S6R6 S7R6		S012		
Continuous output current (Arms)	6.6	7.6	11.6		
Maximum output current (Arms)	16.5 23		32		
Main circuit power supply	Three-phase 200–240 VAC, -10% to +10%, 50/60 Hz				
Control circuit power supply	Single-phase 200 VAC–240 VAC, +10 to –10%, 50/60 Hz				
Braking function	Built-in regenerative resistor				

■ Three-phase 380 V servo drives

Item	Size C		Size D		Size E		
Servo drive model: SV660N	T3R5	T5R4	T8R4	T012	T017	T021	T026
Continuous output current (Arms)	3.5	5.4	8.4	11.9	16.5	20.8	25.7
Maximum output current (Arms)	11	14	20	29.75	41.25	52.12	64.25
Main circuit power supply	Three-phase 380–440 VAC, -10% to +10%, 50/60 Hz						
Control circuit power supply	Single-phase 380–440 VAC, -10% to +10%, 50/60 Hz						
Braking function	Built-in regenerative resistor						

2 General specifications

	Item		Description		
	Control mode		IGBT PWM control, sine wave current drive mode		
			220 V, 380 V: Single-phase/Three-phase full bridge rectification		
	Encoder feedback		Serial incremental type: 23-bit or 20-bit		
			23-bit absolute encoder		
		Operating/Storage	0°C to 55°C (If the ambient temperature exceeds 45°C , derate		
Basic		temperature ^[1]	10% for every additional 5°C .)/-20°C to +70°C		
specification		Operating/Storage	Below 90% RH (without condensation)		
	Conditions for	humidity Vibration/Impact			
	use	resistance level	4.9 m/s ² , 19.6 m/s ²		
		IP rating	IP20 (Terminals (IP00) excluded)		
		Pollution degree	PD2		
		Altitude	Below 1000 m		
		Speed control range	1:6000 (The lower limit of the speed control range acts as the		
		Speed loop	condition for non-stop at rated torque load.)		
		bandwidth	2.5 kHz		
	Performance	Torque control			
Speed/		accuracy	±2%		
Torque		(Repetitiveness)			
control mode		Soft startup time	0s to 65s (The acceleration and deceleration can be set		
			separately.)		
	Input signal	Speed reference			
			Source of network-type references: EtherCAT communication		
		Torque reference	Local mode and local multi-speed supported		
	Performance	Positioning time	1 ms to 10 ms		
			Source of network-type references: EtherCAT communication		
	Input signal	Position reference	Local mode supported		
			5 DIs		
			P-OT (Positive limit switch)		
	Digital input (DI)	Signal allocation	N-OT (Negative limit switch)		
Position	signal	change available	HomeSwitch (Home switch)		
control mode	8		TouchProbe1 (Touch probe 1)		
			TouchProbe2 (Touch probe 2) 3 DOs		
	-		With-load capacity: 50 mA		
		Signal allocation change available	Voltage range: 5 V to 30 V		
			S-RDY: Servo ready		
			TGON: Motor rotation output		
			Comparison output, brake output, DB output (above 3 kW),		
			EDM output		

	Item		Description		
	Overtravel (OT) prevention		Stop immediately when P-OT and N-OT activated		
	Protective functions		Protections against overcurrent, overvoltage, undervoltage,		
			overload, main circuit detection error, heatsink overheat,		
			overspeed, encoder error, CPU error, and parameter error		
	LED display		Main power CHARGE indicator, 5-digit LED display		
	Vibration suppression		Five notches (including two adaptive notches), 50 Hz to 5000 Hz		
Built-in		Connection protocol	RS232		
functions	Communication function	Communication protocol	EtherCAT		
		Multi-station communication	Maximum number of slaves: 255		
		Axis address setting	No physical knob, set to 0 to 255 by software		
			Including status display, user parameter setting, monitoring		
		Functions	information display, fault tracking display, jog and auto-tuning,		
			and speed/torque reference signal observation		
	Others		Gain auto-tuning, fault log, jog		

3 Technical specifications of EtherCAT communication

ltem		Specifications
	Communication protocol	EtherCAT protocol
	Available services	CoE (PDO, SDO)
	Synchronization mode	DC - Distributed clock
	Physical layer	100BASE-TX
B	Baud rate	100 Mbit/s (100Base-TX)
asic p	Duplex mode	Full duplex
perfo	Topological structure	Ring and linear
rma	Transmission medium	Shielded Cat 5e network cable or better
Basic performance of EtherCAT slave statior	Transmission distance	Less than 100 m between two nodes (with proper environment and proper cables)
ther	Number of slaves	65535 by protocol, equal to or less than 100 in actual use
CAT	EtherCAT frame length	44 bytes to 1498 bytes
slave	Process data	A maximum of 1486 bytes per Ethernet frame
station	Synchronous jitter of two slaves	< 1 µs
		About 30 µs for 1000 DI/DOs
	Refresh time	About 100 μs for 100 servo axes
		Different refresh time for different interfaces
	Communication code error rate	10 ⁻¹⁰ Ethernet standard
Ę	Number of FMMU units	8
EtherCAT configuration unit	Number of storage synchronization management units	8
figur	Process data RAM	8 KB
atio	Distributed clock	64-bit
n unit	EEPROM capacity	32 <mark>Kbit</mark> Initialization data written through EtherCAT master

[1] Install the servo drive in environments that meet the allowable ambient temperature range. When it is installed inside an electric cabinet, the temperature inside the cabinet must also be within this range.

4 Basic functions

The servo drive functions are listed as follows. See details in corresponding chapters.

position modethrough the bus. The servo drive performs positioning process.Cyclic synchronous velocity modeThe host controller generates speed references and sends the references cyclically through the bus. The servo drive performs torque cature.Cyclic synchronous torque modeThe host controller generates torque references and sends the references cyclically through the bus. The servo drive performs torque cature.Profile position modeThe host controller sets parameters through the bus, and the servo drive generates position references and performs positioning process.Profile velocity modeThe host controller sets parameters through the bus, and the servo drive generates speed references and performs torque butput .Profile torque modeThe host controller sets parameters through the bus, and the servo drive generates torque references and performs torque butput .Homing modeThe host controller sets parameters through the bus, and the servo drive generates torque references and performs torque butput .Touch probe functionLatches the position information when an external DI signal or the motor phase-Z signal changes.High resolution encoderThe encoder is of high performance with resolution up to 8388608 PPR.Mechanical characteristicsAnalyzes the resonance frequency and mechanical system characteristics analysisGain auto-tuningGenerates gain parameters automatically to match present working condition through installed with inovance software tool.Gain switchoverDifferent gains can be applied, stopped or switched through external terminals during running.Torque faster paracteristics automatically to suppress mechanical system vibration aft	Function	Description
velocity modethrough the bus. The servo drive performs speed tracing.Cyclic synchronous torqu modeThe host controller generates torque references and sends the references cyclically through the bus. The servo drive performs torque output.Profile position modeThe host controller sets parameters through the bus, and the servo drive generates speed references and performs positioning process.Profile velocity modeThe host controller sets parameters through the bus, and the servo drive generates speed references and performs speed tracing.Profile torque modeThe host controller sets parameters through the bus, and the servo drive generates torque references and performs torque gutput.Homing modeThe host controller sets parameters through the bus, and the servo drive generates torque references and performs torque gutput.Touch probe functionLatches the position information when an external DI signal or the motor phase-Z signal changes.High-resolution encoderThe encoder is of high performance with resolution up to 8388608 PPR.Mechanical characteristics analysisAnalyzes the resonance frequency and mechanical system characteristics through a PC installed with inovance software tool.Gain auto-tuningDifferent gains can be applied, stopped or switched through external terminals during running.Torque efference filterSuppresses the mechanical resonance generated during high-speed response of the servo drive.Position first-order low-pass functionSuppresses the mechanical resonance generated during high-speed response of the servo drive.Position first-order low-pass functionDifferent gain cases where the braking capacity of the bu	Cyclic synchronous position mode	
modethrough the bus. The servo drive performs torque putput.Profile position modeThe host controller sets parameters through the bus, and the servo drive generates specifie velocity modeProfile velocity modeThe host controller sets parameters through the bus, and the servo drive generates specifie torque modeProfile torque modeThe host controller sets parameters through the bus, and the servo drive generates torque references and performs torque putput.Homing modeThe host controller sets parameters through the bus, and the servo drive generates performs homing automatically with the position feedback set to the preset value.Touch probe functionLatches the position information when an external DI signal or the motor phase-Z signal changes.High-resolution encoderThe encoder is of high performance with resolution up to 8388608 PPR.Mechanical characteristicAnalyzes the resonance frequency and mechanical system characteristics through aPC analysisGain auto-tuningGenerates gain parameters automatically to match present working condition through gust one parameter.Gain switchoverDifferent gains can be applied, stopped or switched through external terminals during running.Torque reference filterSets filter characteristics automatically to suppress mechanical system vibration after detecting the resonance point.Torque reference filterSuppresses the mechanical resonance generated during high-speed response of the servo drive.Position first-order low-pass functionEnables smooth acceleration and deceleration.Torque limitLimits the output torque of the servo motor.Speed limitLimits the	Cyclic synchronous velocity mode	
Profile position nodeposition references and performs positioning process.Profile velocity modeThe host controller sets parameters through the bus, and the servo drive generates speed references and performs speed tracing.Profile torque modeThe host controller sets parameters through the bus, and the servo drive generates torque references and performs torque output.Homing modeThe host controller selects the homing mode through parameters, and the servo drive performs homing automatically with the position feedback set to the preset value.Touch probe functionLatches the position information when an external DI signal or the motor phase-Z signal 	Cyclic synchronous torque mode	
Profile velocity modespeed references and performs speed tracing.Profile torque modeThe host controller sets parameters through the bus, and the servo drive generates torque references and performs torque output.Homing modeThe host controller sets parameters through parameters, and the servo drive performs homing automatically with the position feedback set to the preset value.Touch probe functionLatches the position information when an external DI signal or the motor phase-Z signal changes.High-resolution encoderThe encoder is of high performance with resolution up to 8388608 PPR.Mechanical characteristicsAnalyzes the resonance frequency and mechanical system characteristics through a PC installed with Inovance software tool.Gain auto-tuningGenerates gain parameters automatically to match present working condition through just one parameter.Gain switchoverDifferent gains can be applied, stopped or switched through external terminals during running.Torque disturbance observationSets filter characteristics automatically to suppress mechanical system vibration after detecting the resonance point.Torque reference filter low-pass functionSuppresses the mechanical resonance generated during high-speed response of the servo drive.Position first-order low-pass functionLimits the servo motor speed.External regenerative resistor is insufficient.Limits the servo motor speed.External regenerative resistor is insufficient.Defines input functions such as emergency stop to corresponding pins.Fault logContains the latest ten faults or used to clear the previous faults.Staus display <t< td=""><td>Profile position mode</td><td></td></t<>	Profile position mode	
Profile torque modetorque references and performs torque output.Homing modeThe host controller selects the homing mode through parameters, and the servo drive performs homing automatically with the position feedback set to the preset value.Touch probe functionLatches the position information when an external DI signal or the motor phase-Z signal changes.High-resolution encoderThe encoder is of high performance with resolution up to 8388608 PPR.Mechanical characteristics analysisAnalyzes the resonance frequency and mechanical system characteristics through a PC installed with inovance software tool.Gain auto-tuningGenerates gain parameters automatically to match present working condition through just one parameter.Gain switchoverDifferent gains can be applied, stopped or switched through external terminals during running.Torque disturbance observationSets filter characteristics automatically to suppress mechanical system vibration after detecting the resonance point.Torque reference filter low-pass functionSuppresses the mechanical resonance generated during high-speed response of the servo drive.Position first-order low-pass functionLimits the output torque of the servo motor.Speed limitLimits the servo motor speed.External regenerative resistor is insufficient.Intends to be used in cases where the braking capacity of the built-in regenerative resistor is insufficient.Input signal selectionDefines input functions such as emergency stop to corresponding pins.Fault logContains the latest ten faults or used to clear the previous faults.	Profile velocity mode	
Homing indeeperforms homing automatically with the position feedback set to the preset value.Touch probe functionLatches the position information when an external DI signal or the motor phase-Z signal changes.High-resolution encoderThe encoder is of high performance with resolution up to 8388608 PPR.Mechanical characteristicsAnalyzes the resonance frequency and mechanical system characteristics through a PC installed with Inovance software tool.Gain auto-tuningGenerates gain parameters automatically to match present working condition through just one parameter.Gain switchoverDifferent gains can be applied, stopped or switched through external terminals during running.Torque disturbance observationAutomatically estimates the disturbance torque suffered by the system to perform compensation and reduce vibration.Resonance suppressionSets filter characteristics automatically to suppress mechanical system vibration after detecting the resonance point.Torque efference filterSuppresses the mechanical resonance generated during high-speed response of the servo drive.Position first-order low-pass functionLimits the output torque of the servo motor.Speed limitLimits the servo motor speed.External regenerative resistor is insufficient.Intends to be used in cases where the braking capacity of the built-in regenerative resistor is insufficient.Fault logContains the latest ten faults or used to clear the previous faults.Fault logContains the latest ten faults or used to clear the previous faults.	Profile torque mode	
Touch probe functionchanges.High-resolution encoderThe encoder is of high performance with resolution up to 8388608 PPR.Mechanical characteristics analysisAnalyzes the resonance frequency and mechanical system characteristics through a PC installed with Inovance software tool.Gain auto-tuningGenerates gain parameters automatically to match present working condition through just one parameter.Gain switchoverDifferent gains can be applied, stopped or switched through external terminals during running.Torque disturbance observationAutomatically estimates the disturbance torque suffered by the system to perform compensation and reduce vibration.Torque reference filterSuppresses the mechanical resonance generated during high-speed response of the servo drive.Position first-order low-pass functionLimits the output torque of the servo motor.Speed limitLimits the servo motor speed.External regenerative resistor is insufficient.Intends to be used in cases where the braking capacity of the built-in regenerative resistor is insufficient.Input signal selectionDefines input functions such as emergency stop to corresponding pins.Fault logContains the latest ten faults or used to clear the previous faults.Status displayDisplays the servo drive status through five LEDs.	Homing mode	
Mechanical characteristicsAnalyzes the resonance frequency and mechanical system characteristics through a PC installed with Inovance software tool.Gain auto-tuningGenerates gain parameters automatically to match present working condition through just one parameter.Gain switchoverDifferent gains can be applied, stopped or switched through external terminals during running.Torque disturbance observationAutomatically estimates the disturbance torque suffered by the system to perform compensation and reduce vibration.Resonance suppressionSets filter characteristics automatically to suppress mechanical system vibration after detecting the resonance point.Torque reference filterSuppresses the mechanical resonance generated during high-speed response of the servo drive.Position first-order low-pass functionEnables smooth acceleration and deceleration.Speed limitLimits the output torque of the servo motor.Speed limitLimits the servo motor speed.Intends to be used in cases where the braking capacity of the built-in regenerative resistor is insufficient.Input signal selectionDefines input functions such as emergency stop to corresponding pins.Fault logContains the latest ten faults or used to clear the previous faults.Status displayDisplays the servo drive status through five LEDs.	Touch probe function	Latches the position information when an external DI signal or the motor phase-Z signal <mark>changes</mark> .
analysisinstalled with Inovance software tool.Gain auto-tuningGenerates gain parameters automatically to match present working condition through just one parameter.Gain switchoverDifferent gains can be applied, stopped or switched through external terminals during running.Torque disturbance observationAutomatically estimates the disturbance torque suffered by the system to perform compensation and reduce vibration.Resonance suppressionSets filter characteristics automatically to suppress mechanical system vibration after detecting the resonance point.Torque reference filterSuppresses the mechanical resonance generated during high-speed response of the servo drive.Position first-order low-pass functionLimits the output torque of the servo motor.Speed limitLimits the servo motor speed.External regenerative resistor is insufficient.Intends to be used in cases where the braking capacity of the built-in regenerative resistor is insufficient.Fault logContains the latest ten faults or used to clear the previous faults.Fault logDisplays the servo drive status through five LEDs.	High-resolution encoder	The encoder is of high performance with resolution up to 8388608 PPR.
Gain auto-tuningjust one parameter.Gain switchoverDifferent gains can be applied, stopped or switched through external terminals during running.Torque disturbance observationAutomatically estimates the disturbance torque suffered by the system to perform compensation and reduce vibration.Resonance suppressionSets filter characteristics automatically to suppress mechanical system vibration after detecting the resonance point.Torque reference filterSuppresses the mechanical resonance generated during high-speed response of the servo drive.Position first-order low-pass functionEnables smooth acceleration and deceleration.Torque limitLimits the output torque of the servo motor.Speed limitLimits the servo motor speed.External regenerative resistorIntends to be used in cases where the braking capacity of the built-in regenerative resistor is insufficient.Input signal selectionDefines input functions such as emergency stop to corresponding pins.Fault logContains the latest ten faults or used to clear the previous faults.Status displayDisplays the servo drive status through five LEDs.	Mechanical characteristics analysis	
Gain Switchoverrunning.Torque disturbance observationAutomatically estimates the disturbance torque suffered by the system to perform compensation and reduce vibration.Resonance suppressionSets filter characteristics automatically to suppress mechanical system vibration after detecting the resonance point.Torque reference filterSuppresses the mechanical resonance generated during high-speed response of the 	Gain auto-tuning	
observationcompensation and reduce vibration.Resonance suppressionSets filter characteristics automatically to suppress mechanical system vibration after detecting the resonance point.Torque reference filterSuppresses the mechanical resonance generated during high-speed response of the servo drive.Position first-order low-pass functionEnables smooth acceleration and deceleration.Torque limitLimits the output torque of the servo motor.Speed limitLimits the servo motor speed.External regenerative resistor is insufficient.Input signal selectionDefines input functions such as emergency stop to corresponding pins.Fault logContains the latest ten faults or used to clear the previous faults.Status displayDisplays the servo drive status through five LEDs.	Gain switchover	
Resonance suppressiondetecting the resonance point.Torque reference filterSuppresses the mechanical resonance generated during high-speed response of the servo drive.Position first-order low-pass functionEnables smooth acceleration and deceleration.Torque limitLimits the output torque of the servo motor.Speed limitLimits the servo motor speed.External regenerative resistorIntends to be used in cases where the braking capacity of the built-in regenerative resistor is insufficient.Input signal selectionDefines input functions such as emergency stop to corresponding pins.Fault logContains the latest ten faults or used to clear the previous faults.Status displayDisplays the servo drive status through five LEDs.	Torque disturbance observation	
Torque reference filterservo drive.Position first-order low-pass functionEnables smooth acceleration and deceleration.Torque limitLimits the output torque of the servo motor.Speed limitLimits the servo motor speed.External regenerative resistorIntends to be used in cases where the braking capacity of the built-in regenerative resistor is insufficient.Input signal selectionDefines input functions such as emergency stop to corresponding pins.Fault logContains the latest ten faults or used to clear the previous faults.Status displayDisplays the servo drive status through five LEDs.	Resonance suppression	
Iow-pass functionEnables smooth acceleration and deceleration.Torque limitLimits the output torque of the servo motor.Speed limitLimits the servo motor speed.External regenerative resistorIntends to be used in cases where the braking capacity of the built-in regenerative resistor is insufficient.Input signal selectionDefines input functions such as emergency stop to corresponding pins.Fault logContains the latest ten faults or used to clear the previous faults.Status displayDisplays the servo drive status through five LEDs.	Torque reference filter	
Speed limitLimits the servo motor speed.External regenerative resistorIntends to be used in cases where the braking capacity of the built-in regenerative resistor is insufficient.Input signal selectionDefines input functions such as emergency stop to corresponding pins.Fault logContains the latest ten faults or used to clear the previous faults.Status displayDisplays the servo drive status through five LEDs.	Position first-order low-pass function	Enables smooth acceleration and deceleration.
External regenerative resistorIntends to be used in cases where the braking capacity of the built-in regenerative resistor is insufficient.Input signal selectionDefines input functions such as emergency stop to corresponding pins.Fault logContains the latest ten faults or used to clear the previous faults.Status displayDisplays the servo drive status through five LEDs.	Torque limit	Limits the output torque of the servo motor.
resistorresistor is insufficient.Input signal selectionDefines input functions such as emergency stop to corresponding pins.Fault logContains the latest ten faults or used to clear the previous faults.Status displayDisplays the servo drive status through five LEDs.	Speed limit	Limits the servo motor speed.
Fault logContains the latest ten faults or used to clear the previous faults.Status displayDisplays the servo drive status through five LEDs.	External regenerative resistor	
Status display Displays the servo drive status through five LEDs.	Input signal selection	Defines input functions such as emergency stop to corresponding pins.
	Fault log	Contains the latest ten faults or used to clear the previous faults.
External I/O display Displays ON/OFF status of external I/O signals.	Status display	Displays the servo drive status through five LEDs.
	External I/O display	Displays ON/OFF status of external I/O signals.

Function	Description
Forced output of output signals	Implements forced signal output <mark>unrelated</mark> to the servo drive status and detects the wiring of output signals.
Trial run mode	Runs the servo motor directly through the keypad, removing the need for a start signal.
Inovance software tool	Used to execute parameter settings, trial run and status display through a PC.
Warning code output	Outputs a four-bit warning code when a warning occurs.
High-speed position comparison output	Outputs a DO signal with designated width after the servo drive reaches the preset target position.
Black box function	Captures the data before and after the designated condition <mark>, and cooperates with the software tool to read the data for further analysis.</mark>

1.1.4 Specifications of the Regenerative Resistor

Servo Drive Model		Built-in Regen Resistance (Ω)	erative Resistor Power (W)	Minimum Allowable Resistance (Ω)	Max. Braking Energy Absorbed by Capacitor	
	SV660NS1R6I	-	-	50	9	
Single-phase 220 V	SV660NS2R8I	-	-	45	18	
	SV660NS5R5I	50	50	40	26	
Three-phase 220 V	SV660NS6R6I	50	50	40	26	

Select the external regenerative resistor according to actual operating conditions.

NOTE

1.2 Introduction to the Servo Motor

1.2.1 Motor Nameplate and Model Number

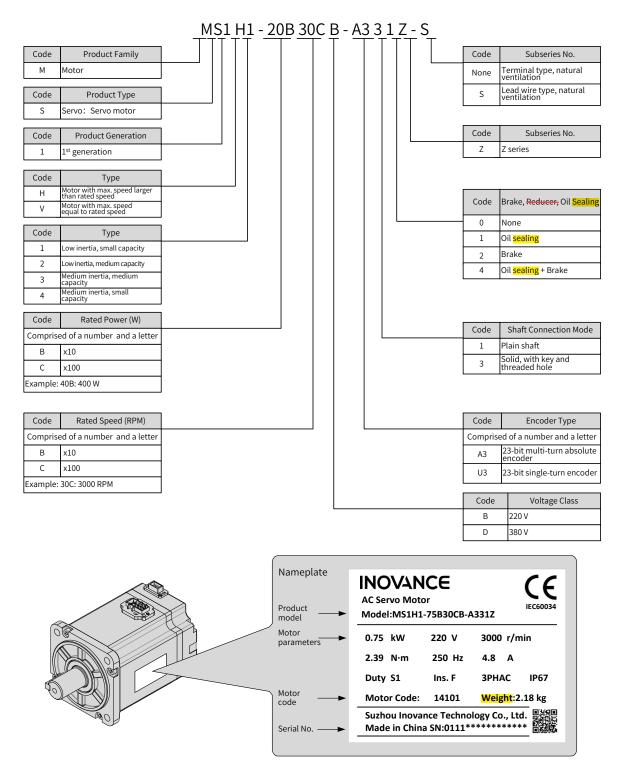


Figure 1-4 Motor model and nameplate

▶ The preceding information only applies to motors in 40\60\80 frame sizes.

The SV660N series servo drive can work with a motor installed with a 23-bit singl-turn absolute encoder or a 23-bit multi-turn absolute encoder.

1.2.2 Components



Figure 1-5 MS1 series terminal-type motor components

■ Lead wire-type motor components

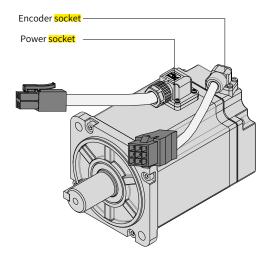


Figure 1-6 MS1 series lead wire-type motor components

1.2.3 Technical Specifications

1 Specifications of mechanical characteristic parameters of the motor

Item	Description
Duty type	Continuous
Vibration level	V15
Insulation resistance	500 VDC, above 10 M Ω
Ambient operating temperature	0° C to 40° C
Excitation mode	Permanent magnetic
Installation mode	Flange
Heat resistance level	Level F
Insulation voltage	1500 VAC, 1 min (200 V)
	1800 VAC, 1 min (400 V)
IP rating of the enclosure	H1: IP67 (except the through shaft part and <mark>connectors</mark>)
	H4: IP67 (except the through shaft part and <mark>connectors</mark>)
Ambient operating humidity	20% to 80% (without condensation)
Rotating direction	Rotating counterclockwise (CCW) when viewed from the load side at the forward run command

2 Motor ratings

Model	Rated Output (kW) ^[1]]	Rated Torque (N · m)	Max. Torque (N∙m)	Rated Current (Arms)	Max. Current (Arms)
MS1H1-10B30CB	0.1	0.32	1.12	1.3	4.7
MS1H1-20B30CB	0.2	0.64	2.24	1.5	5.8
MS1H1-40B30CB	0.4	1.27	4.46	2.8	10.1
MS1H4-40B30CB	0.4	1.27	4.46	2.8	10.1
MS1H1-75B30CB	0.75	2.39	8.36	4.8	16.9
MS1H4-75B30CB	0.75	2.39	8.36	4.8	16.9
MS1H3-85B15CB	0.85	5.39	13.5	6.60	16.5
Model	Rated Speed (RPM)	Max. Speed (RPM)	Torque Coefficient (N∙m/Arms)	Rotor Inertia (10⁻⁴ <mark>kg.m</mark> ²)	Voltage (V)
MS1H1-10B30CB			0.26	0.041 (0.043) ^[2]	
MS1H1-20B30CB			0.46	0.207 (0.220) ^[2]	
MS1H1-40B30CB	3000	6000	0.53	0.376 (0.390) ^[2]	
MS1H4-40B30CB	5000	6000	0.53	0.657 (0.667) ^[2]	220 V
MS1H1-75B30CB			0.58	1.38 (1.43) ^[2]	
MS1H4-75B30CB			0.58	2 (2.012) ^[2]	
MS1H3-85B15CB	1500	3000	0.91	13.3 (14) ^[2]	

[1] The motor with oil sealing must be derated 10% during use.

 $\ensuremath{\left[2\right]}$ $\ensuremath{\left[$ Parameters inside the brackets "()" are for motors with brake.

The items and torque-speed characteristic values in the preceding table are obtained in cases where the motor is working with Inovance servo drive and the armature coil temperature is 20° C.

The characteristic parameter values in the preceding table are obtained in cases where the motor is installed with the following heatsink:

MS1H1/MS1H4: 250 mm x 250 mm x 6 mm (aluminum)

3 Motor overload characteristics

Load Ratio (%)	Running Time (s)
120	230
130	80
140	40
150	30
160	20
170	17
180	15
190	12
200	10
210	8.5
220	7
230	6
240	5.5
250	5
300	3

Running time (s)

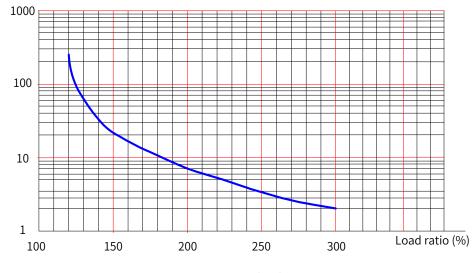
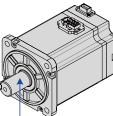



Figure 1-7 Motor overload curve

The maximum torque of H1 and H4 models are three times the rated torque.

4 Allowable radial and axial loads of the motor

Radial load P direction

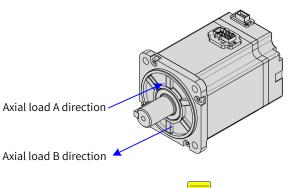
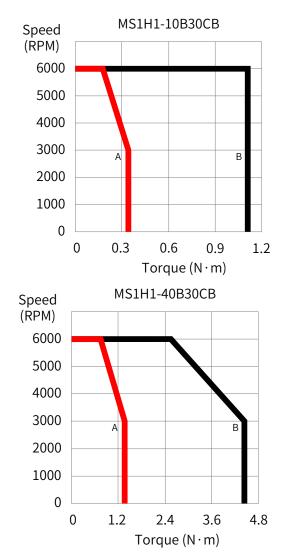


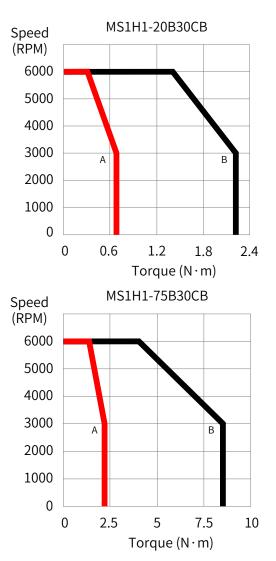
Figure 1-8 Radial and axial loads

Motor Model	Allowable Radial Load (N)	Allowable Axial Load (N)
MS1H1-10B30CB	78	54
MS1H1-20B30CB	245	74
MS1H1-40B30CB	245	74
MS1H4-40B30CB	245	74
MS1H1-75B30CB	392	147
MS1H4-75B30CB	392	147
MS1H3-85B15CB	686	196

5 Electrical specifications for the motor with brake

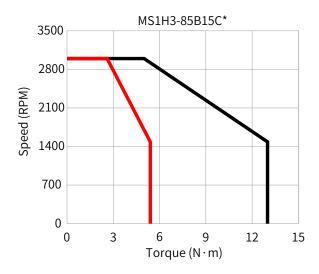
Motor Model	Holding Torque (N∙m)	Supply Voltage (VDC) (±10%)	Release Time (ms)	Close Time (ms)	Backlash (°)
MS1H1-05B/10B	0.32	24	≤ 20	≤ 35	< 1.7
MS1H1-20B/40B	1.5	24	≤ 20	≤ 50	< 1.5
MS1H4-40B	1.5	24	≤ 20	≤ 50	< 1.5
MS1H*-75B	2.5	24	≤ 20	≤ 60	< 1.7
MS1H3-85B	12	24	60	120	≤ 0.5


• The brake cannot share the same power supply with other electrical devices. This is to prevent malfunction of the brake due to voltage or current drop caused by other working devices.

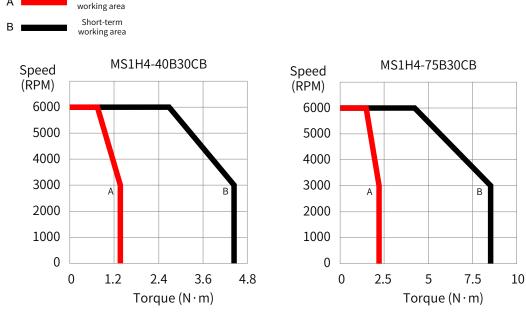

◆ It is recommended to use cables of 0.5 mm² and above.

6 Motor torque-speed characteristics

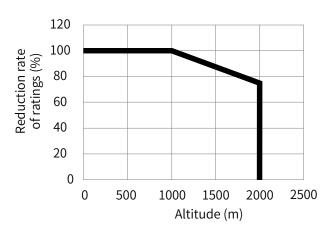
■ MS1H1 (low inertia, small capacity)



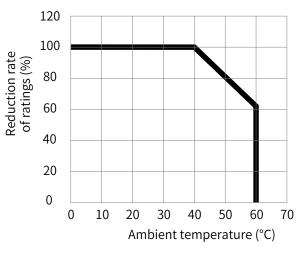
■ MS1H3 (medium inertia, medium capacity)



MS1H4 (medium inertia, small capacity)


Continuous

A



7 Derating characteristics

Derating curve for altitude

Derating curve for high temperature

1.3 Servo System Configurations

220	V:

Rated Maximum					Motor -		Servo Drive Model SV660N****I		Servo
Speed Speed	Capacity	Capacity Servo Motor Model			Single- Phase 220 VAC	Three- Phase 220 VAC	of the Servo Drive	Drive SN (H01-02)	
		50 W		05B30CB	40	S1R6		A	00002
		200 W		20B30CB	60	S1R6		A	00002
		400 W	MS1H1	40B30CB	60	S2R8		Α	00003
	3000 RPM	550 W	(Low inertia, small capacity)	55B30CB	80	S5R5		В	00005
3000 RPM		750 W		75B30CB	80	S5R5		В	00005
		1000 W		10C30CB	80	S7R6		С	00006
		1000 W	MS1H2	10C30CB	100	S7	R6	С	00006
	5000 RPM	1500 W	(Low inertia, medium capacity)	15C30CB	100	S0	12	D	00007
		850 W	MS1H3	85B15CB 130		S6R6		В	60005
1500 RPM	1500 RPM 3000 RPM	850 W	(Medium inertia,		S7R6		С	00006	
	1300 W	medium capacity)	13C15CB	130	S0	12	D	00007	
2000 00		400 W	MS1H4	40B30CB	60	S2R8		A	00003
3000 RPM	6000 RPM	750 W	(Medium inertia, small capacity)	75B30CB	80	S5R5		A	00005

▶ S6R6 models support single-phase 220 V power supply. Derate to 70% upon single-phase input.

S7R6 and S012 models support single-phase 220 V power supply. Derating is not required upon single-phase input.

■ 380 V:

Rated Maxiumum Speed Speed		Capacity	Servo Motor Model		Motor Frame -	Servo Drive Model SV660N****I	Size of the Servo	Servo Drive SN
						Three-phase 380 VAC	Drive	(H01-02)
	6000 RPM	1000 W		10C30CD	100	T5R4	С	10002
		1500 W		15C30CD	100	T5R4	С	10002
		2000 W	MS1H2	20C30CD	100	T8R4	D	10003
3000 RPM	3000 RPM 5000 RPM 3000 W 4000 W	2500 W	(Low inertia, medium capacity)	25C30CD	100	T8R4	D	10003
		3000 W		30C30CD	130	T012	D	10004
		4000 W		40C30CD	130	T017	E	10005
		5000 W		50C30CD	130	T017	E	10005
		850 W		85B15CD	130	T3R5	С	10001
		1300 W		13C15CD	130	T5R4	С	10002
		1800 W	MS1H3	18C15CD	130	T8R4	С	10003
1500 RPM	3000 RPM	2900 W	(medium inertia,	29C15CD	180	T012	D	10004
		4400 W	medium capacity)	44C15CD	180	T017	E	10005
		5500 W		55C15CD	180	T021	E	10006
		7500 W		75C15CD	180	T026	E	10007

1.4 Cable Models

Cable Type	Cable Length (m)				
Cable Type	3.0	5.0	10.0		
Power cable (without brake)	S6-L-M107-3.0	S6-L-M107-5.0	S6-L-M107-10.0		
Power cable (with brake)	S6-L-B107-3.0	S6-L-B107-5.0	S6-L-B107-10.0		
Absolute encoder cables	S6-L-P124-3.0	S6-L-P124-5.0	S6-L-P124-10.0		
Incremental encoder cables	S6-L-P114-3.0	S6-L-P114-5.0	S6-L-P114-10.0		

Table 1-2 Cables for MS1 terminal-type (Z) motors with rear cable outlet

Cable Type	Cable Length (m)				
Cable Type	3.0	5.0	10.0		
Power cable (without brake)	S6-L-M108-3.0	S6-L-M108-5.0	S6-L-M108-10.0		
Power cable (with brake)	S6-L-B108-3.0	S6-L-B108-5.0	S6-L-B108-10.0		
Absolute encoder cables	S6-L-P125-3.0	S6-L-P125-5.0	S6-L-P125-10.0		
Incremental encoder cables	S6-L-P115-3.0	S6-L-P115-5.0	S6-L-P115-10.0		

Cable Type	Cable Length (m)		
	3.0	5.0	10.0
Power cable (without brake)	S6-L-M107-3.0-T	S6-L-M107-5.0-T	S6-L-M107-10.0-T
Power cable (with brake)	S6-L-B107-3.0-T	S6-L-B107-5.0-T	S6-L-B107-10.0-T
Absolute encoder cables	S6-L-P124-3.0-T	S6-L-P124-5.0-T	S6-L-P124-10.0-T
Incremental encoder cables	S6-L-P114-3.0-T	S6-L-P114-5.0-T	S6-L-P114-10.0-T

Table 1-3 Flexible cables for MS1 terminal-type (Z) motors with front cable outlet

Table 1-4 Flexible cables for MS1 terminal-type motors with rear cable outlet

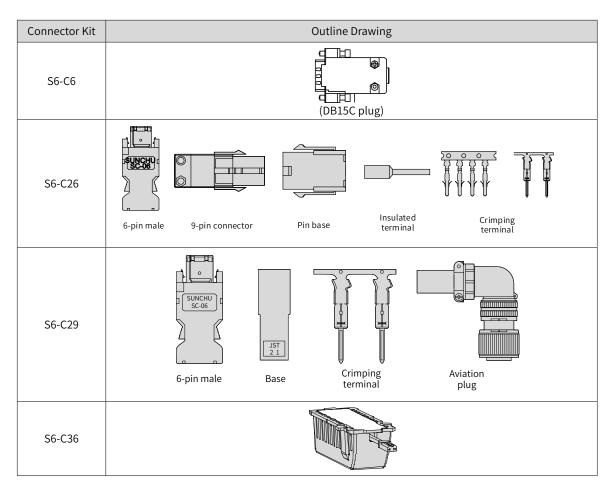
Cable Type	Cable Length (m)		
	3.0	5.0	10.0
Power cable (without brake)	S6-L-M108-3.0-T	S6-L-M108-5.0-T	S6-L-M108-10.0-T
Power cable (with brake)	S6-L-B108-3.0-T	S6-L-B108-5.0-T	S6-L-B108-10.0-T
Absolute encoder cables	S6-L-P125-3.0-T	S6-L-P125-5.0-T	S6-L-P125-10.0-T
Incremental encoder cables	S6-L-P115-3.0-T	S6-L-P115-5.0-T	S6-L-P115-10.0-T

Table 1-5 Cables for MS1 lead wire-type (S) motors with front cable outlet

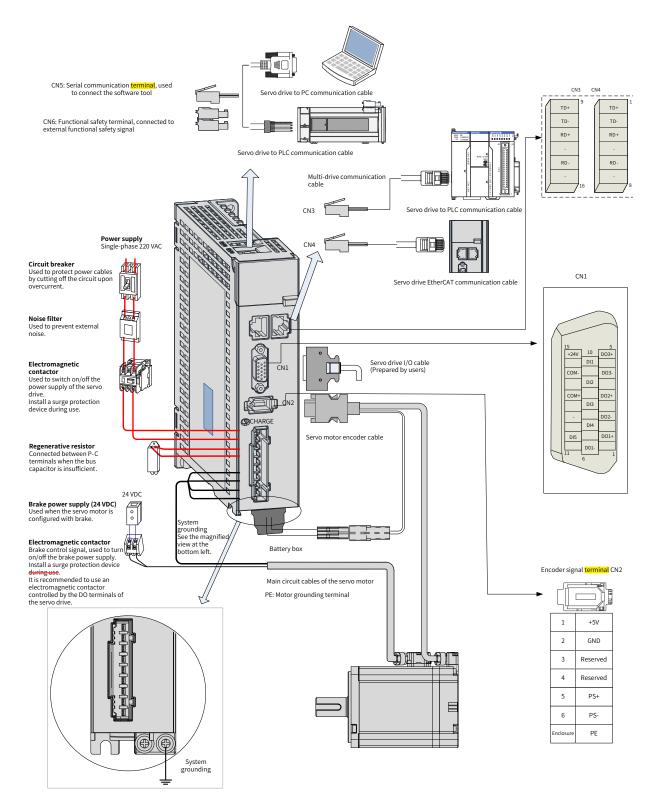
Cable Type	Cable Length (m)		
	3.0	5.0	10.0
Power cable (without brake)	S6-L-M100-3.0	S6-L-M100-5.0	S6-L-M100-10.0
Power cable (with brake)	S6-L-B100-3.0	S6-L-B100-5.0	S6-L-B100-10.0
Absolute encoder cables	S6-L-P120-3.0	S6-L-P120-5.0	S6-L-P120-10.0
Incremental encoder cable	S6-L-P110-3.0	S6-L-P110-5.0	S6-L-P110-10.0

Table 1-6 Flexible cables for MS1 lead wire-type (S) motors with front cable outlets

Cable Type	Cable Length (m)		
	3.0	5.0	10.0
Power cable (without brake)	S6-L-M100-3.0-T	S6-L-M100-5.0-T	S6-L-M100-10.0-T
Power cable (with brake)	S6-L-B100-3.0-T	S6-L-B100-5.0-T	S6-L-B100-10.0-T
Absolute encoder cables	S6-L-P120-3.0-T	S6-L-P120-5.0-T	S6-L-P120-10.0-T
Incremental encoder cable	S6-L-P110-3.0-T	S6-L-P110-5.0-T	S6-L-P110-10.0-T


Table 1-7 Cables for MS1H3 motors

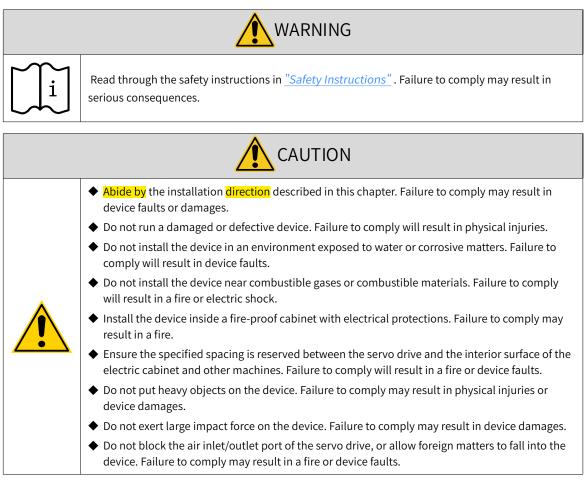
Cable Type	Cable Length (m)		
	3.0	5.0	10.0
Power cable (without brake)	S6-L-M111-3.0	S6-L-M111-5.0	S6-L-M111-10.0
Power cable (with brake)	S6-L-B111-3.0	S6-L-B111-5.0	S6-L-B111-10.0
Absolute encoder cables	S6-L-P121-3.0	S6-L-P121-5.0	S6-L-P121-10.0
Incremental encoder cable	S6-L-P111-3.0	S6-L-P111-5.0	S6-L-P111-10.0


1.5 Communication Cable Options

Model	Description	
S6-L-T00-3.0	Cable for communication between the servo drive and PC	
S6-L-T04-0.3	Cable for parallel communication of multiple servo drives	
S6-L-T03-0.0	Cable for communication between the servo drive and the host controller	

1.6 Connector Kit

1.7 Servo System Wiring Diagram



The servo drive is directly connected to an industrial power supply, with no isolation such as a transformer. To prevent cross electric shock, install a fuse or a circuit breaker on the input power supply. The servo drive is not configured with the built-in protective grounding circuit. For the sake of safety, install a residual current device (RCD) to provide protections against overload and short circuit or install a specialized RCD to match the protective grounding.

Do not run or stop the motor by using the electromagnetic contactor. As a high-inductance device, the motor may generate high voltage instantaneously, which may damage the contactor.

Pay attention to the power capacity when connecting an external control power supply or a 24 VDC power supply, especially when the power supply is used to power up multiple servo drives or brakes. Insufficient power supply will lead to insufficient supply current, resulting in failure of the servo drive or the brake. The brake must be powered by a 24 VDC power supply, and the brake power must match the motor model and meet the brake power requirements.

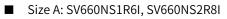
2 Installation

2.1 Installation of the Servo Drive

2.1.1 Installation Location

- Install the servo drive into a cabinet free from sunlight and rain.
- Install the servo drive in a place that meets the following requirements:

a) Free from corrosive and inflammable gases and combustible materials, such as the hydrogen sulfide, chlorine, anmonia, sulphur gas, chloridize gas, acid, soda and salt


- b) Free from high temperature, humidity, dusts and metal powders
- c) Free from vibration
- d) Pollution degree: PD2

2.1.2 Environment Conditions

Item	Description
Ambient operating temperature	0°C –55°C (The average load ratio cannot exceed 80% when the ambient temperature is within 45°C to 55°C .) (non-freezing)
Ambient operating humidity	Below 90% RH (without condensation)
Storage temperature	-20°C to +70°C (non-freezing)
Storage humidity	Below 90% RH (without condensation)
Vibration	Below 4.9 m/s ²
Impact	Below 19.6 m/s ²
IP rating	IP20
Altitude	Below 1000 m

Table 2-1 Installation environment

2.1.3 Dimension Drawings

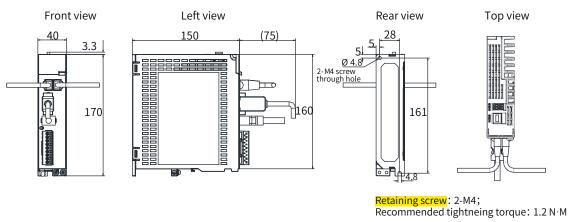


Figure 2-1 Outline dimensions of size A (unit: mm)

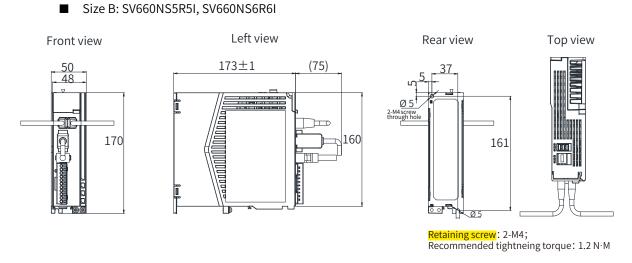
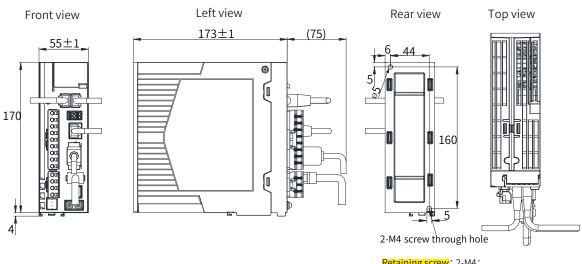



Figure 2-2 Outline dimensions of size B (unit: mm)

■ Size C: SV660NS7R6I, SV660NT3R5I, SV660NT5R4I

Retaining screw: 2-M4; Recommended tightneing torque: 1.2 N·M

Figure 2-3 Outline dimensions of size C (unit: mm)

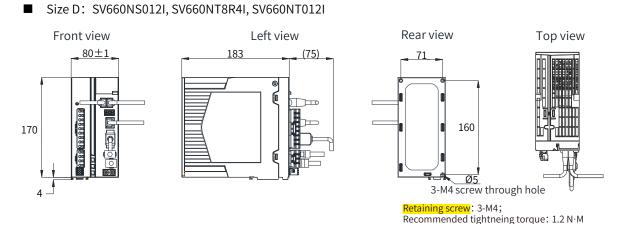


Figure 2-4 Outline dimensions of size D (unit: mm)

■ Size E: SV660NT017I, SV660NT021I, SV660NT026I

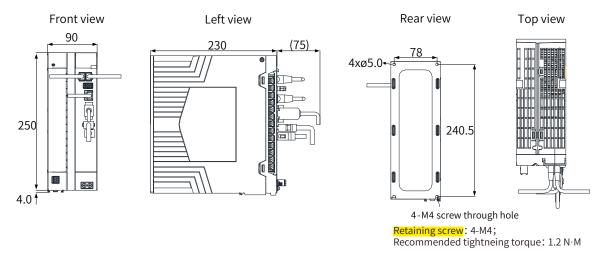
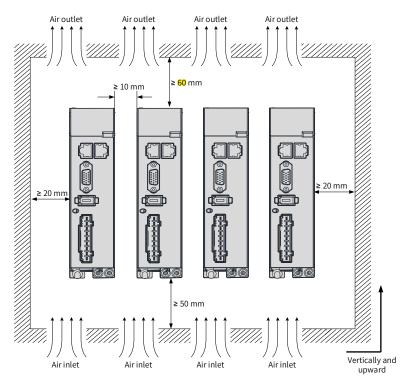


Figure 2-5 Outline dimensions of size E (unit: mm)

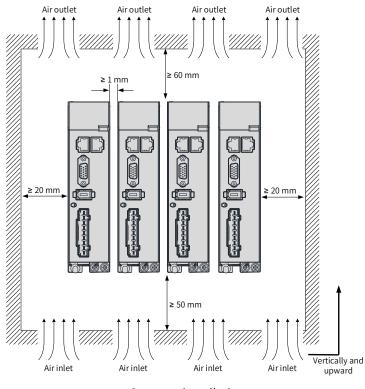
2.1.4 Installation

Installation Method

Ensure the servo drive is installed vertically to the wall, with its front (actual mounting side) facing the operator. Cool the servo drive down with natural convection or a cooling fan. Fix the servo drive securely on the mounting surface through two to four mounting holes (number of mounting holes depends on the capacity of the servo drive).


■ Cooling

As shown in Figure 2-3, reserve sufficient space around the servo drive to ensure proper cooling by the cooling fan or natural convection. Install the cooling fan on the upper part of the servo drive to avoid excessive temperature rise in a certain region and maintain an even temperature inside the electric cabinet.


Installation

When installing multiple servo drives side by side, reserve a clearance of at least 10 mm between two servo drives and at least 50 mm above and below each servo drive for heat dissipation purpose.

In compact installation, take the installation tolerance into account and reserve a clearance of at least 1 mm between every two servo drives. In this case, derate to below 75% of the actual load ratio during use.

Regular installation

Compact installation

Figure 2-6 Installation of the servo drive

■ Grounding

The grounding terminal must be grounded properly. Failure to comply may cause electric shock or malfunction due to interference.

Cable Direction

As shown in the following figure, route the servo drive cables with outlet facing downwards to prevent any liquid from flowing into the servo drive.

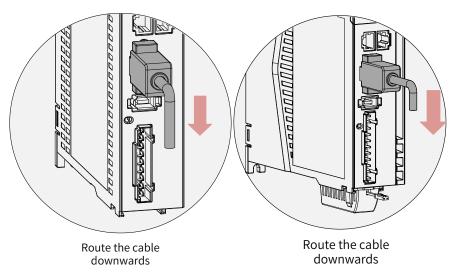


Figure 2-7 Cable layout of servo drives in size A and size B

Dust-proof cover

Insert the dust-proof cover into the idle CN5 port. This is to prevent foreign objects (such as solids or liquids) from falling into the servo drive and causing faults.

Each servo drive is equipped with two dust-proof covers in standard configuration. Such dust-proof covers can be purchased separately as needed (model: NEX-02-N2B; manufacturer: PINGOOD).

Figure 2-8 Mounting of the dust-proof cover

- Dust-proof cover: Prevents foreign objects (such as solids or liquids) from falling into the product and causing faults.
- The dust-proof cover is delivered along with the servo drive. Keep the dust-proof cover in a proper place.

2.2 Installation of the Servo Motor

2.2.1 Installation Location

- Install the servo motor in a place free from corrosive and inflammable gases and combustible materials, such as the hydrogen sulfide, chlorine, anmonia, sulphur gas, chloridize gas, acid, soda and salt.
- Use the servo motor with oil sealing when the motor is used in a place with grinding fluids, oil mists, iron powders or cuttings.
- Install the servo motor away from heating sources such as a heating stove.
- Do not use the servo motor in an enclosed environment. Running in an enclosed environment may cause motor overheat, shortening its service life.

2.2.2 Environment Conditions

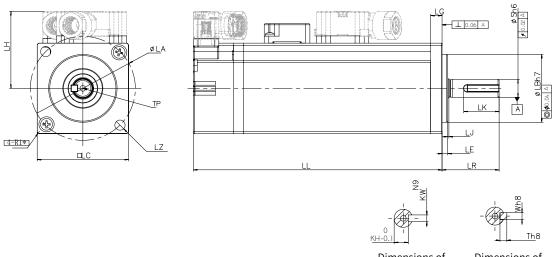
Item	Description						
Ambient temperature	0°C to 40°C (non-freezing)						
Ambient humidity	20% to 80% RH (without condensation)						
Storage temperature	-20°C to +60°C (peak temperature: 80°C for 72 hours)						
Storage humidity	20% to 90% RH (without condensation)						
Vibration	Below 49 m/s ²						
Impact	Below 490 m/s ²						

Table 2-2 Installation environment

Item	Description
IP rating	H1: IP67 (shaft opening excluded, with power cables and encoder connectors connected properly)H4: IP67 (shaft opening excluded, with power cables and encoder connectors connected properly)
Altitude	Below 1000 m (derating required for altitude above 1000 m)

2.2.3 Installation Precautions

Item	Description
Rust-proof treatment	 Wipe up the anti-rust agent applied at the motor shaft extension before installing the servo motor, and then take rust-proof treatment.
	◆ Do not strike the shaft extension during installation. Failure to comply will damage the encoder.
Encoder	 Use the screw hole at the shaft end when mounting a pulley to the servo motor shaft with a keyway. To fit the pulley, insert a double-end screw into the screw hole of the shaft. Put a washer on the surface of the coupling end, and then use a nut to push the pulley in. For the servo motor shaft with a keyway, use the screw hole at the shaft end. For the servo motor shaft without a keyway, use friction coupling or similar methods. When removing the pulley, use a pulley remover to protect the shaft from suffering severe impact from the load. To ensure safety, install a protective cover or similar device on the rotary area such as the pulley mounted on the shaft.

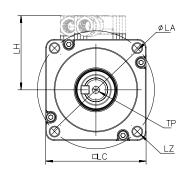

Table 2-3 Installation instructions

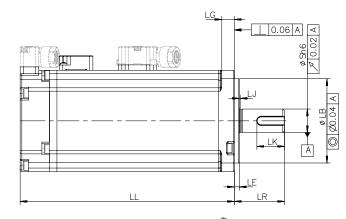
Item	Description
Alignment	 When connecting the servo motor to a machine, use a coupling and keep the motor shaft center and the machine shaft center in the same line. Make sure the servo motor fulfills the required alignment precision (as shown in the following figure). Failure to comply will result in vibration or damage the bearing and the encoder. Measure the distance at four different positions on the circumference. The difference between the maximum and the minimum measured values must be less than 0.03 mm.
Installation direction	◆ The servo motor can be installed horizontally or vertically.
Counter- measures against oil and liquid	 Do not submerge the motor/cable in water or oil. Check the IP rating of the servo motor when the application location is exposed to water drops (except the shaft opening). Flange surface Shaft opening Refers to the clearance of the shaft extension Shaft Mount the motor with cable connecting terminal facing downwards if the application location is exposed to liquid. This is to prevent the liquid from flowing into the motor along the cable (as shown in the following figure). In environments where the shaft opening is exposed to oil drops, use a motor with oil sealing. Observe the following requirements when using a motor with oil sealing: Make sure the oil level is lower than the oil sealing lip during use. Avoid oil accumulation on the oil sealing lip when the motor is installed vertically upward.
Stress of cables	 Do not bend or apply tension to the cables, especially the signal cables whose core wire is only 0.2 mm or 0.3 mm in thickness. Do not pull the cables too tight during wiring.

ltem	Description
Connectors	 Observe the following requirements: 1) When connecting the connectors, make sure there is no waste or sheet metal inside the connector. 2) Connect the connector to the main circuit cable side of the servo motor first, and ensure the grounding cable of the main circuit is connected properly. If the connector is connected to the encoder cable side first, the encoder may become faulty due to the potential difference between PE terminals. 3) Ensure the pins are correctly arranged during wiring. 4) Do not strike the connector as they are made up of resins. 5) When moving a servo motor with cables connected, hold the servo motor by its main body instead of by the cable. Failure to comply may damage the connector or cable. 6) If flexible cables are used, do not apply stress on the connector during wiring. Failure to comply may damage the connector during wiring.

2.2.4 Dimension Drawings

1 Flange frame: 40


Dimensions of the shaft end


Dimensions of the shaft end with key

Motor Model	LL	LC	LR	LA	LZ	LH	LG	LE	LJ
MS1H1-10B30CB-**30Z	77.5	40	25±0.5	46	2-φ4.5	34	5	2.5±0.5	0.5±0.35
MS1H1-10B30CB-**32Z	109	40	25±0.5	46	2-ф4.5	34	5	2.5±0.5	0.5±0.35
Motor Model	S	LB	TP	LK	КН	KW	W	Т	Weight (kg)
MS1H1-10B30CB-**30Z	8	30	M3x6	15.5	6.2	3	3	3	0.45
MS1H1-10B30CB-**32Z	8	30	M3x6	15.5	6.2	3	3	3	0.64

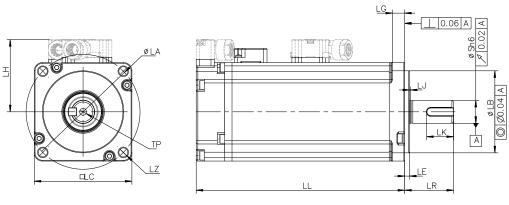
 Angle R of the front end cover of Z (terminal-type) series motor in frame 40 is R1. The tightening torque for screws on the terminal is 0.19 N · m to 0.21 N · m, violation of which may damage the terminal. 		◆ The unit for the dimensions in the preceding table is "mm".
INDIE 0 0 1		◆ Angle R of the front end cover of Z (terminal-type) series motor in frame 40 is R1.
damage the terminal.	NOTE	◆ The tightening torque for screws on the terminal is 0.19 N · m to 0.21 N · m, violation of which may
		damage the terminal.

2 Flange frame: 60

Dimensions of the shaft end

Dimensions of the shaft end with key

Tł


Motor Model	LL	LC	LR	LA	LZ	LH	LG	LE	LJ
MS1H1-20B30CB-**31Z	72.5	60	30±0.5	70	4-φ5.5	44	7.5	3±0.5	0.5±0.35
MS1H1-20B30CB-**34Z	100	60	30±0.5	70	4-φ5.5	44	7.5	3±0.5	0.5±0.35
MS1H1-40B30CB-**31Z	91	60	30±0.5	70	4-φ5.5	44	7.5	3±0.5	0.5±0.35
MS1H1-40B30CB-**34Z	119	60	30±0.5	70	4-φ5.5	44	7.5	3±0.5	0.5±0.35
MS1H4-40B30CB-**31Z	105	60	30±0.5	70	4-φ5.5	44	7.5	3±0.5	0.5±0.35
MS1H4-40B30CB-**34Z	128	60	30±0.5	70	4-φ5.5	44	7.5	3±0.5	0.5±0.35
Motor Model	S	LB	TP	LK	КН	KW	W	Т	<mark>Weight</mark> (kg)
MS1H1-20B30CB-**31Z	14	50	M5x8	16.5	11	5	5	5	0.78
MS1H1-20B30CB-**34Z	14	50	M5x8	16.5	11	5	5	5	1.16
MS1H1-40B30CB-**31Z	14	50	M5x8	16.5	11	5	5	5	1.11
MS1H1-40B30CB-**34Z	14	50	M5x8	16.5	11	5	5	5	1.48
MS1H4-40B30CB-**31Z	14	50	M5x8	16.5	11	5	5	5	1.27
MS1H4-40B30CB-**34Z	14	50	M5x8	16.5	11	5	5	5	1.62

• The unit for the dimensions in the preceding table is "mm".

◆ The tightening torque for screws on the terminal is 0.19 N · m to 0.21 N · m, violation of which may damage the terminal.

3 Flange frame: 80

Aviation plug

Dimension of the shaft end

кн

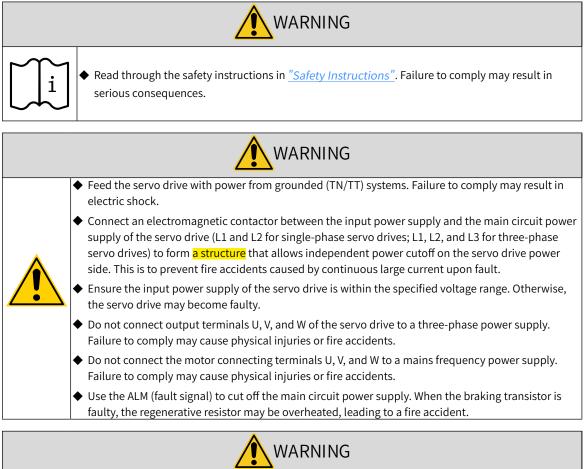
Dimension of the shaft end with key

Motor Model	LL	LC	LR	LA	LZ	LH	LG	LE	LJ
MS1H1-75B30CB-**31Z	107	80	35±0.5	90	4-φ7	54	7.7	3±0.5	0.5±0.35
MS1H1-75B30CB-**34Z	140	80	35±0.5	90	4-φ7	54	7.7	3±0.5	0.5±0.35
MS1H4-75B30CB-**31Z	117.5	80	35±0.5	90	4-φ7	54	7.7	3±0.5	0.5±0.35
MS1H4-75B30CB-**34Z	147.5	80	35±0.5	90	4-φ7	54	7.7	3±0.5	0.5±0.35
Motor Model	S	LB	TP	LK	КН	KW	W	Т	<mark>Weight</mark> (kg)
MS1H1-75B30CB-**31Z	19	70	M6x20	25	15.5	6	6	6	2.18
MS1H1-75B30CB-**34Z	19	70	M6x20	25	15.5	6	6	6	2.82
MS1H4-75B30CB-**31Z	19	70	M6x20	25	15.5	6	6	6	2.40
MS1H4-75B30CB-**34Z	19	70	M6x20	25	15.5	6	6	6	3.04

• The unit for the dimensions in the preceding table is "mm".

▶ The tightening torque for screws on the terminal is 0.19 N · m to 0.21 N · m, violation of which may damage the terminal.

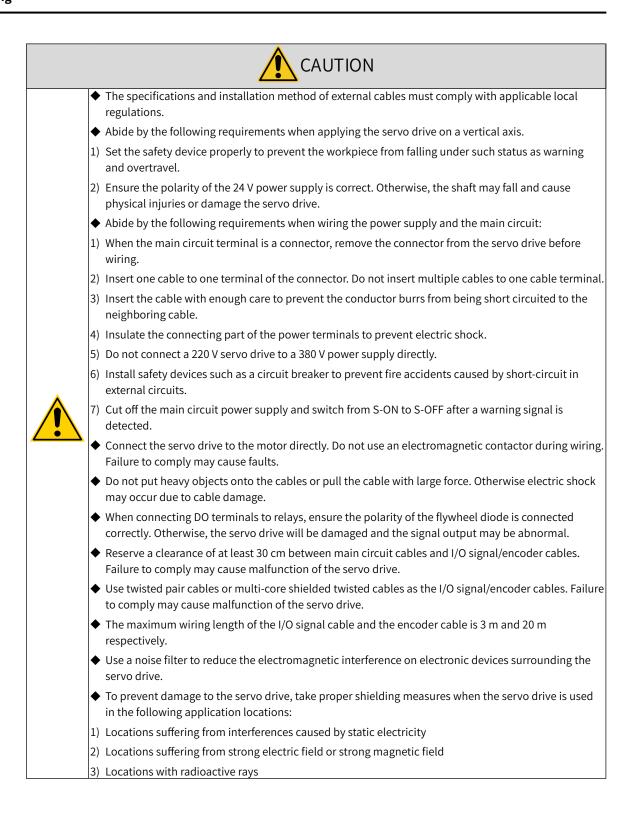
4 Flange frame: 130


(航插接头)	80						KH Dimensi the shaft		N9 Th11 Dimen		
Motor Model	LC	LL	LR	LA	LZ	LY	KA1	KB1	KA2	KB2	LG
MS1H3- 85B15CB-****Z	130	146 (182)	55±1	145	4-Ф9	2-M5	103	72.5	74	125 (161)	14
Motor Model	LE	LJ	LB	S	TP	LK	КН	KW	W	Т	Weight (kg)
MS1H3- 85B15CB-****Z	4	0.5±0.75	110	22	M6x20	36	18- 0.2	8	8	7	7 (8)

◆ The unit for the dimensions in the preceding table is "mm".

◆ Values in the brackets "()" are for the motor with holding brake.

3 Wiring


Connect the PE terminal of the servo drive to the PE terminal of the control cabinet. Failure to comply may cause electric shock.

• Ensure the entire system is grounded. Otherwise, malfunction may occur on the servo drive.

◆ After cutting off the power supply, wait for at least 15 minutes before further operations because residual voltage is still present in the internal capacitor after power-off. Failure to comply may result in electric shock.

3.1 Terminal Pin Layout

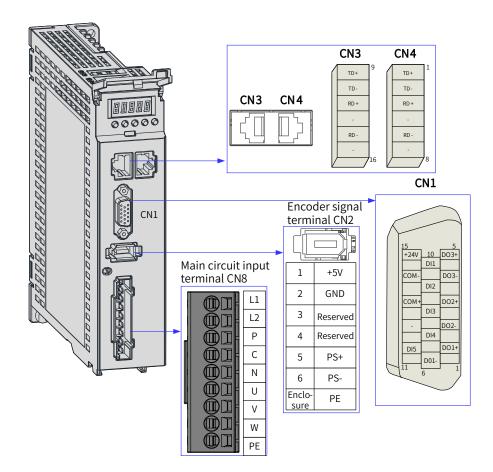


Figure 3-1 Terminal pin layout of servo drives in size A

The preceding figure shows the pin layout of the servo drive terminals.

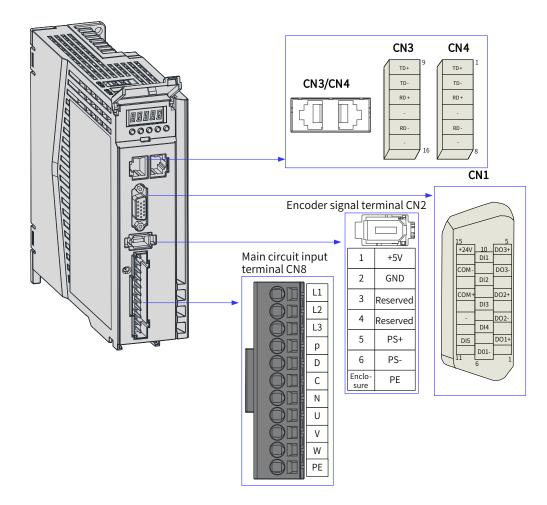


Figure 3-2 Terminal pin layout of servo drives in size B

The preceding figure shows the pin layout of the servo drive terminals.

3.2 Wiring of the Main Circuit

3.2.1 Main Circuit Terminals

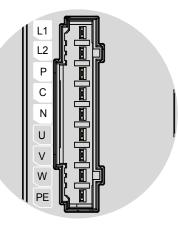
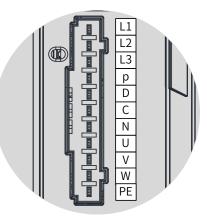



Figure 3-3 Main circuit terminal pin layout of servo drives in size A

No.	Component Name	Description				
1	L1, L2	See the nameplate for the control circuit powe				
1	(Power input terminals)	input of the rated voltage class.				
	P, N	Used as the common DC bus for multiple servo				
2	(DC bus terminals)	drives.				
2	P, C	Connected between P and C when an external				
	(Terminals for connecting external regenerative resistor)	regenerative resistor is needed.				
3	U, V, W	Connected to U, V, and W phases of the servo				
5	(Servo motor connecting terminals)	motor.				
4	PE	Connected to the grounding terminals of the				
	(Grounding terminal)	power supply and the motor.				

Table 3-1	Names and	functions c	of main	circuit te	erminals of	servo drives in size	А

Figure 3-4 Main circuit terminal pin layout of servo drives in size B

Table 3-2 Names and functions of main circuit terminals of servo drives in size B

No.	Component Name	Description
1	L1, L2, L3 (Power input terminals)	 See the nameplate for the power input of the rated voltage class. Note: 750 W servo drives: Single-phase 220 V input, with 220 V power supply connected to L1 and L2 850 W servo drives: Single-phase/Three-phase 220 V input,
		with 220 V power supply connected to L1, L2, and L3 <mark>during</mark> three-phase <mark>input</mark> or connected to any two phases among L1, L2, and L3 <mark>during</mark> single-phase <mark>input</mark> (derate 80%)
	P, N	Used as the common DC bus for multiple servo drives.
	(DC bus terminals)	
2	P, D, C (Terminals for connecting external regenerative resistor)	An external regenerative resistor <mark>is</mark> connected between P and C as needed. The servo drive in size B is equipped with a built-in regenerative resistor and terminals P and D are shorted by default.
З	U, V, W (Servo motor connecting terminals)	Connected to U, V, and W phases of the servo motor.
4	PE (Grounding terminal)	Connected to the grounding terminals of the power supply and the motor.

3.2.2 Wiring Example of the Regenerative Resistor

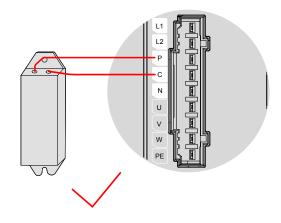
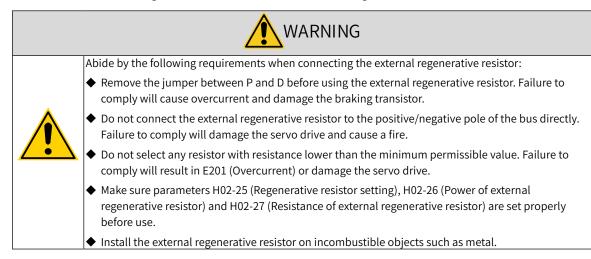



Figure 3-5 Connection of the external regenerative resistor

3.2.3 Recommended Models and Specifications of Main Circuit Cables

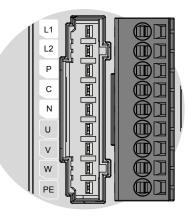


Figure 3-6 Main circuit terminal block of the servo drive

Servo Drive Model SV660N****I		Rated Input Current (A)	Rated Output Current (A)	Maximum Output Current (A)
SIZE-A	S1R6	2.3	1.6	5.8
	S2R8	4.0	2.8	10.1
SIZE-B —	S5R5	7.9 (Single-phase)	5.5	16.9
	S6R6	3.7 (Three-phase)	6.6	16.5
	S7R6	5.1	7.6	23
SIZE C	T3R5	2.4	3.5	11
	T5R4	3.6	5.4	14
	S012	8.0	11.6	32
SIZE D	T8R4	5.6	8.4	20
	T012	8.0	11.9	29.75
	T017	12.0	16.5	41.25
SIZE E	T021	16.0	20.8	52.12
	T026	21.0	25.7	64.25

Table 3-3 Current specifications of the servo drive

Table 3-4 Recommended main circuit cables and models

No.	Series	Servo Drive	Rated Input	L1, L2		Rated Output	U, V, W		PE	
NO.	Series	Model	Current (In)	mm ²	AWG	Current (Out)	mm²	AWG	mm²	AWG
	Single-phase 220 V									
1	Size A	SV660NS1R6I	2.30	2x0.5	20	1.60	2x0.5	20	0.50	20
2	SIZEA	SV660NS2R8I	4.00	2x0.5	20	2.80	2x0.5	20	0.50	20
3	Size B	SV660NS5R5I	7.90	2x0.75	18	5.50	2x0.75	18	0.75	18
	Three-phase 220 V									
4	Size B	SV660NS6R6I	3.70	2x0.75	18	6.60	2x0.75	18	0.75	18

See <u>"3.2.5 Precautions for Main Circuit Wiring</u>" for details.

Table 3-5 Recommended grounding cable lug of the main circuit

Servo Drive Model	SV660N****I	PE
Size A	S1R6	TVR 2-4
	S2R8	TVR 2-4
Size B	S5R5	TVR 2-4
	S6R6	TVR 2-4

Reference data for recommended cable lugs (Manufacturer: Suzhou Yuanli Metal Enterprise Co., Ltd)

Table 3-6 Dimensions and outline drawir	ng of the grounding cable lug
rable 5 6 Dimensions and outline drawn	ig of the grounding cubic tug

Cable Mod		D (mm)	d2 (mm)	B (mm)	Outline Drawing
TVR	2-4	4.5	4.3	8.5	¢d2 B

Use the following types of cables for the main circuit.

Table 3-7 Recommended main circuit cables

	Cable Type	Allowable Temperature (°C)	
Model	Name		
PVC	General PVC cable	-	
IV	PVC cable with a rated voltage of 600 V	60	
HIV	Special PVC cable with heat-resistance capacity	75	

For three-cable applications, the relation between AWG specification and the allowable current is shown in the following table.

Note that the values listed in the table cannot be exceeded during use.

AWG	Nominal Cross Sectional	Allowable Current in Different Ambient Temperatures (A)				
Specification	Area (mm²)	30°C	40°C	50°C		
20	0.519	8	7	6		
19	0.653	9	8	7		
18	0.823	13	11	9		
16	1.31	18	15	12		
14	2.08	26	23	20		
12	3.31	32	28	26		
10	5.26	48	43	38		
8	8.37	70	65	55		
6	13.3	95	85	75		

Table 3-8 Specifications for three-cable applications

3.2.4 Power Supply Wiring Example

■ Single-phase 220 V models: SV660NS1R6I, SV660NS2R8I, and SV660NS5R5I

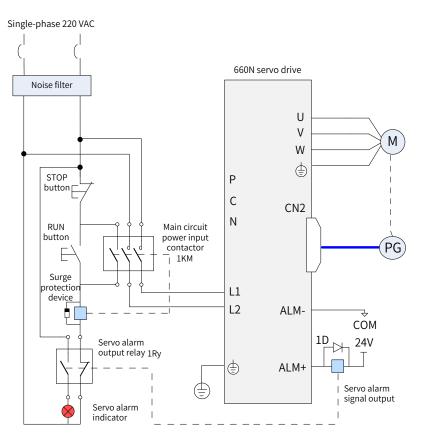


Figure 3-7 Main circuit wiring of single-phase 220 V models

- ◆ 1KM: Electromagnetic contactor; 1Ry: Relay; 1D: Flywheel diode
- ◆ DO is set as alarm output (ALM+/-). When the servo drive alarms, the power supply will be cut off automatically. SV660NS1R6 and SV660NS2R8 are not configured with a built-in regenerative resistor, connect an external regenerative resistor between P and C as needed.

Three-phase 220 V Models: SV660NS6R6I

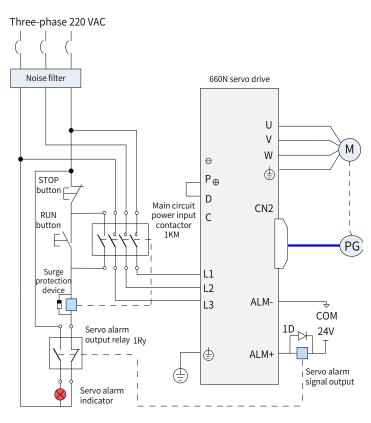


Figure 3-8 Main circuit wiring of three-phase 220 V models

- IKM: Electromagnetic contactor; 1Ry: Relay; 1D: Flywheel diode
- DO is set as alarm output (ALM+/-). When the servo drive alarms, the power supply will be cut off automatically and the alarm indicator will be turned on.

3.2.5 Precautions for Main Circuit Wiring

- Do not connect the input power cables to the output terminals U, V and W. Failure to comply will damage the servo drive.
- When cables are bundled in a duct, the cooling effect will be deteriorated. In this case, take the reduction ratio of the allowable current into consideration.
- When the temperature inside the cabinet is higher than the temperature limit of the cable, it is recommended to use a Teflon cable with a higher temperature limit. As the surface of regular cables may be easily hardened and cracked under a low temperature, take thermal insulation measures for cables laid in a low-temperature environment.
- The bending radius of a cable must be 10 times longer than its outer diameter to prevent the internal conductor from breaking due to long-time bending.
- Use cables with a rated voltage above 600 VAC and rated temperature above 75° C. Under 30° C ambient temperature and normal cooling conditions, the allowable current density of the cable cannot exceed 8 A/mm² when the total current is below 50 A, or 5 A/mm² when the total current is above 50 A. The allowable current density (A/mm²) can be adjusted based on the following formula in the case of high ambient temperature or bundled cables.

Allowable current density = 8 x Reduction coefficient of conductor current-carrying density x Current correction coefficient

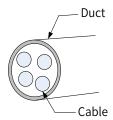


Table 3-9 Reduction coefficient of current-carrying density of the conductor

Number of Cables in the Same Duct	Current Reduction Coefficient
Less than 3	0.7
4	0.63
5–6	0.56
7–15	0.49

- Do not bundle power cables and signal cables together or route them through the same duct. Power cables and signal cables must be separated by a distance of at least 30 cm to prevent interference.
- High voltage may be still present in the servo drive when the power supply is cut off. Do not touch the power terminals within 5 minutes after power-off.
- Do not turn on/off the power supply frequently. If frequent ON/OFF is required, ensure the time interval is at least one minute. The capacitor in the main circuit will be charged with a large current for 0.2 seconds upon power on. Turning on/off the power supply frequently will deteriorate the performance of the main circuit components inside the servo drive.
- Use a grounding cable with the same cross sectional area as the main circuit cable. If the cross sectional area of the main circuit cable is less than 1.6 mm², use a grounding cable with a cross sectional area of 2.0 mm².
- Ground the servo drive properly.
- Do not power on the servo drive when any screw of the terminal block or any cable is loosened. Failure to comply may cause a fire.

3.2.6 Specifications of Main Circuit Options

The recommended circuit breakers and electromagnetic contactors are listed in the following table.

Main Circuit Power	Servo Drive Model	Recomme	nded Circuit Breaker	Recommended Contactor		
Supply	Servo Drive Model	Current (A)	Schneider Model	Current (A)	Schneider Model	
	SV660NS1R6I	4	OSMC32N3C4	9	LC1 D09	
Single-phase 220 V	SV660NS2R8I	6	OSMC32N3C6	9	LC1 D09	
	SV660NS5R5I	6	OSMC32N3C6	9	LC1 D09	
Three-phase 220 V	SV660NS6R6	6	OSMC32N3C6	9	LC1 D09	

3.3 Connection of the Servo Drive and Servo Motor Power Cables

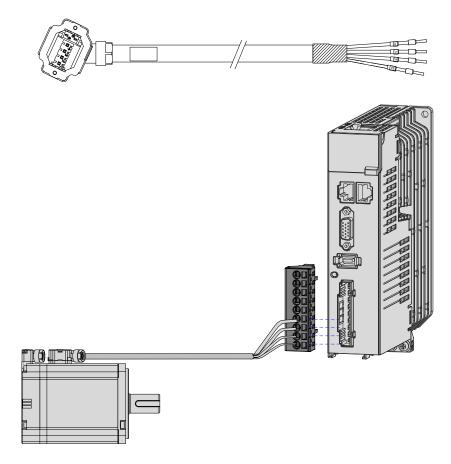
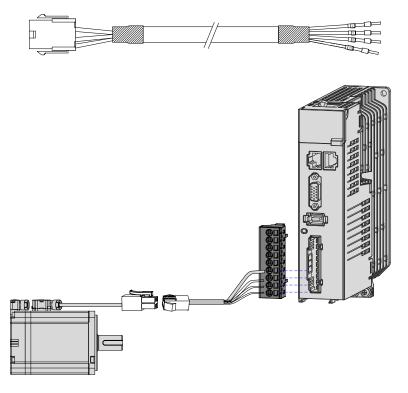
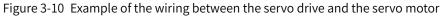


Figure 3-9 Example of the wiring between the servo drive and the servo motor


Outline Drawing of the Connector		Ter	minal Pin Layou	Applicable Motor Frame ^[Note]	
		Blac	k 6-pin connect	or	Terminal-type motor: 40
	Pin No.	Si	gnal Name	Color	60
			PE	Yellow/Green	80
	2		W	Red	
	3		V	Black	
	4			White	
	5	5BrakePolarity6Brakeinsensitive		Brown	
	6			Blue	


Table 3-11 Connectors for power cables on servo motor side

• The motor frame refers to the width of the mounting flange.

Power cable colors are subject to the colors of the actual product. The cable colors mentioned in this user guide refer to Inovance's cable colors.

Outline Drawing of the Connector		Terminal Pin Layout	Applicable Motor Frame ^[Note]		
		Black 6-pin connector	-		
				Lead wire-type motor:	
	Pin No.	Signal Name	40		
	1	U	White	60	
	2	V	80		
	4	W	Red		
	5	PE	Yellow/Green		
	3	Brake			
	Recomme	endations:			
		using: MOLEX-50361736 MOLEX-39000061			

• The motor frame refers to the width of the mounting flange.

 Power cable colors are subject to the colors of the actual product. The cable colors mentioned in this user guide refer to Inovance's cable colors.

Outline Drawing of the Connector		Applicable Motor Frame				
	MIL-					
	Ne	ew Structure Old Structure				100
	Pin No.	Signal Name	Pin No.	Signal Name	Color	130
	В	U	В	U	Blue	
	Ι	V	I	V	Black	
	F	W	F	W	Red	
	G	PE	G	PE	Yellow/ Green	
	C Brake					
	E	(polarity insensitive)				

Table 3-13 Connectors for power cables on servo motor side

3.4 Connection of the Servo Drive and Servo Motor Encoder Cables

1 Installing the absolute encoder battery box

■ The S6-C36 battery box contains the following items:

One plastic box

One 3.6 V/2600 mAh battery

Terminal block and crimping terminal

■ Installing the battery box:

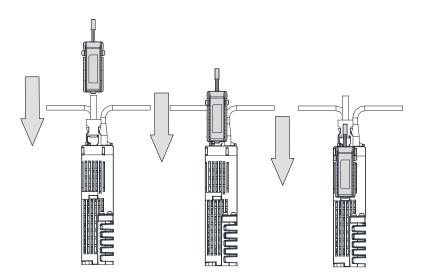
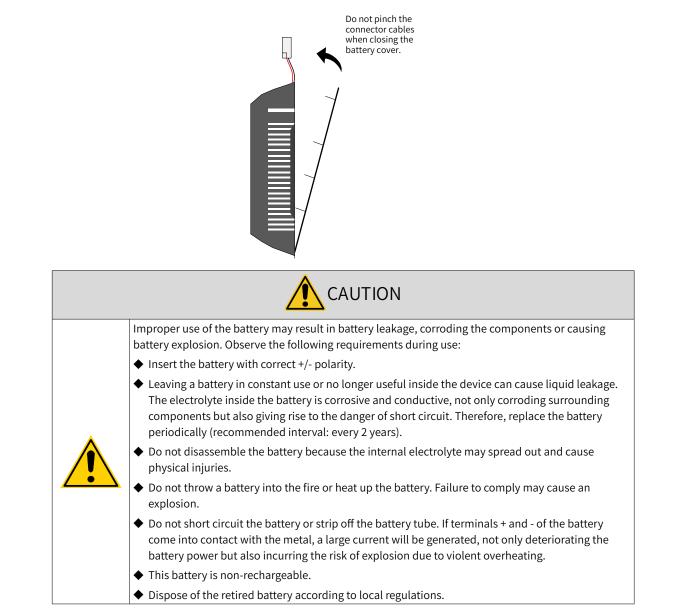



Figure 3-11 Installation of the absolute encoder battery box (Bottom view)

Removing the battery box

The battery may have leakage liquids after a long-time use. It is recommended to replace the battery every two years. Remove the battery box in steps in reverse to those in the preceding figure.

When closing the battery box cover, do not pinch the connector cables.

■ Selecting the battery model

Select an appropriate battery according to the following table.

Datton: Madal and			Ratings		
Battery Model and Specifications	Items	Minimum	Typical	Maximum	Condition
		Value	Value	Value	
	External battery voltage (V)	3.2	3.6	5	In standby mode ^[2]
	Circuit fault voltage (V)	-	2.6	-	In standby mode
Output: 3.6 V, 2500 mAh Recommended	Battery warning voltage (V)	2.85	3	3.15	-
manufacturer and		-	2	-	In normal status ^[1]
model: Shenzhen	Current consumed	-	10	-	In standby mode, shaft static
Jieshun LS14500	by circuit (μA)	-	80	-	In standby mode, shaft rotating
	Ambient operation temperature (°C)	0	-	40	Same as that required by the
	Ambient storage temperature (°C)		-	60	motor

Table 3-14 Description of the absolute encoder battery

The preceding data is obtained under 20°C ambient temperature.

- [1] During normal operation, the absolute encoder supports single-turn or multi-turn data counting and data transmitting/receiving. A well-connected encoder will, upon switch-on of the servo drive, enter normal operation status and transmit/receive data after a delay of 5s. Switching from standby mode to normal operation mode upon power-on requires the motor to rotate at a speed less than 10 RPM. Otherwise, the servo drive reports E740 (Encoder fault), In this case, you need to power on the servo drive again.
- [2] Standby mode means the servo drive is not powered on and the absolute encoder can perform multi-turn counting by utilizing external battery power. In this case, the data transmitting/ receiving stops.
- Design life of the battery

The following calculation only covers the current consumed by the encoder.

Suppose that the servo drive works normally for T1 in a day, the motor rotates for T2 after the servo drive is powered off, and the motor stops rotating for T3 after power-off (unit: hour (h)).

Example:

Item	Working Time 1	Working Time 2
Days of working in different operating conditions in 1 year (day)	313	52
T1 (hour H)	8	0
T2 (hour H)	0.1	0
T3 (hour H)	15.9	24

Table 3-15 Design life of the absolute encoder battery

Capacity consumed in 1 year = (8 h x 2 μ A + 0.1 h x 80 μ A + 15.9 h x 10 μ A) x 313 + (0 h x 2 μ A + 0 h x 80 μ A +24 h x 10 μ A) x 52 \approx 70 mAH

Design life = Battery capacity/Annual consumption = 2600 mAH/70 mAH = 37.1 years

2 Connecting the absolute encoder

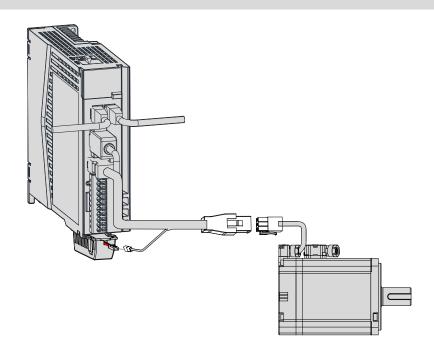
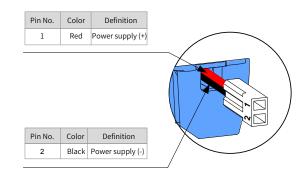


Figure 3-12 Wiring example of absolute encoder signals $^{\![1]}$


[1] The preceding figure shows the wiring diagram of absolute encoder cables, which is similiar to that of incremental encoder (without a battery box) cables. Incremental encoder cables need to be purchased separately.

The encoder cable color is subject to the color of the actual product. The cable colors mentioned in this user guide refer to Inovance's cable colors.

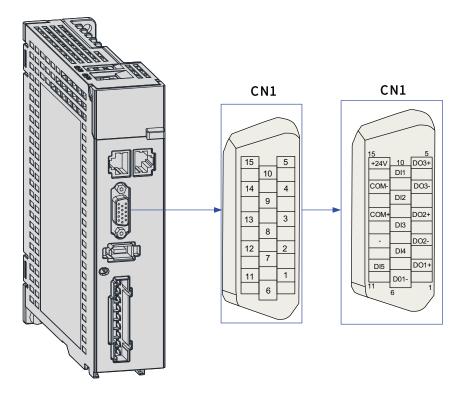
Lead wires of the battery box:

NOTE

Store the battery in environments within the required temperature range and ensure reliable contact and sufficient battery power. Failure to comply may cause encoder data loss.

◆ Model of the battery box (battery included): S6-C36

	Applicable Motor								
Servo Drive Side						Frame ^[1]			
	6-pin ma	ale				7-pin conne	ector		
	(Left: connect	ing side				_	_		
	Right: solderi	ng side)				f c			
									Terminal-type motor: 40
				Pin No.	Signal Name	Color	Туре	60	
-					1	PS+	Blue	Twisted	80
Pin No.	Signal Name	Color	Туре		2	PS-	Purple	pair	
1	+5V	Red	Twisted		3	DC+	Brown	Twisted	
2	GND	Orange	pair		4	DC-	Black	pair	
5	PS+	Blue	Twisted		5	+5V	Red	Twisted	
6	PS-	Purple	pair		6	0V	Orange	pair	
Enclosure	PE	-	-	L	7	PE	-	-	


[1] The motor frame refers to the width of the mounting flange.

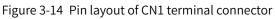

Connector of the encoder lead wire Encoder lead wire Image: Connector of the encoder lead wire			Outlin	e Drawing a	nd	Pin Layou	ut of the Cor	Applicable Motor Frame ^[1]		
Image: New of from this side	encoder lead wire Connected to CN2									
Viewed from Image: Color this side Image: Color			9-pin connecto	r						
Pin No.Signal NameType1Battery (+)-4Battery (-)-3PS+Twisted6PS-pair9+5V8GND7Shield	Viewed from				le		362	motor: 40 (lead wire-type)		
1 Battery (+) - 4 Battery (-) - 3 PS+ Twisted 6 PS- pair 9 +5V 8 GND 7 Shield	Pin	No.	Signal Name	Туре		Pin No.	-	Color	Туре	
4 Dattery (-) 3 PS+ 3 PS+ 6 PS- 9 +5V 8 GND 7 Shield		1	Battery (+)	_		1		Blue		80 (lead wire-type)
3 PS+ Twisted 6 PS- pair 9 +5V 8 GND 7 Shield 3 PS+ Yellow black 9 +5V 8 GND 9 +5V 8 GND 9 +5V 8 GND 8 GND 8 GND 9 +5V Red		4	Battery (-)				-			
6 PS- pair 9 +5V 8 GND 7 Shield 8 GND 8 GND 9 +5V 8 GND 9 +5V 8 GND 9 +5V 8 GND 8 GND 8 GND		3	PS+	Twisted			2		Twisted pair	
9 +5V 8 GND 7 Shield 8 GND 9 +5V 8 GND Becommendations: 8 G PS- black		6	PS-	pair		5	P3+		i wisteu pair	
8 GND - 7 Shield 9 +5V Red 8 GND Black -		9	+5V			6	PS-			
7 Shield 8 GND Black		8	GND	-			. 5) /			
Percommendations:		7	Shield			-				
(Snield -	Recommendations:				-		-			
Plastic housing: AMP 172161 1	Plastic housing: AMP 172161 1			[[Shield	-				
Terminal: AMP 770835-1		Plastic housing: AMP 172161-1								

Table 3-17 Cable connectors of the lead wire-type motor encoder (9-pin connector)

[1] The motor frame refers to the width of the mounting flange.

3.5 Connection of the Control Signal Terminal CN1

CN1 terminal: Plastic housing of the plug on the cable side: DB15P (SZTDK), black housing Core: HDB15P (SZTDK)

◆ It is recommended to use 24AWG to 26AWG cables.

3.5.1 DI/DO signals

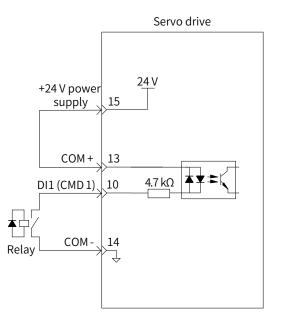
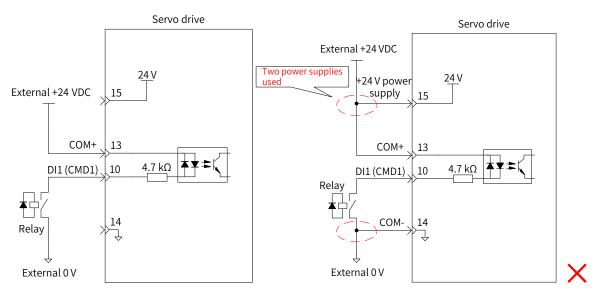
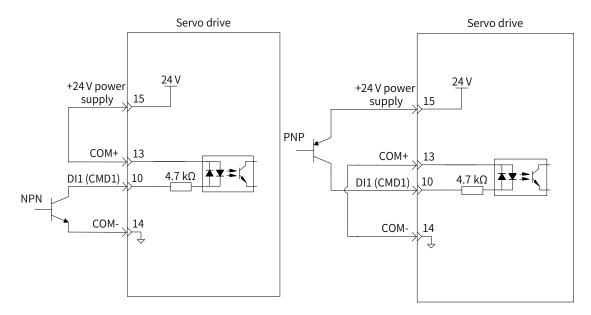
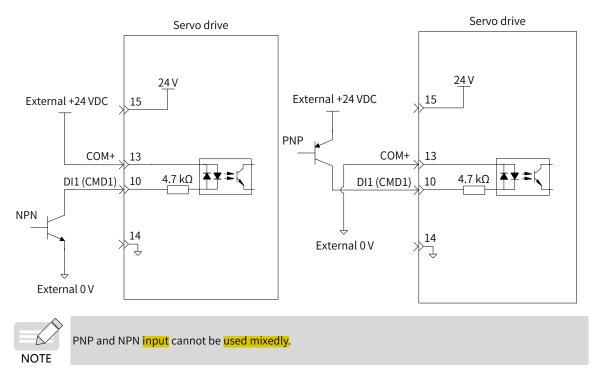

Signal	Name	Function	Pin No.	Function		
	DI1	P-OT	10	Positive limit switch		
	DI2	N-OT	9	Negative limit switch		
	DI3	HomeSwitch	8	Home switch		
	DI4	TouchProbe2	7	Touch probe 2		
	DI5	TouchProbe1	11	Touch probe 1		
	+24V		15	Internal 24 V power supply, voltage range: 20 V to 28 V, maximum		
General	Comoral	14	output current: 200 mA			
General	(COM+		Power input terminal (12 V to 24 V)		
	DO1+	S-RDY+	1	Servo ready		
	D01-	S-RDY-	6			
	DO2+	ALM+	3	Fault		
	DO2-	ALM-	2			
	DO3+	BK+	5	Brake		
	DO3-	BK-	4			

Table 3-18 Description of DI/DO signals

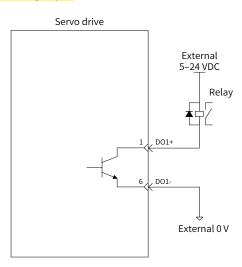

1 DI circuit

DI1 to DI5 circuits are the same. The following description takes DI1 circuit as an example.

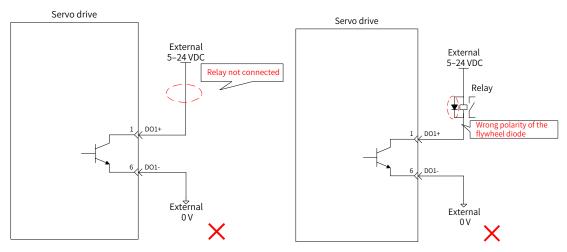

- 1) The host controller provides relay output.
- For use of the internal 24 V power supply of the servo drive


■ For use of an external power supply

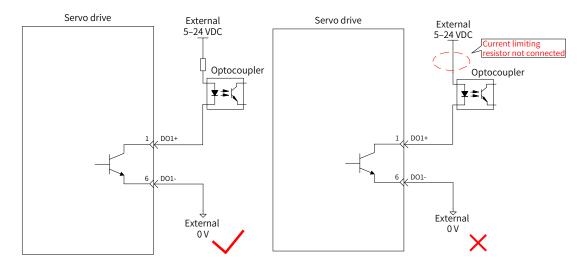
- 2) The host controller provides open-collector output.
- For use of the internal 24 V power supply of the servo drive


■ For use of an external power supply

2 DO circuit


DO1 to DO5 circuits are the same. The following description takes DO1 circuit as an example.

1) The host controller provides relay input.



When the host controller provides relay input, a flywheel diode must be installed. Otherwise, the DO terminals may be damaged.

2) The host controller provides optocoupler input.

The maximum allowable voltage and current of the optocoupler output circuit inside the servo drive are as follows:

- Voltage: 30 VDC
- Current: DC 50 mA

3.5.2 Wiring of the Brake

The brake is used to prevent the servo motor shaft from rotating during non-operating status of the servo drive. This is to keep the motor and the mechanical motion part in locked position.

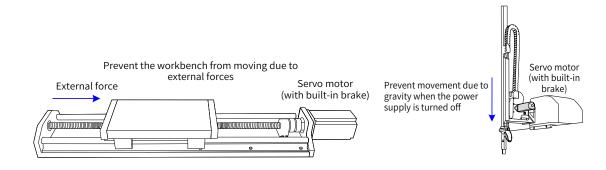
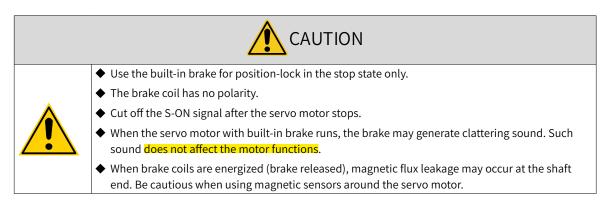



Figure 3-15 Application of the brake

The connection of the motor brake input signal has no polarity. Users need to prepare a 24 V external power supply. The following figure shows the standard wiring of the brake signal (BK) and the brake power supply.

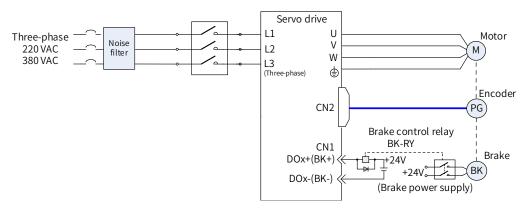


Figure 3-16 Wiring of the brake

Pay attention to the following precautions during wiring:

When deciding the length of the motor brake cable, take the voltage drop caused by cable resistance into consideration. The input voltage must be at least 21.6 V to enable the brake to work properly. The following table lists brake specifications of Inovance servo motors.

Motor Model	Holding Torque (N · m)	Supplied Voltage (VDC)±10%	Release Time (ms)	Close Time (ms)	Backlash (°)
MS1H1-10B	0.3	24	≤20	≤ 35	< 1.7
MS1H1-20B/40B	1.5	24	≤20	≤ 50	< 1.5
MS1H4-40B	1.5	24	≤20	≤ 50	< 1.5
MS1H*-75B	2.5	24	≤20	≤ 60	< 1.7
MS1H3-85B	12	24	60	120	≤ 0.5

Table 3-19	Brake si	pecifications
	Drune S	peemeations

The brake cannot share the same power supply with other electrical devices. This is to prevent malfunction of the brake due to voltage or current drop caused by other working devices.

NOTE (

It is recommended to use cables of 0.5 mm² and above.

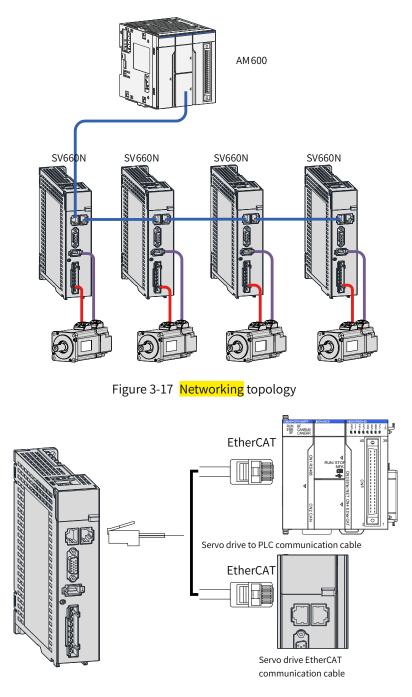


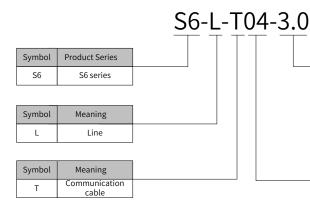
Figure 3-18 Wiring of communication cables

3.6.1 Pin Definition of the Communication Signal Connector

Communication signal connectors (CN3 and CN4) are EtherCAT interface connectors. CN3 (IN) is conneccted to the connecting terminal of the master. CN4 (OUT) is connected to the next slave device.

Pin No.	Definition	Description	Terminal Pin Layout
1	TD+	Data transmitting (+)	
2	TD-	Data transmitting (-)	
3	RD+	Data receiving (+)	
4 and 5	-	-	CN3 CN4
6	RD-	Data receiving (-)	CN3/CN4
7 and 8	-	-	
9	TD+	Data transmitting (+)	
10	TD-	Data transmitting (-)	
11	RD+	Data receiving (+)	
12 and 13	-	-	
14	RD-	Data receiving (-)	
15 and 16	-	-	

Table 3-20 Pin definition of the communication signal connector


3.6.2 Selection of Communication Cables

■ Principle for cable selection

Cable Specifications	Supplier	
0.2 m to 10 m	Inovance	
Above 10 m	Haituo	

■ Basic information of Inovance EtherCAT communication cables

Cable models are shown in the following figure.

Cable Length (unit: m)						
Symbol	Length		Symbol	Length		
0.2	0.2 m		2.0	2.0 m		
0.3	0.3 m		3.0	3.0 m		
0.5	0.5 m		5.0	5.0 m		
1.0	1.0 m		10.0	10.0 m		

Symbol	Meaning	
04	Multi-drive EtherCAT communication cable	

Material Code	Cable Model	Length (m)	
15040261	S6-L-T04-0.3	0.3	
15040262	S6-L-T04-3.0	3.0	
15041960	S6-L-T04-0.2	0.2	
15041961	S6-L-T04-0.5	0.5	
15041962	S6-L-T04-1.0	1.0	
15041963	S6-L-T04-2.0	2.0	
15041964	S6-L-T04-5.0	5.0	
15041965	S6-L-T04-10.0	10.0	

Cable ordering information

■ Specifications

Item	Description		
UL certification	UL-compliant		
Cat 5e cable	Cat 5e cable		
Double shield	Braided shield (coverage: 85%), aluminum foil shield (coverage: 100%)		
Environment adaptability	Ambient temperature: -30°C to +60°C , resistant to industrial oil and corrosive acid and alkali		
EMC test standard	GB/T 24808-2009		

3.6.3 Communication Connection with PC (RS232 Communication)

Connect the servo drive and the PC by using the PC communication cable as shown below. It is recommended to use the common communication interface RS232.

Figure 3-19 Outline drawing of the PC communication cable

Table 3-21	Connection	relation betwe	en the serve	o drive and PC o	communication	cable pins
						00.010 00

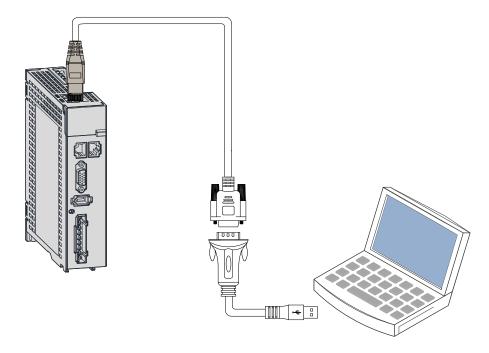
RJ45 on Servo	Drive Side (A)		DB9 on PC Side (B)
Signal Name	Pin No.	Signal Name	Pin No.
RS232-TXD	6	PC-RXD	2
RS232-RXD	7	PC-TXD	3
GND	8	GND	5
PE (shield)	Enclosure	PE (shield)	Enclosure

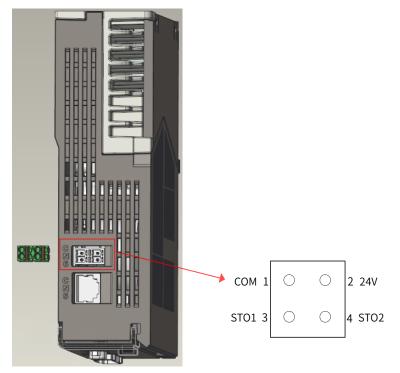
The definition of DB9 terminal on PC side is shown in the following table.

Pin No.	Definition	Description	Terminal Pin Layout
2	PC-RXD	PC receiving end	
3	PC-TXD	PC transmitting end	
5	GND	Ground	
Enclosure	PE	Shield	

Table 3-22 Pin definition of DB9 ("B" in the Figure 3-19) on PC side

If the host controller provides only the USB interface, use the serial-to-USB cable for conversion.



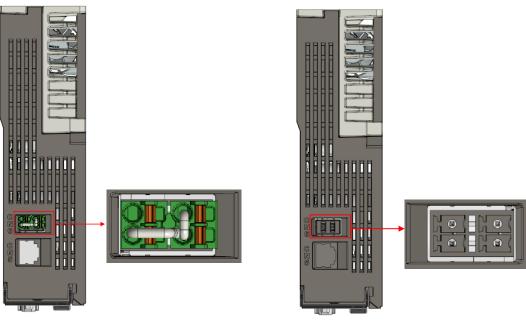

Figure 3-20 Serial-to-USB conversion

Recommendation: Manufacture: Z-TEK Model: ZE551A, equipped with a 0.8 m USB extension cable Chip model: FT232

3.7 Definition and Connection of STO terminal

This section describes the definition and function of the I/O connecting terminal (CN6) for safe torque off (STO).

1 Terminal layout


1) Pin map of the input connector

Terminal	Pin No.	Name	Value	Description
	1	СОМ	0 V	STO reference ground
CN6	2	24V	24 V	24 V power supply for commissioning
CINO	3	STO1	-	Control input for STO1
	4	STO2	-	Control input for STO2

- 2) Two isolated inputs are configured to dual-channel inputs of STO function: STO1/STO2.
- 3) To make it more user-friendly during commissioning, an additional pin with supply voltage (+24V) is integrated. The bridging of the 24 volts is needed in case the safety circuit is installed but no STO function is needed.

Remove the short-circuit jumper when STO is needed in actual applications.

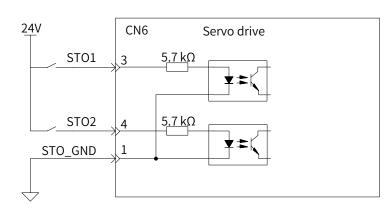
24V shorted to STO1/STO2

Short-circuit jumper removed in normal use

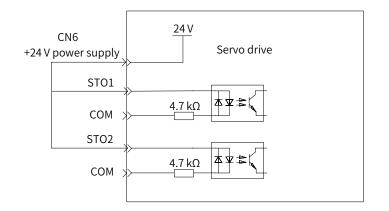
2 Electrical specifications and connections of the input circuit

This section describes the characteristics of the input signals assigned to the CN6 connector.

■ Specifications

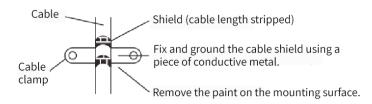

The servo drive can operate normally only if the input status of STO1 and STO2 are both "1" or "H".

If the input status of either STO1 or STO2 (or both) is "0" or "L", the servo drive cannot run.


Electrical characteristics of the safety request input signal

Items	Characteristics	Description
Voltage range	24 VDC (±15%)	-
Input current	4 mA (Typ.)	Value per channel
Standards of logic levels	"0"<3V, "1">15V	-
Digital input impedance	5.78 kΩ	-

■ Example of external 24 V connection


■ Example of internal 24 V connection

3 EMC requirements

- To avoid short circuit between two adjacent conductors, either use a shielded cable with its shield connected to the protective ground or a flat cable with one earthed conductor between each signal conductor.
- Double-shielded or single-shielded twisted multi-pair cables are strongly recommended.
- Fix and ground the cable shield using a piece of conductive metal.

Example of cable clamp:

■ The maximum allowable cable length between the drive and the activation switch is 30 m.

4 Additional requirements

- All cables must be well protected, routed and clamped where practicable.
- Ensure that there is no pulling or pinching on the cables during installation.
- For cabling the DIs of the STO, to avoid the faults that commonly occur on the cables, route the two channels through two separate routes, or the cable must be protected with double-shielded methods.

Cable	Description	
Туре	Low voltage, double-shielded or single-shielded twisted multi-pair cable	
Maximum size	0.8 mm² (18 AWG)	
Minimum size	0.3 mm² (28 AWG)	
Maximum length	30 m between STO inputs and the operating contact	

3.8 Anti-interference Measures for Electrical Wiring

Take the following measures to suppress interference:

- Ensure the length of the reference input cable and the encoder cable is below 3 m and 20 m respectively.
- Use a thick cable as the grounding cable (above 2.0 mm²).

- 1) It is recommended to adopt D class (or higher) grounding (grounding resistance below 100 Ω).
- 2) Adopt single-point grounding.
- Use a noise filter to prevent radio frequency interferences. In domestic applications or an unfavorable environment with strong power noise interference, install a noise filter on the input side of the power cable.
- To prevent malfunction due to electromagnetic interference, take the following measures:
- 1) Install the host controller and the noise filter near the servo drive.
- 2) Install a surge protection device on the relay, solenoid and electromagnetic contactor coils.
- 3) Separate the electrical circuit from the electronic circuit during wiring and keep a distance of at least 30 cm between them. Do not put these cables in the same duct or bundle them together.
- 4) Do not share the same power supply with an electric welder or electrical discharge machine. When the servo drive is placed near a high-frequency generator, install a noise filter on the input side of the power cable.

3.8.1 Anti-interference Wiring Example and Grounding

The servo drive uses high-speed switch elements in the main circuit. The switch noise may affect the normal operation of the system due to different peripheral wiring and grounding of the servo drive. Therefore, the servo drive must be properly wired and grounded. A noise filter can be added if necessary.

1 Anti-interference wiring example

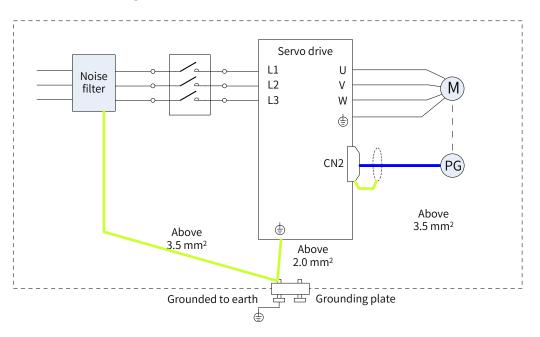


Figure 3-21 Anti-interference wiring example

For the grounding cable connected to the enclosure, use a cable of at least 3.5 mm² (braided copper cables recommended).

If a noise filter is used, abide by the precautions described in "3.8.2 Instructions for Use of the Noise Filter".

2 Grounding

To prevent potential electromagnetic interferences, ground properly according to following instructions.

1) Grounding the motor enclosure

Connect the grounding terminal of the servo motor to the PE terminal of the servo drive and ground the PE terminal properly to reduce potential electromagnetic interferences.

2) Grounding the encoder cable shield

Ground both ends of the encoder cable shield.

3.8.2 Instructions for Use of the Noise Filter

To prevent interference from power cables and reduce impact of the servo drive to other sensitive devices, install a noise filter on the input side of the power supply according to the magnitude of the input current. In addition, install a noise filter on the power cable part of peripheral devices if necessary. To ensure the filtering effect, abide by the following requirements when installing and wiring the noise filter.

■ Do not put the input and output cables of the noise filer in the same duct or bundle them together.

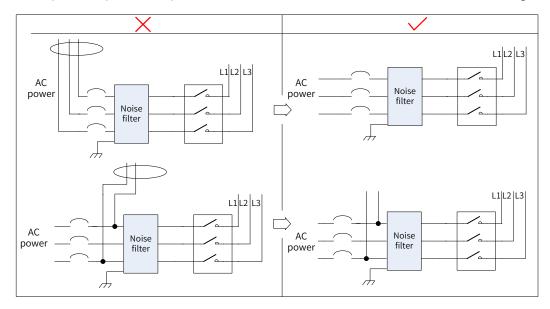


Figure 3-22 Separate routing of input and output cables of the noise filter

Do not put the grounding cable and the power output cable of the noise filer in the same duct.

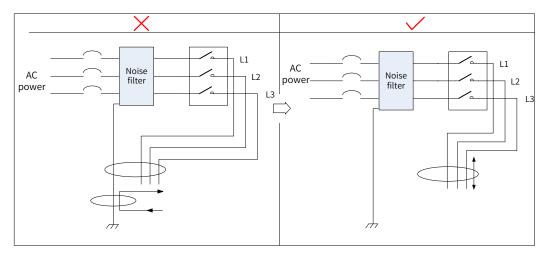


Figure 3-23 Separate routing of the grounding cable and the power output cable

Use a separate, thick grounding cable as short as possible for the noise filter. Do not share the same grounding cable with other grounding devices.

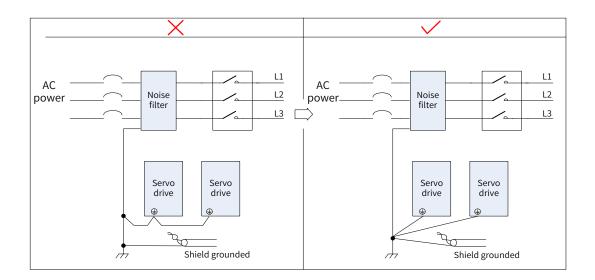


Figure 3-24 Single-point grounding

Ground the noise filter installed inside the control cabinet.

If the noise filter and the servo drive are installed in the same control cabinet, fix the noise filter and the servo drive on the same metal plate. Make sure the contact part is in good conductive condition and well connected, and ground the metal plate properly.

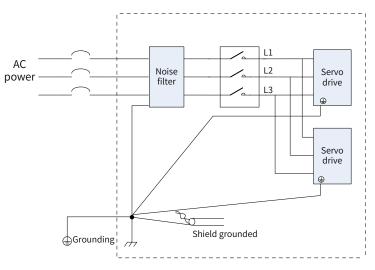


Figure 3-25 Grounding cable of the noise filter

3.9 Precautions for Use of Cables

- Do not bend or apply any tension to cables. The conductor of a signal cable is only 0.2 mm or 0.3 mm in diameter. Handle the cables carefully to prevent fracture.
- In cases where cables need to be moved, use flexible cables. Ordinary cables may be easily damaged after being bent for a long time. Cables configured together with small-power servo motors do not fit for drag chains.

If a cable drag chain is used, make sure the following requirements are fulfilled:

- The bending radius of the cable must be 10 times longer than its outer diameter.
- Do not fix or bundle the cables inside the cable drag chain. The cables can be bundled and fixed only at the two fixed ends of the cable drag chain.
- Do not wind or twist the cables.

- Ensure the space factor inside the cable drag chain is below 60%.
- Do not use cables with different sizes together. This is to prevent thin cables from being crushed by thick cables. If thick and thin cables need to be used together, use a spacer plate to separate them.

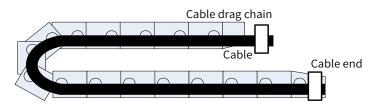


Figure 3-26 Cable drag chain

4 Keypad Display and Operations

4.1 Introduction to the Keypad

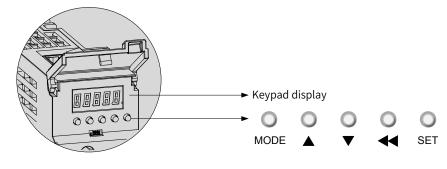


Figure 4-1 Appearance of the LED keypad

The keypad on the SV660N servo drive consists of five LEDs and five push buttons. The keypad is used for data display, parameter settings, password settings and general function executions. When the keypad is used for parameter settings, the functions of the push buttons are described as follows.

Name	Symbol	Description
MODE	MODE	Used to switch the mode and return to the previous menu.
UP		Used to increase the value of the blinking digit.
DOWN	•	Used to decrease the value of the blinking digit.
SHIFT	•	Used to shift the blinking digit <mark>to</mark> view the high digits of a number consisting of more than 5 digits.
SET	O SET	Used to enter the next menu and store parameter settings.

4.2 Display

The keypad displays the status, parameters, faults, and monitored information during servo drive running.

- Status display: current servo drive status, such as servo ready or running
- Parameter display: parameters and their set values
- Fault display: faults and warnings that occur on the servo drive
- Monitoring display: present running parameters of the servo drive

4.2.1 Transition Relation Between Keypad Display and Operation Objects

The mapping relation between the parameter (decimal) displayed by the keypad and the object dictionary operated by the host controller (hexadecimal, "Index" and "Sub-index") is as follows:

Object dictionary index = 0x2000 + Parameter group number

Object dictionary sub-index = Hexadecimal offset within the parameter group + 1 Example:

Display	Object Dictionary Operated by the Host Controller
H00-00	2000-01h
H00-01	2000-02h
H01-09	2001-0Ah
H01-10	2001-0Bh
H02-15	2002-10h

The following describes the displayed content and parameter settings on the keypad (decimal) side, which are different from those displayed on the software tool (hexadecimal). Make necessary conversions when performing operations through the software tool on the host controller.

4.2.2 Display Mode Switchover

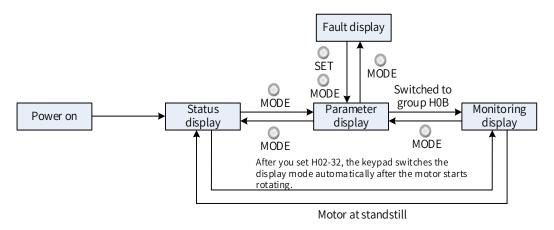


Figure 4-2 Switchover between different types of display

- After power-on, the keypad enters status display mode.
- Press One of the preceding figure.
- In status display mode, set H02-32 (Default keypad display) and select the parameter to be monitored. When the motor rotates, the keypad automatically switches to monitoring display. After the motor stops, the keypad automatically reverts to status display.
- In parameter display mode, set parameters in group H0B to select the parameters to be pre-monitored, and the keypad switches to the monitoring display mode.
- Once a fault occurs, the keypad enters the fault display mode immediately, and all five LEDs blink.
 Press SET to stop blinking, and then press OMODE to switch to the parameter display mode.

4.2.3 Status Display

Display	Name	Display Condition	Meaning
	reset (servo initialization)	Upon power-on	The servo drive is in initialization or reset status. After initialization or reset is done, the servo drive automatically switches to other status.
	nr (servo not ready)	Initialization done, but servo drive not ready	The main circuit is not powered on, and the servo drive is not ready to run. See <u>"9 Troubleshooting"</u> for details.
	ry (servo ready)	Servo drive ready	The servo drive is ready to run and waits for the S-ON signal to be sent by the host controller.
	rn (servo running)	S-ON signal activated	The servo drive is running.
	1–A (control mode)	-	Displays present running mode of the servo drive in hexadecimal digits. 1: Profile position control 3: Profile velocity mode 4: Profile torque mode 6: Homing mode 8: Cyclic synchronous position mode 9: Cyclic synchronous velocity mode A: Cyclic synchronous torque mode
	1–8 (communication status)	-	Displays the status of the slave EtherCAT state machine in the form of characters. 1: Initializing 2: Pre-running 4: Safe running 8: Running
	- CN4 (connection indication)	EtherCAT output connected successfully	Solid OFF: No communication connection is detected in the physical layer.
	- CN3 (connection indication)	EtherCAT input connected successfully	Solid ON: Communication connection is detected in the physical layer.

4.2.4 Parameter Display

The SV660N servo drive parameters are divided into 14 groups based on parameter functions. The parameter can be located quickly based on the group it belongs to. See <u>"11.2 List of Object Groups"</u> to view the parameter table.

■ Display of the parameter group

Display	Name	Description
HXX.YY	Parameter group	XX: Parameter group No. (decimal) YY: Parameter No. (hexadecimal)

For example, H02-00 is displayed as follows.

Display	Name	Description
00.50H	Parameter H02-00	02: Parameter group No. 00: Parameter No.

■ Display of the negative numbers and the data in different lengths

1) Signed number of 4 digits and below or unsigned number of 5 digits and below

Such numbers are displayed in a single page (five LEDs). For the signed number, the highest bit "-" indicates the negative symbol.

For example, -9999 and 65535 are displayed as follows.

-	9	9	9	9
6	5	5	3	5

2) Signed number of more than 4 digits or unsigned number of more than 5 digits

Such numbers are displayed from low to high digits through several pages with each page displaying five digits. The display mode is shown in the following figure (current page + value on current page). Hold down $\stackrel{\circ}{\prec}$ for more than 2s to switch to the next page.

For example, -1073741824 is displayed as follows.

Figure 4-3 Display of "-1073741824"

For example, 1073741824 is displayed as follows.

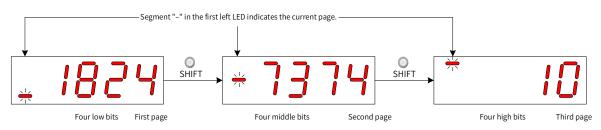


Figure 4-4 Display of "1073741824"

Decimal point display

The segment "." of the ones position indicates the decimal point, and this segment does not blink.

Display	Name	Description
8888	Decimal point	100.0

Parameter setting display

Display	Name	Display Condition	Meaning
	Done (parameter setting completed)	Parameter setting done	The parameter value is set and stored in the servo drive. The servo drive is ready to execute other operations.
	F.InIt (parameter restored to default setting)	Parameter initialization in progress (H02-31 = 1).	The servo drive is in the process of parameter initialization. After parameter initialization is done, switch on the control power supply again.
	Error (wrong password)	User password (H02- 30) applied and wrong password entered	The password entered is wrong. Enter the password again.
68888	TunE	One-button tuning enabled	The one-button tuning is in progress.
88888	FAIL	One-button tuning failed	The one-button tuning <mark>fails</mark> .

4.2.5 Fault Display

- The keypad can display present or previous faults and warnings. For analysis and solutions to the faults and warnings, see <u>"9 Troubleshooting"</u>.
- When an individual fault or warning occurs, the keypad displays the present fault or warning code immediately. When multiple faults or warnings occur, the keypad displays the warning code of the highest level.

- Set the fault record to be viewed in H0B-33 (Fault record). View the selected fault or warning code in H0B-34.
- Set H02-31 (Parameter initialization) to 2 (Clear fault records) to clear the latest 10 faults or warnings stored in the servo drive.

For example, E941.0 is displayed as follows.

Display	Name	Description
88888	Present warning code	E: A fault or warning occurs on the servo drive. 941.0: Warning code

4.2.6 Monitoring Display

Group H0B: Displays parameters used for monitoring the running state of the servo drive.

Set H02-32 (Default keypad display). After the servo motor runs, the keypad switches from servo status display mode to parameter display mode and displays the parameter No. defined by H02-32 in group H0B.

For example, if H02-32 is set to 00, the keypad displays the value of H0B-00 when the servo motor speed is not 0 RPM.

The monitoring display of group H0B is as follows.

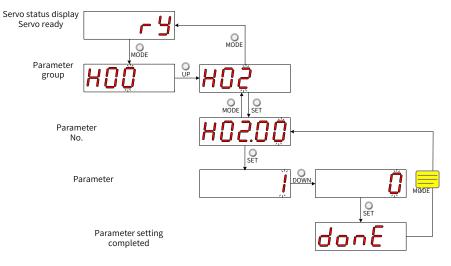
Para. No.	Name	Unit	Meaning	Display Example
H0B-00	Actual motor speed	RPM	Displays actual motor speed after round-off in unit of 1 RPM.	Display of 3000 RPM: Display of -3000 RPM:
H0B-01	Speed reference	RPM	Displays present speed reference of the servo drive.	Display of 3000 RPM: Display of -3000 RPM:
H0B-02	Internal torque reference	0.1%	Displays the percentage of the actual motor output torque to the rated motor torque.	Display of 100.0%: Display of -100.0%:

Para. No.	Name	Unit	Meaning	Display Example
H0B-03	Monitored DI status	-	Displays the corresponding level status of five DIs: Upper LED segment turned on: High level (indicated by "1") Lower LED segment turned on: Low level (indicated by "0") The value of H0B-03 read by the software tool is a decimal number.	In cases where DI1 is low level and DI2 to DI5 are high level, the corresponding binary value is 11110, and the value of H0B-03 read by the software tool is 0x001E, the corresponding display is as follows.
H0B-05	Monitored DO status	-	Displays the corresponding level status of the three DOS: Upper LED segment turned on: High level (indicated by "1") Lower LED segment turned on: Low level (indicated by "0") The value of H0B-05 read by the software tool is a decimal number.	In cases where DO1 is low level and DO2 to DO3 are high level, the corresponding binary value is 110, and the value of H0B-05 read by the software tool is 0x0006, the corresponding display is as follows.
H0B-07	Absolute position counter (32-bit decimal value)	Reference unit	Displays the absolute position of the motor (reference unit).	Display of 1073741824 referent units:
H0B-09	Mechanical angle	0.1°	Displays the present mechanical angle of the motor.	Display of 360.0° :
H0B-10	Rotation angle (Electrical angle)	0.1°	Displays the present electrical angle of the motor.	Display of 360.0° :

Para. No.	Name	Unit	Meaning	Display Example
H0B-11	Speed information corresponding to the input position reference	RPM	Displays the speed corresponding to the position reference in a single control cycle.	Display of 3000 RPM: Display of -3000 RPM:
H0B-12	Average load ratio	0.1%	Displays the percentage of the average load torque to the rated motor torque.	Display of 100.0%:
H0B-15	Encoder position deviation counter (32-bit decimal value)	Encoder unit	Deviation of the encoder position = Sum of input position references (encoder unit) - Sum of pulses fed back by the encoder (encoder unit)	Display of 10000 encoder units:
H0B-17	Feedback pulse counter (32-bit decimal value)	Encoder unit	Counts and displays the number of servo motor encoder pulses (encoder unit). Note: When an absolute motor is used, H0B-17 only shows the low 32-bit value of the motor position feedback. To obtain the actual motor position feedback, view H0B-77 and H0B-79.	Display of 1073741824 encoder units:
H0B-19	Total power- on time (32-bit decimal value)	0.1s	Counts and displays the total power-on time of the servo drive.	Display of 429496729.5s:
H0B-24	RMS value of phase current	0.1 A	Displays the RMS value of the servo motor phase current.	Display of 4.60 A:

Para. No.	Name	Unit	Meaning	Display Example
H0B-26	Bus voltage	0.1 V	Displays the main circuit DC bus voltage between P and	Display of 311.0 V rectified from 220 VAC: Display of 537.0 V rectified from 380 VAC:
H0B-27	Power module temperature	°C	Displays the temperature of the power module inside the servo drive.	Display of 27°C :
H0B-33	Fault log	-	Displays the previous fault to be viewed. 0: Present fault 1: Last fault 2: 2nd to last fault 9: 9th to last fault	0-Display of present fault:
H0B-34	Fault code of the selected fault.	-	Displays the fault code defined by H0B-33. When there is no fault, H0B-34 displays "Er.000".	If H0B-33 = 0, H0B-34 = Er.941, the present fault code will be 941. Corresponding display:
H0B-35	Time stamp of the selected fault	S	Displays the total operating time of the servo drive when the fault defined by H0B- <mark>35</mark> occurs. When there is no fault, H0B-35 displays "0".	If H0B-34 = Er.941, and H0B-35 = 107374182.4, the present fault code will be 941 and the total operating time of the servo drive is 107374182.4s when the fault occurs.

Para. No.	Name	Unit	Meaning	Display Example
H0B-37	Motor speed upon occurrence of the selected fault	RPM	Displays the servo motor speed when the fault defined by H0B- <mark>37</mark> occurred When there is no fault, H0B-37 displays "0".	Display of 3000 RPM: Display of -3000 RPM: Display of -3000 RPM:
H0B-38	Motor phase U current upon occurrence of the selected fault	0.1 A	Displays the RMS value of phase U winding current of the servo motor when the fault defined by H0B- <mark>38</mark> occurred. When there is no fault, H0B-38 displays "0".	Display of 4.60 A:
H0B-39	Motor phase V current upon occurrence of the selected fault	0.1 A	Displays the RMS value of phase V winding current of the servo motor when the fault defined by H0B- <mark>39</mark> occurred. When there is no fault, H0B-39 displays "0".	Display of 4.60 A:
H0B-40	Bus voltage upon occurrence of the selected fault	V	Displays the DC bus voltage of the main circuit when the fault defined by H0B- <mark>40</mark> occurred. When there is no fault, H0B-40 displays "0".	Display of 311.0 V rectified from 220 VAC: Display of 537.0 V rectified from 380 VAC:
H0B-41	Input terminal status upon occurrence of the selected fault	-	Displays the high/low level status of the five DIs when the fault defined by H0B- <mark>41</mark> occurred. The viewing method is the same as that of H0B-03. When there is no fault, all the DIs are displayed as low level by H0B-41, and the corresponding hexadecimal value is "0".	In cases where the value of H0B-41 read by the software tool is 0x0001, and the corresponding binary code is 0000 0000 0000 0001. $DI_{DI_{3}}^{DI_{4}} DI_{2}^{DI_{3}} DI_{1}$ $DI_{3}^{DI_{4}} DI_{2}$ $High High High High Low$ $1 \ 1 \ 1 \ 1 \ 0$


Para. No.	Name	Unit	Meaning	Display Example
H0B-43	Output terminal status upon occurrence of the selected fault	-	Displays the high/low level status of the three DOs when the fault defined by H0B- <mark>34</mark> occurred. The viewing method is the same as that of H0B-05. When there is no fault, all the DOs are displayed as low level by H0B-43, and the corresponding decimal value is "0".	Display of H0B-43 = 0x0003:
H0B-53	Position deviation counter (32-bit decimal value)	Reference unit	Position deviation = Sum of input position references (reference unit) - Sum of pulses fed back by the encoder (reference unit)	Display of 10000 reference units:
H0B-55	Actual motor speed	0.1 RPM	Displays the actual motor speed in unit of 0.1 RPM.	Display of 3000.0 RPM:
H0B-57	Control power voltage	0.1 V	Displays the control power DC voltage.	Display of 12.0 V:

Para. No.	Name	Unit	Meaning	Display Example
H0B-58	Mechanical absolute position (low 32 bits)	Encoder unit	Displays the mechanical absolute position (low 32 bits) when an absolute encoder is used.	Display of 2147483647 encoder units:
H0B-60	Mechanical absolute position (high 32 bits)	Encoder unit	Displays the mechanical absolute position (high 32 bits) when an absolute encoder is used.	Display of "-1" encoder unit:
H0B-70	Number of the absolute encoder revolutions	Rev	Displays the present number of revolutions of an absolute encoder.	Display of 32767:
H0B-71	Single-turn position feedback of an absolute encoder	Encoder unit	Displays the single-turn position feedback of an absolute encoder.	Display of 8388607 encoder units:
H0B-77	Absolute encoder position (low 32 bits)	Encoder unit	Displays the absolute position (low 32 bits) of the motor when an absolute encoder is used.	Display of 2147483647 encoder units:
H0B-79	Absolute encoder position (high 32 bits)	Encoder unit	Displays the absolute position (high 32 bits) of the motor when an absolute encoder is used.	Display of "-1" encoder unit:

Para. No.	Name	Unit	Meaning	Display Example
H0B-81	Single-turn position feedback of the load in rotation mode (low 32 bits)	Encoder unit	Displays the position feedback of the mechanical load (low 32 bits) when the absolute system works in rotation mode.	Display of 2147483647 encoder units:
H0B-83	Single-turn position feedback of the load in rotation mode (high 32 bits)	Encoder unit	Displays the position feedback of the mechanical load (high 32 bits) when the absolute system works in rotation mode.	Display of 1 encoder unit: $\int_{\frac{1}{2}}^{\frac{1}{2}}$
H0B-85	Single-turn position of the load in rotation mode	Reference unit	Displays the absolute mechanical position when the absolute system works in rotation mode.	Display of 1073741824 referent units:

4.3 Parameter Setting

Parameter settings can be performed through the keypad. For details on parameters, see <u>"11.2 List of</u> <u>Object Groups"</u>. The following figure shows how to change from position control mode to speed control mode after the power supply is switched on.

- O Used to switch the keypad display mode and return to the previous menu.
- "▲"/"▼": Used to increase or decrease the value of the blinking digit.
- " ◀◀ ": Used to shift the blinking digit.
- " _____ ": Used to save present setting values or switch to the next menu.

After parameter setting is done, that is, "Done" is displayed on the keypad, press O to return to parameter group display (interface of "H02-00").

4.4 User Password

After user password (H02-30) is enabled, only the authorized user can perform parameter settings; other operators can only view the parameter.

■ Setting the user password

The following figure shows how to set the password to "00001".

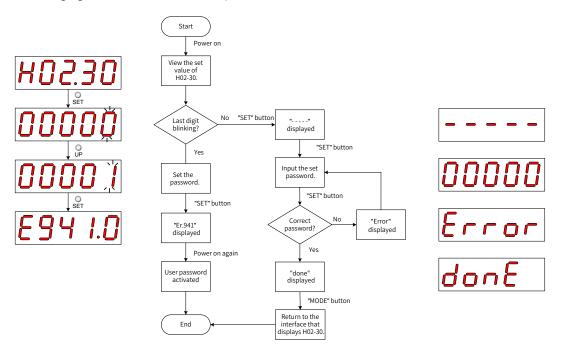
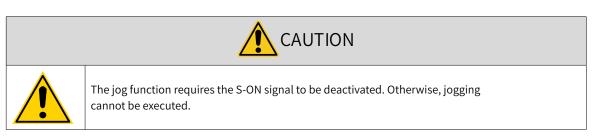


Figure 4-6 Procedures for user password setting

To change the user password, input the present password first to authorize the access to parameter setting, and then enter H02-30 again to set a new password according to the method described in the preceding figure.


If the last digit does not blink, the present password is protected. If the last digit blinks, no password is set or a correct password has been entered.

■ Canceling user password

Enter the set user password, and set H02-30 to "00000" to cancel user password.

4.5 General Functions

4.5.1 Jog

Users can perform trial running on the servo motor and the servo drive through jogging.

Operating process

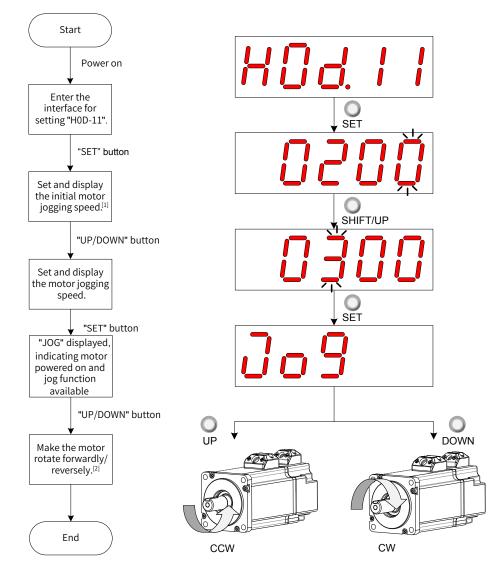


Figure 4-7 Procedures for setting the jog function

- [1] Press ▲ or ▼ to increase or decrease the motor jogging speed. After exiting from the jog mode, the motor reverts to the initial speed.
- [2] Press \blacktriangle or \bigtriangledown to make the servo motor rotate in forward or reverse direction. After you release the button, the servo motor stops immediately.

■ Exiting from jog

Press \bigcup_{MODE} to exit from the jogging status and return to the previous menu.

4.5.2 Forced DI/DO Signals

There are five DI signals and three DO signals on terminal CN1 of SV660N. Users can allocate the DI/ DO function and terminal logic to parameters in group H03/H04 by using the keypad (or host controller communication), so that the host controller can control corresponding servo functions through the DI or the DO signal output by the servo drive.

The servo drive also provides forced DI/DO function. The forced DI can be used to test the DI function of the servo drive, and the forced DO can be used to check the DO signal connection between the host controller and the servo drive.

Code	Name	Function	Description	Remarks
	Со	nsisting of two di	gits which indicate the terminal fund	ction
		Inputs	signal function description	
01	S-ON	Servo ON	Invalid - Servo motor disabled in local mode Valid - Servo motor enabled in local mode	The S-ON function is only valid in non-bus control mode. The logic of the corresponding terminal must be set to level
02	ALM-RST	Fault reset	Valid: Fault reset under local mode Invalid: Fault not reset under local mode	valid. This function is valid only in non-bus control mode. It is recommended that the logic of the corresponding terminal be set to level valid.
14	P-OT	Positive limit switch	Valid - Forward drive inhibited Invalid - Forward drive permitted	When the mechanical movement is beyond the movable range, the overtravel prevention will be implemented. It is recommended that the logic of the corresponding terminal be set to level valid.
15	N-OT	Negative limit switch	Valid - Reverse drive inhibited Invalid - Reverse drive permitted	When the mechanical movement is beyond the movable range, the overtravel prevention will be implemented. It is recommended that the logic of the corresponding terminal be set to level valid.
31	HomeSwitch	Home switch	Invalid - Mechanical load beyond the home switch range Valid - Mechanical load within the home switch range	The logic of the corresponding terminal must be set to level valid.
34	EmergencyStop	Emergency stop	Valid: Position locked after stop at zero speed Invalid: Current running status not affected	It is recommended that the logic of the corresponding terminal be set to level valid.

■ Definition of DI/DO functions

Code	Name	Function	Description	Remarks
38	TouchProbe1	Touch probe 1	Invalid - Probe not triggered Valid - Probe can be triggered	The probe logic is only related to the probe function (60B8h) instead of the terminal logic.
39	TouchProbe2	Touch probe 2	Invalid - Probe not triggered Valid - Probe can be triggered	The probe logic is only related to the probe function (60B8h) instead of the terminal logic.
		Output	signal function description	
01	S-RDY	Servo ready	Valid - Servo ready Invalid - Servo not ready	The servo drive is ready to run.
02	TGON	Motor rotating	Invalid - Absolute value of the filtered motor speed smaller than the value of H06-16. Valid - Absolute value of the filtered motor speed reaching the value of H06-16.	-
09	BRK	Brake output	Valid: Brake signal outputted Invalid: Brake signal not outputted	-
10	WARN	Warning	Valid - Warning occurs on the servo drive Invalid - No warning occurs on the servo drive or the warning has been reset	-
11	ALM	Fault	Valid - Fault occurs on the servo drive Invalid - No fault occurs on the servo drive or the fault has been reset	-
25	СМР	Position comparison	Valid: Servo drive passing the target position comparison point Invalid: Servo drive not passing the target position comparison point	-
32	EDM	Safety status	Valid: STO function triggered Invalid: STO function not triggered	The EDM will output valid signals only when the 24 V input voltages for STO1 and STO2 are disconnected simutaneously.

1 Forced DI signal

When this function is enabled, all DI levels will be controlled by H0D-18 (Forced DI value).

Operating process

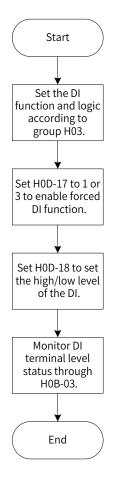


Figure 4-8 Procedures for forced DI signal setting

\cancel{a} Related parameters:

Parar	neter No.				Setting	Effective	
Keypad	Software	Name	Value Range	Function	Condition		Default
H0D-17	<u>Tool</u> 200D-12h	Forced DI/DO selection	0: No operation 1: Forced DI enabled, forced DO disabled 2: Forced DO enabled, forced DI disabled 3: Forced DI and DO enabled 4: Bus forced DO	This parameter is used to select the forced DI/ DO function.	During running	Immediately	0

H0D-18 is used to set the forced DI level. The keypad display is in hexadecimal, after being converted to binary, the number "1" indicates high level and the number "0" indicates low level.

The DI logic is defined by parameters in group H03. H0B-03 is used to monitor the DI level status. The keypad displays the level, and the value of H0B-03 (Monitored DI signal) read by the software tool is a decimal number.

■ Example

To activate the DI function allocated to DI1 and deactivate DI functions allocated to DI2 to DI5, set as follows (logic of all the five DIs being "low level valid"):

As the number "1" indicates high level and "0" indicates low level, the binary value is "11110", which correspond to the hexadecimal number "1E". Therefore, set the value of H0D-18 (Forced DI value) to "1E" through the keypad.

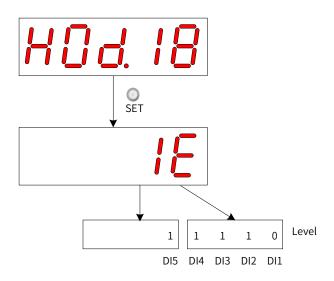


Figure 4-9 Description of H0D-18 setting

■ Monitoring the DI level status through H0B-03

If the DI function is normal, the displayed value of H0B-03 is always the same as that of H0D-18.

In this case, DI1 is displayed as low level and DI2 to DI9 are displayed as high level on the keypad, and the value of H0B-03 read by the software tool is 1E (hexadecimal). The keypad display is as follows.

Figure 4-10 DI level status corresponding to H0B-03

Exit

The forced DI function is not retentive upon power-off. Normal DIs apply after restart, or you can set H0D-17 (Forced DI/DO selection) to 0 (No operation) to return to the normal DI mode.

2 Forced DO signal

After this function is enabled, all DO levels are controlled by H0D-19 (Forced DO value).

In cases where the servo motor is used for vertical motion, if the brake output signal (FunOUT.9: BK, brake output) is **active**, the brake will be released and the load may fall. Therefore, take protective measures on the machine to prevent falling.

Operating process

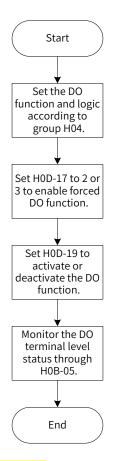


Figure 4-11 Procedures for forced DO signal setting

H0D-19 (Forced DO value) is used to set whether the forced DO function is valid. The keypad displays the value in hexadecimal, after being converted to binary, the number "1" indicates the DO function is valid and "0" indicates the DO function is invalid.

Parameters in group H04 are used to set the DO logic. H0B-05 is used to monitor the DO level status. The keypad displays the level, and the value of H0B-05 (Monitored DO signal) read by the software tool is a decimal number.

Example: To activate the DO function allocated to DO1 and deactivate DO functions allocated to DO2 and DO5, set as follows:

As the number "1" indicates the DO function is valid and "0" indicates the DO function is invalid, the binary value will be "110", which corresponds to the hexadecimal number "6". Therefore, set H0D-19 (Forced DO value) to 6 through the keypad.

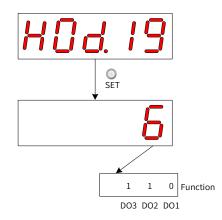


Figure 4-12 Description of H0D-19 setting

■ Monitoring the DO level status through H0B-05

If the logic of all the three DO terminals are active at low level, the DO1 is high level and DO2 to DO5 terminals are low level, and the corresponding binary number is "001". In this case, the value of H0B-05 (Monitored DO signal) read by the software tool is 1 (decimal). The keypad display is as follows.

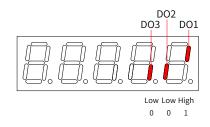


Figure 4-13 Display of H0B-05 when all DOs are "low level valid"

If the logic of all the three DOs are active at high level, the DO1 terminal is low level and DO2 to DO5 terminals are high level, the corresponding binary number is "110", and the value of H0B-05 (Monitored DO signal) read by the software tool is 6 (decimal). The keypad display is as follows.

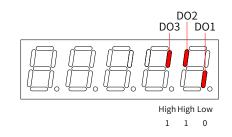


Figure 4-14 Display of H0B-05 when all DOs are "high level valid"

Exit

The forced DO function is not retentive upon power-off. Normal DOs apply after restart, or you can set H0D-17 (Forced DI/DO selection) to 0 (No operation) to return to the normal DO mode.

3 Forced DO signals controlled by the bus

After this function is enabled, all DO signal levels are controlled by 60FE-01h (Physical output).

In cases where the servo motor is used for vertical motion, if the brake output signal (FunOUT.9: BK, brake output) is active, the brake will be released and the load may fall. Therefore, take protective measures on the machine to prevent falling.

Operating process

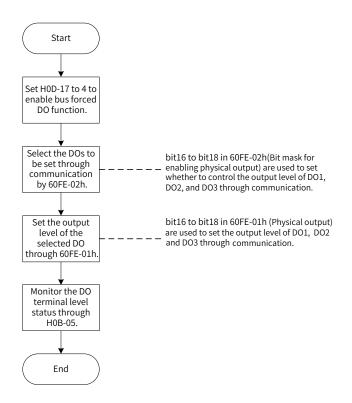


Figure 4-15 Procedures for bus forced DO signal setting

When 200D-12h is set to 4, 60FE (Digital output) can be used to forcibly set the DO level through the bus.

Bit	Related DO	Physical output enabled: 60FE-02h	Physical output: 60FE-01h
16	DO1	1: DO1 forced output enabled	DO1 forced output (0: OFF, 1: ON)
17	DO2	1: DO2 forced output enabled	DO2 forced output (0: OFF, 1: ON)
18	DO3	1: DO3 forced output enabled	DO3 forced output (0: OFF, 1: ON)

When 200D-12h is set to 4 and any bit in bit16 to bit18 of 60FE-02h is 1, the corresponding forced DO is OFF.

H0B-05 is used to monitor the DO level status. The keypad displays the level, and the value of H0B-05 (Monitored DO signal) read by the software tool is a decimal number.

Example: To make the output level of DO1 to DO3 be forcibly set by the bus, in which DO1 outputs low level and DO2 to DO3 output high level, set as follows:

Set 200D-12h to 4, 60FE-02h to 0x00070000 and 60FE-01 to 0x00060000, and monitor the DO level status through H0B-05 (Monitored DO signal). The keypad display is as follows.

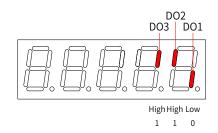


Figure 4-16 Display of H0B-05 when DO signals are controlled by the bus

Exit

The bus-controlled forced DO signal is not retentive upon power-off. Normal DOs apply after restart, or you can set H0D-17 (Forced DI/DO selection) to 0 (No operation) to return to the normal DO mode.

5 Commissioning and Operation

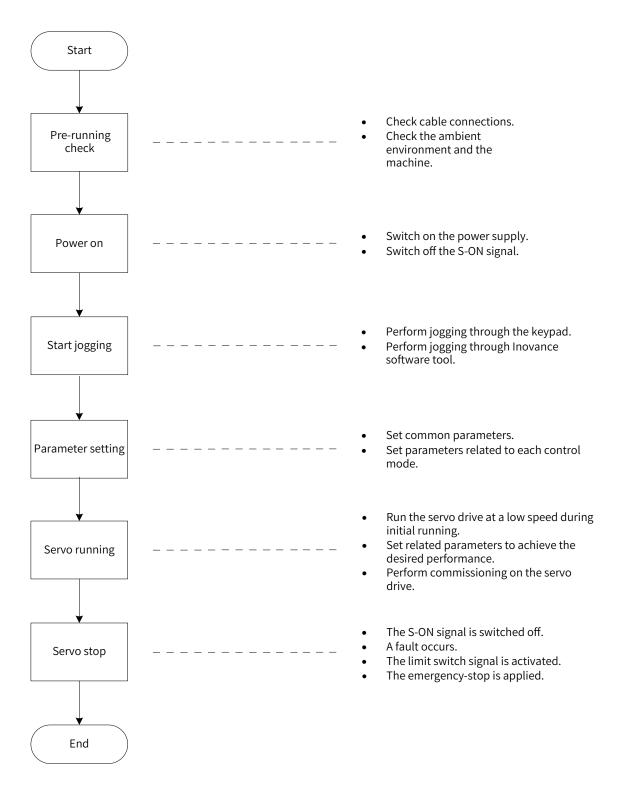


Figure 5-1 Flowchart for servo drive settings

5.1 Pre-running Check

Check the following items before running the servo drive and the servo motor.

Record	SN	Description								
		Wiring								
	1	The power input terminals ((L1, L2)/(L1, L2, L3)) of the servo drive are connected properly.								
	2	e servo motor UVW cables are connected in the correct phase sequence at both ends.								
	3	o short circuit exists in the power input terminals ((L1, L2)/(L1, L2, L3)) and main circuit output rminals (U, V, W) of the servo drive.								
	4	e control signal cables such as brake and limit switches are connected properly.								
	5	he servo drive and the servo motor are grounded properly.								
	6	The cable tension is within the permissible range.								
	7	The connecting terminals are well insulated.								
		Environment and Mechanical Conditions								
	1	No foreign objects (such as the cable end or metal filings) which may cause short circuit exist inside or outside the servo drive.								
	2	The servo drive and the external regenerative resistor are placed on inflammable objects.								
	3	The servo motor installation and the shaft and mechanical connections are reliable.								
	4	The servo motor and the machine that the servo motor is connected to are ready to run.								

5.2 Power-on

Switching on the input power supply

The input power terminals of single-phase 220 V models are L1 and L2.

After switching on the input power supply, if the bus voltage indicator is in normal status and the keypad displays "reset" \rightarrow "ry" in sequence, it indicates the servo drive is ready to run and waits for the S-ON signal to be sent from the host controller.

If the keypad keeps displaying "nr", see <u>"9 Troubleshooting"</u> for solutions.

If the keypad displays the fault code, see <u>"9 Troubleshooting</u>" for solutions.

Deactivating the S-ON signal

5.3 Jog

Perform jogging to check whether the servo motor can rotate properly without abnormal vibration or noise. The jog function can be enabled through the keypad (jogging in speed mode/jogging in position mode) and Inovance software tool (jogging in speed mode).

The acceleration/deceleration time constant of the speed/position reference can be set through H06-12 (2006-0Dh) during jogging.

Through the keypad (jogging in speed mode)

Enter the jogging in speed mode by setting H0D-11 through the keypad, and the keypad displays the default jogging speed, which can be modified by pressing \bigcirc / \bigcirc . Press \bigcirc to enter the jogging status, and the keypad displays "JOG". Power on the servo motor, and hold down \bigcirc / \bigcirc to switch between forward and reverse jog as needed. Press \bigcirc to exit from the jog mode.

Through Inovance servo commissioning software (jogging in speed mode)

Open the "Speed JOG" interface (as indicated by the red square frame in the following figure) in the software tool and set the jog speed. After switching the servo status to ON, press the forward/reverse arrow displayed on the interface to switch between forward and reverse jog as needed.

Through the keypad (jogging in position mode)

Enter the jogging in position mode by setting H0D-08 through the keypad, and the keypad displays the default jogging speed, which can be modified by pressing $\stackrel{\circ}{}/\stackrel{\circ}{}$. Press $\stackrel{\circ}{}_{set}$ to enter the jogging status, and the keypad displays "JOG-P". Power on the servo motor, and hold down $\stackrel{\circ}{}/\stackrel{\circ}{}$ to switch between forward and reverse jog as needed. Press $\stackrel{\circ}{}_{MODE}$ to exit from the jog mode.

 \Leftrightarrow Related parameters:

H06-12	Name	Acceleration ramp time of jog speed		Setting Condition & Effective Time	Any condition & Immediately	Data Structure	-	Data Type	Uint16			
2006-0Dh	Access	RW	Mapping	Yes	Related Mode	All	Data Range	0 to 65535 (ms)	Default	10		
Used to set	Used to set the time constant for the servo motor to accelerate from 0 RPM to 1000 RPM.											

5.4 General Parameter Settings

5.4.1 Rotation Direction

Set H02-02 (2002-03h) (Rotation direction) to change the motor rotation direction without changing the polarity of the input reference.

 \Rightarrow Related parameters:

H02-02	Name	Rotation direction		Setting Condition & Effective Time	At stop & Next power-on	Data Structure	-	Data Type	Uint16	
2002-03h	Access	RW	Mapping	-	Related Mode	All	Data Range	0-1	Default	0

Defines the forward direction of the motor when viewed from the motor axis side.									
Value	Rotation direction	Remarks							
0	CCW as the forward direction	CCW direction as the forward direction when forward run command is input, indicating the motor rotates in CCW direction when viewed from the motor axis side							
1	CW as the forward directionCW direction as the forward direction when forward run command is input, indicating the motor rotates in CW direction when viewed from motor axis side								
		Reverse direction (CW) Forward direction (CCW)							

The value change of H02-02 (2002-03h) does not affect the pulse output form and the positive/negative attribute of monitoring parameters.

The "Forward drive" and rotation direction in the overtravel prevention function is the same as the setting in H02-02 (2002-03h).

5.4.2 Brake Settings

The brake is used to prevent the servo motor shaft from rotating during non-operating status of the servo drive. This is to keep the motor and the mechanical motion part in locked position.

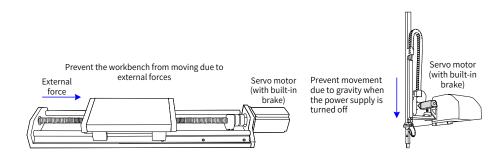
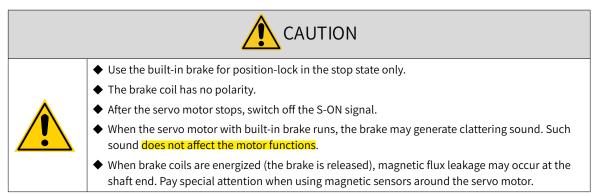



Figure 5-2 Application of the motor brake

1 Brake connection

The connection of the motor brake input signal has no polarity. Users need to prepare a 24 V power supply. The following figure shows the standard wiring of the brake signal (BK) and motor brake power supply.

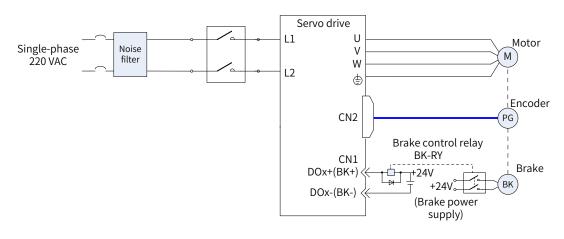


Figure 5-3 Wiring of the motor brake

Pay attention to the following precautions during wiring:

When deciding the length of the cable on the motor brake side, the voltage drop caused by cable resistance into consideration. The input voltage must be at least 21.6 V to enable the brake to work properly. The following table lists brake specifications of Inovance MS1 series servo motors.

Motor Model	Holding Torque (Nm)	Supply Voltage (±10%) (VDC)	Resistance (Ω) $\pm 7\%$	Supply Current Range (A)	Release Time (ms)	Close Time (ms)
MS1H1-10B	0.32	24	96	0.23-0.27	20	35
MS1H1-20B/40B	1.3	24	89.5	0.25-0.34	20	50
MS1H4-40B	1.3	24	89.5	0.25-0.34	20	50
MS1H1-75B	2.5	24	72	0.40-0.57	25	60
MS1H4-75B	2.5	24	50.1	0.40-0.57	25	60
MS1H3-85B	12	24	21.3	0.95-1.33	60	120

Table 5-2 Brake specifications

• Do not share the same brake power supply with other devices. This is to prevent brake malfunction due to voltage or current drop resulted from other working devices.

NOTE

◆ It is recommended to use cables of 0.5 mm² and above.

2 Brake software setting

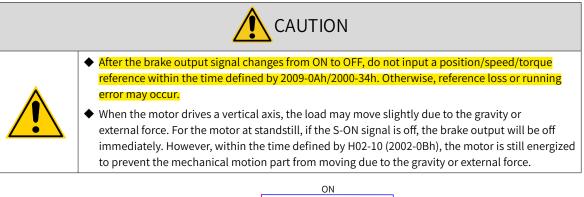
For the servo motor with brake, allocate function 9 (FunOUT.9: BK, brake output) to a certain DO, and set the valid logic of this DO.

Related function No.

Function No.	Name	Function	Description
FunOUT.9	ВК	Brake output	Invalid: The brake power supply is switched <mark>on</mark> , the brake acts, and the motor stays in position lock state. Valid: The brake power supply is switched <mark>off</mark> , the brake is released, and the motor can rotate.

Depending on the present state of the servo drive, the working time sequence of the brake mechanism can be divided into brake time sequence in normal servo status and brake time sequence in servo fault status.

3 Brake time sequence in normal servo status


The brake time sequence in normal servo status is divided into the following two conditions:

Motor at standstill: The actual motor speed is less than 20 RPM.

Motor rotating: The actual motor speed is equal to or higher than 20 RPM.

Motor at standstill

If the S-ON signal is OFF, and the present motor speed is less than 20 RPM, the servo drive acts according to the brake time sequence in motor at standstill.

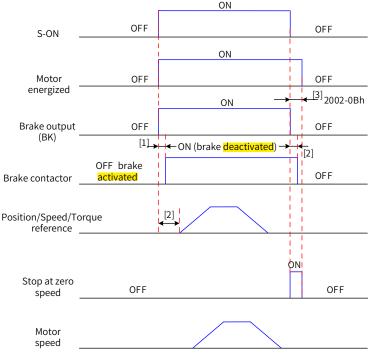
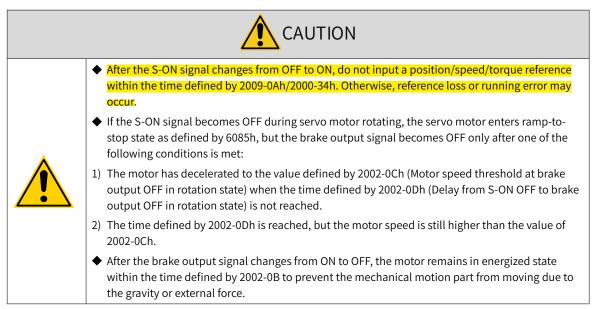


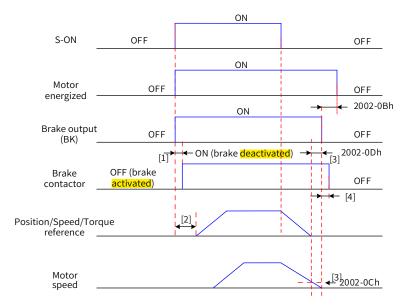
Figure 5-4 Brake time sequence in motor static status

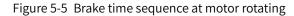
- [1] For the brake triggering delay time, see the motor specifications in <u>"5 Electrical specifications for the motor</u> with brake".
- [2] The time interval from the moment when brake output becomes ON to the moment when the command is input must be larger than the time defined by 2009-0Ah/2000-34h.
- [3] For the motor at standstill (motor speed less than 20 RPM), when the S-ON signal is turned off, the brake output signal is set to OFF. You can set the delay from brake output OFF to motor de-energized through 2002-0Bh.

\Rightarrow Related parameters:

H02-09	Name	0	ay from brake utput ON to mand receive		Setting Condition & Effective Time	Any condition & Immediately	Data Structure	-	Data Type	Uint16
2002-0Ah	Access	RW	Mapping	-	Related Mode	All	Data Range	0–500 (ms)	Default	250
Defines the	delay fro	m the r	noment the b	orak	e output sign	al becomes ON	to the mom	ent when the	servo driv	ve starts


to receive input commands after power-on.


Within the time defined by 2002-0Ah, the servo drive does not receive position/speed/torque references.


H02-10	Name	Delay from brake output OFF to motor de-energized		Setting Condition & Effective Time	Any condition & Immediately	Data Structure	-	Data Type	Uint16			
2002-0Bh	Access	RW	Mapping	-	Related Mode	All	Data Range	50–1000 (ms)	Default	150		
	Defines the delay from the moment the brake output signal becomes OFF to the moment when the motor enters de-energized status.											

Motor rotating

If the S-ON signal is OFF and present motor speed is equal to or higher than 20 RPM, the servo drive acts according to the brake time sequence in motor rotating status.

- [1] For the delay of brake contactor actions, see <u>"5 Electrical specifications for the motor with brake</u>" for details.
- [2] The time interval from the moment when brake output becomes ON to the moment when the command is input must be larger than the value defined by 2009-0Ah/2000-34h.
- [3] When the S-ON signal is switched off during motor rotating, you can set the delay for brake output OFF by 2002-0Ch and 2002-0Dh.

[4] The motor enters de-energized state only after the time defined by 2002-0Bh elapses upon brake output OFF. ☆ Related parameters:

H02-11	Name	thres out	Motor speed eshold at brake utput OFF in otation state		Setting Condition & Effective time	Any condition & Immediately	Data Structure	-	Data Type	Uint16
2002-0Ch	Access	RW	Mapping -		Related Mode	All	Data Range	20-3000 (RPM)	Default	30

Defines the motor speed threshold when the brake output signal becomes OFF during motor rotating.

H02-12	Name	Delay from S-ON OFF to brake output OFF in rotation status		Setting Condition & Effective Time	Any condition & Immediately	Data Structure	-	Data Type	Uint16		
2002-0Dh	Access	RW	Mapping	-	Related Mode	All	Data Range	1–1000 (ms)	Default	500	
	Defines the delay from the moment the brake output signal becomes OFF to the moment when the S-ON signal becomes OFF during motor rotating.										

■ Brake time sequence in quick stop

The states after quick stop can be divided into de-energized or position-lock depending on the stop mode. For the de-energized state (605Ah < 4), the brake output condition is the same as the brake time sequence in normal servo status (motor rotating).

Brake time sequence in fault status

The servo faults are classified into level 1 faults (No.1) and level 2 (No.2) faults. For details, see <u>"9</u> <u>*Troubleshooting*</u>". The brake time sequences in fault status are categorized into the following two situations:

1) No. 1 faults:

When a No. 1 fault occurs and the brake is **enabled**, the stop mode upon No. 1 fault is forced to "DB stop, keeping DB state", but the brake output condition is the same as the brake time sequence in normal servo status (motor rotating).

2) No. 2 faults:

When a No. 2 fault occurs and the brake is **enabled**, the stop mode is forced to "Ramp to stop, keeping DB state", but the brake output condition is the same as the brake time sequence in normal servo status (motor rotating).

NOTE

Recommended setting value:

When the brake is **applied**, the setting value of 6085h (Stop deceleration) must meet the following requirement:

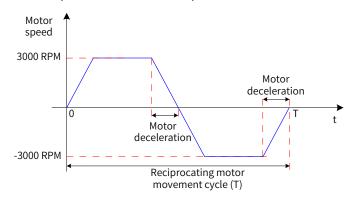
Deceleration time < 2002-0Dh

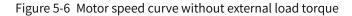
If the preceding requirement cannot be fulfilled, the deceleration command will be based on 2002-0Dh.

5.4.3 Regenerative Resistor Settings

When the motor torque direction is opposite to the **speed** direction, the energy is **transmitted** from the motor to the servo drive, causing bus voltage rise. Once the bus voltage rises to the braking threshold, the surplus energy must be consumed by a regenerative resistor. Otherwise, the servo drive will be damaged.

The regenerative resistor can be a built-in or an external one. However, a built-in regenerative resistor cannot be used together with an external regenerative resistor. The following table lists the specifications of the regenerative resistor.


Servo Drive	Specification	s of Built-in R	egenerative Resistor	Min. Permissible Resistance of External				
Model	Resistance (Ω)	Power (W)	Processable Power P _a (W)	Regenerative Resistor (2002-16h) (Ω)				
SV660NS1R6I	-	-	-	50				
SV660NS2R8I	-	-	-	45				
SV660NS5R5I	50	50	25	40				
SV660NS6R6I	50	50	25	40				


Table 5-3 Specifications of the regenerative resistor for SV660N series servo drive

The models S1R6 and S2R8 do not have the built-in regenerative resistor. Users need to prepare an external regenerative resistor as needed.

■ No external load torque

The energy at braking of reciprocating motor movement is converted into electric energy and fed back to the bus capacitor. When the bus voltage rises above the braking voltage threshold, the regenerative resistor will consume the excessive feedback energy. The following figure takes no-load running from 3000 RPM to 0 RPM as an example to show the motor speed curve.

Energy data

The following table lists the energy data generated during no-load running of a 220 V motor from 3000 RPM to 0 RPM.

Capacity	Servo Motor I MS1H*-*****		Rotor Inertia J (10 ⁻⁴ kgm²)	Braking Energy E ₀ (J) Generated from 3000 RPM to 0 RPM	Max. Braking Energy Absorbed by Capacitor E _c (J)
100 W		10B30CB	0.048	0.237	9
200 W	H1	20B30CB	0.163	0.806	9
400 W	(low inertia, small capacity)	40B30CB	0.25	1.237	18
750 W		75B30CB	1.43	6.435	26
400 W	H4	40B30CB	0.667	3.301	18
750 W	(medium inertia, small capacity)	75B30CB	2.012	10.063	26
850 W	H3 (medium inertia, medium capacity)	85B15CB	14	76.725	26

If the time needed by the whole braking process is known (T), you can determine whether an external regenerative resistor is needed and the power of the resistor (if needed) by using the following flowchart and formula.

Regenerative resistor selection

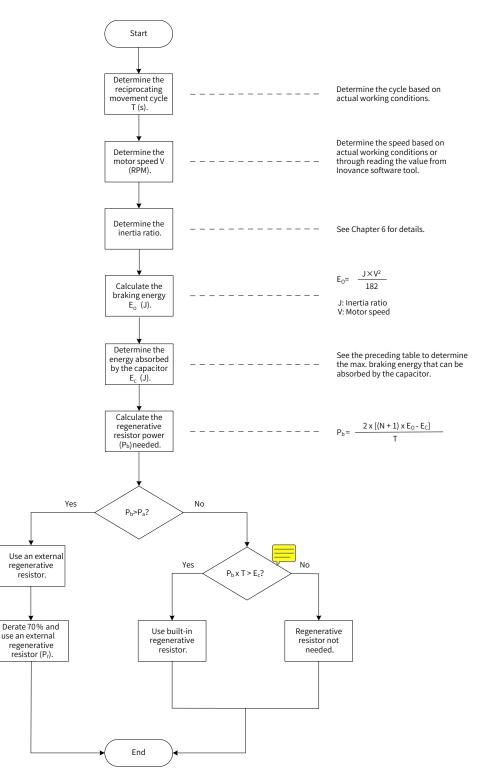


Figure 5-7 Flowchart for selecting regenerative resistor

- Assume that the load inertia is N times the motor inertia, the braking energy is $(N + 1) \times E_0$ when the motor decelerates from 3000 RPM to 0 RPM, the energy consumed by the regenerative resistor will be $(N+1) \times E_0 - E_c$ (unit: J) after deducting the energy (E_c) absorbed by the capacitor. Assume the reciprocating movement period is T, the regenerative resistor power needed will be $2 \times [(N + 1) \times E_0 - E_c]/T$.
- Determine whether to use the regenerative resistor according to the preceding flowchart and set H02-25 (Regenerative resistor type) accordingly.
- The resistor with aluminum housing is recommended.

$\Leftrightarrow \mathsf{Related} \ \mathsf{parameters}$

Paran No		Name	Value Range	Value Range Function		Value Range Function Setting Condition		Effective Time	Default
2002h	1A	Regenerative resistor type	External, natural ventilation External, forced air cooling	Defines the mode of absorbing and releasing the braking energy.	At stop	Immediately	3		

Take the H1 series 750 W model as an example. Assume the reciprocating movement period (T) is 2s, the maximum speed is 3000 RPM, and the load inertia is four times the motor inertia, the required regenerative resistor power will be as follows:

$$P_{b}=\frac{2x[(N+1) \times E_{0}-E_{C}]}{T}=\frac{2x[(4+1)x6.4-9]}{2}=23 W$$

The calculated value is smaller than the processable capacity ($P_a = 25$ W) of the built-in regenerative resistor, so a built-in regenerative resistor is sufficient.

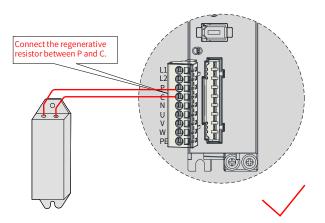
If the inertia ratio in preceding example is changed to 10 times the motor inertia, and other conditions remain the same, the required regenerative resistor power will be as follows:

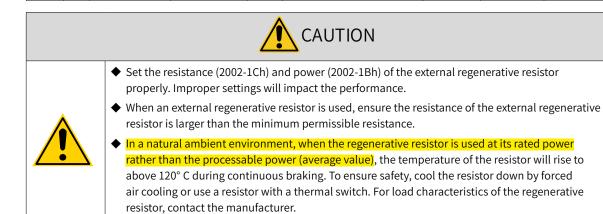
$$P_{b} = \frac{2x[(N+1) \times E_{0}-E_{C}]}{T} = \frac{2x[(10+1) \times 6.4-9]}{2} = 61.4 \text{ W}$$

The calculated value is larger than the processable capacity ($P_a = 25$ W) of the built-in regenerative resistor, so an external regenerative resistor is required. The recommended power of the external regenerative resistor is $E_0/(1 - 70\%) = 204.6$ W.

- 1) Connection and setting of the regenerative resistor
- For use of an external regenerative resistor

Use the external regenerative resistor with 70% derated, that is, $P_r = P_b/(1 - 70\%)$, and ensure the regenerative resistor is larger than the minimum permissible resistance. Remove the jumper between P and D, and connect the external regenerative resistor between terminals P and C.




Figure 5-8 Connection of an extenal regenerative resistor

See <u>"Table 3-4 Recommended main circuit cables and models</u>" for cable information on terminals P and C.

Set 2002-1Ah to 1 or 2 based on the cooling mode of the regenerative resistor and set the following parameters properly.

Param No		Name	Value Range	Unit Function		Setting Condition	Effective Time	Default
2002h	16h	Minimum permissible resistance of regenerative resistor	Non-settable	-	Displays the minimum permissible resistance of the external regenerative resistor.	At display	-	Model dependent
2002h	1Bh	Power of external regenerative resistor	1–65535	W	Defines the power of the external regenerative resistor actually used. Note: The power of the external regenerative resistor used cannot be smaller than the calculated value of the braking power.	At stop	Immediately	Model dependent
2002h	1Ch	Resistance of external regenerative resistor	1-1000	Ω	Defines the resistance of the external regenerative resistor actually used. Note: The resistance of the external regenerative resistor (2002-1Ch) used cannot be smaller than the minimum permissible resistance of regenerative resistor (2002-16h). Otherwise, Er.922.0 will occur.	At stop	Immediately	Model dependent

\cancel{a} Related parameters

Set the heat dissipation coefficient based on the heat dissipation condition of the external regenerative resistor.

\Leftrightarrow Related parameters:

Param No		Name	Value Range	Unit	Function	Setting Condition	Effective Time	Default
2002h	19h	Resistor heat dissipation coefficient	10-100	%	Used to set resistor heat dissipation coefficient when an external regenerative resistor is used. The value cannot be larger than 30% when natural ventilation is used. The value cannot be larger than 50% when forced air cooling is used.	At stop	Immediately	30

- The larger the heat dissipation coefficient is, the better the braking efficiency is.
- When $P_b < P_a$ and $P_b x T > E_c$, use the built-in regenerative resistor. In this case, set H02-25 to 0.
- ♦ When P_b x T < E_c, no regenerative resistor is required because the bus capacitor is sufficient to absorb the braking energy. In this case, set 2002-1Ah to 3.

2) External load torque exist and motor staying in generating state

When the motor torque direction is the same with the axis rotating direction, the motor outputs energy to the outside. In some special applications where the motor torque output is opposite to the rotating direction, the motor is in power generating status and feeds the electric energy back to the servo drive.

When the load is in continuous power-generating status, it is recommended to adopt the common DC bus mode.

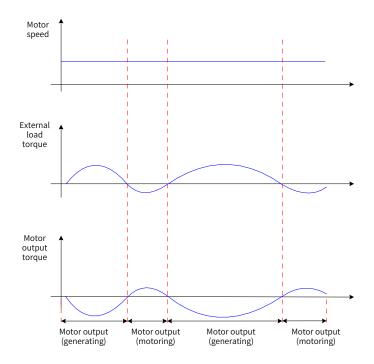
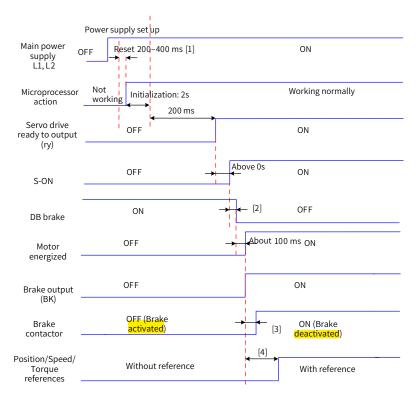


Figure 5-9 Example of the curve under the existence of external load torque

Take the H1 series 750 W model (rated torque 2.39 N \cdot m) as an example. When the external load torque is 60% of the rated torque and the motor speed is 1500 RPM, the power fed back to the servo drive is: (60% x 2.39) x (1500 x 2 π /60) = 225 W. As the regenerative resistor is derated by 70%, the power of the external regenerative resistor is: 225/(1 - 70%) = 750 W, with resistance being 50 Ω .

5.5 Servo Running

1) Switch on the S-ON signal.


When the servo drive is ready to run, the keypad displays "rn", but if there is no command input, the servo motor will not rotate and stay in the locked state.

2) After a command is input, the servo motor starts running.

Table 5-4 Operation of the servo di

Record	No.	Description
	1	At initial running, set an appropriate reference to make the motor run at a low speed and check whether the motor rotates properly.
	2	Observe whether the motor rotates in the correct direction. If the rotation direction is opposite to the expected direction, check the input reference and reference direction.
	3	If the rotation direction is correct, observe the actual motor speed in 200B-01h and average load ratio in 200B-0Dh through the keypad or Inovance software tool.
	4	After checking the preceding running conditions, set related parameters properly to adapt the motor to actual working conditions.
	5	Perform commissioning on the servo drive according to the instructions in Chapter 6.

3) Power-on sequence

Figure 5-10 Power-on sequence

- [1] The reset time is determined by the setup time of the +5V power of the microprocessor.
- [2] The DB brake is included in the standard configuration.
- [3] For the delay of brake contactor actions, see <u>"5 Electrical specifications for the motor with brake"</u> for details.
- [4] When the brake function is not enabled, the command delay time is invalid.

- 4) Time sequence for stop upon warning or fault
- Fault 1: Coast to stop, keeping de-energized state

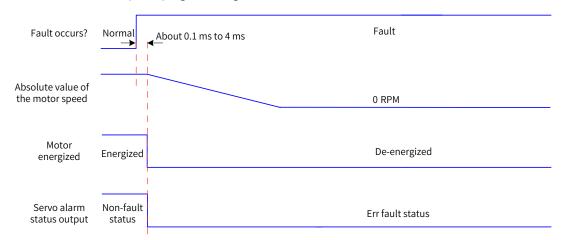


Figure 5-11 Time sequence of "coast to stop, keeping de-energized state" at No. 1 fault

Fault 1 (without brake): DB stop, keeping de-energized state

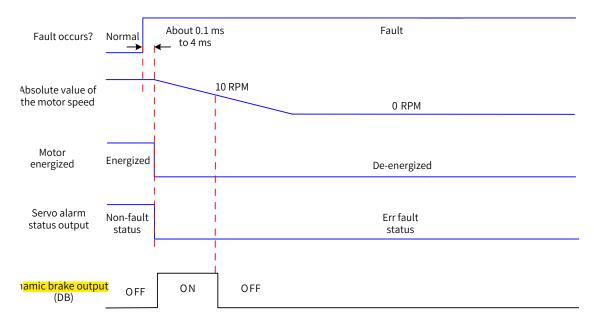


Figure 5-12 Time sequence of "DB stop, keeping de-energized state" at No. 1 fault

■ Fault 1 (with brake): DB stop, keeping DB state

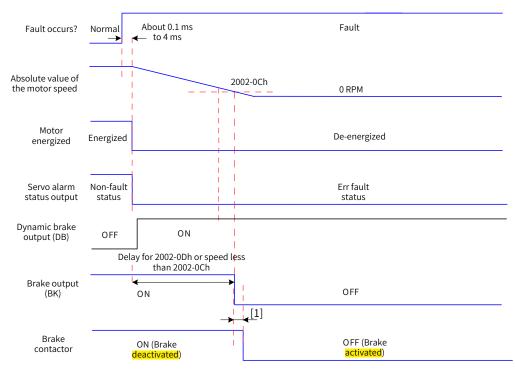


Figure 5-13 Time sequence of "DB stop, keeping DB state" at No. 1 fault (with brake)

- [1] For the delay of brake contactor actions, see <u>"5 Electrical specifications for the motor with brake"</u> for details.
- Fault 1: Without brake, DB stop, keeping DB state

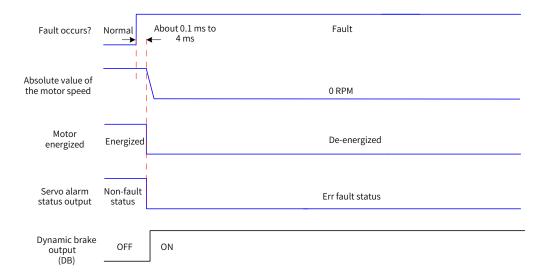


Figure 5-14 Time sequence of "DB stop, keeping DB state" at No. 1 fault

■ Fault 2

Without brake, ramp to stop, keeping de-energized state, same as "coast to stop upon No. 1 fault" Without brake, DB stop, keeping DB state^[1]

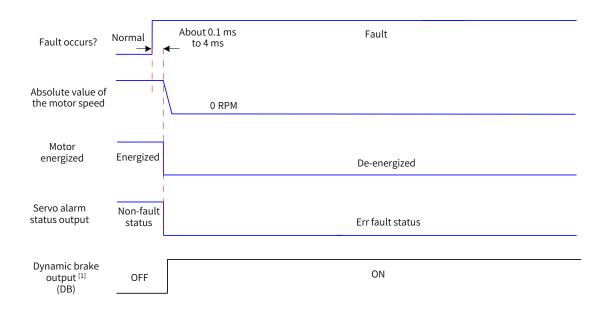


Figure 5-15 Time sequence of "Coast to stop, keeping de-energized state" at No. 2 fault

- [1] After DB is enabled.
- Fault 2: Without brake, ramp to stop or stop at emergency torque, keeping de-energized/DB state^[1]

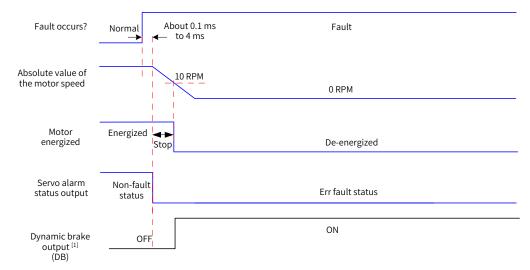


Figure 5-16 Time sequence of "Ramp to stop or stop at emergency stop torque, keeping de-energized state" at No. 2 fault (without brake)

[1] After DB is enabled.

■ Fault 2 (with brake): Ramp to stop, keeeping DB state

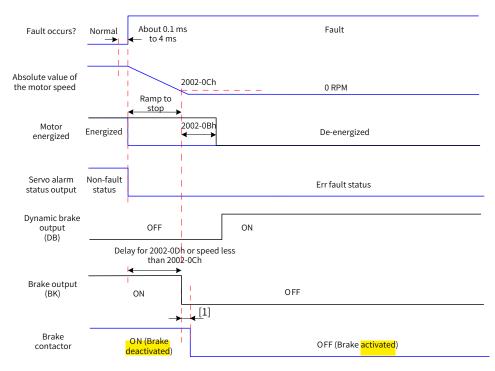


Figure 5-17 Time sequence of "Ramp to stop, keeping DB state" at No. 2 fault (with brake)

[1] For the delay of brake contact actions, see <u>"5 Electrical specifications for the motor with brake</u>" for details.

When a No. 3 warning occurs on the servo drive, such as Er.950.0 (Forward overtravel warning) and Er.952.0 (Reverse overtravel warning), the servo drive stops as shown in the following figure.

Overtravel warning

Stop at zero speed as defined by 6085h if the brake is enabled, keeping position lock state.

Stop at zero speed if the brake is not enabled, keeping position lock state.

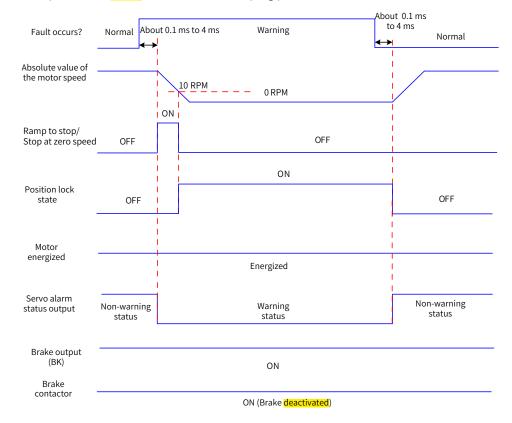


Figure 5-18 Time sequence for warnings that cause stop

Except Er.950 and Er.952, the other warnings do not affect the servo running status. The time sequence upon occurrence of these warnings is as follows:

Warnings that do not cause stop

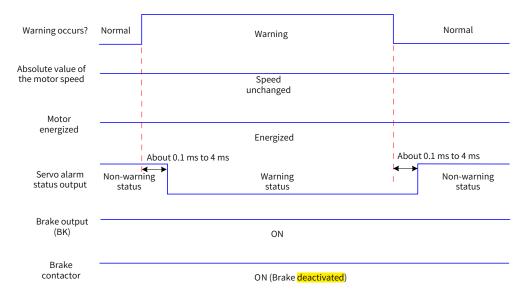


Figure 5-19 Time sequence at warnings that do not cause stop

Fault reset

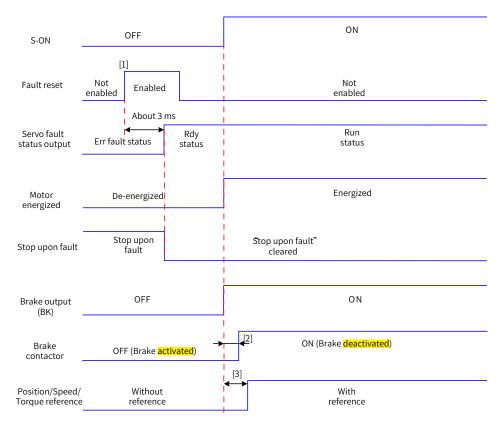


Figure 5-20 Time sequence of fault reset

- [1] The fault reset signal is edge-triggered.
- [2] For the delay of brake contactor actions, see <u>"5 Electrical specifications for the motor with brake"</u> for details.
- [3] The command delay is invalid when the brake is not enabled.

5.6 Servo Stop

The stop modes can be coast to stop, stop at zero speed, ramp to stop, stop at emergency torque, and DB braking. The stop states can be de-energized state, position lock state, and DB state. See the following table for details.

Stop Mode	Description	Feature
Coast to stop	The servo motor is de-energized and decelerates to 0 gradually. The deceleration time is affected by the mechanical inertia and friction.	This mode features smooth deceleration and small mechanical impact, but the deceleration process is slow.
Stop at zero speed	The servo motor decelerates immediately to 0 RPM and stops.	This mode features quick deceleration and fast deceleration process, but the mechanical impact is large.
Ramp to stop	The servo motor decelerates to 0 smoothly upon position/speed/torque references.	This mode features smooth and controllable deceleration process with small mechanical impact.
Stop at emergency torque	The servo drive outputs a reverse braking torque to stop the motor.	This mode features quick deceleration and fast deceleration process, but the mechanical impact is large.
DB braking	The servo motor works in dynamic braking status.	This mode features quick deceleration and fast deceleration process, but the mechanical impact is large.

Table 5-6 Comparison of stop states

Stop States	Description
De-energized state	The motor is de-energized after it stops rotating, and the motor shaft can be rotated freely.
Position Lock state	The motor shaft is locked and cannot be rotated freely after the motor stops rotating.
DB state	The motor is de-energized after it <mark>stop</mark> rotating, and the motor shaft cannot be rotated freely.

The servo drive will stop under the following situations:

S-ON OFF

Switch off the S-ON signal through communication, and the servo drive stops according to the stop mode at S-ON OFF.

$\boldsymbol{\measuredangle}$ Related parameters:

605Ch	Name	Stop n	node at S-ON	OFF	Setting Condition & Effective Time	Any condition & At stop	Data Structure	-	Data Type	int16		
	Access	ss RW Mapping No		No	Related Mode	All	Data Range	-4 to 1	Default	0		
Defines tl OFF.	Defines the deceleration mode of the servo motor from rotating to stop and the servo motor state after stop at S-ON OFF.											
Value				Stop	mode							
-4	Ramp t	o stop a	as defined by	6085ł	n, keeping DB	state						
-3	Stop at	zero sp	eed, keeping	, DB st	ate							
-2	Ramp t	o stop ι	under all moo	les, ke	eping DB sta	te						
-1	DB stop	, keepi	ng DB <mark>statuss</mark>	state								
0	Coast to	o stop, l	keeping de-e	nergiz	ed state							
1	Ramp t	o stop ι	under all moo	les, ke	eping de-ene	ergized state						
Set a pro	per stop n	node ac	cording to th	e meo	chanical <mark>state</mark>	and running	requirement.					
	Set a proper stop mode according to the mechanical state and running requirement. After the brake output is enabled, the stop mode at S-ON off is forcibly set to "Ramp to stop as defined by 6085h, keeping DB state".											

■ Stop at fault occurrence

The stop mode varies with the fault type. See <u>"9 Troubleshooting</u>" for details.

☆ Related parameters:

H02-08	Name				Setting Condition & Effective Time	At stop & Immediately	Data Structure	-	Data Type	Uint16
2002-09h	Access	RW	Mapping	RPDO	Related Mode	All	Data Range	0-2	Default	2
Defines the fault.	e decelera	tion m	ode of the	servo n	notor <mark>from ro</mark>	<mark>tating to stop</mark> a	nd the servo	motors	state after <mark>sto</mark>	<mark>p at</mark> No. 1
Val	ue					Stop mode				
0	0 Coast to stop, keeping de-energized state									
1 DB stop, keeping de-en					nergized state	2				
2		DB s	top, keepi	ng DB st	ate					

After the brake output is enabled, the stop mode at No. 1 fault is forcicly set to "DB stop, keeping DB state".

■ Stop at overtravel

Definition of terms:

"Overtravel": The distance of the mechanical movement exceeds the designed range of safe movement.

"Stop at overtravel": When the moving part moves beyond the range of safe movement, the limit switch outputs a level change, and the servo drive forces the motor to stop.

 \Rightarrow Related parameters:

H02-07	Name	Stop mode at overtravel			Setting Condition & Effective Time	At stop & Immediately	Data Structure	-	Data Type	Uint16			
2002-08h	Access	RW	Mapping	-	Related Mode	All	Data Range	0–7	Default	1			
Defines the overtravel.	Defines the deceleration mode of the servo motor <mark>from rotating to stop</mark> and the servo motor state after <mark>stop</mark> at overtravel.												
Value					Stop mode								
0	Coast to s	top, ke	eping de-e	ne	rgized state								
1	Stops at z	ero spe	ed, keepin	g P	position lock stat	te							
2	Stop at ze	ro spee	ed, keeping	; d	e-energized state	5							
3	Ramp to s	top as	defined by	60	85h, keeping de	-energized state							
4	Ramp to s	top as	defined by	60	85h, keeping po	sition lock state							
5	DB stop, k	eeping	de-energiz	zeo	d state								
6	DB stop, k	DB stop, keeping DB state											
7	Not responding to overtravel												
	When the servo motor drives a vertical axis, for the sake of safety, set 2002-08h to 1 to make the motor shaft stay in position lock state after overtravel occurs.												

After the brake output is enabled, the stop mode at overtravel is forcibly set to "Stop as defined by 6085h, keeping position lock state".

If the servo motor enters overtravel state when driving a vertical axis, the workpiece may fall. To prevent such risks, set 2002-08h to 1. When the workpiece moves linearly, connect the limit switch to prevent mechanical damage. In overtravel status, input a reverse run command to make the motor (workpiece) run in the reverse direction.

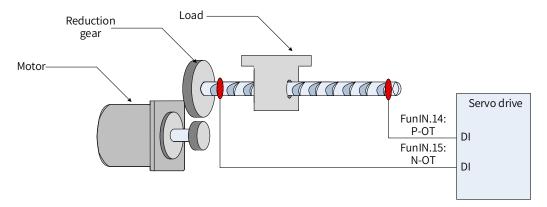


Figure 5-21 Installation of limit switches

To use the limit switch, allocate function 14 (FunIN.14: P-OT, positive limit switch) and function 15 (FunIN.15: N-OT, negative limit switch) to two DIs of the servo drive and set the valid logic of this DI. This is to enable the servo drive to receive the level signals input from the limit switch. The servo drive enables or cancels the stop-at-overtravel state based on the DI level status.

☆	Related	parameters:
---	---------	-------------

Function No.	Name	Function	Description
FunIN.14	P-OT	Positive limit switch	When the mechanical movement is beyond the movable range, the overtravel prevention function will be applied. Invalid: Forward drive permitted Valid: Forward drive inhibited

Function No.	Name	Function	Description
FunIN.15	N-OT	Negative limit switch	When the mechanical movement is beyond the movable range, the overtravel prevention function will be applied. Invalid: Reverse drive permitted Valid: Reverse drive inhibited

Emergency stop

The emergency stop can be implemented through the following means:

DI function 34 (FunIN.34: EmergencyStop)

200D-06h (Emergency stop)

 \Leftrightarrow Related function No.:

Function No.	Name	Function	Description
FunIN.34	EmergencyStop	Braking	Invalid: The servo drive stays in present running state. Valid: The servo drive stops according to the stop mode defined by 605Ah.

 \Leftrightarrow Related parameters

H0D-05	Name	Em	ergency stop	D	Setting Condition & Effective Time	During running & Immediately	Data Structure	-	Data Type	Uint16	
200D-06h	Access	RW	Mapping	-	Related Mode	-	Data Range	0-1	Default	0	
Operations	upon eme	ergency	stop:								
Value			Description								
0	0 No operation										
1		Emerg	ency stop er	nabl	ed						
When H0D-0	When H0D-05 is enabled, the servo drive will stop in the stop mode defined by 605Ch regardless of the running state.										

Quick stop

Quick stop applies when bit2 (Quick stop) in the control word 6040h is set to 0 (Valid). The quick stop mode is defined by 605Ah.

605Ah	Name	Qui	ck stop moo	de	Setting Condition & Effective Time	Any condition & At stop	Data Structure	VAR	Data Type	int16
	Access	RW	Mapping	No	Related Mode	All	Data Range	0-7	Default	2
Defines t	he decele	eration	mode of th	e ser	rvo motor <mark>from r</mark>	<mark>otating to stop</mark> a	nd the servo r	notor s	tate after qui	ck stop.
١	/alue					Stop mode				
	0	Co	ast to stop	kee	oing de-energize	ed state				
	1	Ra	imp to stop	as d	efined by 6084h/	/609Ah (HM), kee	ping de-ener	gized st	ate	
	2	Ra	imp to stop	as d	efined by 6085h,	keeping de-ene	rgized state			
	3	St	op at emer	gency	/ torque, keeping	g de-energized st	ate			
	4	N,	Ά							
	5	Ra	imp to stop	as d	efined by 6084h/	/609Ah (HM), kee	ping position	lock st	ate	
6 Ramp to stop as defined by 6085h, keeping position lock state										
7 Stop at emergency-stop torque, keeping position lock state										
When the brake is enabled and the set value of 605Ah is less than 4, the stop mode is forced to "Ramp to stop as										
defined l	oy 6085h,	keepi	ng de-energ	ized	state".					

Halt

The halt function applies when bit8 in the control word 6040h is set to 1 (Valid). The halt mode is defined by 605Dh.

605Dh	Name		Halt mode		Setting Condition & Effective Time	Any condition & At stop	Data Structure	VAR	Data Type	int16	
	Access	RW	Mapping	No	Related Mode	All	Data Range	1–3	Default	1	
Defines	the decel	eration	mode of the	servo	motor <mark>from</mark>	rotating to stop	and the servo	motor state	after halt		
PP/PV/H	M mode:										
	Value				Stop mode						
	1	Ra	imp to stop as	s defi	ned by 6084h/609Ah (HM), keeping position lock state						
	2	Ra	imp to stop as	s defii	ned by 6085h	, keeping positio	on lock state				
	3	St	op at emerge	ncy-st	top torque, k	eeping position	lock state				
PT mode:								_			
	Value Stop mode										
	1/2/3	Ra	imp to stop as	s defi	ned by 6087h	, keeping positio	on lock state				

The acceleration/deceleration time cannot be set to a too small value. Otherwise, the stop distance may be too long, causing the risk of collision.

5.7 Conversion Factor Setting

Gear ratio refers to the motor displacement (in encoder unit) corresponding to the load shaft displacement of one reference unit.

The gear ratio is comprised of the numerator 6091-01h and denominator 6091-02h. It determines the proportional relation between the load shaft displacement (in reference unit) and the motor displacement (in encoder unit), as shown below.

Motor displacement = Load shaft displacement x Gear ratio

The motor is connected to the load through the reducer and other mechanical transmission mechanism. Therefore, the gear ratio is related to the mechanical reduction ratio, mechanical dimensions and motor resolution. The calculation formula is as follows.

 $Gear ratio = \frac{\frac{\text{Encoder resolution}}{\text{Load shaft resolution}}$

Index 6091h	Name		Gear ratio		Setting Condition & Effective Time	-	Data Structure	ARR	Data Type	Uint32
009111	Access	-	Mapping	Yes	Related Mode	All	Data Range	OD data range	Default	OD default value

Defines the proportional relation between the load shaft displacement designated by the user and the motor shaft displacement.

The relation between motor position feedback (encoder unit) and load shaft position feedback (reference unit) is as follows.

Motor position feedback = Load shaft position feedback x Gear ratio

The relation between the motor speed (RPM) and the load shaft speed (reference unit/s) is as follows.

Motor speed (RPM) = $\frac{\text{Load shaft speed x Gear ratio 6091h}}{\text{Encoder resolution}} \times 60$

The relation between motor acceleration (RPM/ms) and the load shaft speed (reference unit/s²) is as follows.

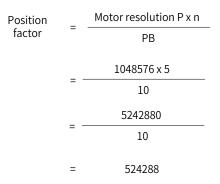
Motor acceleration = $\frac{\text{Load shaft acceleration x Gear ratio 6091h}}{\text{Encoder resolution}} \times \frac{1000}{60}$

Sub- index 0h	Name	sub-	lumber of indexes of tl gear ratio	he	Setting Condition & Effective Time	-	Data Structure	-	Data Type	Uint8
	Access	RO Mapping No		Related Mode	-	Data Range	-	Default	2	

Sub-	Name	Мс	otor resolut	tion	Setting Condition & Effective Time	During running & Immediately	Data Structure	-	Data Type	Uint32
index 1h	Access	RW	Mapping	RPDO	Related Mode	-	Data Range	1 to (2 ³² -1)	Default	Depending on encoder resolution

Sub- index 2h	Name	S	haft resolut	tion	Setting Condition & Effective Time	During running & Immediately	Data Structure	-	Data Type	Uint32	
	Access	RW	Mapping	RPDO	Related Mode	-	Data Range	1 to (2 ³² -1)	Default	1	

Take the ball screw as an example:


Minimum reference unit fc = 1 mm

Lead pB = 10 mm/r

Reduction ratio n = 5:1

Inovance 20-bit serial encoder motor resolution P = 1048576 (PPR)

The position factor is calculated as follows:

Therefore, 6091-1h = 524288, 6091-2h = 1, which means when the load shaft displacement is 1 mm, the motor displacement is 524288.

Reduce the values of 6091-1h and 6091-2h to a point where there is no common divisor, and take the final value.

6 Gain Tuning

6.1 Overview

Set the gain parameters of the servo drive to proper values so that the servo drive can drive the motor as quick and accurate as possible based on internal references or commands sent from the host controller.

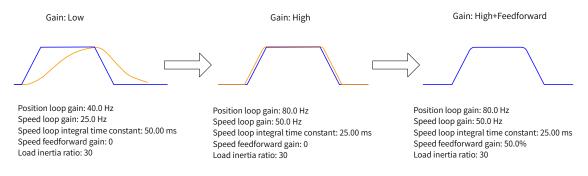
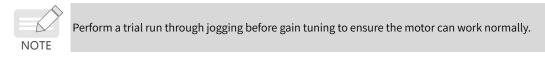



Figure 6-1 Example of gain settings

The gain is defined by the combination of multiple mutually-affected parameters (including position loop gain, speed loop gain, filter and inertia ratio). Set these parameters to proper values to keep a balanced performance.

The following figure shows the general process of gain tuning.

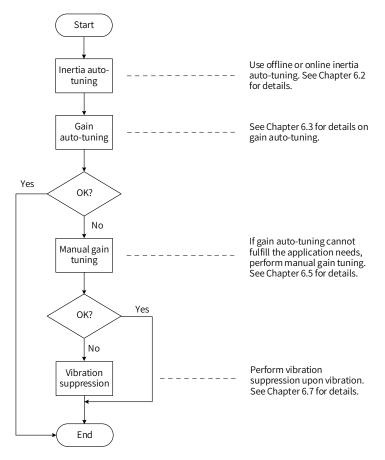


Figure 6-2 Process of gain adjustment

	Process of Gai	n Tuning	Description	Reference
	Inertia	Offline	The servo drive calculates the inertia ratio automatically.	6.2.1
1	auto-tuning	Online	The host controller sends a command to make the motor rotate, and the servo drive calculates the inertia ratio in real time.	6.2.2
2	Gain aut	o-tuning	The servo drive automatically generates the values of gain parameters that match the inertia ratio (the inertia ratio must be set correctly).	6.3/6.4
		Basic gain	If the gain auto-tuning cannot fulfill the application needs, adjust the auto-tuned values manually.	6.5.1
		Reference filter	Filters the position, speed, and torque references.	6.5.3
3	Manual gain	Feedforward gain	Improves the following performance.	6.5.4
	tuning	Pseudo differential regulator	Improves the anti-interference capacity in the low frequency range through adjusting the speed loop control mode.	6.5.5
		Torque disturbance observer	Improves the capacity in resisting the torque disturbance.	6.5.6
	Vibration	Mechanical resonance	The mechanical resonance is suppressed through the notch.	6.7.1
4	suppression	Low- frequency resonance	The low-frequency resonance is suppressed through the filter.	6.7.2

Table 6-1 Gain tuning process

6.2 Inertia Auto-tuning

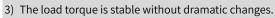
The load inertia ratio (2008-10h) is calculated by using the following formula.

Load inertia ratio Total mechanical load inertia Motor inertia

The load inertia ratio is a critical parameter of the servo system. A proper inertia ratio facilitates the commissioning process.

The load inertia ratio can be set manually or set automatically through inertia auto-tuning of the servo drive.

The servo drive supports two inertia auto-tuning methods:


1) Offline inertia auto-tuning

Enable the "Inertia auto-tuning function (200D-03h)", and make the motor rotate by pressing \bigcirc_{SET} on the keypad to perform inertia auto-tuning. This auto-tuning mode does not involve the host controller.

2) Online inertia auto-tuning

The host controller sends the auto-tuning command to the servo drive, and the servo motor executes inertia auto-tuning. This kind of auto-tuning mode involves the host controller.

- The following requirements must be met to ensure correct calculation of the load inertia ratio:
- 1) The actual maximum motor speed is higher than 150 RPM.
- 2) The actual acceleration rate during acceleration/deceleration is higher than 3000 RPM/s.

- 4) The actual inertia ratio does not exceed 120.
- If the actual inertia ratio is large but the gain is low, the motor may not be able to reach the maximum speed and the acceleration rate required as motor actions are slowed down. In this case, increase the speed loop gain (2008-01h) and perform auto-tuning again.
- If vibration occurs during auto-tuning, stop inertia auto-tuning immediately and reduce the gain.
- ◆ Inertia auto-tuning may fail if the backlash of the transmission mechanism is too large.

6.2.1 Offline Inertia Auto-tuning

1) In parameter display mode, switch to H0D-02 and press \mathcal{O}_{SET} to enable offline inertia auto-tuning. \gtrsim Related parameters:

H0D-02	Name		fline inertia uto-tuning		Setting Condition	During running	Related Mode	-
H0D-02	Value Range	-	Unit	-	Effective Time	Immediately	Default	-
In parameter	display mode, s	witch to H	witch to H0D-02 and press \circ_{set} on the keypad to enable offline inertia auto-tuning.					

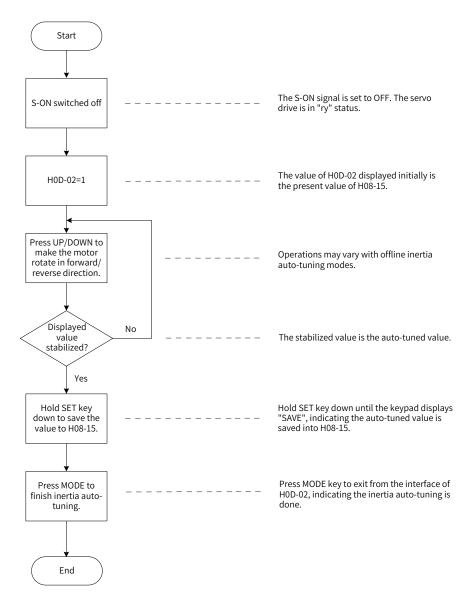
Confirm the following items before performing offline inertia auto-tuning:

The motor stroke must meet the following requirements:

■ A stroke of more than one revolutions in either forward or reverse direction is available between the mechanical limit switches.

Before performing offline inertia auto-tuning, ensure the limit switches are installed on the machine and a stroke of more than one revolutions is reserved for the motor. This is to prevent overtravel during auto-tuning.

■ The required number of revolutions (H09-09) is fulfilled.


View the value of H09-06 (Maximum speed of inertia auto-tuning), H09-07 (Time constant for accelerating to the maximum speed during inertia auto-tuning), and H09-09 (Number of motor revolutions for a single inertia auto-tuning) to ensure the motor stroke, based on where it stops, is larger than the value of H09-09. If the motor stroke is smaller than the value of H09-09, decrease the value of H09-06 or H09-07 until the requirement is met.

2) Press $\stackrel{\bigcirc}{}$ / $\stackrel{\bigcirc}{}$ to execute offline auto-tuning.

To stop the servo drive, release $\stackrel{\circ}{}/\stackrel{\circ}{}$. To start auto-tuning again, press $\stackrel{\circ}{}/\stackrel{\circ}{}$ again. The running direction at start is determined by $\stackrel{\circ}{}/\stackrel{\circ}{}$. For applications requiring unidirectional movement, set H09-05 (Offline inertia auto-tuning mode) to 1 (Unidirectional).

Increase the stiffness level (H09-01) of the servo drive properly so that the actual motor speed can reach the value defined by H09-06 (Maximum speed for inertia auto-tuning).

The following figure shows the process of offline inertia auto-tuning.

Figure 6-3 F	Process of offline inertia auto-tuning
--------------	--

\Leftrightarrow Related parameters

Para. No.	Name	Value Range	Unit	Function	Setting Condition	Effective Time	Default
H09-05	Offline inertia auto- tuning mode	0: Bidirectional auto-tuning 1: Unidirectional auto-tuning	-	Defines the offline inertia auto-tuning mode.	At stop	Immedia- tely	0
H09-06	Maximum speed of inertia auto-tuning	100 to 1000	RPM	Defines the maximum speed reference for offline inertia auto- tuning.	At stop	Immedia- tely	500
H09-07	Time constant for accelerating to the maximum speed during inertia auto-tuning	20 to 800	ms	Defines the time needed for the motor to accelerating from 0 RPM to 1000 RPM.	At stop	Immedia- tely	125
H09-08	Interval after a single inertia auto-tuning	50 to 10000	ms	Defines the interval between two consecutive speed references.	At stop	Immedia- tely	800
H09-09	Number of motor revolutions for a single inertia auto-tuning	15 to 10000	0.01 r	Defines the maximum number of revolutions.	-	-	100

6.2.2 Online Auto-tuning

The servo drive supports online inertia auto-tuning. The following figure shows the process of online inertia auto-tuning.

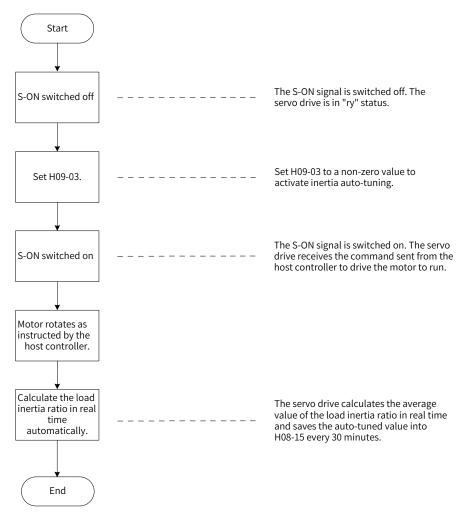


Figure 6-4 Process of online inertia auto-tuning

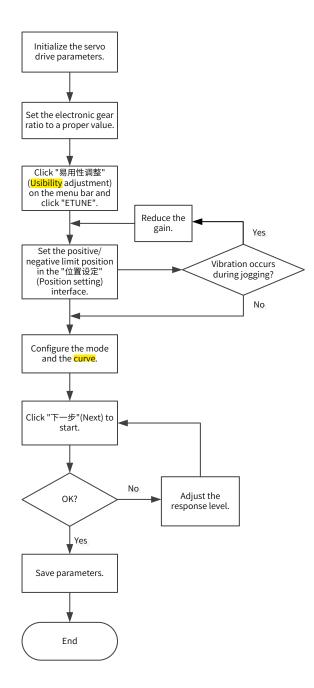
Different values of H09-03 indicate different updating speeds of the load inertia ratio (H08-15) in real time.

- 1) H09-03 = 1: Applicable to applications where the actual load inertia ratio rarely changes, such as machine tools and wood carving machines.
- 2) H09-03 = 2: Applicable to applications where the load inertia ratio changes slowly.
- 3) H09-03 = 3: Applicable to applications where the actual inertia ratio changes rapidly, such as transportation manipulators.
- Do not use online inertia auto-tuning in applications involving hitting against limit switches and press fitting.

Related parameters

Para. No.	Name	Value Range	Unit	Function	Setting Condition	Effective Time	Default
H09-03	Online inertia auto-tuning mode	0: Disabled1: Enabled, changing slowly2: Enabled, changing normally3: Enabled, changing quickly	-	Defines the online inertia auto-tuning mode.	During running	Immediately	0

6.3 Instructions for ETune Operations


6.3.1 Overview

The ETune is a wizard-type function used to guide users to set corresponding curve trajectories and response parameters for auto-tuning. After the curve trajectories and response parameters are set, the servo drive performs auto-tuning to generate the optimal gain parameters. The auto-tuned parameters can be saved and exported as a recipe for use in other devices of the same model.

The ETune function is intended to be used in applications featuring small load inertia changes.

6.3.2 Description of Operations

1 Operation flowchart

-140-

2 Detailed descriptions

1) Click " 易用性调整 " (Usibility adjustment) on the software tool, and click "ETune".

请根据不同场景	选择相应的调谐模式。	
STune ETune	• ETune ····································	- 鍵式调节后 ・ 鍵式调节后 ・ プログログログログログログログログログログログログログログログログログログログ
I		

2) There are two running modes, which can be selected according to the motion direction allowed by the machine. In " 往复正反 " (Forward/Reverse reciprocating)mode, the motor keeps reciprocating within the positive and negative limits. In " 单向正转 " (Unidirectional forward run) mode, the motor keeps running forwardly and takes the difference between the positive and negative limits as the maximum distance for a single action. The same applies to " 单向反转 " (Unidirectional reverse run) mode.

谐-ETune				
位置设定	◆参数配置	→→ 调谐	● 配方保存	7
运行模式设定				
◎ 往复正反	◎ 单向正转	◎ 单向反转		
极限位置设定				
JOG速度:	60 rpm			
加減速时间:	50 ms		使能ON	
	\sim			
设为正极限位置	当前位置 10		为负极限位置	
0 1P指	皆令单位	0	1P指令单位	
! 注:启动前, 机1/8圈	,请务必设罢正负极限(JDG	运动设置或者手动设置)	,极限范围大于电	
	_<<	上一步 下一步	>>	

3) Designate the positive and negative limits allowed by the motor, and the difference between the positive and negative limits defines the position reference pulses for the motor, which is also the value before multiplication/division by the electronic gear ratio.

To set the limit, click " 伺服使能 ON" (S-ON) in JOG, and click " 正转 " (Forward) to make the motor moves to the positive limit. Next, click " 设定正转极限 " (Set forward limit). Follow the same procedures for setting the negative limit and click " 伺服使能 OFF" (S-OFF). You can also enter the

-ETune				
位置设定	● 参数配置	→ 调谐	■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■	7
运行模式设定				
◎ 往复正反	◎ 单向正转	◎ 单向反转		
吸限位置设定				
JOG速度:	60 rpm			
加減速时间:	50 ms		使能OFF	
	~			
设为正极限位置	こうちょう おんしょう ちゅうしん 当前位置 しんしょう しょうしん しょうしん しょうしん しょうしん しゅうしん しゅう	-310028 设	为负极限位置	
7289322 1	P指令单位	-310	0 57 1P指令单位	
! 注: 启动 机1/8圈	前,请务必设置正负极限(J	DG运动设置或者手动设置)	,极限范围大于电	
		《上一步 下一步	; >>>	

positive/negative limit position directly. The difference between the positive and negative limits must be larger than 1/8 of one revolution. The larger the value of the limit position, the better the adaptability of the auto-tuned parameters, and the longer time will ETune adjustment take.

4) Click "下一步" (Next) to switch to the mode parameter setting interface. The adjustment mode is divided into "定位模式" (Positioning mode) and "轨迹模式" (Trajectory mode). The inertia ratio auto-tuning is optional. If you choose not to perform inertia auto-tuning, set the correct inertia ratio (the value of the inertia ratio can be modified directly).

Adjust the response level and position filter time constant based on the servo response performance required by different applications and the position reference noise during actual motion. Then, configure the running curve and set the maximum speed, acceleration/deceleration time and interval for auto-tuning.

皆-ETune						
位置设	2	参数配置	→● 调谐	→	配方保存	
调整模式						
◎ 定位模5	đ		◎ 轨迹模式			
响应模式						
◎ 高	C) 中	◎ 低			
位置滤波时常						
0	ms[0,	6553.5]				
惯重比设置一						
🔲 不进行情	贯量辨识					
	惯量比:	0.6	[0, 120]			
运行曲线参数	[
最大速度:	1000	rpm	加减速时间:	100	ms	
等待时间:	300	ms				
		<	(上一步) 下-			

5) Click "下一步" (Next) to start auto-tuning. If you choose to perform inertia auto-tuning, the servo drive will perform inertia auto-tuning based on the set curve. After auto-tuning is done, the servo drive starts gain tuning automatically. If you choose not to perform inertia auto-tuning on the Start interface, the servo drive starts gain tuning directly after started.

位置设定	● 参数配置		调谐	▶ 配方保存
	辨识结果			响应微调系数(%)
惯量辨识	惯量值:	0.6		70
4	増益调整结果			
速度增益调整	H0800:	0	Hz	更新
	H0801 :	0	ms	
+	H0802:	0	Hz	2 调控微调杂数(%) 磁线响应增 后-调整出的最大增益 * 响应微 语表为)
位置增益调整	H0705:	0	ms	① 响应微调系数(%)(最终响应增 益:调整出的最大增益 * 响应微 调系数) ② 微调系数越小,增益裕里越 大。
	H0843:	0	Hz	
调整完成	完成时间:	0	ms	停止 启动示波器
响定元成				
调谐中				

6) During gain tuning, if you modify the final response and click " 更新 " (Update), gain tuning will be continued based on the fine-tuning coefficient required. After gain tuning is done, you can click " 完 成 " (Done) to save the parameters to EEPROM and export the parameters as a recipe file.

		辨识结果		响应微调系统	對 (%)		
t	理一辨识		0.6		70		
	¥	增益调整结果		50 	-0		100 +
速度	建增益调整	InoDriveWorkShop			x	新	
	Ļ						最终响应增 * 响应微
位置	出增益调整	道 增益调整学	完成,点击完成按钮将参数保存	字到e2prom	1 I I		「「「」」」
jį,	♥			确知		动示波器	<u>8</u>
		高效削且					
,	回送中市						
1	周谐完成						
]	步 完成>>				
-ETune			步 完成>>				
-ETune				5	古保存		
-ETune	计置设定	✓ 参数配置	步 完成>>	- A	访保存		
-ETune (ያ	过置设定	参数配置	调谐				
-ETune (ያ				→ 甬 出厂值 0.79	<mark>강保存</mark> 单位 ms		
-ETune 位 行号	2 置设定 参数编号	参数配置 参数配置	调谐	出厂值	单位		
-ETune 位 行号 001	送置设定 参数编号 H07-05	参数配置 参数名称 转矩指令滤波时间常数1	调谐 参数值 0.12	出厂值 0.79	单位 ms		
-ETune 位 行号 001 002	送置设定 参数编号 H07-05 H08-00	参数配置 参数名称 转矩指令滤波时间常数1 速度环增益	调谐 参数值 0.12 160.0	出厂值 0.79 25.0	单位 ms Hz		
-ETune 位 行号 001 002 003	送送けた 参数编号 H07-05 H08-00 H08-01	参数配置 参数名称 转矩指令滤波时间常数1 速度环增益 速度环积分时间常数	调谐 参数值 0.12 160.0 4.97	出厂值 0.79 25.0 31.83	单位 ms Hz ms		
-ETune 位 001 002 003 004 005	2 査设定 参数编号 H07-05 H08-00 H08-01 H08-02	◆ 参数配置 参数名称 转矩指令滤波时间常数1 速度环增益 速度环积分时间常数 位置环增益	海 参数值 0.12 160.0 4.97 160.0	出厂值 0.79 25.0 31.83 40.0	单位 ms Hz ms		
-ETune 位 001 002 003 004 005	2 習设定 参数编号 H07-05 H08-00 H08-01 H08-02 H08-09	◆数配置 参数名称 转矩指令滤波时间常数1 速度环增益 速度环机分时间常数 位置环增益 增益切换条件选择	週間 参数値 0.12 160.0 4.97 160.0 0[0-第一増益固定 (PS)]	出厂值 0.79 25.0 31.83 40.0 0	单位 ms Hz ms		
-ETune 位 001 002 003 004 005 006	2 習设定 参数编号 H07-05 H08-00 H08-01 H08-02 H08-09 H08-15	◆ 参数配置 参数名称 转矩指令滤波时间常数1 速度环增益 速度环增益 增益切换条件选择 负载转动惯里比	海谐 参数值 0.12 160.0 4.97 160.0 0[0-第一増益固定 (PS)] 0.60	出厂值 0.79 25.0 31.83 40.0 0 1.00	单位 ms Hz Hz Hz		
ETune 位 001 002 003 004 005 006 007 008	2 世设定 参数(編号 H07-05 H08-00 H08-01 H08-02 H08-09 H08-15 H08-24	参数配置 参数名称 转矩指令滤波时间常数1 速度环增益 速度环况分时间常数 位置环增益 增益切换条件选择 负载转动惯里比 伪微分前溃拾刺系数 扰动截止频率 扰动补偿增益	週間 参数値 0.12 160.0 4.97 160.0 0[0-第一増益固定 (PS)] 0.60 100.0	出厂值 0.79 25.0 31.83 40.0 0 1.00 1.00	单位 ms Hz Hz Hz		
ETune 行号 001 002 003 004 005 006 007 008 009	2 世设定 参数(編号 H07-05 H08-00 H08-01 H08-02 H08-02 H08-09 H08-15 H08-24 H08-31	参数配置 参数名称 转矩指令滤波时间常数1 速度环增益 速度环增益 增益切换条件选择 负载转动惯量比 伪微分前溃控制系数 扰动截止频率	週間 参数値 0.12 160.0 4.97 160.0 0[0-第一増益固定 (PS)] 0.60 100.0 600	出厂值 0.79 25.0 31.83 40.0 0 1.00 1.00 100.0 600	单位 ms Hz Hz Hz		
-ETune で 行号 001 002 003 004 005 006 007	2 書設定 参数 編号 407-05 408-00 408-01 408-01 408-02 408-09 408-15 408-24 408-31 408-32	参数配置 参数名称 转矩指令滤波时间常数1 速度环增益 速度环况分时间常数 位置环增益 增益切换条件选择 负载转动惯里比 伪微分前溃拾刺系数 扰动截止频率 扰动补偿增益	海谐 参数值 0.12 160.0 160.0 0[0-第一増益固定 (PS)] 0.60 100.0 600 0.00	出厂値 0.79 25.0 31.83 40.0 0 1.00 100.0 600 0.00	单位 ms Hz ms Hz		
ETune 行号 001 002 003 004 005 006 007 008 009 010 011	2 世设定 参数5編号 H07-05 H08-00 H08-01 H08-02 H08-02 H08-09 H08-15 H08-15 H08-31 H08-31 H08-32 H08-33	参数配置 参数名称 转矩指令滤波时间常数1 速度环增益 速度环积分时间常数 位置环增益 增益切换条件选择 负载转动惯里比 伪微分前满控制系数 扰动勒止频率 扰动补偿增益 扰动观测器惯重修正系数	週間 参数値 0.12 160.0 4.97 160.0 0[0-第一増益固定 (PS)] 0.60 100.0 600 0.00 1.00 1.00	出厂値 0.79 25.0 31.83 40.0 0 1.00 100.0 600 0.00 1.00	单位 ms Hz ms Hz %		
ETune 行号 001 002 003 004 005 006 007 008 009 010 011 012	2書设定 参数编号 H07-05 H08-00 H08-01 H08-01 H08-02 H08-09 H08-15 H08-31 H08-31 H08-33 H08-33 H08-34	参数名称 参数名称 转矩指令滤波时间常数1 速度环增益 速度环增益 增益切换条件选择 负载转动惯里比 伪微分前溃控制系数 扰动补偿增益 扰动观测器惯里修正系数 扰动观测振动抑制比	週間 参数值 0.12 160.0 4.97 160.0 0[0-第一増益固定 (PS)] 0.60 100.0 600 0.00 1.00 0	出 し、79 25.0 31.83 40.0 0 1.00 100.0 600 0.00 1.00 0.00 1.00 0 0 0	单位 ms Hz Hz %		
ETune 行号 001 002 003 004 005 006 007 008 009 010 011 012 013	2 世设定 参数编号 H07-05 H08-00 H08-01 H08-02 H08-09 H08-15 H08-24 H08-31 H08-32 H08-33 H08-34 H08-35	◆ 参数配置 参数名称 转矩指令滤波时间常数1 速度环增益 速度环增益 增益切换条件选择 负载转动惯里比 伪微分前课控制系数 扰动和小使增益 扰动补偿增益 扰动抑制版动抑制比 振动抑制频率	週間 参数値 0.12 160.0 4.97 160.0 0[0-第一増益固定 (PS)] 0.60 100.0 600 0.00 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0	出厂値 0.79 25.0 31.83 40.0 0 1.00 100.0 600 0.00 1.00 0 0 0 0	单位 ms Hz Hz %		
-ETunee 行号 001 002 003 004 005 006 006 006 006 006 006 006 006 009 010	2 置设定 参数编号 H07-05 H08-00 H08-01 H08-02 H08-09 H08-15 H08-24 H08-31 H08-32 H08-33 H08-33 H08-35 H08-36	◆ 参数配置 参数名称 转起指令滤波时间常数1 速度环增益 速度环增益 增益切换条件选择 负载转动惯量比 伪微分前课控制系数 扰动机小使增益 扰动机测器惯量修正系数 扰动机测器惯量修正系数 扰动机测器惯量修正系数 扰动机测器惯量和制比 振动抑制频率 扰动观测器振动抑制系数	週間 参数値 0.12 160.0 4.97 160.0 0[0-第一増益固定 (PS)] 0.60 100.0 600 100.0 600 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	出厂値 0.79 25.0 31.83 40.0 0 1.00 100.0 600 0.00 1.00 0 0 0 0 0	单位 ms Hz Hz %		
-ETune 行号 001 002 003 004 005 006 007 008 009 010 011 012 013 014	2 参数编号 H07-05 H08-00 H08-02 H08-02 H08-09 H08-15 H08-24 H08-31 H08-33 H08-33 H08-33 H08-35 H08-36 H08-37	◆ 参数配置 参数名称 转矩指令滤波时间常数1 速度环增益 速度环增益 增益切换条件选择 负载转动惯里比 伪微分前溃控制系数 扰动观测振动抑制比 振动观测振动抑制规率 扰动观测振动抑制风率 扰动观测器振动抑制系数 APF2	週間 参数値 0.12 160.0 4.97 160.0 0[0-第一増益固定 (PS)] 0.60 100.0 600 0.00 100.0 600 0.00 100.0 0 0 0 0 0 0 0 0 0 0 0 0 0	出厂値 0.79 25.0 31.83 40.0 0 1.00 100.0 600 0.00 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0	单位 ms Hz Hz % % % % HZ		
-ETune 行号 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015	2 世设定 参数编号 H07-05 H08-00 H08-01 H08-02 H08-09 H08-15 H08-31 H08-31 H08-32 H08-33 H08-33 H08-34 H08-35 H08-36 H08-37 H08-38	◆数配置 参数名称 转拒指令滤波时间常数1 速度环增益 速度环增益 过置环增益 增益切换条件选择 负载转动惯量比 伪微分前馈控制系数 扰动观测振动抑制比 振动抑制频率 状达动观测器振动抑制系数 和P2 振动抑制频率2	週間 参数値 0.12 160.0 4.97 160.0 0[0-第一増益固定 (PS)] 0.60 100.0 600 0.00 100.0 600 0.00 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0	出厂值 0.79 25.0 31.83 40.0 0 1.00 100.0 600 0.00 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0	单位 ms Hz Hz % % % % HZ		
-ETune 行号 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015	2 世设定 参数编号 H07-05 H08-00 H08-01 H08-02 H08-09 H08-15 H08-31 H08-31 H08-32 H08-33 H08-33 H08-34 H08-35 H08-36 H08-37 H08-38	◆数配置 参数名称 转拒指令滤波时间常数1 速度环增益 速度环增益 过置环增益 增益切换条件选择 负载转动惯量比 伪微分前馈控制系数 扰动观测振动抑制比 振动抑制频率 状达动观测器振动抑制系数 和P2 振动抑制频率2	週間 参数値 0.12 160.0 4.97 160.0 0[0-第一増益固定 (PS)] 0.60 100.0 600 0.00 100.0 600 0.00 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0	出厂值 0.79 25.0 31.83 40.0 0 1.00 100.0 600 0.00 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0	单位 ms Hz Hz % % % % HZ		
-ETune 行号 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015	2 世设定 参数编号 H07-05 H08-00 H08-01 H08-02 H08-09 H08-15 H08-31 H08-31 H08-32 H08-33 H08-33 H08-34 H08-35 H08-36 H08-37 H08-38	◆数配置 参数名称 转拒指令滤波时间常数1 速度环增益 速度环增益 过置环增益 增益切换条件选择 负载转动惯量比 伪微分前馈控制系数 扰动观测振动抑制比 振动抑制频率 状达动观测器振动抑制系数 和P2 振动抑制频率2	週間 参数値 0.12 160.0 4.97 160.0 0[0-第一増益固定 (PS)] 0.60 100.0 600 0.00 100.0 600 0.00 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0	出厂值 0.79 25.0 31.83 40.0 0 1.00 100.0 600 0.00 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0	单位 ms Hz Hz % % % % HZ		

6.3.3 Precautions

- The maximum speed and acceleration/deceleration time of the running curve can be set based on actual needs. You can also increase the acceleration/deceleration time properly to enable quick positioning after auto-tuning is done.
- If the acceleration/deceleration time is set to a too small value, overload may occur. In this case, increase the acceleration/deceleration time properly.
- For vertical axis applications, take anti-drop measures before execution and set the stop mode upon fault to "Stop at zero speed".

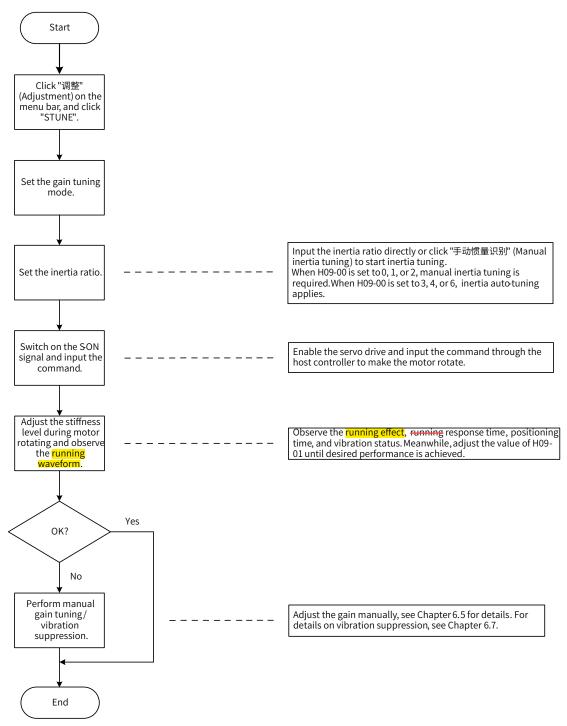
For the ball screw applications, if the adjustment time is too long, shorten the stroke length.

6.3.4 Troubleshooting

Fault Symptom	Cause	Measure
	1) The vibration cannot be suppressed.	1) Enable vibration suppression manually to eliminate the vibration.
Er661: Auto-tuned gain	2) The positioning overshoot is too large.	2) Check whether the positioning threshold is too low. Increase the acceleration/deceleration time and lower the response level.
values too low	3) The reference suffers from noise disturbance.	3) Modify the electronic gear ratio to improve the reference resolution, or increase the reference filter time constant in the " 参数配置 " (Parameter configuration) interface.
	4) The current fluctuates.	4) Check whether the machine suffers periodic fluctuation.
	1) The vibration cannot be suppressed.	1) Enable vibration suppression manually to eliminate the vibration and perform ETune again.
	2) The auto-tuned values fluctuate dramatically.	2) Increase the maximum running speed and decrease the acceleration/deceleration time. For the ball screw applications, shorten the stroke length.
Er600: Inertia auto-tuning failure	3) The load mechanical connectors become loose or offset occurs to the machine.	3) Check for the mechanical fault.
	4) Interruption occurs due to the fault that occurs during auto-tuning.	4) Clear the fault and perform ETune again.
	5) The position reference filter time is set to a too large value.	5) Decrease the set values of H05-04 to H05-06, and perform ETune again.

6.4 Instructions for STune Operations

6.4.1 Overview


STune refers to gain auto-tuning based on the set stiffness level. It aims to fulfill the requirements of rapidity and stability.

The STune function is intended to be used in applications featuring small load inertia changes.

6.4.2 Description of Operations

1) Operation flowchart

2) Detailed description

The auto-tuning mode can be set through the keypad or the software tool.

 a) Select the auto-tuning mode. If H09-00 is set to 0, 1, or 2, set the inertia ratio before stiffness adjustment. If the inertia is unknown, perform manual inertia tuning. If vibration occurs, reduce the stiffness level before manual inertia tuning. If H09-00 is set to 3, 4, or 6, the inertia ratio needs no setting. You can perform tuning through the wizard-type interface.

Mode	Name	Applicable Occasion
0	Invalid	Manual gain tuning is needed.

Mode	Name	Applicable Occasion
1	Standard stiffness table mode	Gain auto-tuning is performed based on the set stiffness level.
2	Positioning mode	Gain auto-tuning is performed based on the set stiffness level. This mode is applicable to occasions requiring quick positioning.
3	Interpolation mode+Inertia auto-tuning	Gain auto-tuning is performed based on the set stiffness level. Inertia auto-tuning is performed to suppress vibration. This mode is applicable to multi-axis interpolation.
4	Regular mode+Inertia auto-tuning	Gain auto-tuning is performed based on the set stiffness level. Inertia auto-tuning is performed to suppress vibration.
6	Quick positioning mode+Inertia auto- tuning	Gain auto-tuning is performed based on the set stiffness level. Inertia auto-tuning is performed to suppress vibration. This mode is applicable to occasions requiring quick positioning.

b) Adjust the stiffness level gradually during load running. The present stiffness level will be written to the servo drive automatically. Keep monitoring the running waveform during modifying the stiffness level (modify by one level each time) until the desired performance is delivered.

调整-STUNE	X
~自调整模式(STEP1) ————————————————————————————————————	抑制振动控制
 建议在静止状态下或者停机状态下 变更模式! 	振动阈值: 0.05 % 设置
◎ 插补模式+惯量自动辨识	振动抑制开关
◎ 普通模式+惯量自动辨识	◎ 开启
◎ 快速定位模式+惯里自动辨识	◎ 关闭
	◎ 默认(10分钟)
- 负载惯里比设置(STEP2)	刚性等级设置(STEP3)
惯童比: 0.6 设置	1
手动惯量辨识	18 24 12 30 6 36 0 41

6.4.3 Precautions

The setting range of H09-01 (Stiffness level selection) is 0 to 41. The level 0 indicates the weakest stiffness and lowest gain and level 41 indicates the strongest stiffness and highest gain. The following table lists the stiffness levels for different load types.

Recommended Stiffness Level	Type of Load Mechanism
Level 4 to level 8 Large-scale machineries	
Level 8 to level 15	Applications with low stiffness such as the conveyor
Level 15 to level 20	Applications with high stiffness such as <mark>the</mark> ball screw and direct- <mark>connected</mark> motor

Table 6-2 Application range of different stiffness levels (for reference only)

The servo drive supports five gain auto-tuning modes.

 If H09-00 (Gain auto-tuning mode) is set to 3, 4, or 6, the servo drive will suppress the vibration and perform inertia auto-tuning automatically within 5 min (or other time defined by H09-37) after power-on or stiffness level setting, and then it exits from auto-tuning. The inertia auto-tuning function, once deactivated, cannot be activated again by setting H09-09 to 3, 4, or 6. In applications with slow acceleration/deceleration, large vibration, and unstable mechanical connections, do not set H09-00 to 3, 4, or 6. 			
The gain of modes 4 and 6 defined by H09-00 is weaker than other modes under the same stiffness level.			
◆ In applications where the inertia does not change, set H09-03 (Online inertia auto-tuning mode) to 1 (Enabled, changing slowly). In applications where the inertia changes quickly, set H09-03 to 3 (Enabled, changing quickly).			

■ Gain auto-tuning mode (H09-00 = 1)

The values of the 1st group of gain parameters (H08-00 to H08-02, H07-05) are updated automatically according to the stiffness level defined by H09-01 and saved into the corresponding parameters.

Para. No.	Name	
H08-00	Speed loop gain	
H08-01	Speed loop integral time constant	
H08-02	Position loop gain	
H07-05	Filter time constant of torque reference	

Table 6-3 Parameters updated during gain auto-tuning

■ Positioning mode (H09-00 = 2)

On the basis of Table 6-3, the value of the 2nd group of gain parameters (H08-03 to H08-05, H07-06) are also updated automatically according to the stiffness level defined by H09-01 and saved into the corresponding parameters. In addition, the stiffness level of the position loop gain in the 2nd group of gain parameters is higher than that in the 1st group of gain parameters by one level.

T I I A 4	_			• • •	
Table 6-4	Parameters u	ipdated	automatically	y in the	positioning mode

Para. No.	Name	Description
H08-03	2nd speed loop gain	-
H08-04	2nd speed loop integral time constant	If H08-04 is set to 512.00 ms, the 2nd speed loop integral action is invalid, and only proportional control is used in the speed loop.
H08-05	2nd position loop gain	-
H07-06	Filter time constant of the 2nd torque reference	-

The parameters related to speed feedforward are fixed to certain values.

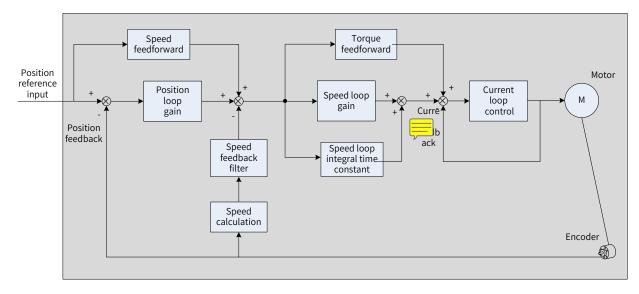
Table 6-5	Parameters v	with fixed	values in t	the positionii	ng mode
-----------	--------------	------------	-------------	----------------	---------

Para. No.	Name	Value
H08-19	Speed feedforward gain	30.0%
H08-18	Speed feedforward filter time constant	0.50 ms

Parameters related to gain switchover are fixed to certain values.

Gain switchover is enabled automatically in the positioning mode.

Para. No.	Name	Value	Description
H08-08	2nd gain mode	1	In the positioning mode, switchover between the 1st gain (H08-00 to H08-02, H07-05) and the 2nd gain (H08-03 to H08-05, H07-06) is activated. In other modes, the original setting is used.
H08-09	Gain switchover condition	10	In the positioning mode, gain switchover can be activated only if H08-09 is set to 10. In other modes, the original setting is used.
H08-10	Gain switchover delay	5.0 ms	In the positioning mode, the gain switchover delay is 5.0 ms. In other modes, the original setting is used.
H08-11	108-11 Gain switchover level		In the positioning mode, the gain switchover level is 50. In other modes, the original setting is used.
H08-12	Gain switchover hysteresis	30	In the positioning mode, the gain switchover hysteresis is 30. In other modes, the original setting is used.


◆ In the gain auto-tuning mode, the parameters updated automatically along with H09-01 and those with fixed values cannot be modified manually. If you need to modify these parameters, set H09-00 to 0 to exit from the gain auto-tuning mode first.

6.5 Manual Gain Tuning

6.5.1 Basic Parameters

When gain auto-tuning cannot fulfill the application needs, perform manual gain tuning.

The servo system provides three control loops, which are position loop, speed loop, and current loop from external to internal. The block diagram for basic control is shown in the following figure.

Figure 6-5 Manual gain tuning

The response level of the inner loop must be higher than that of the outer loop. Otherwise, the system may become unstable.

The default gain of the current loop is already designed with the highest level of response, removing the need for adjustment. You only need to adjust the position loop gain, speed loop gain and other auxiliary gains. When executing gain tuning in the position control mode, increase the speed loop gain as well after increasing the position loop gain, and ensure the response level of the position loop is lower than that of the speed loop to keep the system stable.

The following table shows how to adjust the basic gain parameters.

Step	Para. No.	Name	Description
1	H08-00	Speed loop gain	 Parameter function: It determines the maximum frequency of the speed loop in following the varying speed references. If the average load inertia ratio (H08-15) is set properly, the maximum following frequency of the speed loop can be equal to the value of H08-00 (Speed loop gain). Speed reference Actual speed Adjustment method: Increase the value of H08-00 without incurring noise or vibration. This helps shorten the positioning time and improve speed stability and following characteristics. If noise occurs, decrease the value of H08-00. If mechanical vibration occurs, enable the resonance suppression function (see <u>"6.7"</u> <u>Vibration Suppression</u>").
2	H08-01	Speed loop integral time constant	 ◆ Parameter function: It eliminates the speed loop deviation.

Table 6-6	Adi	iustment	of gai	n parameters
	Au	usuncin	UI gai	i parameters

Step	Para. No.	Name	Description
3	H08-02	Position loop gain	◆ Parameter function: It determines the maximum frequency of the position loop in following the varying position references. Maximum following angle frequency of position loop = H08-02 Increase the value of H08-02 Adjustment method: To ensure system stability, the maximum following frequency of the speed loop must be 3 to 5 times the maximum following frequency of the position loop. 3 ≤ $\frac{2 \times \pi \times H8-00}{H08-02} \le 5$ For example, when H08-00 is set to 40.0 Hz, the position loop must meet the following condition: 50.2 Hz ≤ H08-02 ≤ 83.7 Hz Adjust the setting based on the positioning time. Increasing the value of H08-02 shortens the acceleration time and improves the anti-interference capacity of a static motor. Do not set H08-02 to a too large value. Otherwise, system instability or oscillation may occur.
4	H07-05	Filter time constant of torque reference	 ◆ Parameter function: It eliminates the high-frequency noise and suppresses mechanical resonance. Increase the value of H07-05 Actual speed Actual speed Actual

$\stackrel{\scriptscriptstyle \ensuremath{\scriptstyle\sc cm}}{\sim}$ Related parameters

Para. No.	Name	Value Range	Unit	Function	Setting Condition	Effective Time	Default
H08-00	Speed loop gain	0.1 to 2000.0	I H7	Defines the proportional gain of the speed loop.	During running	Immediately	40.0
H08-01	Speed loop integral time constant	0.15 to 512.00	ms	Defines the integral time constant of the speed loop.	During running	Immediately	19.89

Para. No.	Name	Value Range	Unit	Function	Setting Condition	Effective Time	Default
H08-02	Position loop gain	0.0 to 2000.0	Hz	Defines the proportional gain of the position loop.	During running	Immediately	64.0
H07-05	Filter time constant of torque reference	0.00 to 30.00	ms	Defines the filter time constant of the torque reference.	During running	Immediately	0.79

6.5.2 Gain Switchover

Gain switchover, which is available only in position and speed control modes, can be triggered by the internal status of the servo drive or by an external DI. The following actions can be achieved through gain switchover.

- Switching to the lower gain at motor standstill (servo ON) to suppress vibration
- Switching to the higher gain at motor standstill to shorten the positioning time
- Switching to the higher gain at motor running to achieve better reference tracking performance
- Switching between different gain settings through an external signal to fit different conditions of the load devices

1 H08-08 = 0

The first group of gain parameters (H08-00 to H08-02, H07-05) are used, but proportional/proportional and integral control can be switched through DI function 3 (FunIN.3: GAIN_SEL, gain switchover) for the speed loop.

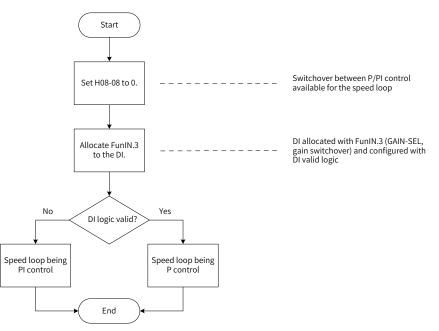


Figure 6-6 Gain switchover flowchart (H08-08 = 0)

2 H08-08 = 1

Switchover between 1st group of gain parameters (H08-00 to H08-02, H07-05) and 2nd group of gain parameters (H08-03 to H08-05, H07-06) is activated based on the setting of H08-09 (Gain switchover condition).

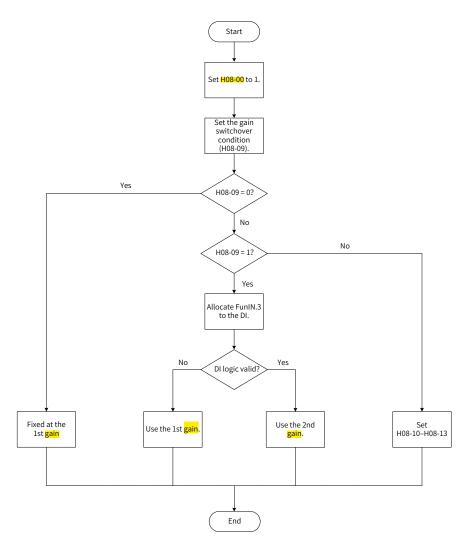


Figure 6-7 Gain switchover flowchart (H08-08 = 1)

There are 11 conditions for gain switchover. The following table describes the diagrams and related parameters of different conditions.

Table 6-7 Description of gain switchover conditions

		Gain Switchover Condition	Related Parameters			
H08-09	Condition	Diagram	Delay (H08-10)	Gain switchover level (H08-11)	Gain switchover hysteresis (H08-12)	
0	Fixed at 1st <mark>gain</mark>	-	Invalid	Invalid	Invalid	
1	Switchover by external DI	-	Invalid	Invalid	Invalid	
2	Torque reference	Actual speed Torque reference Switchover delay Switchover delay Switchover level Switchover level 1st 2nd 1st 2nd 1st	Valid	Valid (%)	Valid (%)	

		Gain Switchover Condition	Re	lated Paramet	ers
H08-09	Condition	Diagram	Delay (H08-10)	Gain switchover level (H08-11)	Gain switchover hysteresis (H08-12)
3	Speed reference	Switchover level	Valid	Valid	Valid
4	Speed reference change rate	Speed reference change rate Switchover level Switchover level 1st 2nd 1st 2nd 1st	Valid	Valid (10 RPM/s)	Valid (10 RPM/s)
5	Speed reference threshold	Positive switchover hysteresis – Switchover level – Negative switchover hysteresis – 1 st – 2 nd – 1 st	Invalid	Valid (RPM)	Valid (RPM)
6	Position deviation	Speed reference Position deviation Switchover delay Switchover level	Valid	Valid (encoder unit)	Valid (encoder unit)
7	Position reference	Position reference Switchover delay	Valid	Invalid	Invalid
8	Positioning completed	Position reference Positioning completion signal Switchover delay	Valid	Invalid	Invalid

-154-

	Gain Switchover Condition			Related Parameters			
H08-09	Condition	Diagram	Delay (H08-10)	Gain switchover level (H08-11)	Gain switchover hysteresis (H08-12)		
9	Actual speed	Switchover delay Switchover level	Valid	Valid (RPM)	Valid (RPM)		
10	Position reference + Actual speed	See the following note for details.	Valid	Valid (RPM)	Valid (RPM)		

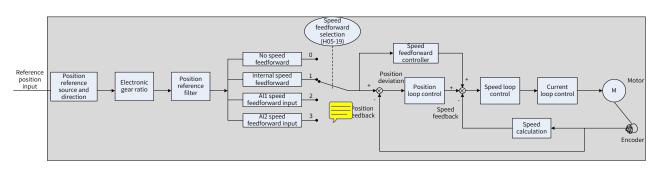
NOTE

H08-10 (Gain switchover delay) is valid only during switching from the 2nd gain to the 1st gain.

|Actual speed|< (Switchover level - Switchover hysteresis)

\cancel{x} Related parameters:

Para. No.	Name	Value Range	Unit	Function	Setting Condition	Effective Time	Default
H08-08	2nd gain mode	0: Fixed at the 1st gain, P/PI switchover through external DI 1: Gain switchover based on H08-09	-	Defines the mode of the 2nd gain.	During running	Immedi- ately	1
		0: Fixed at the 1st gain 1: Switchover through external DI					
		2: Torque reference too large 3: Speed reference too large		Defines the gain switchover condition.	During running	Immedi- ately	
	Gain	4: Speed reference change rate too large					
H08-09	switchover condition	5: Speed reference threshold	-				0
	condition	6: Position deviation too large					
		7: Position reference available					
		8: Positioning completed					
		9: Actual speed too large					
		10: Position reference + Actual speed					
H08-10	Gain switchover delay	0 to 10	-	Defines the gain switchover delay.	During running	Immedi- ately	5.0
H08-11	Gain switchover level	1 to 1000	Based on the switchover condition	Defines the gain switchover level.	During running	Immedi- ately	50


Para. No.	Name	Value Range	Unit	Function	Setting Condition	Effective Time	Default
H08-12	Gain switchover hysteresis	0 to 20000	Based on the switchover condition	Defines the gain switchover hysteresis.	During running	Immedi- ately	30
	Position gain switchover time	0.0 to 100.0	ms	Defines the gain switchover time of the position loop.	During running	Immedi- ately	3.0

6.5.3 Comparison of Filters

Name	Function	Applicable Occasion	Impact of Excessive Filter
Pulse input pin filter	Ensures the pulse number received by the servo drive is accurate by preventing interference.	The system wiring does not comply with specifications. The ambient interference is strong.	The number of pulses received by the servo drive is smaller than those sent from the host controller.
Position reference filter	Filters the position references (encoder unit) divided or multiplied by the electronic gear ratio to smoothen the running process of the motor and reduce the impact on the machine.	The acceleration/deceleration process is not performed on the position references sent from the host controller. The pulse frequency is low. The electronic gear ratio is larger than 10.	The response delay is prolonged.
Analog input filter	Prevents motor command fluctuation due to unstable analog input voltage and reduce the motor malfunction due to interference signals.	The system wiring does not comply with specifications. The ambient interference is strong.	The response delay is prolonged.

6.5.4 Feedforward Gain

1 Speed Feedforward

Figure 6-8 Operating procedures for speed feedforward control

Speed feedforward can be applied to the position control mode. When position control or full closedloop is used, the speed feedforward function can be used to improve speed reference responsiveness and reduce the position deviation during constant speed.

Operating procedures for speed feedforward are as follows.

1) Setting the speed feedforward signal source

Set H05-19 to a non-zero value to enable speed feedforward, and the corresponding signal source will be selected.

Para. No.	Name	Value Range	Description
	Speed	0: No speed feedforward	-
H05-19	feedforward control selection	1: Internal speed feedforward	Defines the speed information corresponding to the position reference (encoder unit) as the speed feedforward signal source.

2) Setting the speed feedforward parameters (including H08-19 and H08-18)

Para. No.	Name	Description
H08-18	Speed feedforward filter time constant	 Increase the value of H08-00 and H08-02 and H08-02 Parameter function: Increasing the value of H08-19 improves the responsiveness but may cause speed overshoot during acceleration/deceleration.
H08-19	Speed feedforward gain	Decreasing the value of H08-18 suppresses speed overshoot during acceleration/ deceleration. Increasing the value of H08-18 not only suppresses the noise in the case of long position reference update period, long drive control period and uneven position reference pulse frequency, but also suppresses jitter of the positioning completion signal. Adjustment method:
		Set H08-18 to a fixed value, and then increase the value of H08-19 gradually from 0 to a certain value at which speed feedfoward reaches the required effect. Adjust H08-18 and H08-19 repeatedly until reaching a well balanced performance.

2 Torque feedforward

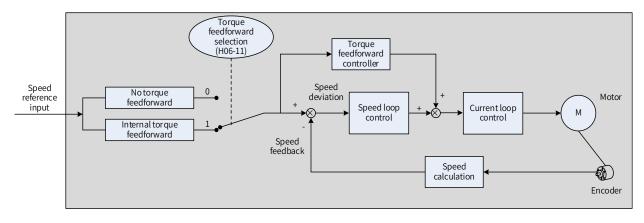


Figure 6-9 Operating procedures for torque feedforward control

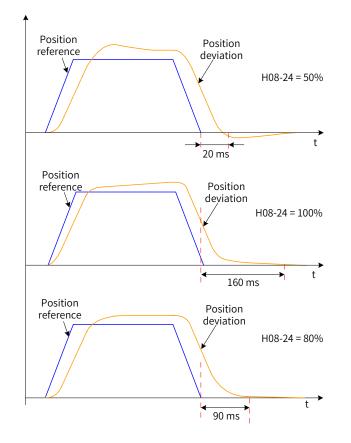
The torque feedforward used in the position control mode improves torque reference responsiveness and decreases the position deviation during acceleration/deceleration at a constant speed.

The torque feedforward used in the speed control mode improves torque reference responsiveness and decreases the position deviation during constant speed.

Operating procedures for torque feedforward are as follows.

1) Setting the torque feedforward signal source

Set H06-11 to 1 to enable speed feedforward, and the corresponding signal source will be selected.


Para. No.	Name	Value Range	Description
		0: No torque feedforward	-
H06-11	Torque feedforward control selection	1: Internal torque feedforward	Defines the speed reference as the torque feedforward signal source. In the position control mode, the speed reference is output from the position controller.

2) Setting torque feedforward parameters

Para. No.	Name	Description
H08-20	Torque feedforward filter time constant	Parameter function: Increasing the value of H08-21 improves the responsiveness but may cause speed overshoot during acceleration/deceleration. Decreasing the value of H08-20 suppresses overshoot during acceleration/deceleration. Increasing the value of H08-20 suppresses the noise. Adjustment method: Keep H08-20 to the default value, and then increase the value of H08-21 gradually from 0 to a certain value at which torque feedforward reaches the required effect. Adjust H08-20 and H08-21 repeatedly until reaching a well balanced performance.
H08-21	Torque feedforward gain	For details, see <u>"6.5.4 Feedforward Gain"</u> .

6.5.5 Pseudo Derivative Feedback and Feedforward Control

In the non-torque control mode, pseudo derivative feedback and feedforward (PDFF) control can be used to adjust the speed loop control mode.

Figure 6-10 Example

PDFF control enhances the anti-interference capacity of the speed loop and improves the performance in following the speed reference through adjustment of the speed loop control mode.

Para. No.	Name	Description
H08-24	PDFF control coefficient	 Parameter function: It adjusts the control mode of the speed loop in non-torque control mode. Adjustment method: Do not set H08-24 to a too small value. Otherwise, the speed loop response may be slowed down. When speed feedback overshoot occurs, decrease the value of H08-24 gradually from 100.0 to a certain value at which the PDFF control achieves the desired effect. When H08-24 is set to 100.0, the speed loop control mode does not change and the default proportional integral control is used.


6.5.6 Torque Disturbance Observation

This function is intended to be used in the non-torque control mode.

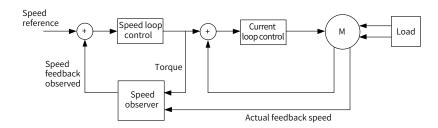
1 Disturbance observer 1

The disturbance observer is used to observe external disturbance. The disturbance within the frequency range can be observed and suppressed through the cutoff frequency and compensation setting.

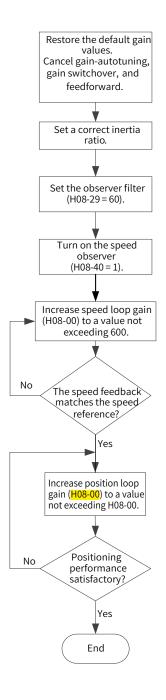
Position of the disturbance observer 1 in the function block diagram is shown in the following figure.

Para. No.	Name	Description
H08-31	Disturbance observation cutoff frequency	The higher the cutoff frequency is, the more easily will the vibration occur.
H08-32	Disturbance observation compensation coefficient	Defines the compensation percentage for observation.
H08-33	Disturbance observation inertia correction coefficient	Set this parameter only if the set inertia does not fit the actual conditions. The acting inertia is the result of multiplying the value of H08-33 by the set inertia. It is recommended to use the default value of H08-33.

☆ Related parameters


NOTE

Para. No.	Name	Value Range	Unit	Function	Setting Condition	Effective Time	Default
H08-31	Disturbance observation cutoff frequency	10 to 1700	1 Hz	Defines the cutoff frequency for disturbance observation.	During running	Immediately	600
H08-32	Disturbance observation compensation coefficient	0 to 100	1%	Defines the compensation percentage for disturbance observation.	During running	Immediately	0
H08-33	Disturbance observation inertia correction coefficient	1 to 10000	1%	Defines the coefficient for correcting the disturbance observation inertia.	During running	Immediately	100


6.5.7 Speed observer

The speed observer is intended to be used in applications with small load/inertia changes. It facilitates quick positioning through improving the responsiveness and filtering high frequencies.

The block diagram for the speed observer is as follows.

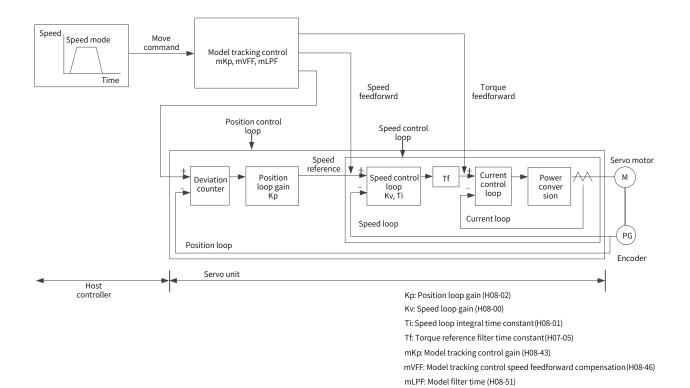
1 Commissioning procedures

2 Related parameters:

Para. No.	Name	Min. Unit	<mark>Value</mark> Range	Default	Setting Condition	Effective Time
H08-00	Speed loop gain	0.1 Hz	1 to 20000	40	During running	Immediately
H08-27	Speed observation cutoff frequency	1 Hz	10 to 2000	170	During running	Immediately
H08-28	Speed observation inertia correction coefficient	1%	10 to 10000	100	During running	Immediately
H08-29	Speed observation filter time	0.01 ms	0 to 2000	80	During running	Immediately
H08-40	Speed observation selection	1	0 to 1	0	During running	Immediately

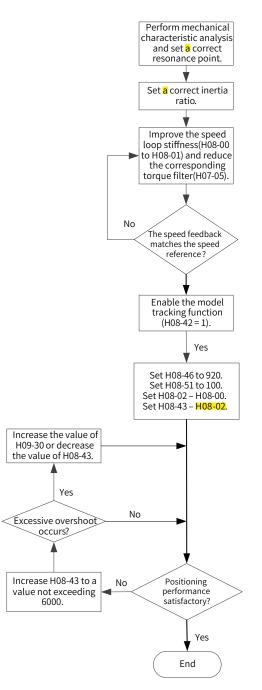
 Before using the speed observer, set H08-15 (Load inertia ratio) to a proper value or perform inertia auto-tuning. A wrong inertia ratio will cause vibration.

• Setting H08-27, H08-28, or H08-29 to a too small or too large value will cause motor vibration.


6.5.8 Model Tracking

The model tracking control, which is only available in the position control mode, can be used to improve the responsiveness and shorten the positioning time.

Parameters used by model tracking are normally set automatically through ITune or ETune along with the gain parameters. However, manual tuning is needed in the following situations:


- The auto-tuned results cannot fulfill the application needs.
- Improving the responsiveness takes priority over the auto-tuned values.
- Customized parameters for the gain or model tracking control are needed.

The block diagram for model tracking control is as follows.

-163-

1 Commissioning procedures

2 Related parameters

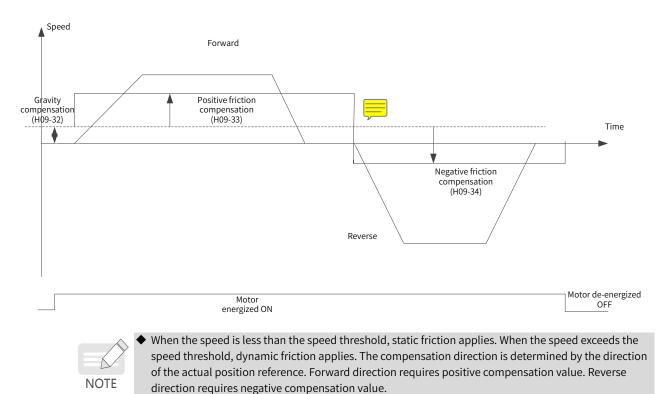
Para. No.	Name	Min. Unit	Value Range	Default	Setting Condition	Effective Time
H07-05	Torque reference filter time constant	0.01 ms	0 to 3000	79	During running	Immediately
H08-00	Speed loop gain	0.1 Hz	1 to 20000	400	During running	Immediately
H08-01	Speed loop integral time constant	0.01 ms	15 to 51200	1989	During running	Immediately
H08-02	Position loop gain	0.1 Hz	1 to 20000	640	During running	Immediately
H08-42	Model control selection	1	0 to 1	0	At stop	Immediately

-164-

Para. No.	Name	Min. Unit	Value Range	Default	Setting Condition	Effective Time
H08-43	Model gain	0.1	0 to 10000	400	During running	Immediately
H08-46	Feedforward gain	1	0 to 1024	950	During running	Immediately
H08-51	Model filter time 2	0.01 ms	0 to 2000	0	During running	Immediately

Ensure the set inertia is accurate. Otherwise, motor vibration may occur.

6.5.9 Friction Compensation


The friction compensation is used to reduce the impact of the friction on the running effect during mechanical transmission. Use different positive/negative compensation values according to the running direction.

• Friction compensation is valid only in the position control mode.

 \cancel{x} Related parameters

Para. No.	Para. Name	Value Range	Function
H09-32	Gravity compensation	-100% to +100.0%	Defines the constant compensation torque of vertical gravity load.
H09-33	Positive friction compensation	-100% to +100.0%	Defines the friction compensation for the position reference in forward direction.
H09-34	Negative friction compensation	-100.0% to +100%	Defines the friction compensation for the position reference in reverse direction.
H09-35	Friction compensation speed threshold	0 RPM to 30.0 RPM	Defines the running speed <mark>after</mark> friction resistance.
H09-36	Friction compensation speed selection	0: Speed reference 1: Model speed (valid when the model function is enabled) 2: Speed feedback	Defines the source of the speed threshold.

The diagram for friction compensation is as follows.

6.6 Parameter Adjustment in Different Control Modes

Perform parameter adjustment in the sequence of "Inertia auto-tuning" => "Gain auto-tuning" => "Manual gain tuning".

6.6.1 Parameter Adjustment in the Position Control Mode

- 1) Obtain the value of H08-15 (Load inertia ratio) through inertia auto-tuning.
- 2) Gain parameters in the position control mode are listed in the following tables.
- 1st group of gain parameters

Para. No.	Name	Function	Default
H07-05	Torque reference filter time constant	Defines the filter time constant of the torque reference.	0.79 ms
H08-00	Speed loop gain	Defines the proportional gain of the speed loop.	40.0 Hz
H08-01	Speed loop integral time constant	Defines the integral time constant of the speed loop.	19.89 ms
H08-02	Position loop gain	Defines the proportional gain of the position loop.	64.0 Hz

■ 2nd group of gain parameters

Para. No.	Name	Function	Default
H07-06	2nd torque reference filter time constant	Defines the filter time constant of the 2nd torque reference.	0.79 ms
H08-03	2nd speed loop gain	Defines the proportional gain of the speed loop.	40.0 Hz

Para. No.	Name	Function	Default
H08-04	2nd speed loop integral time constant	Defines the integral time constant of the speed loop.	20.00 ms
H08-05	5 2nd position loop gain Defines the proportional gain of the position loop.		64.0 ms
H08-08	2nd gain mode	Defines the mode of the 2nd gain.	1
H08-09	Gain switchover condition	Defines the gain switchover condition.	0
H08-10	Gain switchover delay	Defines the gain switchover delay.	5.0 ms
H08-11	Gain switchover level	Defines the gain switchover level.	50
H08-12	Gain switchover hysteresis	Defines the gain switchover hysteresis.	30
H08-13	Position gain switchover time	Defines the gain switchover time of the position loop.	3.0 ms

Common gain

Para. No.	Name	Function	Default
H08-18	Speed feedforward filter time constant	Defines the filter time constant of the speed feedforward signal.	0.50 ms
H08-19	Speed feedforward gain	Defines the speed feedforward gain.	0.0%
H08-20	Torque feedforward filter time constant	Defines the filter time constant of the torque feedforward signal.	0.50 ms
H08-21	Torque feedforward gain	Defines the torque feedforward gain.	0.0%
H08-22	Speed feedback filter selection	Defines the speed feedback filter function.	0
H08-23	Cutoff frequency of speed feedback low-pass filter	Defines the cutoff frequency of the first- order low-pass filter for speed feedback.	4000 Hz
H08-24	PDFF control coefficient	Defines the coefficient of the PDFF controller.	100.0%
H09-30	Torque disturbance compensation gain	Defines the gain of disturbance torque compensation.	0.0%
H09-31	Filter time constant of torque disturbance observer	Defines the filter time constant of the disturbance observer.	0.5 ms
H09-04	Suppression mode for low- frequency resonance	Defines the mode of suppressing low- frequency resonance.	0
H09-38	Frequency for suppressing low- frequency resonance	Defines the frequency of the filter used to suppress low-frequency resonance.	100.0 Hz
H09-39	Low-frequency resonance filter setting	Used to set the low-frequency resonance filter.	2
H0A-16	Position deviation threshold in low- frequency resonance	Defines the position deviation threshold (in pulses) which can be judged as low- frequency resonance.	0.0005 Rev

3) Perform gain auto-tuning to obtain the initial values of the 1st gain (or 2nd gain) and common gain.

■ Adjust the following gain parameters manually.

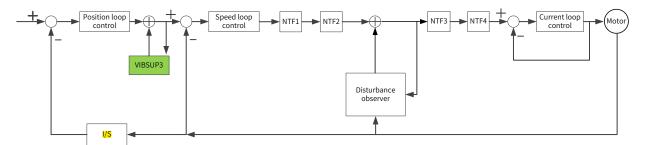
Para. No.	Name	Function
H07-05	Filter time constant of torque reference	Defines the filter time constant of the torque reference.
H08-00	Speed loop gain	Defines the proportional gain of the speed loop.
H08-01	Speed loop integral time constant	Defines the integral time constant of the speed loop.
H08-02	Position loop gain	Defines the proportional gain of the position loop.

H08-19 Speed feedforward gain

Defines the speed feedforward gain.

6.6.2 Parameter Adjustment in the Speed Control Mode

Parameter adjustment in the speed control mode is the same as that in the position control mode except for the position loop gain (H08-02 and H08-05). See section <u>"6.6.1 Parameter Adjustment in the Position</u> <u>Control Mode</u>" for details.


6.6.3 Parameter Adjustment in the Torque Control Mode

Parameter adjustment in the torque control mode are differentiated based on the following conditions:

- If the actual speed reaches the speed limit, the adjustment method is the same as that described in section 6.6.2.
- If the actual speed does not reach the speed limit, the adjustment method is the same as that described in section 6.6.2, except for the position/speed loop gain and speed loop integral time constant.

6.7 Vibration Suppression

The block diagram for vibration control is as follows.

- NTF1-4: 1st notch to 4th notch
- VIBSUP3: Suppression of medium- and low-frequency vibration featuring a frequency lower than 300 Hz
- 1/S: Integral element

 \precsim Related parameters

Para. No.	Name	Default	Unit	Min. Value	Max. <mark>Val-</mark> ue	Setting Condition	Effective Time
H08-53	Medium- and low- frequency <mark>jitter</mark> suppression frequency 3	0	0.1 Hz	0	6000	During running	Immediately
H08-54	Medium- and low- frequency <mark>jitter</mark> suppression compensation 3	0	1%	0	200	During running	Immediately
H08-56	Medium- and low- frequency <mark>jitter</mark> suppression phase <mark>modulation</mark> 3	300	1%	0	1600	During running	Immediately
H08-59	Medium- and low- frequency <mark>jitter</mark> suppression frequency 4	0	0.1 Hz	0	3000	During running	Immediately

Para. No.	Name	Default	Unit	Min. Value	Max. Val- ue	Setting Condition	Effective Time	
H08-60	Medium- and low- frequency <mark>jitter</mark> suppression <mark>compensation</mark> 4	0	1%	0	200	During running	Immediately	
H08-61	Medium- and low- frequency <mark>jitter</mark> suppression phase <mark>modulation</mark> 4	100	1%	0	600	During running	Immediately	
 Vibration suppression phase modulation coefficient: synchronous phase adjustment of the compensation value and vibration. It is recommended to use the default value. Adjustment is needed 								

only when the compensation phase deviates sharply from the vibration phase.

• Vibration suppression frequency: Defines the vibration frequency to be suppressed.

• Vibration suppression compensation coefficient: Defines the magnitude of the suppression compensation.

6.7.1 Suppression of Mechanical Resonance

The resonance frequency is present in the mechanical system. When the gain increases, resonance may occur near the resonance frequency, disabling further increase of the gain.

Mechanical resonance can be suppressed in the following two methods:

1) Torque reference filter (H07-05, H07-06)

To suppress the mechanical resonance, set the filter time constant to allow the torque reference to be attenuated in the frequency range above the cutoff frequency.

Filter cutoff frequency fc (Hz) = $1/[2 \times H07-05 \text{ (ms)} \times 0.001]$

2) Notch

NOTE

The notch reduces the gain at certain frequencies to suppress the mechanical resonance. After the vibration is suppressed by the notch, you can continue to increase the gain. The operating principle of the notch is shown in the following figure.

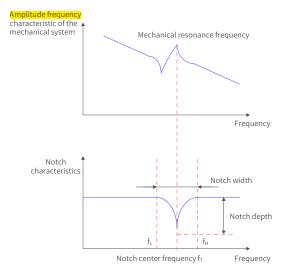


Figure 6-11 Operating principle of the notch

A total of four notches can be used, and each is defined by three parameters: frequency, width level, and depth level. Parameters of the 1st and 2nd manual notches are set manually by the user. Parameters of the 3rd and 4th notches can be either set manually or set automatically after being configured as the adaptive notch (H09-02 = 1 or 2).

ltem	Manua	l Notch	Manual/Adaptive Notch		
	1st Notch	2nd Notch	3rd Notch	4th Notch	
Frequency	H09-12	H09-15	H09-18	H09-21	
Width level	H09-13	H09-16	H09-19	H09-22	
Depth level	H09-14	H09-17	H09-20	H09-23	

Table 6-8 Description of the notch

When the "frequency" is the default value (4000 Hz), the notch is invalid.

The adaptive notch is preferred for resonance suppression. The manual notch can be used in cases where the adaptive notch cannot deliver desired performance.

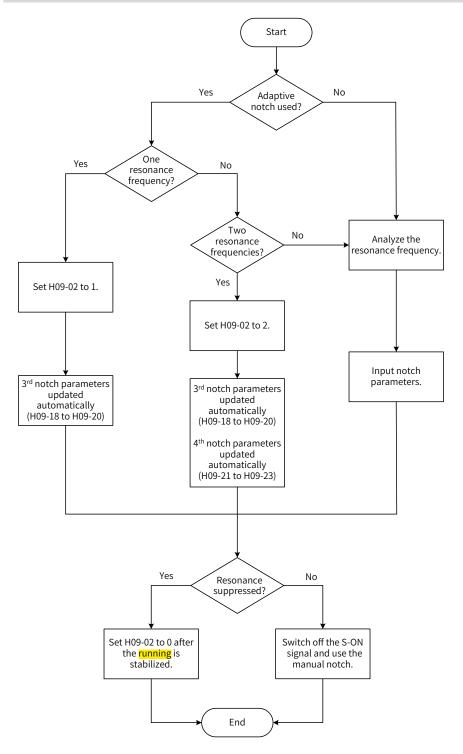


Figure 6-12 Steps for setting the adaptive notch

- Steps for setting the adaptive notch
- 1) Set H09-02 (Adaptive notch mode) to 1 or 2 based on the number of resonance frequency points.
- 2) When resonance occurs, set H09-02 to 1 to enable one adaptive notch first. If new resonance occurs after the gain is adjusted, set H09-02 to 2 to enable two adaptive notches.
- 3) The parameters of the 3rd or 4th notch are updated automatically during running, and the values are automatically stored to the corresponding parameters in group H09 every 30 minutes.
- 4) If the resonance is suppressed, it indicates the adaptive notch functions well. After the servo drive keeps stable for a certain period, set H09-02 to 0 to keep the parameters of the adaptive notch fixed to the latest values. This is to prevent notch parameters from being updated to the wrong values, causing malfunction of the servo drive and exacerbating vibration.
- 5) If the vibration cannot be suppressed, switch off the S-ON signal.
- 6) If there are more than two resonance frequencies, use both the adaptive notch and manual notch to suppress the resonance or use all the four notches as manual notches (H09-02 = 0).

NOTE

- When adaptive notch is applied, if the S-OFF signal is activated within 30 min, the notch parameters will not be stored into the corresponding parameter numbers.
- When the resonance frequency is below 300 Hz, the suppression effect of the adaptive notch may be degraded.
- Procedures for using the manual notch:
- 1) Step 1: Analyze the resonance frequency.
- 2) Step 2: When using the manual notch, set the frequency to the actual resonance frequency, which is obtained by using the following methods:
 - a) Use the "Mechanical characteristic analysis" function in the software tool.
 - b) Calculate the resonance frequency based on the motor phase current displayed on the oscilloscope interface of the software tool.
 - c) Set H09-02 (Adaptive notch mode) to 3. The servo drive detects the resonance frequency and stores the detection result in H09-24 (Auto-tuned resonance frequency) automatically after start.
- 3) Step 3: Input the resonance frequency obtained in step 1 into the parameter of the selected notch, and input the width level and depth level of this notch.
- 4) If the resonance is suppressed, it indicates the notch functions well and you can continue adjusting the gain. If new resonance occurs, repeat steps 1 and 2.
- 5) If the vibration cannot be suppressed, switch off the S-ON signal.
- Width level of the notch

The width level indicates the ratio of the notch width to the center frequency of the notch.

Notch width level =
$$\frac{f_H - f_L}{f_T}$$

In which:

f_T: Center frequency of the notch, which is also the mechanical resonance frequency

 f_{H} - f_{L} : Notch width, indicating the frequency width whose amplitude attenuation rate is -3 dB in relative to the notch center frequency

The default value 2 applies to general applications.

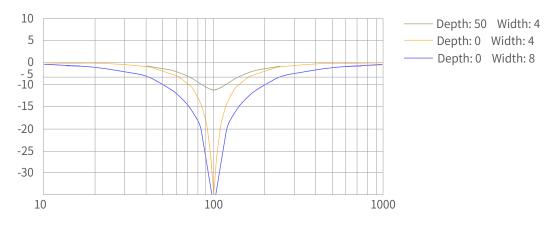
Depth Level of the notch

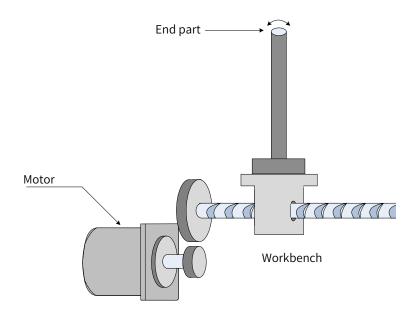
The notch depth level indicates the ratio of the input to the output at the center frequency.

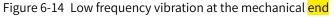
When the depth level is 0, the input is completely suppressed at the center frequency. When the depth level is 100, the input can be fully received at the center frequency. Therefore, the smaller the depth level is, the larger the notch depth is, and the stronger the suppression effect will be. Note that a too small depth level may lead to system oscillation.

If the amplitude frequency characteristic curve obtained through the mechanical characteristic analysis tool does not have obvious spike but vibration does occur in actual operations, it indicates the gain limit of the servo drive may be reached, which causes the vibration. Such vibration is not mechanical resonance and can be suppressed only by reducing the gain or the torque reference filter time.

Their relation is shown in the following figure.




Figure 6-13 Notch frequency characteristics


☆ Related parameters

Para. No.	Name	Value Range	Unit	Function	Setting Condition	Effective Time	Default
H09-02	Selection of adaptive notch mode	0: Parameters of the 3rd and 4th notches not longer updated 1: One adaptive notch activated, parameters of the 3rd notch updated in real time based on the vibration condition 2: Two adaptive notches activated, parameters of the 3rd and 4th notches updated in real time based on the vibration condition 3: Resonance frequency tested only, displayed in H09-24 4: Adaptive notch cleared, parameters of the 3rd and 4th notches restored to default settings	-	Defines the working mode of the adaptive notch.	During running	Immediately	0
H09-12	Frequency of the 1st notch	50 to 4000	Hz	Defines the frequency of the 1st notch.	During running	Immediately	4000
H09-13	Width level of the 1st notch	0 to 10	-	Defines the width level of the 1st notch.	During running	Immediately	2
H09-14	Depth level of the 1st notch	0 to 99	-	Defines the attenuation level of the 1st notch.	During running	Immediately	0
H09-15	Frequency of the 2nd notch	50 to 4000	Hz	Defines the frequency of the 2nd notch.	During running	Immediately	4000
H09-16	Width level of the 2nd notch	0 to 10	-	Defines the width level of the 2nd notch.	During running	Immediately	2

Para. No.	Name	Value Range	Unit	Function	Setting Condition	Effective Time	Default
H09-17	Depth level of the 2nd notch	0 to 99	-	Defines the attenuation level of the 2nd notch.	During running	Immediately	0
H09-18	Frequency of the 3rd notch	50 to 4000	Hz	Defines the frequency of the 3rd notch.	During running	Immediately	4000
H09-19	Width level of the 3rd notch	0 to 10	-	Defines the width level of the 3rd notch.	During running	Immediately	2
H09-20	Depth level of the 3rd notch	0 to 99	-	Defines the attenuation level of the 3rd notch.	During running	Immediately	0
H09-21	Frequency of the 4th notch	50 to 4000	Hz	Defines the frequency of the 4th notch.	During running	Immediately	4000
H09-22	Width level of the 4th notch	0 to 10	-	Defines the width level of the 4th notch.	During running	Immediately	2
H09-23	Depth level of the 4th notch	0 to 99	-	Defines the attenuation level of the 4th notch.	During running	Immediately	0
H09-24	Auto-tuned resonance frequency	-	Hz	Displays the <mark>auto-</mark> tuned resonance frequency when H09- 02 is set to 3.	-	-	0

6.7.2 Low Frequency Suppression at the Mechanical End

If the mechanical load end is long and heavy, vibration may easily occur on this part during emergency stop, affecting the positioning effect. Such vibration is called low frequency resonance as its frequency is generally within 100 Hz, which is smaller than the mechanical resonance frequency mentioned in <u>"6.7.1</u> <u>Suppression of Mechanical Resonance"</u>. Use the low frequency resonance suppression function to <u>alleviate</u> such vibration.

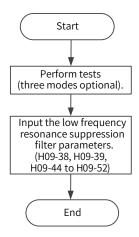


Figure 6-15 Procedures for setting low frequency resonance suppression filter

First, collect the position deviation waveform in the motor positioning mode by using the oscilloscope function of the **software** tool and calculate the position deviation fluctuation frequency, which is the low frequency resonance frequency. Next, input H09-38 (or H09-44) and H09-49 manually, and keep the values of other parameters to their default values. Observe the suppression effect after using the low frequency resonance suppression filter.

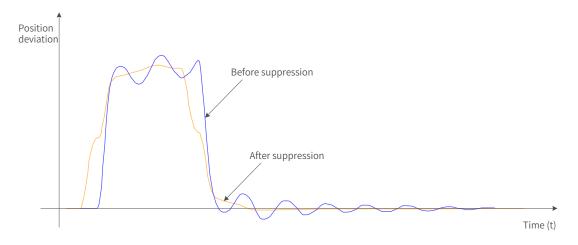


Figure 6-16 Effect of low frequency resonance suppression

☆ Related parameters

Para. No.	Name	<mark>Value</mark> Range	Unit	Function	Setting Condition	Effective Time	Default
	Low-frequency resonance suppression frequency	1.0 to 100.0	Hz	Defines the frequency for suppressing the low frequency resonance at the mechanical end.	During running	Immediately	100.0
H09-39	Low-frequency resonance suppression	0 to 3	-	Defines the low frequency resonance suppression level.	During running	Immediately	2
H09-44	Frequency of low- frequency resonance suppression 2 at the mechanical end	0 to 200.0	Hz	Defines the frequency for the 2nd group of low frequency resonance suppression. If H09-44 is set to 0, this function is disabled.	During running	Immediately	0
H09-45	Response of low- frequency resonance suppression 2 at the mechanical end	0.01 to 10.00	Hz	Defines the response of the 2nd group of low frequency resonance suppression. Increasing the value of H09-45 can reduce the delay caused by suppression and improve the responsiveness. Note that setting H09-45 to a too large value may incur vibration.	During running	Immediately	1.00

Para. No.	Name	<mark>Value</mark> Range	Unit	Function	Setting Condition	Effective Time	Default
H09-47	Width of low-frequency resonance suppression 2 at the mechanical end		Hz	Defines the width of the 2nd group of low frequency resonance suppression. Increase the value of H09-47 in cases where the vibration frequency changes during running.	During running	Immediately	1.00
H09-49	Frequency of low- frequency resonance suppression 3 at the mechanical end	0 Hz to 200.0 Hz	Hz	Defines the frequency of the 3rd group of low frequency resonance suppression. If H09-49 is set to 0, this function is disabled.	During running	Immediately	0
H09-50	Response of low- frequency resonance suppression 3 at the mechanical <mark>end</mark>	0.01 to 2.00	Hz	Defines the response of the 3rd group of low frequency resonance suppression. Increasing the value of H09-50 can reduce the delay caused by suppression and improve the responsiveness. Note that setting H09-50 to a too large value may incur vibration.	During running	Immediately	1.00
H09-52	Width of the low- frequency resonance suppression 3 at the mechanical end	0 to 2.00	Hz	Defines the width of the 3rd group of low frequency resonance suppression. Increase the value of H09-52 in cases where the vibration frequency changes during running.	During running	Immediately	1.00

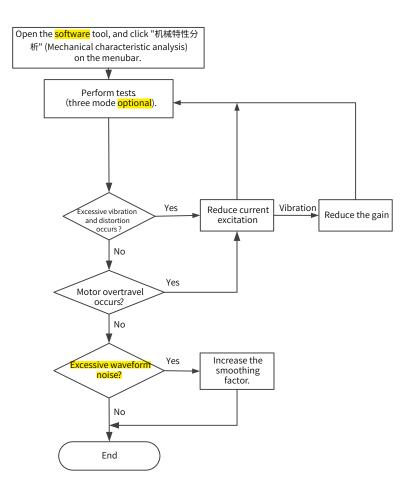
6.8 Mechanical Characteristic Analysis

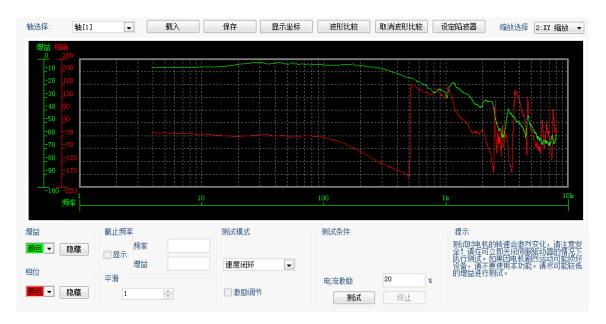
6.8.1 Overview

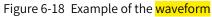
The mechanical characteristic analysis is used to determine the mechanical resonance point and system bandwidth. An analysis of response characteristics up to 8 kHz is available and three modes including mechanical characteristics, speed open loop and speed closed loop are supported.

6.8.2 Operating Procedures

NOTE

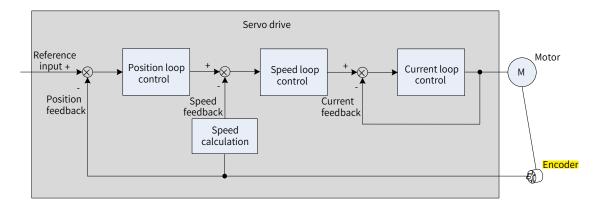


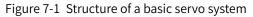

Figure 6-17 Operating procedures for mechanical characteristic analysis


- To avoid strong vibration during test, set the current excitation to 10% during initial execution.
- The analysis waveform may be distorted if the current excitation is too small.
- If the vibration generated during the test cannot be eliminated by reducing the current excitation, the possible causes and solutions are as follows:

1) The gain is too high. Reduce the speed gain or set the notch based on the auto-tuned resonance point.

2) The inertia is too large. Set a correct inertia.


• After setting the notch, the waveform under mechanical characteristic test mode is the same with that before the setting, but the speed closed loop and open loop modes will be attenuated.



7 Control Mode

The servo system consists of three major parts: servo drive, servo motor, and encoder.

The servo drive, which is the core of a servo system, serves to perform accurate position, speed and torque control on a servo motor. It supports four control modes, namely position control, speed control, torque control, and hybrid (combination among position, speed and torque) control. Position control is the most important mode of a servo system.

Descriptions of the control modes are as follows:

Position control

In the position control mode, the target position of a motor is determined by the sum of position references, and the motor speed is determined by the position reference frequency. The servo drive performs quick and accurate position and speed control through the encoder installed on the motor or an external encoder (full closed-loop control). The position control mode mainly applies to applications requiring positioning control, such as the manipulator, SMT machine, engraving and milling machine (pulse sequence reference), and CNC machine tool.

Speed control

In the speed control mode, the servo drive performs quick and accurate speed control through the speed reference sent through communication. The speed control mode mainly applies to application requiring speed control or where a host controller is used for position control or the commands sent from the host controller are used as the speed references for the servo drive, such as the engraving and milling machine.

Torque control

In the torque control mode, the motor current is in linear relationship with the torque. Therefore, torque control is implemented through current control. The output torque of the motor is controlled by the torque reference sent through communication. The torque control mode mainly applies in applications requiring strict tension control. For example, in winding/unwinding devices, torque references are used to prevent the material from being affected by the change in the winding radius.

7.1 Servo Drive State Setting

Follow the process stipulated in the standard 402 protocol when operating the SV660N servo drive. Failure to comply may cause the servo drive to run in the wrong state.

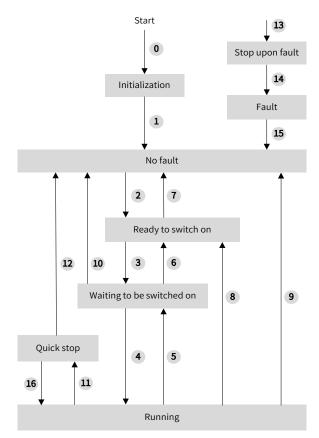


Figure 7-2 CiA402 state machine switchover

See the following table for the descriptions of different states.

Initialization	Initialization of the servo drive and internal self-check are done.
	The servo drive parameters cannot be set. The driving functions cannot be executed.
No fault	No fault exists in the servo drive or the fault has been cleared.
	The servo drive parameters can be set.
Ready to switch on	The servo drive is ready to run.
	The servo drive parameters can be set.
Wait to switch on	The servo drive is waiting to be switched on.
	The servo drive parameters can be set.
Running	The servo drive is running properly and a certain running mode has been
	enabled. The motor is energized and starts to rotate when the reference is not 0.
	Only the parameter whose attribute is "modifiable during running" can be set.
Quick stop	Quick stop is activated and the servo drive is in the process of quick stop.
	Only the parameter whose attribute is "modifiable during running" can be set.
Stop upon fault	A fault occurs and the servo drive is in the process of stop upon fault.
	Only the parameter whose attribute is "modifiable during running" can be set.
Fault	The stop process is done and all the driving functions are disabled. Parameters
	of the servo drive can be modified for troubleshooting.

Switchover between the control commands and states

C	CiA402 State Switchover	Control Word 6040h	bit0 to bit9 ^[1] of Status Word 6041h
0	Power-on → Initialization	Natural transition, control command not required	0x0000
1	Initialization → No fault	Natural transition, control command not required If an error occurs during initialization, the servo drive directly goes to state 13.	0x0250/0x270
2	No fault -> Ready to switch on	0x0006	0x0231
3	Ready to switch on -> Wait to switch on	0x0007	0x0233
4	Wait to switch on-> Running	0x000F	0x0237
5	Running -> Wait to switch on	0x0007	0x0233
6	Wait to switch on -> Ready to switch on	0x0006	0x0231
7	Ready to switch on -> No fault	0x0000	0x0250
8	Running -> Ready to switch on	0x0006	0x0231
9	Running -> No fault	0x0000	0x0250
10	Wait to switch on -> No fault	0x0000	0x0250
11	Running -> Quick stop	0x0002	0x0217
12	Quick stop -> No fault	Set 605A to a value between 0 to 3. Natural transition will be performed after stop and no control command is required.	0x0250
13	-> Stop upon fault	Once a fault occurs in any state other than "fault", the servo drive automatically switches to the stop- upon-fault state, requiring no control command.	0x021F
14	Stop upon fault -> Fault	Natural transition is performed after stop and no control command is required.	0x0218
15	Fault -> No fault	0x80 Bit7 is rising edge-triggered. If the value of bit7 is 1, other control commands are invalid.	0x0250
16	Quick stop -> Running	Set 605A to a value between 5 to 7. 0x0F will be sent upon stop.	0x0237

bit10 to bit15 of 6041h are related to the running state of the servo drive, and their values are represented as 0 in the preceding table. For details on the state of these bits, view the running modes of the servo drive.

7.1.1 Control Word 6040h

Index 6040h	Nam	e	(Control word		Setting Condition & Effective Time	During running & Immediately	Data Structure	VAR	Data Type	Uint16		
	Acces	ss	RW	Mapping	RPDO	Related Mode	All	Value Range	0 to 65535	Default	0		
6040h is	sused	to s	o set the control command.										
bit			Name Description										
0	1	Swit	cch on 1: Valid, 0: Invalid										
1		Enal	able voltage 1: Valid, 0: Invalid										
2		Quic	ck stop		0: Valid	0: Valid, 1: Invalid							
3		Enal	ble oper	ation	1: Valid, 0: Invalid								
4 to	6	Ope	ration m	ode-specific	Related	d to the serv	o drive mode						
7		Faul	t reset		warnin 1: Othe	Fault reset is gs that can er control co	s implemente be reset. mmands are		nd				
8		Halt	:		1 -> 0: I	nvalid I, 0: Invalid							
9		Ope	ration m	ode-specific		,	o drive mode	S.					
10		Rese	erved		Undefi								
11 to	15	Man	ufacture	er-specific	Define	d by the ma	nufacturer.						
Note:													

◆ All bits in a control word constitute a control command. One bit is meaningless if it is set separately.

The meaning of bit0 to bit3 and bit7 are the same in each mode of the servo drive. The servo drive switches to the preset status according to the CiA402 state machine only when control words are sent in sequence. Each command corresponds to a certain status.

• The meanings of bit4 to bit6 vary with each mode. For details, see parameters related to each mode.

♦ The bit9 is not defined.

7.1.2 Status Word 6041h

Index 6041h	Name	5	Status	s wor	ď	Сс & Е	Setting ondition Effective Time		-		ata Icture	VAF	\$	Data Typ	e Uint1
	Access	RO	Мар	oping	TPDO		Related Mode	/	All	Value	Range	-		Default	0
Shows the	e servo drive	status.													
	15 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ms MSB	<mark>OS</mark>	<mark>n</mark>	ila	tr	rm	ms	W	SOC	l qs	ve	f	00	e so	rtso LSB
ms=n tr=tai	ription: nanufacturE rget rEach; led; f=fault;	rm=remo	ote; \	w=wa	arning; s	sod=	switch or	n disa	abled	; qs=o	quick st	op; ve	e=vo	ltage	
bit		Name				De	escription	1							
0	Ready to switch on				1: Valid, 0: Invalid										
1	Switch on			1: Valid, 0: Invalid											
2	Switch on Operation enabled			:	1: Valid, 0: Invalid										
3	Operation enabled Fault				1: Valid, (): Inv	/alid								
4	Fault Voltage enabled				1: Valid, (): Inv	/alid								
5	Quick stop			(0:Valid,	1: In\	/alid								
6	Switch on a	disabled			1: Valid, (): In\	/alid								
7	Warning				1: Valid, 0: Invalid										
8	Manufactu	rer-speci	ific		Undefined										
9	Remote				1: Valid, (0: Invalic		rol word	activ	ated						
10	Target reac	h		:	1: Valid, (): Inv	/alid								
11	Internal lim		2		1: Valid, (
12 to 13	Operation I	node sp	ecific	:	Related t	o the	e servo d	rive	mode	es.					
14	Manufactu	rer-speci	ific		Undefine	ed									
15	Home find				1: Valid, (): Inv	/alid								
Bi	inary Value				Des	cript	ion								
xxxx xxxx	x0xx 0000		Not re	eady	to switcl	h on									
xxxx xxxx					disabled										
xxxx xxxx				y to s	witch or	ı									
xxxx xxxx	(xx xxxx x01x 0011 Switche			hed	on										
xxxx xxxx	(xx xxxx x01x 0111 Operatio		ation	enablec	1										
xxxx xxxx			stop	stop active]								
XXXX XXXX			reac	eaction active											
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	xx xxxx x0xx 1000 Fault														

Note:

- The meanings of bit0 to bit9 are the same in each mode of the servo drive. After control commands in 6040h are sent in sequence, the servo drive returns a certain status.
- The meanings of bit12 to bit13 vary with the servo drive modes. For details, see parameters related to each mode.
- The meanings of bit10, bit11, and bit15 are the same in each mode of the servo drive and indicate the servo drive status after a certain control mode is implemented.

# 7.2 Servo Mode Setting

# 7.2.1 Introduction to Servo Drive Modes

The SV660N supports seven modes, as defined in 6502h.

Index 6502h	Name	Supp	ported drive n	nodes	Setting Condition & Effective Time	-	Data Structure	VAR	Data Type	UINT32
	Access	RO	Mapping	No	Related Mode	-	Value Range	-	Default	0x000003ADh
Shows t	he servo dr	ive mode:	s supported.							
	bit		Description	ı		(0: No	ort or Not t <mark>support</mark> upport)			
	0	Profile	Position Mod	e (PP)			1			
	1	Velocit	y Mode (VL)				0			
	2	Profile	Velocity Mod	e (PV)						
	3	Profile	Torque Mode	(PT)						
	4	N/A								
	5	Homin	g Mode (HM)				1			
	6	Interpo (IP)	olated Positio	n Mode			0			
	7	Cyclic S Mode (	Synchronous CSP)	Position			1			
	8	Cyclic S Mode (	Synchronous CSV)	Velocity			1			
	9	Cyclic S Mode (	Synchronous CST)	Torque						
1	0 to 31	Defined	d by the man	ufacturer		Res	served			
If the de	evice suppor	rts 6502h,	you can get t	he suppoi	rted servo dri	ive mo	des through	6502h.		

The pre-running mode of the servo drive is set in 6060h. The present running mode of the servo drive can be viewed in the object dictionary 6061h.

Index 6060h	Nar	ne	Мос	des of Operat	ion	Setting Conditic & Effecti Time	on	During running & Immediately	Data Structure	VAR	Data Type	int 8			
	Acce	ess	RW	Mapping	RPDO	Related Mode	-	All	Value Range	0 to 10	Default	0			
Defines	the mo	ode o	f servo d	ervo drive operation.											
Valu	ie			Modes of Operation											
0		N/A		Reserved											
1		Profi	le Positio	on Mode (PP)		9	See <u>"7.6 Profile Position (PP) Mode"</u>								
2		N/A				F	Reserved								
3		Profi	le Veloci	ty Mode (PV)		9	See <u>"7.7 Profile Velocity Mode (PV)"</u>								
4		Profi	le Torqu	e Mode (PT)		9	See	"7.8 Profile To	orque Mod	e (PT)"					
5		N/A				ſ	Res	erved							
6		Hom	ing Mod	e (HM)		9	See	"7.9 Homing	Mode (HM)	n					
7		Inter	polated	Position Mod	e (IP)	1	Not	supported							
8		Cycli	c Synchr	onous Positio	on Mode	(CSP)	See	"7.3 Cyclic Sy	nchronous	Positior	n Mode (CS	SP)"			
9		Cycli	vclic Synchronous Position Mode (CSP)       See <u>"7.3 Cyclic Synchronous Position Mode (CSI</u> vclic Synchronous Velocity Mode (CSV)       See <u>"7.4 Cyclic Synchronous Velocity (CSV) Mod</u>								de"				
10		Cycli	c Synchronous Torque Mode (CST) See <u>"7.5 Cyclic Synchronous Torque Mode (CST)"</u>												
lf <mark>an uns</mark>	uppor	rted o	peration	<mark>i mode</mark> is set t	hrough	SDO, an S	SDO	error will be r	eturned. Fo	or details,	, see <u>"11.2</u>	List of			

#### ■ 6060h (Modes of operation)

#### Object Groups".

If an operation mode not supported is set through PDO, this operation mode is invalid.

#### ■ 6061h (Modes of operation display)

Index 6061h	Nan	ne	Modes	of operation	display	Setting Condition & Effectiv Time		Data Structure	VAR	Data Type	int 8			
	Acce	SS	RO	Mapping	TPDO	Related Mode	All	Value Range	0 to 10	Default	0			
Displays	s the pr	esen	t operati	on mode of t	he servo (	drive.								
Valu	ue					Modes	lodes of Operation							
0		N/A				Re	Reserved							
1		Prof	file Positi	ion Mode (PP	)	Se	See "7.6 Profile Position (PP) Mode"							
2		N/A				Re	Reserved							
3		Prof	file Veloc	ity Mode (PV)	1	Se	See <u>"7.7 Profile Velocity Mode (PV)"</u>							
4		Prof	ile Torqu	ie Mode (PT)		Se	e <u>"7.8 Prof</u>	ile Torque M	lode (PT)'					
5		N/A				Re	served							
6		Hon	ning Mod	le (HM)		Se	e <u>"7.9 Hom</u>	ning Mode (F	HM)"					
7	_	Inte	rpolated	Position Mod	de (IP)	No	t supporte	d						
8		Cycl	lic Synch	ronous Positi	ion Mode	(CSP) Se	e <u>"7.3 Cycl</u> i	ic Synchron	ous Positi	ion Mode (C	<u>SP)"</u>			
9		Cycl	ic Synch	ronous Veloc	ity Mode	(CSV) Se	V) See <u>"7.4 Cyclic Synchronous Velocity (CSV) Mode"</u>							
10	)	Cycl	ic Synch	ronous Torqu	ue Mode (	CST) Se	e <u>"7.5 Cycl</u>	ic Synchron	ous Torqu	ue Mode (CS	<u>T)"</u>			

### 7.2.2 Communication Cycle

SV660N series servo drives support a synchronization cycle of 125 μs (or an integral multiple of 125 μs).

# 7.3 Cyclic Synchronous Position Mode (CSP)

In this mode, the host controller generates the position references and sends the target position to the servo drive cyclically. The position control, speed control, and torque control are performed by the servo drive.

# 7.3.1 Configuration Block Diagram

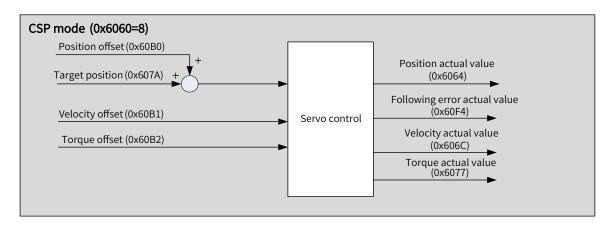



Figure 7-3 Cyclic synchronous position mode

#### 7.3.2 Related Objects

Index (hex)	Sub-index (hex)	Name	Access	Data Type	Unit	Value Range	Default
6040	00	Control word	RW	UINT16	-	0 to 65535	0
6041	00	Status word	RO	UINT16	-	-	0
6060	00	Modes of operation	RW	INT8	-	0 to 10	0
6061	00	Modes of operation display	RO	INT8	-	-	0
6064	00	Position actual value	RO	INT32	Position unit	-	-
606C	00	Velocity actual value	RO	INT32	Position unit/s	-	-
607A	00	Target position	RW	INT32	Position unit	-2 ³¹ to +(2 ³¹ -1)	0
607E	00	Polarity	RW	UINT8	-	0 to 255	0
60B0	00	Position offset	RW	INT32	Position unit	-2 ³¹ to +(2 ³¹ -1)	0
60B1	00	Velocity offset	RW	INT32	Velocity unit/s	-2 ³¹ to +(2 ³¹ -1)	0
60B2	00	Torque offset	RW	INT16	0.1%	-3000 to +3000	0

# 7.3.3 Related Function Settings

#### 1 Position deviation monitoring function

 $\cancel{x}$  Related parameters

Index	Name	Follow	ing error w	indow	Setting Condition & Effective Time	During running & Immediately	Data Structure	VAR	Data Type	UINT 32
6065h	Access	RW	Mapping	RPDO	Related Mode	PP HM CSP	Value Range	0 to (2 ³² -1) (position unit)	Default	3145728

Defines the threshold of excessive position deviation (position unit).

If 6065h is set to a too large value, the warning threshold of excessive position deviation will be 2147483647 encoder units.

Index	Name	Follov	ving error ti	me out	Setting Condition & Effective Time	During running & Immediately	Data Structure	VAR	Data Type	UINT 16
6066h	Access	RW	Mapping	RPDO	Related Mode	PP HM CSP	Value Range	0 to 65535 (ms)	Default	0
Defines	ines the threshold of excessive position d				<mark>eviation (pos</mark>	<mark>ition unit)</mark> .				

If the position deviation exceeds the threshold of excessive position deviation and such status persists after the time defined by 6066h elapses, EB00.0 (Excessive position deviation) will occur.

#### 2 Position reference polarity

You can change the position reference direction through setting the position reference polarity.

☆ Related parameters

Index 607Eh	Name		Polarity		Setting Condition & Effective Time	During running & Immediately	Data Structure	VAR	Data Type	Uint8
	Access	RW	Mapping	RPDO	Related Mode	All	Value Range	0 to 255	Default	0
Defines	the polar	ity of the	position, sp	eed, and	torque refere	nce.				
Bit				Descript	ion					
	Posit	tion polar	rity							
7	0: Mt	ultiply by	1							
'	1: Mu	ultiply by	-1							
	CSP:	<mark>Invert</mark> th	e position re	eference	(607Ah + 60BC	)h)				

#### 7.3.4 Recommended Configuration

The basic configuration for the CSP mode is described in the following table.

RPDO	TPDO	Description
6040: Control word	6041: Status word	Mandatory
607A: Target position	6064: Position actual value	Mandatory
6060: Modes of operation	6061: Modes of operation display	Optional

# 7.3.5 Related Parameters

14

15

Manufacturer-specific

Home find

Index 6040h	Name		Control word	1	Setting Condition & Effective Time	During running & Immediate	Structure	VAR	Data Type	Uint10	
	Access	RW	Mapping	RPDO	Related Mode	All	Value Range	0 to 6553	5 Default	0	
Defines	the control	comma	nds.								
bit	Nan	าย	Dese	cription							
0	Switch on		1: Valid, 0: I	nvalid							
1	Enable vo	ltage	1: Valid, 0: I	nvalid							
2	Quick stop	C	0: Valid, 1: I	nvalid							
3	Enable op	eration	1: Valid, 0: I	nvalid							
The CSP	mode only	suppor	ts the absolu	te positio	on reference	es.					
Index 6041h	Name		Status wo	ď	Setting Conditio & Effectiv Time	n	Data Structure	VAR	Data Type	Uint16	
	Access	RO	Mapping	TPDO	Related Mode	All	Value Range	-	Default	0	
Shows t	he servo dr	ive statu	s.						I		
bit		Name	9		Descrip	otion					
0	Ready to sv	vitch on		1: Val	id, 0: Invalid						
	Switch on				1: Valid, 0: Invalid						
2	Operation e	enabled		1: Val	id, 0: Invalid	1					
3	Fault			1: Val	id, 0: Invalid						
4	Voltage ena	abled		1: Val	id, 0: Invalid	l					
5	Quick stop			0: Val	id, 1: Invalid	1					
6	Switch on c	lisabled		1: Val	id, 0: Invalid						
7	Warning				id, 0: Invalid						
8	Manufactur	rer-speci	fic	Unde							
9	Remote			1: Val 0: Inv		vord activate	ed				
10	Target <mark>reac</mark>	<mark>h</mark>		Not s	upported, a	lways being	1				
11	Internal lim	arget <mark>reach</mark> nternal limit active				nce within t					
						nce beyond					
12	Drive <mark>follov</mark>	<mark>v</mark> the cor	nmand value			lways being					
13	Following e	error		devia	tion) not rep	ive position ported ive position					

deviation) reported

0: Homing not completed

1: Homing completed

Undefined

Index 607Ah	Name	7	larget positi	on	Setting Condition & Effective Time	During running & Immediately	Data Structure	VAR	Data Type	int32
	Access	RW	Mapping	RPDO	Related Mode	PP CSP		-2 ³¹ to +(2 ³¹ -1) (position unit)	Default	0

Defines the target position in PP mode and CSP mode.

In CSP mode, 607Ah represents the absolute target position. In PP mode, 607Ah represents either incremental position or absolute position as defined by the control word.

Index	Name	F	Position offset		Setting Condition & Effective Time	During running & Immediately	Data Structure	VAR	Data Type	int32
60B0h	Access	RW	Mapping	RPDO	Related Mode	CSP	Value Range	-2 ³¹ to +(2 ³¹ -1) (position unit)	Default	0

Defines the position offset in CSP mode.

The sum of 607Ah and 60B0h determines the target position of the servo drive.

Target position = 607Ah + 60B0h

Ind 60E	dex 31h	Name	V	/elocity offs	et	Setting Condition & Effective Time	During running & Immediately	Data Structure	VAR	Data Type	int32
		Access	RW	Mapping	RPDO	Related Mode	CSP/CSV	Value Range	$-2^{31}$ to +( $2^{31}$ -1) (velocity unit/s)	Default	0

Defines the external velocity feedforward signal of EtherCAT in the CSP mode (activated when 2005-14h is set to 2). 60B1h can be used to reduce the position deviation during positioning. After the positioning is done, set the velocity offset to 0. Failure to comply will cause deviation between the positioning target position and position feedback.

You can set both the velocity offset and the velocity reference offset in the CSP mode through 60B1h.

Index 60B2h	Name	т	orque offse	۰t	Setting Condition & Effective Time	During running & Immediately	Data Structure	VAR	Data Type	int16
	Access	RW	Mapping	RPDO	Related Mode	CSP/CSV/CST	Value Range	–3000 to +3000 (0.1%)	Default	0

Defines the external torque feedforward signal of EtherCAT in CSP and CSV modes (activated when 2006-0Ch is set to 2).

You can set both the torque reference and the torque reference offset in CST mode through 60B2h.

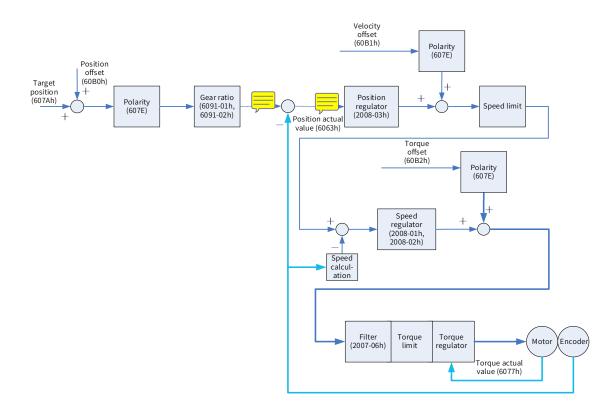
Index			Setting Condition & Effective Time	At display	Data Structure	VAR	Data Type	int32		
6064h -	Access	RO	Mapping	TPDO	Related Mode	All	Value Range	- (position unit)	Default	0

Shows the absolute position feedback (position unit).

In the case of an absolute encoder used in the rotary mode, 6064h shows the single-turn position feedback (position unit) of the mechanical load.

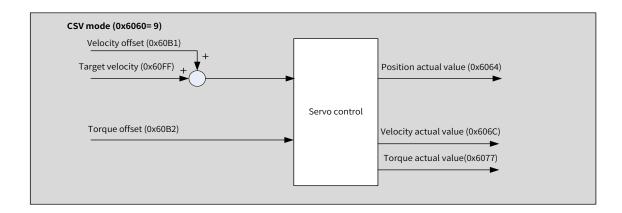
Index	Name	Velc	ocity actual va	alue	Setting Condition & Effective Time	At display	Data Structure	VAR	Data Type	int 32
606Ch	Access	RO	Mapping	TPDO	Related Mode	All	Value Range	(unit: velocity unit/s)	Default	-

Shows the actual speed feedback value (velocity unit/s).

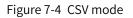

Index 6077h	Name	Tor	Torque actual value		Setting Condition & Effective Time	At display	Data Structure	VAR	Data Type	int16
	Access	RO	RO Mapping TPDO		Related Mode	All	Value Range	(unit: 0.1%)	Default	-

Shows the internal torque feedback of the servo drive.

The value 100.0% corresponds to the rated motor torque.


Index 60F4h	Name	Follow	Following error actual value RO Mapping TPDO		Setting Condition & Effective Time	At display	Data Structure	VAR	Data Type	INT32
	Access	RO			Related Mode	PP HM CSP	Value Range	(unit: position unit)	Default	-
Shows t	he positio	n devi	ation (posit	tion un	it).					

# 7.3.6 Function Block Diagram




# 7.4 Cyclic Synchronous Velocity (CSV) Mode

In this mode, the host controller sends the target speed to the servo drive using cyclic synchronization. Speed control and torque control are performed by the servo drive.



# 7.4.1 Configuration Block Diagram



Index (hex)	Sub-index (hex)	Name	Access	Data Type	Unit	Value Range	Default
6040	00	Control word	RW	UINT16	-	0 to 65535	0
6041	00	Status word	RO	UINT16	-	-	0
6060	00	Modes of operation	RW	INT8	-	0 to 10	0
6061	00	Modes of operation display	RO	INT8	-	-	0
6064	00	Position actual value	RO	INT32	Position unit	-	-
606C	00	Velocity actual value	RO	INT32	Velocity unit/s	-	-
60B1	00	Velocity offset	RW	INT32	Velocity unit/s	-2 ³¹ to +(2 ³¹ -1)	0
60B2	00	Torque offset	RW	INT16	0.1%	-3000 to +3000	0
60FF	00	Target velocity	RW	INT32	Velocity unit/s	-2 ³¹ to +(2 ³¹ -1)	0

### 7.4.2 Related Objects

## 7.4.3 Related Function Settings

#### 1 Velocity reference polarity

You can change the velocity reference direction through setting the velocity reference polarity.

#### $\cancel{k}$ Related parameters

Index 607Eh	Name		Polarity		Setting Condition & Effective Time	During running & Immediately	Data Structure	VAR	Data Type	Uint8
	Access	RW	Mapping	RPDO	Related Mode	All	Value Range	0 to 255	Default	0
Defines	the polarit	y of the p	osition, spee	ed, and to	ce.					
Bit			De	escription						
	Veloci	ty referen	ce polarity							
	0: Mul	tiply by 1								
6	1: Mul	tiply by -1								
	CSP: <mark> </mark>	<mark>nvert</mark> the	velocity offs	et 60B1h						
	CSV: <mark>I</mark>	nvert the s	speed refere	nce (60FF	h + 60B1h)					

# 7.4.4 Recommended Configuration

The basic configuration of the CSV mode is described in the following table.

RPDO	TPDO	Description
6040: Control word	6041:Status word	Mandatory
60FF: Target velocity		Mandatory
	6064: Position actual value	Optional
	606C: Velocity actual value	Optional
6060: Modes of operation	6061: Modes of operation display	Optional

## 7.4.5 Related Parameters

Index 6040h	Name	(	Control word		Setting Condition & Effective Time	During running Immediat	&	Data Structure	VAR	Data Type	Uint16
	Access			RPDO	Related Mode	All		Value Range	0 to 65535	Default	0
Defines	the contr	he control command.									
bit		Na	me		Description						
0	Switch o	n		1	: Valid, 0: Inva	lid					
1	Enable v	-			: Valid, 0: Inva	lid					
2	Quick sto			: Valid, 1: Inva	lid						
3	Enable o	nable operation 1		1: Valid, 0: Invalid							

Index 6041h					Setting Condition & Effective Time	-	Data Structure	VAR	Data Type	Uint16
	Access	RO	Mapping	TPDO	Related Mode	All	Value Range	-	Default	0
Shows t	the servo driv	ve status.								
bit		Name			Desc	riptior	า			
0	Ready to swi	itch on		1: Valio	d, 0: Invalid					
1	Switch on			1: Valio	d, 0: Invalid					
2	Operation er	nabled		1: Valio	d, 0: Invalid					
3	Fault			1: Valio	d, 0: Invalid					
4	Voltage enat	oled		1: Valio	l, 0: Invalid					
5	Quick stop			0: Valio	l, 1: Invalid					
6	Switch on di	sabled		1: Valio	l, 0: Invalid					
7	Warning			1: Valio	d, O: Invalid					
8	Manufacture	er-specific	:	Undefi	ned					
9	Remote			1: Valio 0: Inva	l, control wor lid	d activ	vated			
10	Target <mark>reach</mark>			Not su	pported, alwa	ays bei	ng 1			
				0: Posi	tion feedback	withi	n the limit			
11	Internal limi	t active		1: Posi	tion feedback	overt	the limit			
12	Drive follow	the comr	nand value	Not su	pported, alwa	ays bei	ng 1			
13	Following er	ror		Not su	pported, alwa	ays bei				
14	Manufacture	er-specific	:	Undefi	ned					
15	Home <mark>find</mark>			0: Hom	ning not comp	leted				
15	Home Tind			1: Homing completed						

Index 60B1h	Name	V	Velocity offset		Setting Condition & Effective Time	During running & Immediately	Data Structure	VAR	Data Type	int32
	Access	RW	Mapping	RPDO	Related Mode	CSP/CSV	Value Range	-2 ³¹ to +(2 ³¹ -1) (velocity unit/s)	Default	0

Defines the speed reference offset in CSV mode. After setting the velocity offset, the following formula applies: Target speed = 60FFh + 60B1h

Index 60B2h	Name		Torque offset		Setting Condition & Effective Time	During running & Immediately	Data Structure	VAR	Data Type	int16
	Access	RW Mapping RPDO			Related Mode	CSP/CSV/CST	Value Range	-3000 to +3000 (0.1%)	Default	0
Defines	Defines the external torque feedforward sig					CAT in CSV mod	e (activated	when 2006-0	0Ch is set to	92).

Index 6064h	Name	Positi	Position actual value		Setting Condition & Effective Time	At display	Data Structure	VAR	Data Type	int32
000411	Access	RO	Mapping	TPDO	Related Mode	All	Value Range	۔ (unit: position unit)	Default	0

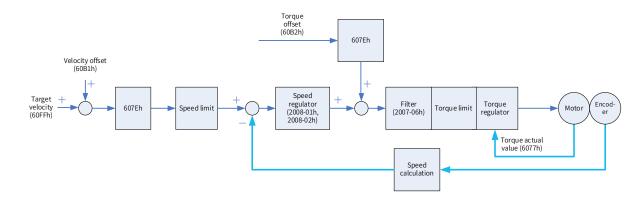
Represents the absolute position feedback (position unit).

In the case of an absolute encoder used in the rotary mode, 6064h represents the single-turn position feedback (position unit) of the mechanical load.

Index 606Ch	Name	Velo	Velocity actual value		Setting Condition & Effective Time	At display	Data Structure	VAR	Data Type	int 32
	Access	RO	RO Mapping TPDO		Related Mode	All	Value Range	(unit: velocity unit/s)	Default	-
Depreser	***	مالممط	hack value (	بملممامي						

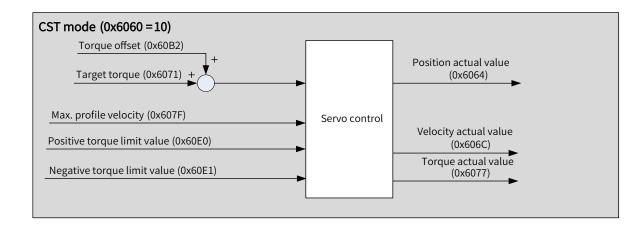
Represents the speed feedback value (velocity unit/s).

Index 6077h	Name	То	rque actual v	alue	Setting Condition & Effective Time	At display	Data Structure	VAR	Data Type	int16
	Access	RO Mapping TPDO			Related Mode	All	Value Range	(0.1%)	Default	-
Represe	nts the inter	nal torc	ue feedback	of the se	ervo drive.					

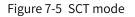

The value 100.0% corresponds to the rated motor torque.

Index 60FFh	Name	т	Target velocity		Setting Condition & Effective Time	During running & Immediately	Data Structure	VAR	Data Type	int32
	Access	RW	Mapping	YES	Related Mode	PV/CSV	Value Range	-2 ³¹ to +(2 ³¹ -1) (Velocity unit/s)	Default	0
Defines	the target	snoor	d in DV and	CSV m	odec					

Defines the target speed in PV and CSV modes.


The maximum running speed of the motor in CSV mode is determined by the maximum motor speed.

### 7.4.6 Function Block Diagram



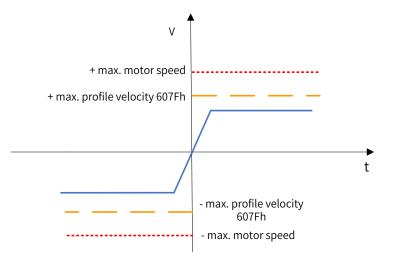

# 7.5 Cyclic Synchronous Torque Mode (CST)

In this mode, the host controller sends the target torque to the servo drive using cyclic synchronization. Torque control is performed by the servo drive.



# 7.5.1 Configuration Block Diagram



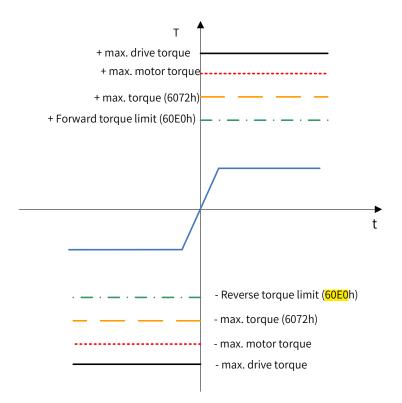

Index (hex)	Sub-index (hex)	Name	Access	Data Type	Unit	Value Range	Default
6040	00	Control word	RW	UINT16	-	0 to 65535	0
6041	00	Status word	RO	UINT16	-	-	0
6060	00	Modes of operation	RW	INT8	-	0 to 10	0
6061	00	Modes of operation display	RO	INT8	-	-	0
6071	00	Target torque	RW	INT16	0.1%	-3000 to +3000	0
6072	00	Max torque	RW	UINT16	0.1%	0 to 3000	3000
6074	00	Torque demand value	RO	INT16	0.1%	-3000 to +3000	0
6077	00	Torque actual value	RO	INT16	0.1%	-3000 to +3000	0
607F	00	Max profile velocity	RW	UINT32	Velocity unit/s	0 to (2 ³² -1)	104857600
60B2	00	Torque offset	RW	INT16	0.1%	-3000 to +3000	0
60E0	00	Positive torque limit value	RW	UINT16	0.1%	0 to 3000	3000
60E1	00	Negative torque limit value	RW	UINT16	0.1%	0 to 3000	3000

# 7.5.2 Related Objects

#### 7.5.3 Related Function Settings

#### 1 Speed Limit in the torque control mode

In the torque control mode, 607Fh can be used to limit the maximum speed in forward/reverse running. Note that the maximum speed cannot exceed the maximum running speed allowed by the motor.




#### ☆ Related parameters

Index	Name	Ма	x. profile v	elocity	Setting Condition & Effective Time	During running & Immediately	Data Structure	VAR	Data Type	UINT32
607Fh	Access	RW	Mapping	RPDO	Related Mode	PP PV PT HM CST	Value Range	0 to (2 ³² –1) (Velocity unit/s)	Default	104857600
Defines	Defines the speed limit in PP, PV, PT, HM a			PT, HM ar	nd CST modes	5.				

#### 2 Torque limit

To protect the mechanical devices, you can limit the torque references of the servo drive in the position, speed, and torque control modes by setting 6072h (Max torque), 60E0h (Positive torque limit value), and 60E1h (Negative torque limit value). Note that the maximum torque allowed by the servo drive cannot be exceeded.



#### $\cancel{x}$ Related parameters

Index 6072h	Name	Ма	x. torque va	lue	Setting Condition & Effective Time	During running & Immediately	Data Structure	VAR	Data Type	Uint16
	Access	RW	Mapping	RPDO	Related Mode	All	Value Range	0 to 3000 (0.1%)	Default	3000

Defines the maximum torque limit of the servo drive when running in the forward/reverse direction.

Index 60E0h	Name	Positiv	e torque limit	t value	Setting Condition & Effective Time	During running & Immediately	Data Structure	VAR	Data Type	Uint16
	Access	RW	Mapping	RPDO	Related Mode	All	Value Range	0 to 3000 (0.1%)	Default	3000
- C							1.11			

Defines the maximum torque limit of the servo drive when running in the forward direction.

Index 60E1h	Name	Negat	ive torque lin	nit value	Setting Condition & Effective Time	During running & Immediately	Data Structure	VAR	Data Type	Uint16
	Access	RW	Mapping	RPDO	Related Mode	All	Value Range	0 to 3000 (0.1%)	Default	3000
Defines	fines the maximum torque limit of the servo					running in the	reverse direo	ction.		

# 3 Torque reference polarity

You can change the torque reference direction through setting the torque reference polarity.

Index 607Eh	Name		Polarity		Setting Condition & Effective Time	During running & Immediately	Data Structure	VAR	Data Type	Uint8
	Access	RW	Mapping	RPDO	Related Mode	All	Value Range	0 to 255	Default	0
Defines	the polarity	of the p	osition, spee	d, and to	orque referer	ice.				
Bit			Des	scriptior	ı					
	Torque	referen	ce polarity:							
	0: Multi	ply by 1								
5	1: Multi	ply by -	1							
	CSP CS	V: <mark>Inver</mark> l	torque offse	t 60B2h						
	CST: Inv	<mark>/ert</mark> the	torque refere	ence (607	71h + 60B2h)					

# 7.5.4 Recommended Configuration

The basic configuration of cyclic synchronous torque (CST) mode is described in the following table.

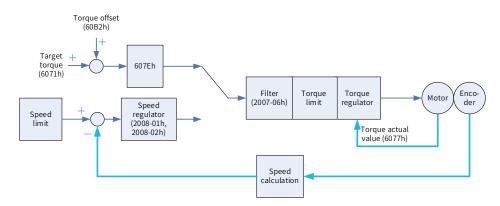
RPDO	TPDO	Description
6040: Control word	6041:Status word	Mandatory
6071: Target torque		Mandatory
	6064: Position actual value	Optional
	606C: Velocity actual value	Optional
	6077: Torque actual value	Optional
6060: Modes of operation	6061: Modes of operation display	Optional

## 7.5.5 Related Parameters

	ndex )40h	Name		Control word	ł	Setting Condition & Effective Time	During running & Immediate	Structure	VAR	Data Type	Uint16
		Access	RW	Mapping	RPDO	Related Mode	All	Value Range	0 to 65535	Default	0
De	efines the control command.										
	bit		Name		Description						
	0	Switch on			1: Valic	l, 0: Invalid					
	1	Enable volta	-		1: Valic	l, 0: Invalid					
	2	Quick stop			0: Valic	l, 1: Invalid					
	3	Enable operation 1		1: Valid, 0: Invalid							

Index 6041h	Name		Status wor	ł	Setting Condition & Effective Time	-	Data Structure	VAR	Data Type	Uint16
	Access	RO	Mapping	TPDO	Related Mode	All	Value Range	-	Default	0
Shows t	he servo drive:	e status.								
bit		Name			Des	cription				
0	Ready to swite	ch on		1: Val	id, 0: Invalid					
1	Switch on			1: Val	id, 0: Invalid					
2	Operation ena	abled		1: Val	id, 0: Invalid					
3	Fault			1: Val	id, 0: Invalid					
4	Voltage enabl	ed		1: Val	id, 0: Invalid					
5	Quick stop			0: Val	id, 1: Invalid					
6	Switch on dis	abled		1: Val	id, 0: Invalid					
7	Warning			1: Val	id, 0: Invalid					
8	Manufacturer	-specific	:	Unde	fined					
9	Remote			1: Val 0: Inv	id, control w alid	ord activate	ed			
10	Target <mark>reach</mark>			Not s	upported, al	ways being	1			
				0: Pos	sition feedba	ck within th	ne limit			
11	Internal limit	active		1: Pos	sition feedba	ck over the	limit			
12	Drive follow t	he comr	nand value	Not s	upported, al	ways being	1			
13	Following erro	or		Not s	upported, al	ways being				
14	Manufacturer	-specific	:	Unde	fined					
15	Home find			0: Homing not completed						
15	nome ind			1: Homing completed						

Index 6071h	Name	Target torque		Setting Condition & Effective Time	During running & Immediately	Data Structure	VAR	Data Type	int16	
	Access	RW	RW Mapping RPDO		Related Mode	PT/CST	Value Range	–3000 to +3000 (0.1%)	Default	0
Defines	Defines the target targue in DT and CST modes									


Defines the target torque in PT and CST modes.

The value 100.0% corresponds to the rated motor torque.

Index 6074h	Name			Setting Condition & Effective Time	-	Data Structure	VAR	Data Type	int16	
	Access			TPDO	Related Mode	All	Value Range	- (0.1%)	Default	-
	Shows the torque reference output value during The value 100.0% corresponds to the rated moto									

Index 6077h	Name	Тог	rque actual	value	Setting Condition & Effectiv Time	-	Data Structure	VAR	Data Type	int16		
	Access	RO	Mapping	TPD	O Related Mode	All	Value Range	- (0.1%)	Default	-		
	he actual toro le 100.0% cor											
Index 60B2h	Name	Te	orque offse	t	Setting Condition & Effective Time	During running & Immediatel	Data Structure	VAR	Data Type	int16		
	Access	RW	Mapping	RPDO	Related Mode	CSP/CSV/CS	T Value Range	-3000 t +3000 (0.1	Defaul	t O		
	Defines the torque offset in CST mode. After offset, the following formula applies: Target torque = 6071h + 60B2h											

### 7.5.6 Function Block Diagram



# 7.6 Profile Position (PP) Mode

The PP mode mainly applies to point-to-point positioning. In PP mode, the host controller defines the target position, running speed, increasing deceleration, and deceleration. The position profile generator inside the servo drive generates the position curve based on settings. The servo drive executes position control, speed control, and torque control.

#### 7.6.1 Configuration Block Diagram

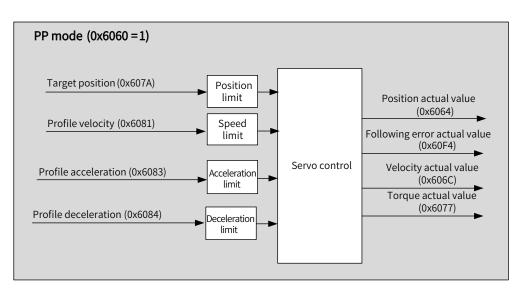
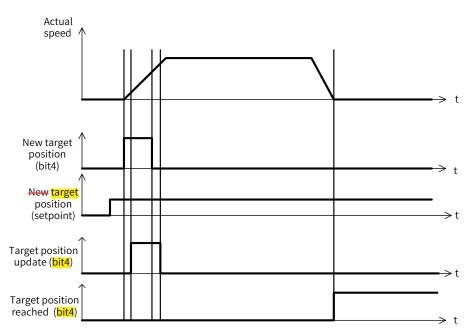
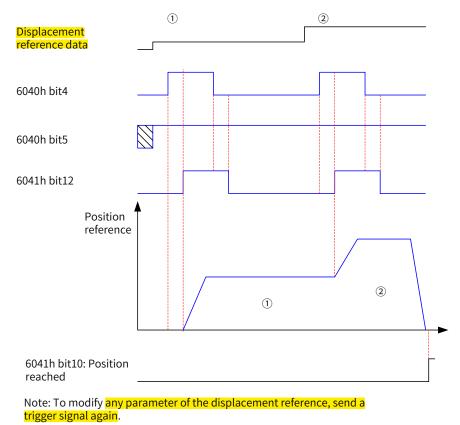




Figure 7-6 PP mode

In PP mode, the target position is triggered and activated based on the time sequence of bit4 of the control word (New set-point) and bit12 of the status word (Set-point acknowledge).


The controller sets the New set-point **bit** to 1 to inform the servo drive of the new target position. The servo drive, after receiving the new target position, sets the Set-point acknowledge to 1. After the controller sets the New set-point to 0 again, if the servo drive can receive the new target position, the Set-point acknowledge bit will be set to 0. Otherwise, it is kept to 1.



The linkage mode of the position reference is determined by bit5 (Change set immediately) of the control word. When bit5 is set to 1, sequential linkage applies between position references. When bit5 is set to 0, linkage applies between position references after passing zero, which is called single point mode.

#### 1 Sequential mode:

The target position of present segment is in the process of positioning. After the new target position is generated, the controller sets the New set-point bit to 1, and the servo drive performs positioning based on the new target position.



In sequential mode, the time sequence of bit4 of the control word (New set-point) and bit12 of the status word (Set-point acknowledge) is as follows.

Figure 7-7 Time sequence in sequential mode

#### 2 Single-point mode:

The target position of present segment is in the process of positioning. After the new target position is generated, the controller sets the New set-point bit to 1, and the servo drive performs positioning based on the new target position after the position reference of present segment is transmitted.

The time sequence of bit4 of the control word (New set-point) and bit12 of the status word (Set-point acknowledge) is as follows.

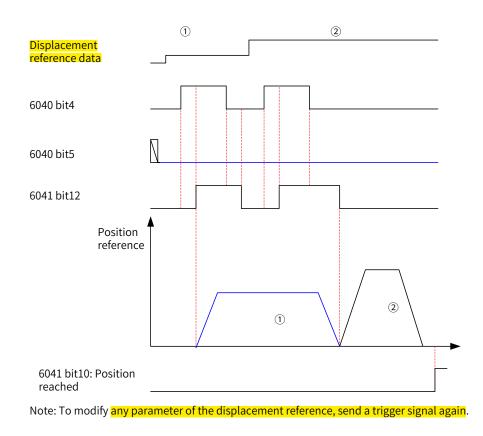
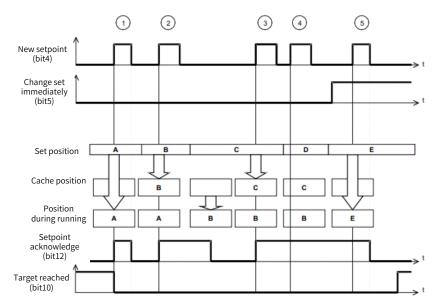




Figure 7-8 Time sequence in the single-point mode

In the single-point mode, the servo drive supports cache of one target position, which means the servo drive can cache a new segment of target position when the present target position is running. The time sequence is as follows.



① : If the cache position is empty, the set position will be executed immediately.

②③ : If the present position reference is running, the new set position will be stored in the cache. After present position reference is transmitted, the cache value starts running. After the cache is empty, a new set value can be received.

(4)(5) : The new setpoint cannot be received if the cache is full. In this case, you can set the attribute bit (Change set immediately) of the setpoint to 1 to activate the setpoint.

Index (hex)	Sub-index (hex)	Name	Access	Data Type	Unit	Value Range	Default
6040	00	Control word	RW	UINT16	-	0 to 65535	0
6041	00	Status word	RO	UINT16	-	-	0
6060	00	Modes of operation	RW	INT8	-	0 to 10	0
6061	00	Modes of operation display	RO	INT8	-	-	0
6064	00	Position actual value	RO	INT32	Position unit	-	-
607A	00	Target position	RW	INT32	Position unit	-2 ³¹ to (2 ³¹ -1)	0
6081	00	Profile velocity	RW	UINT32	Velocity unit/s	0 to (2 ³² -1)	1747627
6083	00	Profile acceleration	RW	UINT32	Acceleration unit/s ²	0 to (2 ³² –1)	1747626667
6084	00	Profile deceleration	RW	UINT32	Acceleration unit/s ²	0 to (2 ³² –1)	1747626667
607F	00	Max. profile velocity	RW	UINT32	Velocity unit/s	0 to (2 ³² –1)	104857600

# 7.6.2 Related Objects

## 7.6.3 Related Function Settings

#### 1 Positioning completed

Positioning completed: When the position deviation fulfills the set condition, the positioning process is done. In this case, the servo drive sets the status word, and the host controller, once receives the signal, confirms that the positioning is done.

☆ Related parameters

Index 6067h	Name	P	Position window		Setting Condition & Effective Time	During running & At stop	Data Structure	VAR	Data Type	Uint 32
000711	Access	ess RW Mapping RPDO		RPDO	Related Mode	PP	Value Range	0 to (2 ³² –1) (position unit)	Default	734

Defines the threshold for position arrival.

When the position deviation is within  $\pm$  6067h, and the time reaches the value defined by 6068h, the servo drive considers the position is reached and sets bit10 of 6041h to 1.

This flag bit is valid only when the S-ON signal is valid in PP mode.

Index 6068h	Name	Position window time		Setting Condition & Effective Time	During running & At stop	Data Structure	VAR	Data Type	Uint 16	
	Access	RW	RW Mapping RPDO		Related Mode	РР	Value Range	0 to 65535 (ms)	Default	0
Defines	the time wi	ndow f	or judging po	sition ar	rival					

Defines the time window for judging position arrival.



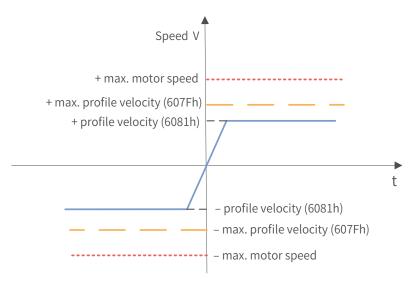
#### 2 Position deviation monitoring

 $\Leftrightarrow$  Related parameters

Index	Name	Follow	ing error window		Setting Condition & Effective Time	During running & Immediately	Data Structure	VAR	Data Type	UINT 32
6065h	Access	RW	Mapping	RPDO	Related Mode	PP HM CSP	Value Range	0 to (2 ³² –1) (position unit)	Default	3145728

Defines the threshold of excessive position deviation (position unit).

If 6065h is set to a too large value, the warning threshold of excessive position deviation will be 2147483647 encoder units.


Index 6066h	Name	Following error time out			Setting Condition & Effective Time	During running & Immediately	Data Structure	VAR	Data Type	UINT 16
	Access	RW	RW Mapping RPDO		Related Mode	PP HM CSP	Value Range	0 to 65535 (ms)	Default	0

Defines the threshold of excessive position deviation (position unit).

If the position deviation exceeds the warning threshold of excessive position deviation and such status persists after the time defined by 6066h elapses, EB00.0 (Excessive position deviation) will occur.

#### 3 Speed limit

In PP mode, 607Fh can be used to limit the maximum speed in forward/reverse running. Note that the maximum speed cannot exceed the maximum running speed allowed by the motor.



#### $\Leftrightarrow \mathsf{Related} \ \mathsf{parameters}$

Index	Name	Ma	Max_profile velocity		Setting Condition & Effective Time	During running & Immediately	Data Structure	VAR	Data Type	UINT32
607Fh	Access	RW	Mapping	RPDO	Related Mode	PP/PV/PT/HM/ CST	Value Range	0 to (2 ³² -1) (Velocity unit/s)	Default	104857600
Defines	Defines the speed limit in PP, PV, PT, and CST		modes.							

#### 4 Acceleration limit

In PP mode, the change rate of the position reference can be limited through the acceleration limit. ☆ Related parameters

Index	Name	Ma	Max. acceleration		Setting Condition & Effective Time	During running & Immediately	Data Structure	VAR	Data Type	Uint32
60C5h	Access	RW	Mapping	RPDO	Related Mode	All	Value Range	0 to 4294967295 (acceleration unit/s ²⁾	Default	2147483647

Defines the maximum limit value of acceleration.

In PP mode, if the value of 6083h exceeds that of 60C5h, the value of 60C5h will be used.

For 60C5h, the set value 0 will be forcibly changed to 1.

Index	Name	Max. deceleration			Setting Condition & Effective Time	During running & Immediately	Data Structure	VAR	Data Type	Uint16
60C6h	Access	RW	Mapping	RPDO	Related Mode	All	Value Range	0 to 4294967295 (acceleration unit/s ²⁾	Default	2147483647

Defines the maximum limit value of deceleration.

In PP mode, if the value of 6084h exceeds that of 60C6h, the value of 60C6h will be used.

For 60C6h, the set value 0 will be forcibly changed to 1.

#### 5 Polarity

You can change the position reference direction through setting the position reference polarity.

#### $\Rightarrow$ Related parameters:

Index 607Eh			Polarity		Setting Condition & Effective Time	During running & Immediately	Data Structure	VAR	Data Type	Uint8
	Access	RW	Mapping	RPDO	Related Mode	All	Value Range	0 to 255	Default	0

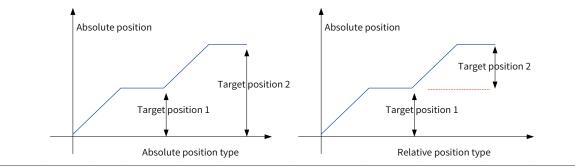
Bit	Description
	Position reference polarity
7	0: Multiply by 1
1	1: Multiply by -1
	PP: Invert the target position 607Ah

# 7.6.4 Recommended Configuration

The basic configuration for PP mode is described in the following table.

RPDO	TPDO	Description
6040: Control word	6041:Status word	Mandatory
607A: Target <mark>velocity</mark>	6064: Position actual value	Mandatory
6081: Profile velocity	-	Mandatory
6083: Profile acceleration	-	Optional
6084: Profile deceleration	-	Optional
6060: Modes of operation	6061: Modes of operation display	Optional

# 7.6.5 Related Parameters


Inde 6040		Name	С	ontr	olwor	d	Setting Condition & Effective Time	During running & Immediately	Data Structure	VAR	Data Type	Uint16		
		Access	RW	Ма	pping RPDO Related All Value 0 to 6						Default	0		
Defines	the c	ontrol cor	nmands	•										
bit		Nan	าย				De	scription						
0	Swite	ch on			1: Vali	1: Valid, 0: Invalid								
1	Enab	ole voltage	è		1: Valid, 0: Invalid									
2	Quic	k stop			0: Valid, 1: Invalid									
3	Enab	le operat	ion		1: Valid, 0: Invalid									
4	New	set-point			0 -> 1: Trigger new target position 1 -> 0: Clear bit12 of the status word									
5	Chan	ige set im	mediate	ly				t be updated i	,	,				
								updated imm	,					
6	abs/r	rel			0: Target position being absolute position reference 1: Target position being relative position reference									
						0	2							
8	Halt				0: Keep present running state									
					1: Hal	t								

Index 6041h	Name	S	Status wor	d	Setting Condition & Effective Time	-	Data Structure	VAR	Data Type	Uint16
	Access	RO	Mapping	TPDO	Related Mode	All	Value Range	-	Default	0
Showst	the servo dr	ive statu	s.							
bit		Name			Desc	ription				
0	Ready to sv	witch on	1	L: Valid, O	: Invalid					
1	Switch on		1	l:Valid,O	: Invalid					
2	Operation e	enabled	1	L: Valid, O	: Invalid					
3	Fault		1	L: Valid, O	: Invalid					
4	Voltage ena	abled	1	1: Valid, 0: Invalid						
5	Quick stop		0	): Valid, 1	: Invalid					
6	Switch on o	disabled	1	L: Valid, O	: Invalid					
7	Warning	Warning			: Invalid					
8	Manufactu	rer-speci	fic l	Jndefine	d					
9	Remote		1	1: Valid, control word activated						
9	Kennote		C	0: Invalid						
10	Target read	had	(	): Target	position not	reached				
10	Target reac	neu	1	: Target	position read	hed				
11			(	): Positio	n reference v	vithin the	e limit			
11	Internal lim	nit active	1	L: Positio	n reference c	over the l	imit			
			. (	): Set-poi	nt can be up	dated				
12	Set-point a	cknowle	dge 1	l: Set-poi	nt cannot be	updated	ł			
			(	): EB00.0	(Excessive p	osition d	eviation) not			
12	E a U a su dia a a		r	reported						
13	Following	error	1	1: EB00.0 (Excessive position deviation)						
			r	reported						
14	Manufactu	rer-speci	fic l	Undefined						
15	Home <mark>find</mark>		C	0: Homing not completed						
1.5			1	1: Homing completed						

Index	Name	-	Target posi	tion	Setting Condition & Effective Time	During running & Immediately	Data Structure	VAR	Data Type	int32
607Ah	Access	RW	Mapping	RPDO	Related Mode	PP CSP	Value Range	-2 ³¹ to +(2 ³¹ -1) (position unit)	Default	0

Defines the target position of the servo drive in PP mode.

The target position type (absolute or relative) can be designated through bit6 of 6040h in PP mode.

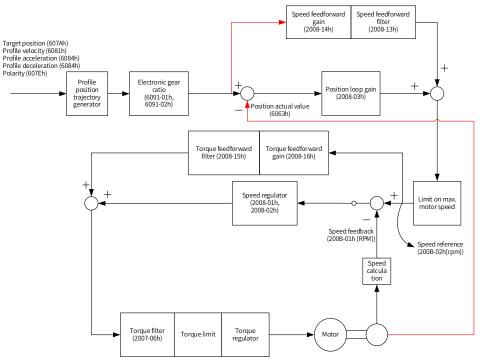


Index	Name	Ρ	rofile veloci	ty	Setting Condition & Effective Time	During running & Immediately	Data Structure	VAR	Data Type	UINT32	
6081h	Access	RW	Mapping	RPDO	Related Mode	PP	Value Range	0 to (2 ³² -1) (velocity unit/s)	Default	174762	
Defines	the constar	nt runni	ng speed fo	r the tar	get position i	n PP mode.					
	Motor speed (RPM) = $\frac{6081h \times 6091h (Gear ratio)}{Encoder resolution} \times 60$										

Index	Name	Pro	Profile acceleration RW Mapping RPDO		Setting Condition & Effective Time	Condition & Effective		VAR	Data Type	UINT32
6083h	Access	RW			Related Mode	PP PV	Value Range	0 to (2 ³² -1) (acceleration unit/s ²⁾	Default	17476266667

Defines the position reference acceleration in PP mode.

In PP mode, if the value of 6083h exceeds that of 60C5h, the value of 60C5h will be used.


For 6083h, the set value 0 will be forcibly changed to 1.

Index 6084h	Name	me Profile deceleration		Setting Condition & Effective Time	During running & At stop	Data Structure	VAR	Data Type	UINT32	
000411	Access	RW	Mapping	RPDO	Related Mode	PP PV	Value Range	0 to $(2^{32}-1)$ (acceleration unit/s ²⁾	Default	17476266667
Defines			ence decel		in PP mode.		(			·

In PP mode, if the value of 6084h exceeds that of 60C6h, the value of 60C6h will be used.

For 6084h, the set value 0 will be forcibly changed into 1.

### 7.6.6 Function Block Diagram



# 7.7 Profile Velocity Mode (PV)

In PV mode, the host controller sends the target speed, acceleration, and deceleration commands to the servo drive. The servo drive generates the speed reference curve and executes speed control and torque control.

## 7.7.1 Configuration Block Diagram

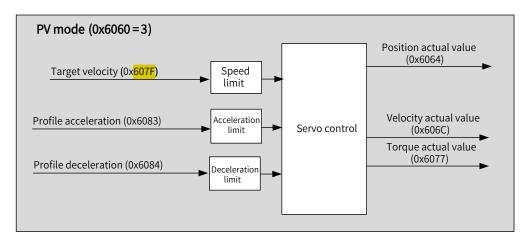


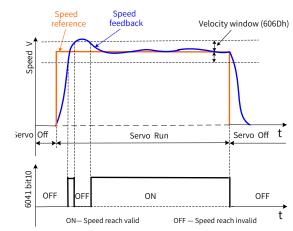

Figure 7-9 PV mode

# 7.7.2 Related Objects

Index (hex)	Sub-index (hex)	Name	Access	Data Type	Unit	Value Range	Default
6040	00	Control word	RW	UINT16	-	0 to 65535	0
6041	00	Status word	RO	UINT16	-	-	0
6060	00	Modes of operation	RW	INT8	-	0 to 10	0

Index (hex)	Sub-index (hex)	Name	Access	Data Type	Unit	Value Range	Default
6061	00	Modes of operation display	RO	INT8	-	-	0
606C	00	Velocity actual value	RO	INT32	Velocity unit/s	-	-
606D	00	Velocity window	RW	UINT16	RPM	0 to 65535	10
606E	00	Velocity window time	RW	UINT16	ms	0 to 65535	0
606F	00	Velocity threshold	RW	UINT16	RPM	0 to 0xFFFF	10
6070	00	Velocity threshold time	RW	UINT16	ms	0 to 65535	0
607F	00	Max. profile velocity	RW	UINT32	Velocity unit/s	0 to (2 ³² -1)	104857600
6083	00	Profile acceleration	RW	UINT32	Acceleration unit/s ²	0 to (2 ³² -1)	1747626667
6084	00	Profile deceleration	RW	UINT32	Acceleration unit/s ²	0 to (2 ³² -1)	1747626667
60FF	00	Target velocity	RW	INT32	Velocity unit/s	$-2^{31}$ to +( $2^{31}$ -1)	0

### 7.7.3 Related Function Settings


#### 1 Speed arrival monitoring

Speed arrival monitoring is used to confirm whether the speed reference of the servo drive matches the speed feedback of the motor.

☆ Related parameters

Index 606Dh	Name	Ve	locity wind	ow	Setting Condition & Effective Time	During running & Immediately	Data Structure	VAR	Data Type	Uint 16
	Access	RW	Mapping	RPDO	Related Mode	PV	Value Range	0 to 65535 (RPM)	Default	10
Index 606Eh					Setting Condition & Effective Time	During running & Immediately	Data Structure	VAR	Data Type	Uint 16
OUDEN	Access	cess RW Mapping RPDO		Related Mode	PV	Value Range	0 to 65535 (ms)	Default	0	

606Dh is used to set the threshold for speed arrival. 606Eh is used to set the window time for speed arrival.



If the difference value between the speed reference and speed feedback is within  $\pm$ 606D and the time reaches the value defined by 606E, the speed is reached, and bit10 (target reached) of 6041h is set to 1. This flag bit is valid only when the servo drive is enabled in PV mode.

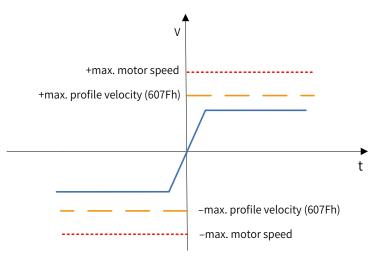
#### 2 Zero speed monitoring

Zero speed monitoring is used to confirm whether the absolute value of motor speed feedback is less than the set threshold. If yes, the motor is approaching static state (zero speed).

Index 606Fh	Name	Ve	elocity three	shold	Setting Condition & Effective Time	During running & Immediately	Data Structure	VAR	Data Type	Uint 16
	Access	RW	Mapping	RPDO	Related Mode	PV	Value Range	0 to 65535 (RPM)	Default	10
Index 6070h	Name	Velo	city threshc	old time	Setting Condition & Effective Time	During running & Immediately	Data Structure	VAR	Data Type	Uint 16
	Access	RW Mapping RPDO		Related Mode	PV	Value Range	0 to 65535 (ms)	Default	0	

 $\Leftrightarrow \mathsf{Related} \ \mathsf{parameters}$ 

Defines the threshold for zero speed.




When the speed feedback is within ±606F and the time defined by 6070 <mark>is reached</mark>, <del>it indicates the motor speed is 0,</del> <del>and</del> bit12 of 6041 is set <mark>to 1.</mark>

This flag bit is valid only in PV mode.

#### 3 Speed limit

In PV mode, 607Fh can be used to limit the maximum speed in forward/reverse running. Note that the maximum speed cannot exceed the maximum running speed allowed by the motor.



#### ☆ Related parameters

Index	Name	Name Max profile velocity		Setting Condition & Effective Time	During running & Immediately	Data Structure	VAR	Data Type	UINT32	
607Fh	Access	RW	Mapping	RPDO	Related Mode	PP PV PT HM CST	Value Range	0 to (2 ³² -1) (Velocity unit/s)	Default	104857600
Defines	the spee	d limi	t in PP, PV,	PT, and t	orque contro	l modes.				

#### 4 Acceleration limit

In PV mode, the change rate of the speed reference can be limited through acceleration limit.

Index	Name	Ma	ax. accelera	tion	Setting Condition & Effective Time	During running & Immediately	Data Structure	VAR	Data Type	Uint32	
60C5h	Access	RW	Mapping	RPDO	Related Mode	All	Value Range	0 to 4294967295 (acceleration unit/s ²⁾	Default	2147483647	

Defines the maximum limit value of acceleration.

In PP mode, if the value of 6083h exceeds that of 60C5h, the value of 60C5h will be used.

For 60C5h, the set value 0 will be forcibly changed to 1.

Index	Name	Ма	Max deceleration		Setting Condition & Effective Time	runninσ &	Data Structure	VAR	Data Type	Uint16
60C6h	Access	RW	Mapping		Mode	All	Value Range	0 to 4294967295 (acceleration unit/s ²⁾	Default	2147483647
Defines	Defines the <mark>maximum limit</mark> value of dec			of dece	leration.					

Defines the **maximum timit** value of deceleration.

In PP mode, if the value of 6084h exceeds that of 60C6h, the value of 60C6h will be used.

For 60C6h, the set value 0 will be forcibly changed to 1.

#### 5 Polarity

You can change the velocity reference direction through setting the velocity reference polarity.

 $\Leftrightarrow$  Related parameters

Index 607Eh	Name		Polarity		Setting Condition & Effective Time	During running & Immediately	Data Structure	VAR	Data Type	Uint8
	Access	RW	Mapping RPDO the position, speed,		Related Mode	All	Value Range	0 to 255	Default	0
Defines	efines the polarity of the position, speed				and torque r	eference.				
	Bit			Desc	ription					
			Velocity re	ference p	olarity					
	6		0: Multiply	by 1						
	0		1: Multiply	by -1						
			PV: <mark>Invert</mark> t	he targe	t torque 60FF	ħ				

# 7.7.4 Recommended Configuration

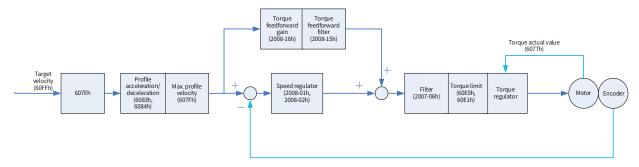
The basic configuration for PV mode is described in the following table.

RPDO	TPDO	Description
6040: Control word	6041:Status word	Mandatory
60FF: Target Velocity		Mandatory
	6064: Position actual value	Optional
	606C: Velocity actual value	Optional
6083: Profile acceleration		Optional
6084: Profile deceleration		Optional
6060: Modes of operation	6061: Modes of operation display	Optional

#### 7.7.5 Related Parameters

Index 6040h	Name		Control wo	rd	Setting Condition & Effective Time	During running & Immediately	Data Structure	VAR	Data Type	Uint16
	Access	RW			Related Mode	All	Value Range	0 to 65535	Default	0
Defines	s the control command.									
bit		Nam	Name		Description		]			
0	Switch o	on		1: Valid, 0: Invalid						
1	Enable	/oltage	<u>;</u>	1: Valid	0: Invalid					
2	Quick st	ор		0: Valid	1: Invalid					
3	Enable	operati	ion	1: Valid	0: Invalid		1			
8	Halt	0: Keep 1: Halt		present running state						

Index 6041h	Name	S	Status wo	d	Setting Condition & Effective Time	-	Data Structure	VAR	Data Type	Uint16
	Access	RO	Mapping	TPDO	Related Mode	All	Value Range	-	Default	0
Shows t	the servo drive	e status.		•				•		
bit	Nai	me		C	escription					
0	Ready to swit	tch on	1: Va	id, 0: Inva	lid					
1	Switch on		1: Va	id, 0: Inva	lid					
2	Operation en	abled	1: Va	id, 0: Inva	lid					
3	Fault		1: Va	id, 0: Inva	lid					
4	Voltage enab	led	1: Va	id, 0: Inva	lid					
5	Quick stop		0: Va	id, 1: Inva	lid					
6	Switch on dis	sabled	1: Va	id, 0: Inva	lid					
7	Warning		1: Va	id, 0: Inva	lid					
8	Manufacture	r-specific	Unde	fined						
9	Remote		1: Val 0: Inv	-	l word activa	ited				
			0: Tai	get veloci	ty not reache	ed				
10	Target reache	ed	1: Tai	get veloci	ty reached					
				-	back within	the limit				
11	Internal limit	active	1: Po	sition feed	lback over th	ne limit				
			0: Sp	eed not be	eing 0					
12	Speed		1: Sp	eed being	0					
13	N/A		No m	eaning, al	ways being (	)				
14	Manufacture	r-specific	Unde	fined						
15			0: Ho	ming not o	completed					
15	Home <mark>find</mark>		1: Ho	ming com	pleted					


Index 60FFh	Name	Target velocity		Setting Condition & Effective Time	During running & Immediately	Data Structure	VAR	Data Type	int32	
	Access	RW	RW Mapping		Related Mode	PV CSV	Value Range	-2 ³¹ to +(2 ³¹ -1) (velocity unit/s)	Default	0

Defines the target speed in PV and CSV modes.

Index 6083h	Name	Profile acceleration			Setting Condition & Effective Time	During running Immediately	Data Structure	VAR	Data Type	UINT32	
	Access	RW	Mapping	RPDO	Related Mode	PP PV	Value Range	0 to (2 ³² -1) (acceleration unit/s ²⁾	Default	17476266667	
Defines the speed reference acceleration in PV mode. For 6083h, the set value 0 will be forcibly changed to 1.											

Index 6084h	Name	Profile deceleration			Setting Condition & Effective Time	During running & At stop	Data Structure	VAR	Data Type	UINT32	
	Access	RW	Mapping	RPDO	Related Mode	PP/PV	Value Range	0 to (2 ³² -1) (acceleration unit/s ²⁾	Default	17476266667	
Defines the speed reference deceleration in PV mode. For 6084h, the set value 0 will be forcibly changed to 1.											

### 7.7.6 Function Block Diagram



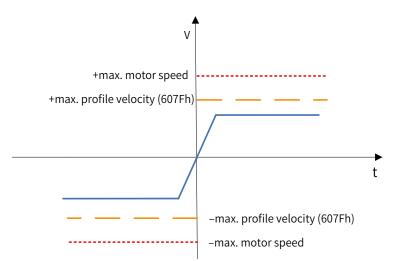
# 7.8 Profile Torque Mode (PT)

In PT mode, the host controller sends the target torque defined by 6071h and the torque slope defined by 6087h to the servo drive. The servo drive generates the torque reference curve and executes torque control.

## 7.8.1 Configuration Block Diagram



Figure 7-10 PT mode

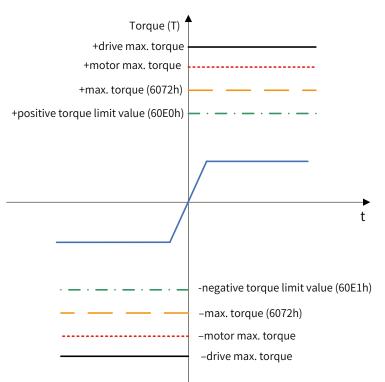

# 7.8.2 Related Objects

Index (hex)	Sub-index (hex)	Name	Access	Data Type	Unit	Value Range	Default
6040	00	Control word	RW	UINT16	-	0 to 65535	0
6041	00	Status word	RO	UINT16	-	-	0
6060	00	Modes of operation	RW	INT8	-	-	0
6061	00	Modes of operation display	RO	INT8	-	-	0
6071	00	Target torque	RW	INT16	0.1%	-3000 to +3000	0
6072	00	Max. torque	RW	UINT16	0.1%	0 to 3000	3000
6074	00	Torque demand value	RO	INT16	0.1%	-	-
6077	00	Torque actual value	RO	INT16	0.1%	-	-
6087	00	Torque slope	RW	UINT32	0.1%/s	0 to (2 ³² –1)	2 ³² -1
607F	00	Max. profile velocity	RW	UINT32	Velocity unit/s	0 to (2 ³² –1)	104857600
60E0	00	Positive torque limit value	RW	UINT16	0.1%	0 to 3000	3000
60E1	00	Negative torque limit value	RW	UINT16	0.1%	0 to 3000	3000

## 7.8.3 Related Function Settings

## 1 Speed Limit in the torque control mode

In the torque control mode, 607Fh can be used to limit the maximum speed in forward/reverse running. Note that the maximum speed cannot exceed the maximum running speed allowed by the motor.




Index	Name	Max	. profile ve	locity	Setting Condition & Effective Time	During running & Immediately	Data Structure	VAR	Data Type	UINT32
607Fh	Access	RW	Mapping	RPDO	Related Mode	PP PV PT HM CST	Value Range	0 to (2 ³² -1) (velocity unit/s)	Default	104857600
Defines	Defines the speed limit in PP, PV, PT, and CS				modes.					

### $\boldsymbol{\nleftrightarrow} \text{ Related parameters}$

## 2 Torque limit

To protect the mechanical devices, you can limit the torque references of the servo drive in the position, speed, and torque control modes by setting 6072h (Max. torque), 60E0h (Positive torque limit value), and 60E1h (Negative torque limit value). Note that the maximum torque allowed by the servo drive cannot be exceeded.



### $\nexists \mathsf{Related} \ \mathsf{parameters}$

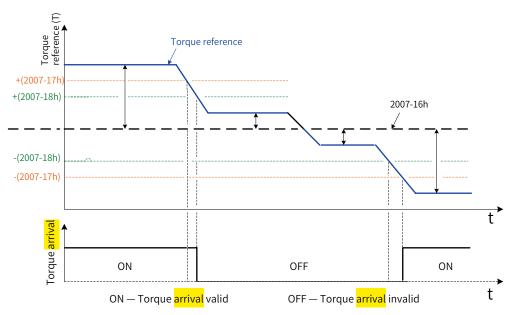
Index 6072h	Name	I	Max. torque		Setting Condition & Effective Time	During running & Immediately	Data Structure	VAR	Data Type	Uint16
	Access	RW	RW Mapping RF		Related Mode	All	Value Range	0 to 3000 (0.1%)	Default	3000
Defines	the maximu	um torque limit of the servo		e servo dr	ive when rur	nning in the for	ward/revers	se directior	۱.	

Index 60E0h	Name	Positive	e torque lim	it value	Setting Condition & Effective Time	During running & Immediately	Data Structure	VAR	Data Type	Uint16
	Access	RW	RW Mapping RPDO		Related Mode	All	Value Range	0 to 3000 (unit: 0.1%)	Default	3000
Defines t	the maxim	um torque limit of the servo o		e servo dr	ive when rui	nning in the fo	orward dire	ction.		

Index 60E1h	Name	Negativ	e torque lim	nit value	Setting Condition & Effective Time	During running & Immediately	Data Structure	VAR	Data Type	Uint16
	Access	RW	Mapping	RPDO	Related Mode	All	Value Range	0 to 3000 (unit: 0.1%)	Default	3000
					·					

Defines the maximum torque limit of the servo drive when running in the reverse direction.

## **3** Torque reference polarity


You can change the torque reference direction through setting the torque reference polarity.

Index 607Eh	Name		Polarity		Setting Condition & Effective Time	During running & Immediately	Data Structure	VAR	Data Type	Uint8
	Access	RW	Mapping	RPDO	Related Mode	All	Value Range	0 to 255	Default	0
Defines	the polarit	y of the	position, s	peed, ar	id torque ref	erence.				
Bit			Des	scription						
	Torqu	e refere	nce polarit	y:						
	0: Mul	tiply by	1							
5	1: Mu	tiply by	-1							
	CSP C	SV: <mark>Inve</mark>	e <mark>rt</mark> the torq	ue offset	60B2h					
	CST: <mark>I</mark>	<mark>nvert</mark> th	e torque re	ference	(6071h + 60B	2h)				

☆ Related parameters

## 4 Torque arrival monitoring

Torque arrival monitoring is used to determine whether the torque reference value reaches the set torque base value. If yes, a corresponding torque reached signal will be output to the host controller.



If the absolute difference value between the torque reference and 2007-16h (Base value for torque reached) is larger than 2007-17h (Torque output value when torque arrival DO signal turned on), the torque reached signal is valid. Otherwise, the original status applies.

If the absolute difference value between the torque reference and 2007-16h (Base value for torque reached) is smaller than 2007-17h (Threshold of valid torque arrival), the torque reached signal is invalid. Otherwise, the original status applies.

Sub- index	Name	Base va	alue for torqu	ie reached	Setting Condition & Effective Time	During running & Immediately	Data Structure	-	Data Type	Uint16
16h	Access	RW	Mapping	-	Related Mode	PT	Value Range	0 to 300.0 (unit: %)	Default	0
Sub- index	Name	Thresho	old of torque valid	reached	Setting Condition & Effective Time	During running & Immediately	Data Structure	-	Data Type	Uint16
17h	Access	RW	Mapping -		Related Mode	PT	Value Range	0 to 300.0 (unit: %)	Default	20.0

☆ Related parameters:

Sub- index	Name	Thresho	ld of torque invalid	reached	Setting Condition & Effective Time	During running & Immediately	Data Structure	-	Data Type	Uint16
18h	Access	RW	Mapping	-	Related Mode	PT	Value Range	0 to 300.0 (unit: %)	Default	10.0

## 7.8.4 Related Parameters

Index 6040h	Name		Co	ontrol wo	ord		Setting Condition & Effectiv Time	_ r	During unning & mediatel	Data Structure	VAR	C	Data Type	Uint1
	Access	RV	N N	Mapping	; RPI	00	Related Mode		All	Value Range	0 to 655	35	Default	0
Defines	the contro	l comn	nand.											
bit	Na	ime			Des	scripti	ion							
0	Switch or	า	1	L: Valid,	0: Inva	lid								
1	Enable vo	oltage	1	L: Valid,	0: Inva	lid								
2	Quick sto	р	0	): Valid,	1: Inva	lid			-					
3	Enable op			L: Valid,					-					
							ning state		_					
8	Halt			L: Halt			0							
			1	L. Hatt										
				Setting										
Index 6041h	Name		St	itatus w	ord		Conditic & Effectiv Time	n	-	Data Structure	VAR	Da	ta Type	Uint1
004111	Access	F	20	Mappin	g TP	DO	Related Mode	1	All	Value Range	-	D	efault	0
Shows t	he servo d	rive sta	atus.											
bit		Nam	0	Description										
0	Ready to													
1	Switch c		TON	1: Valid, 0: Invalid 1: Valid, 0: Invalid										
					: Valid									
2	Operatio	mena	Jieu											
3	Fault		-I		: Valid									
4	Voltage		a		: Valid									
5	Quick st				: Valid									
6	Switch c		oled		: Valid									
7	Warning				: Valid		valid							
8	Manufac	turer-s	pecific		Indefir									
9	Remote						rol word a	ctiva	ated					
					): Invali									
10	Target re	eached			-		que not rea		d					
							que reache							
11	Internal	limit a	ctive	0	): Posit	ion fe	edback w	ithin	the limit					
				1	: Posit	ion fe	edback o	er th	ne limit					
12 to 14	N/A			1	lo mea	ining,	always be	eing (	)					
15	Home <mark>f</mark> i	nd		C	): Homi	ing no	ot complet	ed						
15	Home III	lu	1: Homing completed											
Index 6071h	Name		Target	arget torque				runr	uring ning & ediately	Data Structure	VAR		Data Type	int10
	Access	RW	Марр	ping F	RPDO		lated ode	PT	CST	Value Range	–3000 t +3000 (0.1		Default	0
D ()														

Defines the target torque in PT and CST modes.

The value 100.0% corresponds to the rated motor torque.

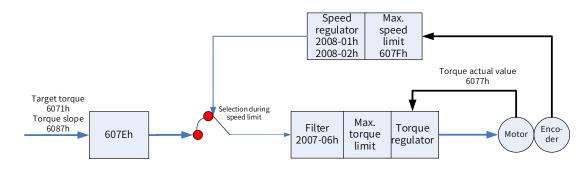
Index 6074h	Name	Torq	ue demand v	alue	Setting Condition & Effective Time	-	Data Structure	VAR	Data Type	int16
	Access	RO	Mapping	TPDO	Related Mode	All	Value Range	- (0.1%)	Default	-
l .		•	nce output va		0 0					

The value 100.0% corresponds to the rated motor torque.

Index 6077h	Name	Тог	rque actual va	alue	Setting Condition & Effective Time	-	Data Structure	VAR	Data Type	int16
	Access	RO	Mapping	TPDO	Related Mode	All	Value Range	- (0.1%)	Default	-

Represents the actual torque output of the servo drive.

The value 100.0% corresponds to the rated motor torque.


Index 6087h	Name		Torque slope		Setting Condition & Effective Time	During running & Immediately	Data Structure	VAR	Data Type	UINT32
	Access	RW	Mapping	RPDO	Related Mode	PT CST	Value Range	0 to (2 ³² –1) (0.1%/s)	Default	2 ³² -1
		ration (torque increment po value 0 will be forcibly char			,	the torque refe	rence in PT	mode.		

## 7.8.5 Recommended Configuration

The basic configuration for the PT mode is described in the following table.

RPDO	TPDO	Description
6040: Control word	6041:Status word	Mandatory
6071: Target torque		Mandatory
6087: Torque slope		Optional
	6064: Position actual value	Optional
	606C: Velocity actual value	Optional
	6077: Torque actual value	Optional
6060: Modes of operation	6061: Modes of operation display	Optional

## 7.8.6 Function Block Diagram



# 7.9 Homing Mode (HM)

The homing mode is used to search for the mechanical home and determine the position relation between the mechanical home and mechanical zero.

- Mechanical home: a fixed position on the machine, which can correspond to a certain home switch or a motor Z signal.
- Mechanical zero: absolute zero position on the machine

After homing is done, the motor stops at the mechanical home. The relation between the mechanical home and mechanical zero is defined by 607Ch.

Mechanical home = Mechanical zero + 607Ch (Home offset)

When 607Ch is 0, the mechanical home overlaps with the mechanical zero.

## 7.9.1 Configuration Block Diagram

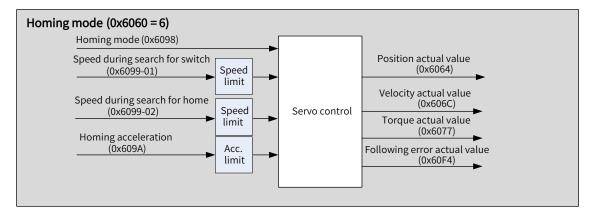



Figure 7-11 HM mode

## 7.9.2 Related Objects

Index (hex)	Sub-index (hex)	Name	Access	Data Type	Unit	Value Range	Default
6040	00	Control word	RW	UINT16	-	0 to 65535	0
6041	00	Status word	RO	UINT16	-	-	0
6060	00	Modes of operation	RW	INT8	-	0 to 10	0
6061	00	Modes of operation display	RO	INT8	-	0 to 10	0
6064	00	Position actual value	RO	INT32	Position unit	-	-
6098	00	Homing method	RW	INT8	-	1 to 35	1
6099	01	Speed during search for switch	RW	UINT32	Velocity unit/s	0 to (2 ³² –1)	1747627
0099	02	Speed during search for zero	RW	UINT32	Velocity unit/s	10 to (2 ³² -1)	174763
609A	00	Homing acceleration	RW	UINT32	Acceleration unit/s ²	0 to (2 ³² –1)	1747626667

Index (hex)	Sub-index (hex)	Name	Access	Data Type	Unit	Value Range	Default
607C	00	Home offset	RW	INT32	Position unit	-2 ³¹ to +(2 ³¹ -1)	0
2005	24	Timeout	RW	UINT16	10 ms	100 to 65535	50000

## 7.9.3 Related Function Settings

## **1** Homing timeout

When the homing duration exceeds the value defined by 2005-24h (Duration limit of homing), the servo drive reports E601.0 (Homing timeout).

E601.0 can be used to determine whether the homing speed, the set acceleration value, and connections of the switch signal and homing signal are proper.

☆ Related parameters

Index 2005-24h	Name	Durati	uration limit of homing		Setting Condition & Effective Time	During running & Immediately	Data Structure	-	Data Type	UINT 16
	Access	ccess RW Mapping RPDO		RPDO	Related Mode	НМ	Value Range	0 to 65535 (100 ms)	Default	50000
Defines the	e duratio	n of <mark>hom</mark>	ing and use	<mark>d</mark> to dete	ect E601.0 (H	oming timeou	t).			

2 Current position calculation method

After homing, the calculation method for the present mechanical position can be defined by 60E6h.

Index 60E6h	Na	me	Actual p	osition calcu method	lation	Setting Condition & Effective Time	During running & Immediately	Data Structure	VAR	Data Type	Uint8		
	Acc	ess	Mode Range										
Defines	the ca	calculation method for the mechanical position after homing.											
Valu	ie		Actual position calculation method										
		Absc	Absolute position homing										
0		After	homing	is done, the f	ollowir	ng formula ap	oplies:						
		6064	h (Positio	on actual valu	ue) = 60	7Ch (Home c	offset)						
		Rela	tive posit	ion homing									
1		After	homing	is done, the f	ollowir	ng formula ap	oplies:						
		6064	h (Positio	on actual valu	ue) = Pr	esent positio	n feedback va	lue + 607Ch	(Home o	offset)			
After ho	ming	is trig	gered, th	e modificatio	n of 60	E6h will be b	locked.						

Index 607Ch	Name		Home offset		Setting Condition & Effective Time	During running & At stop	Data Structure	VAR	Data Type	int32
	Access	RW	Mapping RPDO		Related Mode	НМ	Value Range	$-2^{31}$ to +( $2^{31}$ -1) (position unit)	Default	0

Defines the physical distance between the mechanical zero and the motor home in homing mode.

The home offset takes effect on the condition that the homing operation is done upon power-on and bit15 of 6041h is set to 1.

The home offset has the following effect:

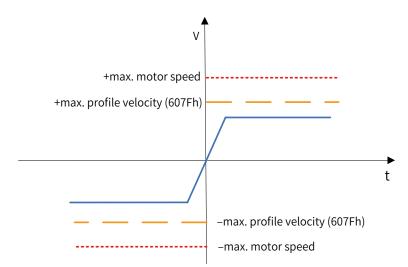
- ◆ It determines the present position after homing based on 60E6h.
- ◆ If 607Ch is set to a value beyond the limit defined by 607Dh (Software position limit), Er.D10 (Improper homing offset setting) will occur.

## 3 Position deviation monitoring

☆ Related parameters

Index	Name	Follov	ving error v	window	Setting Condition & Effective Time	During running & Immediately	Data Structure	VAR	Data Type	UINT 32
6065h	Access	RW	Mapping	RPDO	Related Mode	PP HM CSP	Value Range	0 to (2 ³² -1) (position unit)	Default	3145728
Defines	the thresh	old of e	excessive p	osition d	leviation (po	sition unit).				

For 6065h, a set value beyond 2147483647 will be forcibly changed to 2147483647.


Index 6066h	Name	Follow	ving error ti	me out	Setting Condition & Effective Time	During running & Immediately	Data Structure	VAR 0 to 65535 (ms)	Data Type	UINT 16
	Access	RW	Mapping	RPDO	Related Mode	PP HM CSP	Value Range	0 to 65535 (ms)	Default	0

Defines the time threshold of excessive position deviation.

When the position deviation (position unit) exceeds  $\pm$  6065h and such status persists after the time defined by 6066h elapses, EB00.0 (Excessive position deviation) will occur.

## 4 Speed limit

In the homing mode, 607Fh can be used to limit the maximum speed in forward/reverse running. Note that the maximum speed cannot exceed the maximum running speed allowed by the motor.



☆ Related parameters

Index	Name	Мах	profile velo	ocity	Setting Condition & Effective Time	During running & Immediately	Data Structure	VAR	Data Type	UINT32	
607Fh	Access	RW	Mapping RPDO		Related Mode	PP/PV/PT/HM/ CST	Value Range	0 to (2 ³² –1) (velocity unit/s)	Default	104857600	
Defines	Defines the speed limit in PP, PV, PT, HM and CST modes.										

## 5 Acceleration limit

In the homing mode, the change rate of the **position** reference can be limited through the acceleration limit.

x Related parameters	☆	Related	parameters
----------------------	---	---------	------------

Index	Name	Ма	x. accelerat	ion	Setting Condition & Effective Time	During running & Immediately	Data Structure	VAR	Data Type	Uint32
60C5h	Access	RW	Mapping	RPDO	Related Mode	All	Value Range	0 to 4294967295 (acceleration unit/s ²⁾	Default	2147483647
Defines	the maxim	um lin	nit of accel	eration						

Defines the maximum limit of acceleration.

In the homing mode, if the value of <mark>6083</mark>h exceeds that of 60C5h, the value of 60C5h will be used. For 60C5h, the set value 0 will be forcibly changed to 1.

## 7.9.4 Homing Operation

- Homing mode
- 1) 6098h = 1

Mechanical home: Z signal

Deceleration point: negative limit switch (N-OT)

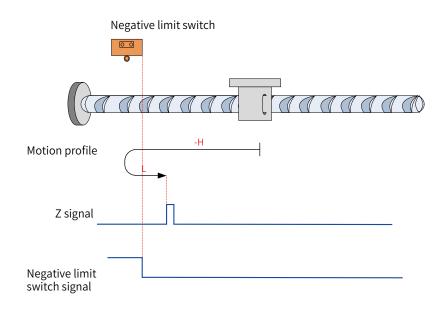
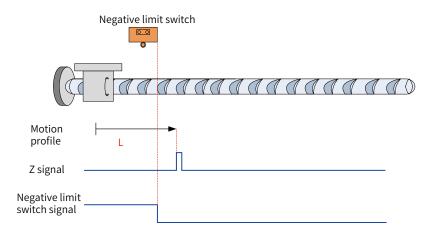
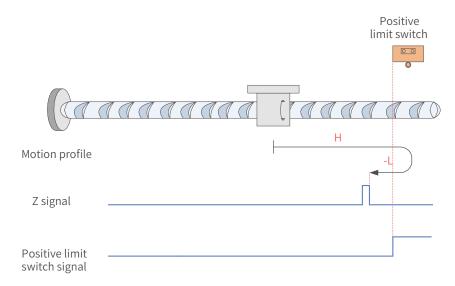


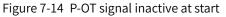

Figure 7-12 N-OT signal inactive at start

Note: In the figure, "H" represents 6099-1h (Speed during search for switch), and "L" represents 6099-2h (Speed during search for zero).

The N-OT signal is inactive at start, and the motor starts homing in the reverse direction at a high speed. After reaching the rising edge of the N-OT signal, the motor decelerates and changes to run in the forward direction at a low speed until it stops at the first Z signal upon reaching the falling edge of the N-OT signal.





Figure 7-13 N-OT signal active at start


The N-OT signal is active at start, and the motor starts homing in the forward direction at <del>a</del> low speed. After reaching the falling edge of the N-OT signal, the motor stops at the first Z signal.

2) 6098h = 2

Home: Z signal

Deceleration point: positive limit switch (P-OT)





The P-OT signal is inactive at start, and the motor starts homing in the forward direction at a high speed. After reaching the rising edge of the P-OT signal, the motor decelerates and changes to run in the reverse direction at a low speed until it stops at the first Z signal upon reaching the falling edge of the P-OT signal.

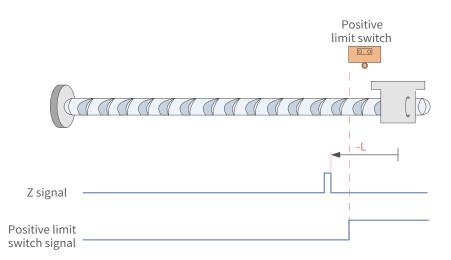



Figure 7-15 P-OT signal active at start

The P-OT signal is active at start, and the motor starts homing in the reverse direction at <del>a</del> low speed. After reaching the falling edge of the P-OT signal, the motor stops at the first Z signal.

#### 3) 6098h = 3

Home: Z signal

Deceleration point: home switch (HW)

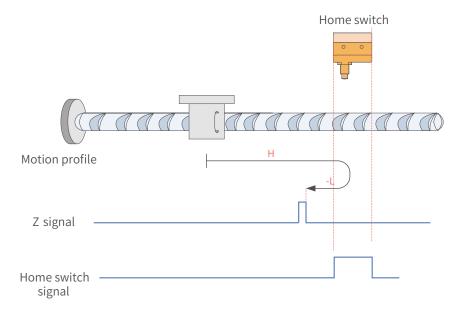
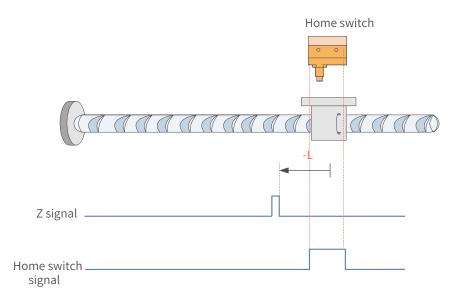




Figure 7-16 HW signal inactive at start

The HW signal is inactive at start, and the motor starts homing in the forward direction at a high speed. After reaching the rising edge of the HW signal, the motor decelerates and changes to run in the reverse direction at a low speed until it stops at the first Z signal upon reaching the falling edge of the HW signal.



### Figure 7-17 HW signal active at start

The HW signal is active at start, and the motor starts homing in the reverse direction at <del>a</del> low speed. After reaching the falling edge of the HW signal, the motor stops at the first Z signal.

### 4) 6098 = 4

Home: Z signal

Deceleration point: home switch (HW)

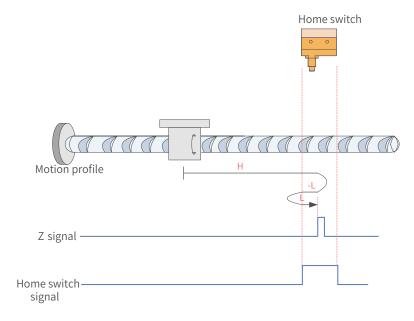
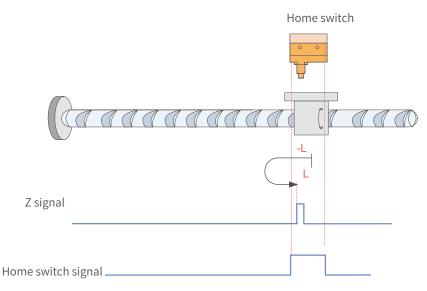
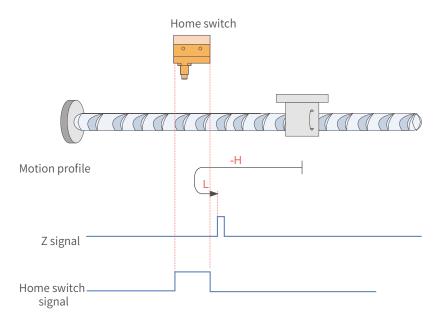
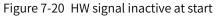



Figure 7-18 HW signal inactive at start

The HW signal is inactive at start, and the motor starts homing in the forward direction at a high speed. After reaching the rising edge of the HW signal, the motor decelerates and changes to run in the reverse direction at a low speed. Then, after reaching the falling edge of the HW signal, the motor decelerates and changes to run in the forward direction until it stops at the first Z signal upon reaching the rising edge of the HW signal again.



Figure 7-19 HW signal active at start

The HW signal is active at start, and the motor starts homing in the reverse direction at a low speed. After reaching the falling edge of the HW signal, the motor decelerates and changes to run in the forward direction until it stops at the first Z signal upon reaching the rising edge of the HW signal. 5) 6098h = 5

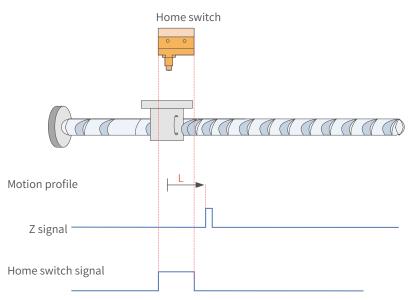
Home: Z signal

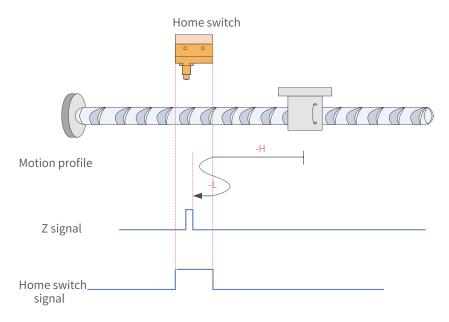
Deceleration point: home switch (HW)

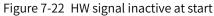




The HW signal is inactive at start, and the motor starts homing in the reverse direction at a high speed. After reaching the rising edge of the HW signal, the motor decelerates and changes to run in the forward direction at a low speed until it stops at the first Z signal upon reaching the falling edge of the HW signal.





Figure 7-21 HW signal active at start


The HW signal is active at start, and the motor starts homing in the forward direction at <del>a</del> low speed. After reaching the falling edge of the HW signal, the motor stops at the first Z signal.

6) 6098 = 6

Home: Z signal

Deceleration point: home switch (HW)





The HW signal is inactive at start, and the motor starts homing in the reverse direction at a high speed. After reaching the rising edge of the HW signal, the motor decelerates and changes to run in the forward direction at a low speed. Then, after reaching the falling edge of the HW signal, the motor changes to run in the reverse direction until it stops at the first Z signal upon reaching the rising edge of the HW signal again.

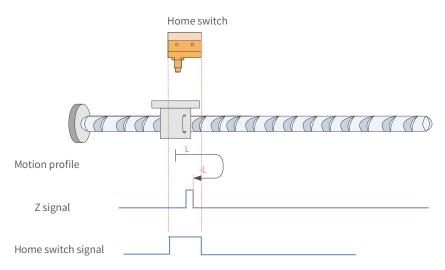



Figure 7-23 HW signal active at start

The HW signal is active at start, and the motor starts homing in the forward direction at <del>a</del> low speed. After reaching the falling edge of the HW signal, the motor decelerates and changes to run in the reverse direction until it stops at the first Z signal upon reaching the rising edge of HW signal

#### 7) 6098 = 7

Home: Z signal

Deceleration point: home switch (HW)

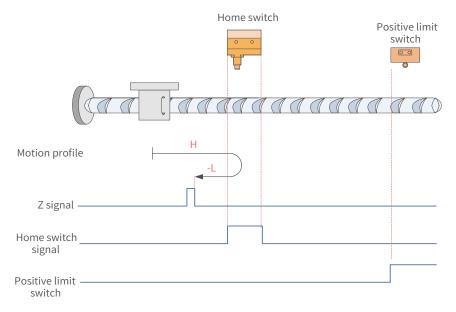



Figure 7-24 HW signal inactive at start, not hitting the positive limit switch

The HW signal is inactive at start, and the motor starts homing in the forward direction at a high speed. If the motor does not hit the limit switch, it decelerates and changes to run in the reverse direction after reaching the rising edge of the HW signal. Then, after reaching the falling edge of the HW signal, the motor stops at the first Z signal.

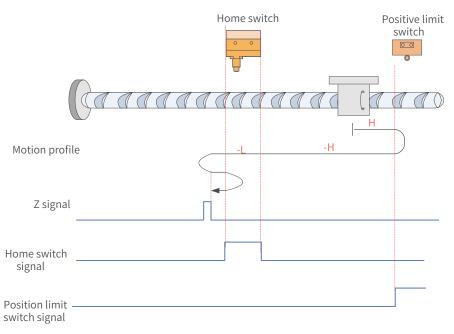
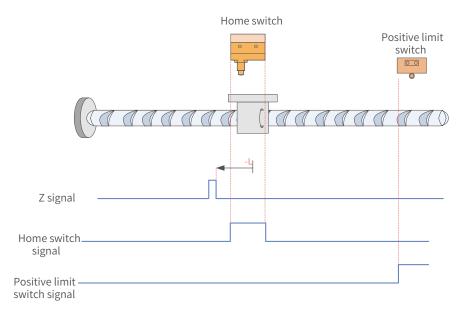




Figure 7-25 HW signal inactive at homing start, hitting the positive limit switch The HW signal is inactive at start, and the motor starts homing in the forward direction at a high speed. If the motor hits the limit switch, it changes to run in the reverse direction. After reaching the rising edge of the HW signal, the motor decelerates and runs in the reverse direction at a low speed. Then, after reaching the falling edge of the HW signal, the motor decelerates and changes to run in the forward direction until it decelerates and changes to run in the reverse direction again upon reaching the rising edge of HW signal. Finally, the motor stops at the first Z signal after reaching the falling edge of the HW signal again.





The HW signal is active at start, and the motor starts homing in the reverse direction at <del>a</del> low speed. After reaching the falling edge of the HW signal, the motor stops at the first Z signal.

8) 6098 = 8

Home: Z signal

Deceleration point: home switch (HW)

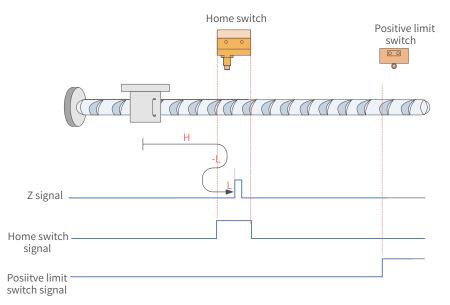



Figure 7-27 HW signal inactive at start, not hitting the positive limit switch

The HW signal is inactive at start, and the motor starts homing in the forward direction at a high speed. If the motor does not hit the limit switch, it decelerates and changes to run in the reverse direction at a low speed after reaching the rising edge of the HW signal. Then, after reaching the falling edge of the HW signal, the motor changes to run in the forward direction at a low speed until it stops at the first Z signal upon reaching the rising edge of the HW signal.

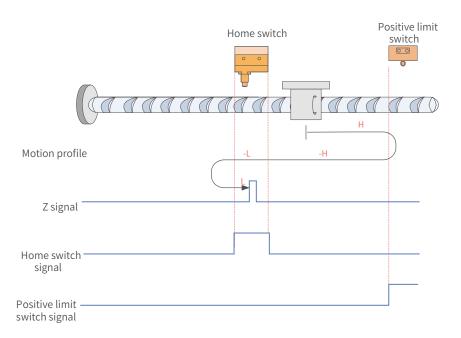



Figure 7-28 HW signal inactive at homing start, hitting the positive limit switch

The HW signal is inactive at start, and the motor starts homing in the forward direction at a high speed. If the motor hits the limit switch, it changes to run in the reverse direction. After reaching the rising edge of HW signal, the motor decelerates and runs in the reverse direction. Then, after reaching the falling edge of the HW signal, the motor changes to run in the forward direction until it stops at the first motor Z signal upon reaching the rising edge of the HW signal.



Figure 7-29 HW signal active at start

The HW signal is active at start, and the motor starts homing in the reverse direction at <del>a</del> low speed. After reaching the falling edge of HW signal, the motor changes to run in the forward direction until it stops at the first Z signal upon reaching the rising edge of HW signal.

#### 9) 6098 = 9

Home: Z signal

Deceleration point: home switch (HW)

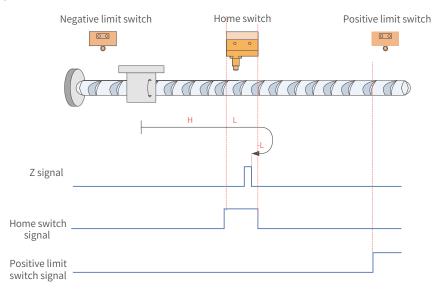
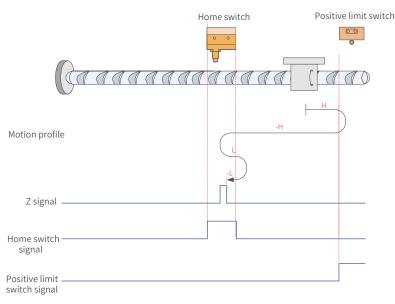
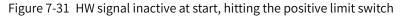





Figure 7-30 HW signal inactive at start, not hitting the positive limit switch

The HW signal is inactive at start, and the motor starts homing in the forward direction at a high speed. If the motor does not hit the limit switch, it decelerates and runs in the forward direction at a low speed after reaching the rising edge of the HW signal. Then, after reaching the falling edge of the HW signal, the motor changes to run in the reverse direction at a low speed until it stops at the first Z signal upon reaching the rising edge of the HW signal again.





The HW signal is inactive at start, and the motor starts homing in the forward direction at a high speed. If the motor hits the limit switch, it changes to run in the reverse direction. After reaching the rising edge of the HW signal, the motor decelerates and changes to run in the forward direction again. Then after reaching the falling edge of the HW signal, the motor changes to run in the reverse direction at a low speed. Finally, the motor stops at the first Z signal upon reaching the rising edge of HW signal again.

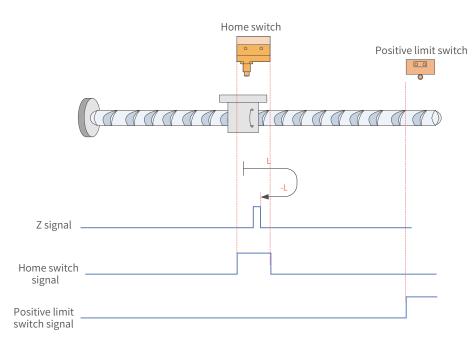


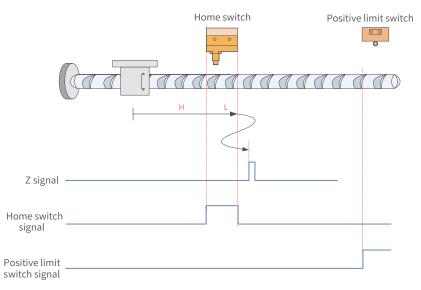
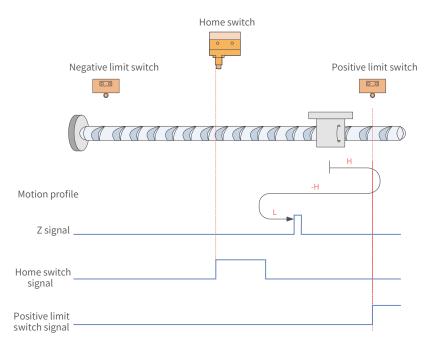

Figure 7-32 HW signal active at start

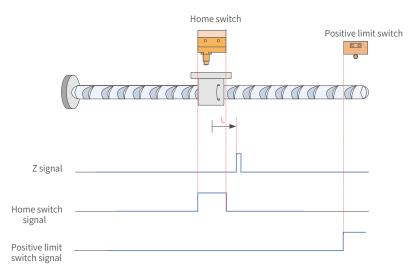
The HW signal is active at start, and the motor starts homing in the forward direction at <del>a</del> low speed. After reaching the falling edge of the HW signal, the motor changes to run in the reverse direction until it stops at the first Z signal upon reaching the rising edge of the HW signal.

10) 6098 = 10

Home: Z signal

Deceleration point: home switch (HW)



Figure 7-33 HW signal inactive at start, not hitting the positive limit switch

The HW signal is inactive at start, and the motor starts homing in the forward direction at a high speed. If the motor does not hit the limit switch, it decelerates and runs in the forward direction at a low speed upon reaching the rising edge of HW signal. After reaching the falling edge of the HW signal, the motor decelerates and changes to run in the reverse direction until it decelerates and changes to run in the forward direction again after reaching the rising edge of the HW signal. Finally, it stops at the first Z signal upon reaching the falling edge of the HW signal again.





The HW signal is inactive at start, and the motor starts homing in the forward direction at a high speed. If the motor hits the limit switch, it changes to run in the reverse direction. After reaching the rising edge of the HW signal, the motor decelerates and changes to run in the forward direction until it stops at the first Z signal upon reaching the falling edge of the HW signal.





The HW signal is active at start, and the motor starts homing in the forward direction at a low speed. After reaching the falling edge of HW signal, the motor stops at the first Z signal. 11) 6098 = 11

Home: Z signal

Deceleration point: home switch (HW)

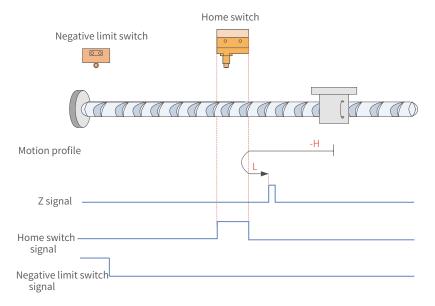
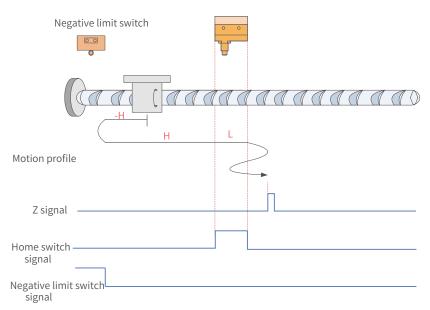



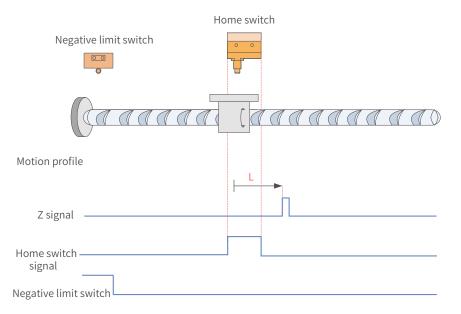
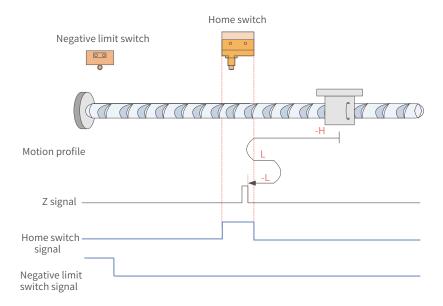

Figure 7-36 HW signal inactive at start, not hitting the negative limit switch

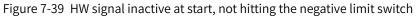
The HW signal is inactive at start, and the motor starts homing in the reverse direction at a high speed. If the motor does not hit the limit switch, it decelerates and changes to run in the forward direction after reaching the rising edge of the HW signal. Then, after reaching the falling edge of the HW signal, the motor stops at the first Z signal.





The HW signal is inactive at start, and the motor starts homing in the reverse direction at a high speed. If the motor hits the limit switch, it changes to run in the forward direction. After reaching the rising edge of the HW signal, the motor decelerates and runs in the forward direction. Then, after reaching the falling edge of the HW signal, the motor decelerates and changes to run in the reverse direction until reaching the rising edge of the HW signal where it decelerates and changes to run in the forward direction. Finally, the motor stops at the first Z signal upon reaching the falling edge of the HW signal again.



Figure 7-38 HW signal active at start

The HW signal is active at start, and the motor starts homing in the forward direction at **a** low speed. After reaching the falling edge of the HW signal, the motor stops at the first Z signal.

12) 6098 = 12

Home: Z signal Deceleration point: home switch (HW)





The HW signal is inactive at start, and the motor starts homing in the reverse direction at a high speed. If the motor does not hit the limit switch, it decelerates and changes to run in the forward direction at a low speed after reaching the rising edge of the HW signal. Then, after reaching the falling edge of HW signal, the motor changes to run in the reverse direction until it stops at the first Z signal upon reaching the rising edge of the HW signal again.

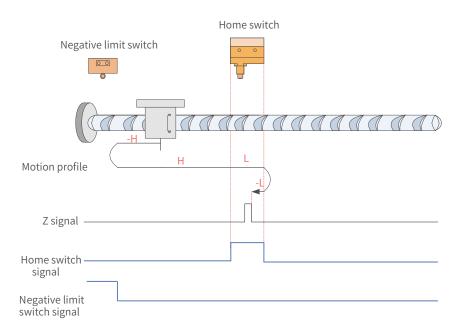
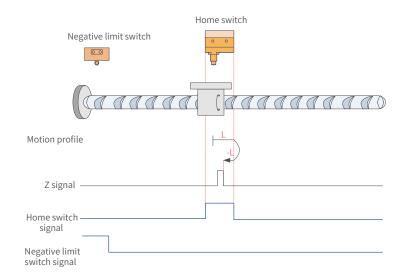
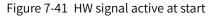





Figure 7-40 HW signal inactive at start, hitting the positive limit switch

The HW signal is inactive at start, and the motor starts homing in the reverse direction at a high speed. If the motor hits the limit switch, it changes to run in the forward direction. After reaching the rising edge of HW signal, the motor decelerates and runs in the forward direction at a low speed. Then, after reaching the falling edge of HW signal, the motor changes to run in the reverse direction until it stops at the first Z signal upon reaching the rising edge of the HW signal again.





The HW signal is active at start, and the motor starts homing in the forward direction at <del>a</del> low speed. After reaching the falling edge of the HW signal, the motor changes to run in the reverse direction until it stops at the first Z signal upon reaching the rising edge of the HW signal.

13) 6098 = 13

Home: Z signal

Deceleration point: home switch (HW)

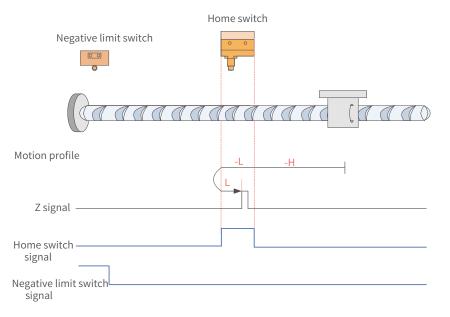
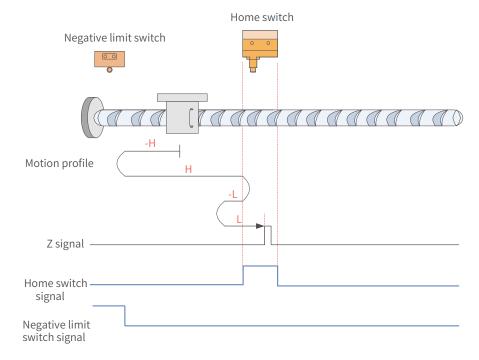



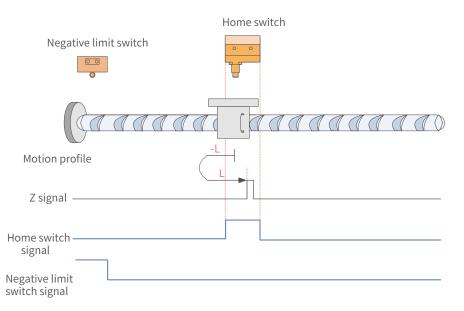

Figure 7-42 HW signal inactive at start, not hitting the negative limit switch

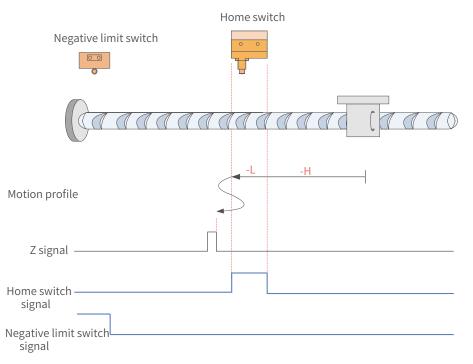
The HW signal is inactive at start, and the motor starts homing in the reverse direction at a high speed. If the motor does not hit the limit switch, it decelerates and changes to run in the reverse direction after reaching the rising edge of the HW signal. Then, after reaching the falling edge of the HW signal, the motor changes to run in the forward direction until it stops at the first Z signal upon reaching the rising edge of the HW signal again.



#### Figure 7-43 HW signal inactive at start, hitting the negative limit switch

The HW signal is inactive at start, and the motor starts homing in the reverse direction at a high speed. If the motor hits the limit switch, it changes to run in the forward direction at a high speed. After reaching the rising edge of the HW signal, the motor decelerates and changes to run in the reverse direction. Then, after reaching the falling edge of the HW signal, the motor changes to run in the forward direction until it stops at the first Z signal upon reaching the rising edge of the HW signal again.





Figure 7-44 HW signal active at start

The HW signal is active at start, and the motor starts homing in the reverse direction at a low speed. After reaching the falling edge of the HW signal, the motor changes to run in the forward direction until it stops at the first Z signal upon reaching the rising edge of the HW signal.

14) 6098 = 14

Home: Z signal

Deceleration point: home switch (HW)



#### Figure 7-45 HW signal inactive at start, not hitting the negative limit switch

The HW signal is inactive at start, and the motor starts homing in the reverse direction at a high speed. If the motor does not hit the limit switch, it decelerates and runs in the reverse direction after reaching the rising edge of HW signal. Then, after reaching the falling edge of HW signal, the motor decelerates and changes to run in the forward direction until reaching the rising edge of the HW signal again where it decelerates and changes to run in the reverse direction. Finally, the motor stops at the first Z signal upon reaching the falling edge of the HW signal.

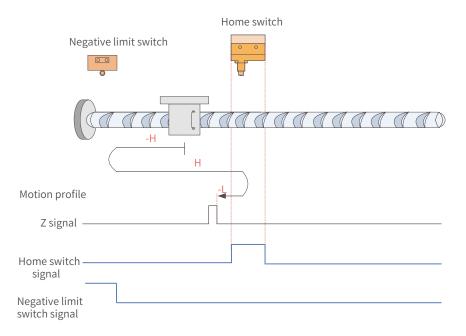



Figure 7-46 HW signal inactive at start, hitting the negative limit switch

The HW signal is inactive at start, and the motor starts homing in the reverse direction at a high speed. If the motor hits the limit switch, it changes to run in the forward direction at a high speed. After reaching the rising edge of the HW signal, the motor decelerates and changes to run in the reverse direction until it stops at the first Z signal upon reaching the falling edge of the HW signal.

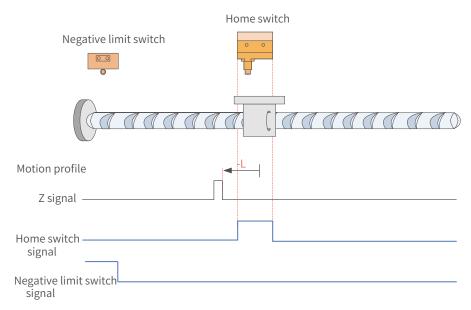



Figure 7-47 HW signal active at start

The HW signal is active at start, and the motor starts homing in the reverse direction at <del>a</del> low speed. After reaching the falling edge of the HW signal, the motor stops at the first Z signal.

15) 6098h = 17

Home: negative limit switch

Deceleration point: negative limit switch (N-OT)

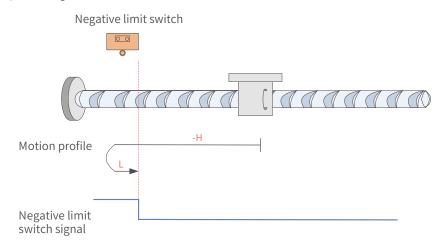
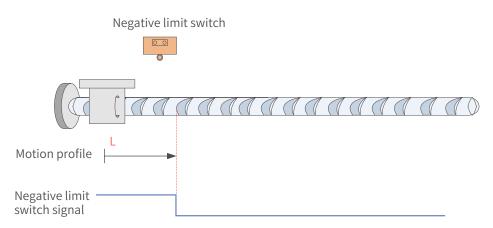




Figure 7-48 N-OT signal inactive at start

The N-OT signal is inactive at start, and the motor starts homing in the reverse direction at a high speed. After reaching the rising edge of the N-OT signal, the motor decelerates and changes to run in the forward direction until it stops upon reaching the falling edge of the N-OT signal.





The N-OT signal is active at start, and the motor starts homing in the forward direction at <del>a</del> low speed. After reaching the falling edge of the N-OT signal, the motor stops.

### 16) 6098h = 18

Home: positive limit switch

Deceleration point: positive limit switch (P-OT)

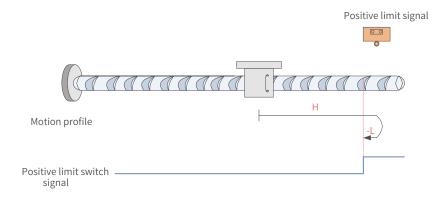



Figure 7-50 P-OT signal inactive at start

The P-OT signal is inactive at start, and the motor starts homing in the forward direction at a high speed. After reaching the rising edge of the P-OT signal, the motor decelerates and changes to run in the reverse direction until it stops upon reaching the falling edge of the P-OT signal.

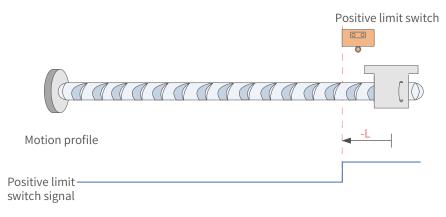



Figure 7-51 P-OT signal active at start

The P-OT signal is active at start, and the motor starts homing in the reverse direction at <del>a</del> low speed. After reaching the falling edge of the P-OT signal, the motor stops.

17) 6098h = 19

Home: home switch (HW)

Deceleration point: home switch (HW)

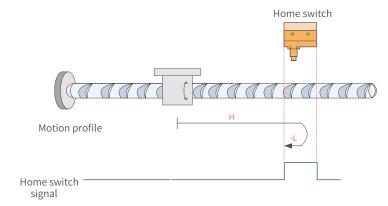
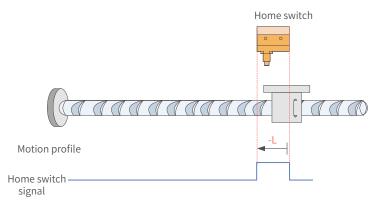
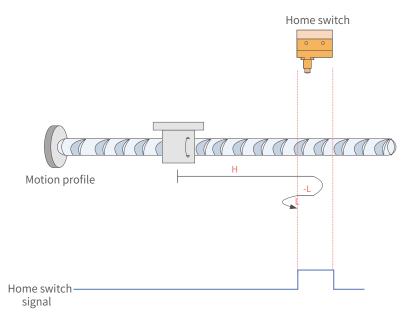




Figure 7-52 HW signal inactive at start

The HW signal is inactive at start, and the motor starts homing in the forward direction at a high speed. After reaching the rising edge of the HW signal, the motor decelerates and changes to run in the reverse direction until it stops upon reaching the falling edge of the HW signal.




#### Figure 7-53 HW signal active at start

The HW signal is active at start, and the motor starts homing in the reverse direction at <del>a</del> low speed. After reaching the falling edge of the HW signal, the motor stops.

18) 6098 = 20

Home: home switch (HW)

Deceleration point: home switch (HW)



#### Figure 7-54 HW signal inactive at start

The HW signal is inactive at start, and the motor starts homing in the forward direction at a high speed. After reaching the rising edge of the HW signal, the motor decelerates and changes to run in the reverse direction. Then, after reaching the falling edge of the HW signal, the motor decelerates and changes to run in the forward direction again until it stops upon reaching the rising edge of the HW signal.

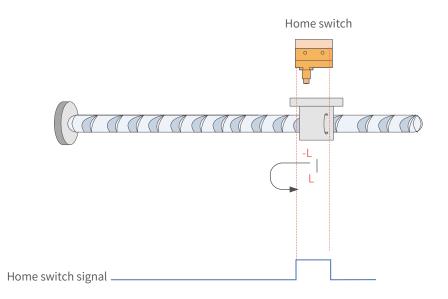



Figure 7-55 HW signal active at start

The HW signal is active at start, and the motor starts homing in the reverse direction at a low speed. After reaching the falling edge of the HW signal, the motor decelerates and changes to run in the forward direction until it stops upon reaching the rising edge of the HW signal.

19) 6098h = 21

Home: home switch (HW)

Deceleration point: home switch (HW)

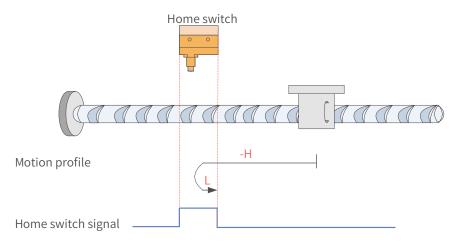
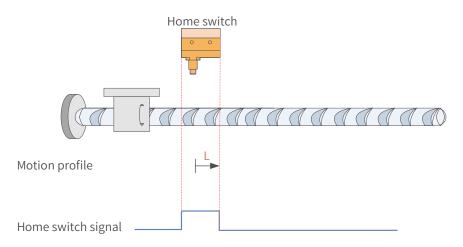
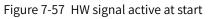
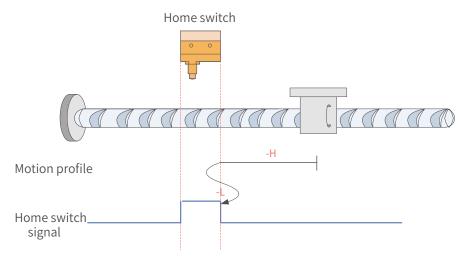





Figure 7-56 HW signal inactive at start

The HW signal is inactive at start, and the motor starts homing in the reverse direction at <del>a</del> high speed. After reaching the rising edge of the HW signal, the motor decelerates and changes to run in the forward direction until it stops upon reaching the falling edge of the HW signal.






The HW signal is active at start, and the motor starts homing in the forward direction at <del>a</del> low speed. After reaching the falling edge of the HW signal, the motor stops.

20) 6098 = 22

Home: home switch (HW)

Deceleration point: home switch (HW)





The HW signal is inactive at start, and the motor starts homing in the reverse direction at a high speed. After reaching the rising edge of the HW signal, the motor decelerates and changes to run in the forward direction. Then, after reaching the falling edge of the HW signal, the motor decelerates and changes to run in the reverse direction again until it stops upon reaching the rising edge of the HW signal.

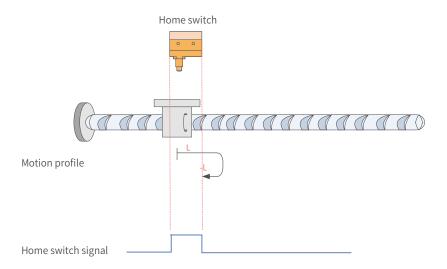



Figure 7-59 HW signal active at start

The HW signal is active at start, and the motor starts homing in the forward direction at <del>a</del> low speed. After reaching the falling edge of the HW signal, the motor decelerates and changes to run in the reverse direction until it stops upon reaching the rising edge of the HW signal.

21) 6098 = 23

Home: home switch (HW)

Deceleration point: home switch (HW)

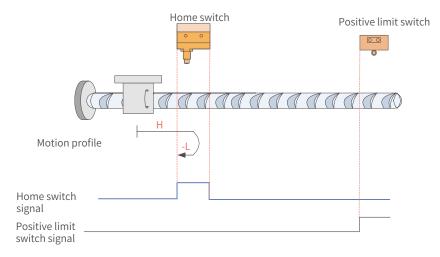



Figure 7-60 HW signal inactive at start, not hitting the positive limit switch

The HW signal is inactive at start, and the motor starts homing in the forward direction at a high speed. If the motor does not hit the limit switch, it decelerates and changes to run in the reverse direction after reaching the rising edge of the HW signal. Then, after reaching the falling edge of the HW signal, the motor stops.

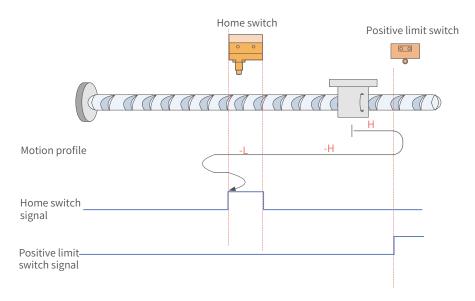
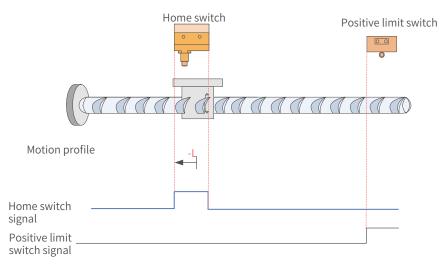
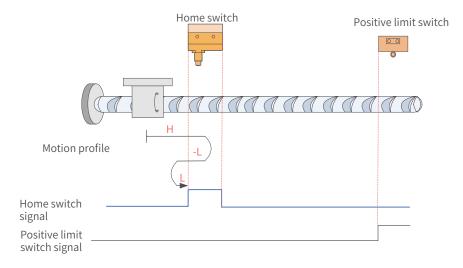
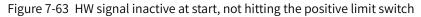



Figure 7-61 HW signal inactive at start, hitting the positive limit switch

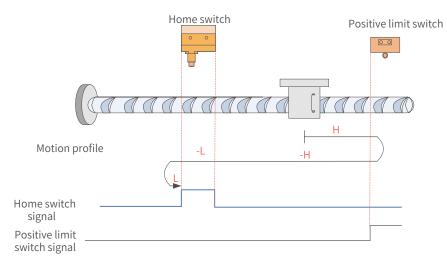
The HW signal is inactive at start, and the motor starts homing in the forward direction at a high speed. If the motor hits the limit switch, it changes to run in the reverse direction at a high speed until it decelerates after reaching the rising edge of the HW signal. Then, after reaching the falling edge of the HW signal, it decelerates and changes to run in the forward direction until it decelerates and changes to run in the reverse direction upon reaching the rising edge of the HW signal. Finally, the motor stops upon reaching the falling edge of the HW signal again.





Figure 7-62 HW signal active at start


The HW signal is active at start, and the motor starts homing in the reverse direction at **a** low speed until it stops after reaching the falling edge of the HW signal.

### 22) 6098 = 24


Home: home switch (HW)

Deceleration point: home switch (HW)





The HW signal is inactive at start, and the motor starts homing in the forward direction at a high speed. If the motor does not hit the limit switch, it decelerates and changes to run in the reverse direction after reaching the rising edge of the HW signal. Then, after reaching the falling edge of the HW signal, the motor changes to run in the forward direction at a low speed until it stops upon reaching the rising edge of the HW signal again.





The HW signal is inactive at start, and the motor starts homing in the forward direction at a high speed. If the motor hits the limit switch, it changes to run in the reverse direction until it decelerates upon reaching the rising edge of the HW signal. Then, after reaching the falling edge of the HW signal, the motor changes to run in the forward direction. Finally, the motor stops after reaching the rising edge of the HW signal again.

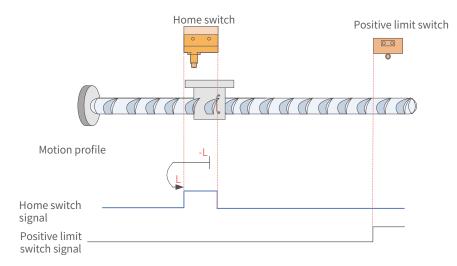



Figure 7-65 HW signal active at start

The HW signal is active at start, and the motor starts homing in the reverse direction at a low speed. After reaching the falling edge of the HW signal, the motor changes to run in the forward direction until it stops upon reaching the rising edge of the HW signal.

23) 6098 = 25

Home: home switch (HW)

Deceleration point: home switch (HW)

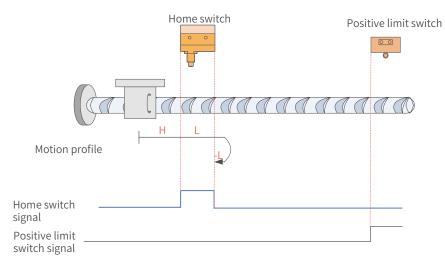



Figure 7-66 HW signal inactive at start, not hitting the positive limit switch

The HW signal is inactive at start, and the motor starts homing in the forward direction at a high speed. If the motor does not hit the limit switch, it decelerates and runs in the forward direction after reaching the rising edge of the HW signal. Then, after reaching the falling edge of the HW signal, the motor changes to run in the reverse direction until it stops upon reaching the rising edge of the HW signal again.

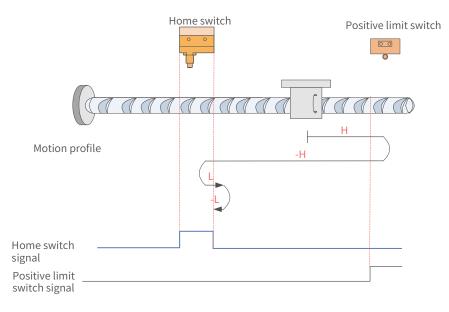



Figure 7-67 HW signal inactive at start, hitting the positive limit switch

The HW signal is inactive at start, and the motor starts homing in the forward direction at a high speed. If the motor hits the limit switch, it changes to run in the reverse direction. After reaching the rising edge of the HW signal, the motor decelerates and changes to run in the forward direction until reaching the falling edge of the HW signal where it changes to run in the reverse direction again. Finally, the motor stops after reaching the rising edge of the HW signal.

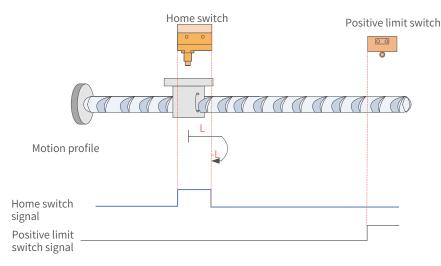


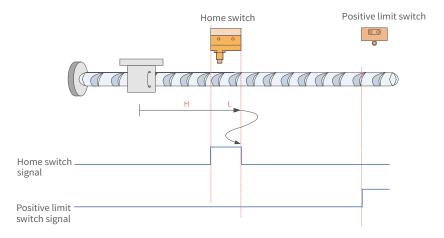
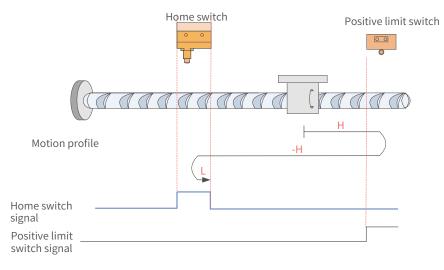

Figure 7-68 HW signal active at start

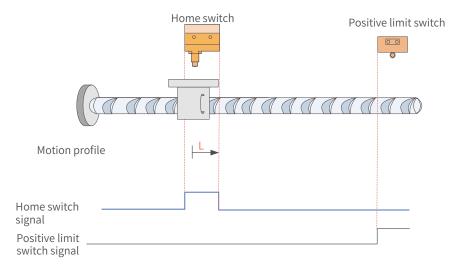
The HW signal is active at start, and the motor starts homing in the forward direction at a low speed. After reaching the falling edge of the HW signal, the motor changes to run in the reverse direction until it stops upon reaching the rising edge of the HW signal.

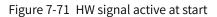
#### 24) 6098 = 26

Home: home switch (HW)

Deceleration point: home switch (HW)



Figure 7-69 HW signal inactive at start, not hitting the positive limit switch


The HW signal is inactive at start, and the motor starts homing in the forward direction at a high speed. If the motor does not hit the limit switch, it decelerates and runs in the forward direction after reaching the rising edge of the HW signal. Then, after reaching the falling edge of the HW signal, the motor decelerates and changes to run in the reverse direction until reaching the rising edge of the HW signal again where it decelerates and changes to run in the forward direction. Finally, the motor stops after reaching the falling edge of the HW signal again.





The HW signal is inactive at start, and the motor starts homing in the forward direction at a high speed. If the motor hits the limit switch, it changes to run in the reverse direction. After reaching the rising edge of the HW signal, the motor decelerates and changes to run in the forward direction until it stops upon reaching the falling edge of the HW signal.





The HW signal is active at start, and the motor starts homing in the forward direction at <del>a</del> low speed. After reaching the falling edge of the HW signal, the motor stops.

25) 6098 = 27

Home: home switch (HW)

Deceleration point: home switch (HW)

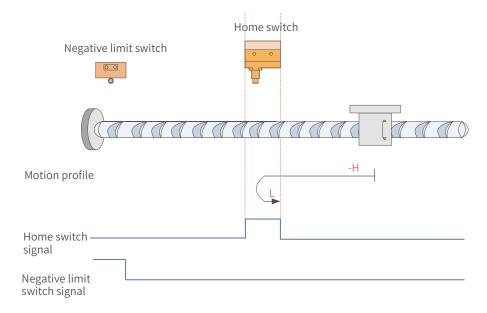



Figure 7-72 HW signal inactive at start, not hitting the negative limit switch

The HW signal is inactive at start. The motor starts homing in the reverse direction at a high speed. If the motor does not hit the limit switch, it decelerates and changes to run in the forward direction after reaching the rising edge of the HW signal. Then, the motor stops after reaching the falling edge of the HW signal.

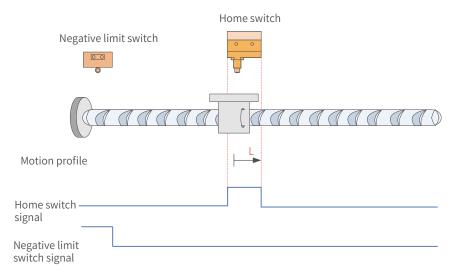
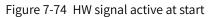





Figure 7-73 HW signal inactive at start, hitting the negative limit switch

The HW signal is inactive at start, and the motor starts homing in the reverse direction at a high speed. If the motor hits the limit switch, it changes to run in the forward direction. After reaching the rising edge of the HW signal, the motor decelerates and keeps running in the forward direction until reaching the falling edge of the HW signal where it decelerates and changes to run in the reverse direction. Then, after reaching the rising edge of the HW signal again, the motor decelerates and changes to run in the forward direction until it stops upon reaching the falling edge of the HW signal again.





The HW signal is active at start, and the motor starts homing in the forward direction at <del>a</del> low speed. After reaching the falling edge of the HW signal, the motor stops.

### 26) 6098 = 28

Home: home switch (HW)

Deceleration point: home switch (HW)

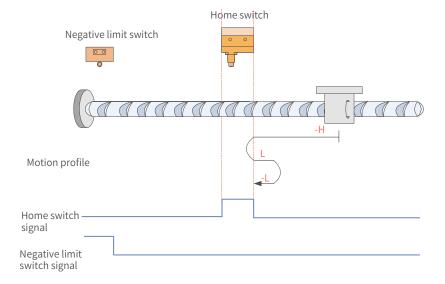



Figure 7-75 HW signal inactive at start, not hitting the negative limit switch

The HW signal is inactive at start, and the motor starts homing in the reverse direction at a high speed. If the motor does not hit the limit switch, it decelerates and changes to run in the forward direction after reaching the rising edge of the HW signal. Then, after reaching the falling edge of the HW signal, the motor changes to run in the reverse direction until it stops upon reaching the rising edge of the HW signal again.

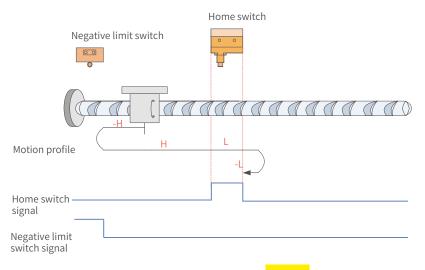



Figure 7-76 HW signal inactive at start, hitting the positive limit switch

The HW signal is inactive at start, and the motor starts homing in the reverse direction at a high speed. If the motor hits the limit switch, it changes to run in the forward direction until it decelerates upon reaching the rising edge of the HW signal. Then, after reaching the falling edge of HW signal, the motor decelerates and changes to run in the reverse direction. Finally, the motor stops after reaching the rising edge of the HW signal again.

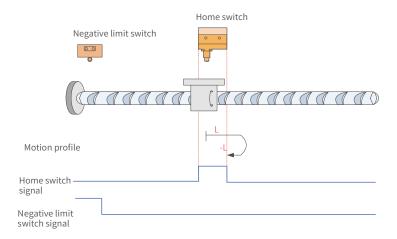



Figure 7-77 HW signal active at start

The HW signal is active at start, and the motor starts homing in the forward direction at a low speed. After reaching the falling edge of the HW signal, the motor changes to run in the reverse direction until it stops upon reaching the rising edge of the HW signal.

27) 6098 = 29

Home: home switch (HW)

Deceleration point: home switch (HW)

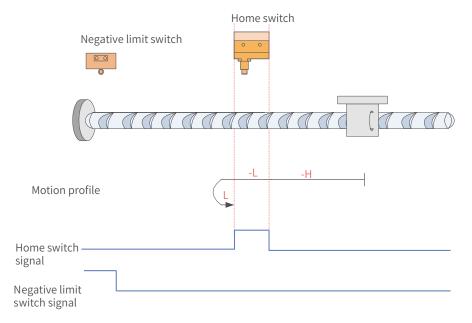



Figure 7-78 HW signal inactive at start, not hitting the negative limit switch

The HW signal is inactive at start, and the motor starts homing in the reverse direction at a high speed. If the motor does not hit the limit switch, it decelerates and runs in the reverse direction after reaching the rising edge of the HW signal. Then, after reaching the falling edge of the HW signal, the motor changes to run in the forward direction until it stops upon reaching the rising edge of the HW signal again.




Figure 7-79 HW signal inactive at start, hitting the negative limit switch

The HW signal is inactive at start, and the motor starts homing in the reverse direction at a high speed. If the motor hits the limit switch, it changes to run in the forward direction. After reaching the rising edge of the HW signal, the motor decelerates and changes to run in the reverse direction until it changes to run in the forward direction again upon reaching the falling edge of the HW signal. Finally, the motor stops upon reaching the rising edge of the HW signal again.

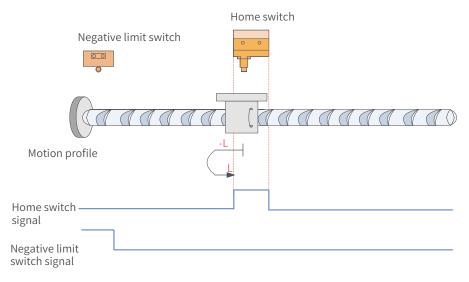



Figure 7-80 HW signal active at start

The HW signal is active at start, and the motor starts homing in the reverse direction at <del>a</del> low speed. After reaching the falling edge of the HW signal, the motor changes to run in the forward direction until it stops upon reaching the rising edge of the HW signal. 28) 6098 = 30

Home: home switch (HW)

Deceleration point: home switch (HW)

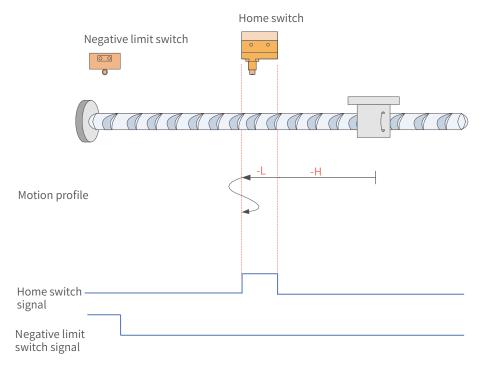
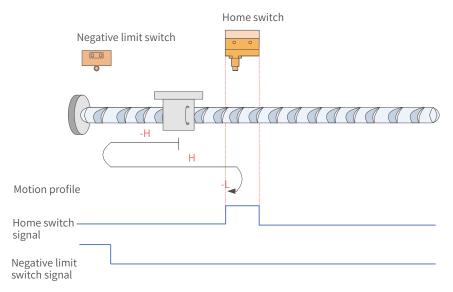




Figure 7-81 HW signal inactive at start, not hitting the negative limit switch

The HW signal is inactive at start, and the motor starts homing in the reverse direction at a high speed If the motor does not hit the limit switch, it decelerates and keeps running in the reverse direction after reaching the rising edge of the HW signal. Then, after reaching the falling edge of the HW signal, the motor decelerates and changes to run in the forward direction until reaching the rising edge of the HW signal where it changes to run in the reverse direction. Finally, the motor stops upon reaching the falling edge of the HW signal again.





The HW signal is inactive at start, and the motor starts homing in the reverse direction at a high speed. If the motor hits the limit switch, it changes to run in the forward direction at a high speed. After reaching the rising edge of the HW signal, the motor decelerates and changes to run in the reverse direction until it stops upon reaching the falling edge of the HW signal.

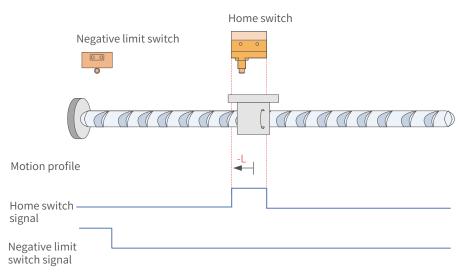
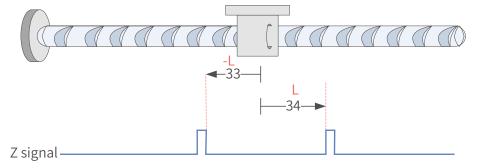



Figure 7-83 HW signal active at start

The HW signal is active at start, and the motor starts homing in the reverse direction at <del>a</del> low speed and stops after reaching the falling edge of the HW signal.

29) 6098h = 31/32

This mode is not defined in the standard 402 protocol. It can be used for extension purpose.


30) 6098h = 33/34

Home: Z signal

Deceleration point: None

Homing mode 33: The motor runs in the reverse direction at a low speed and stops at the first Z signal.

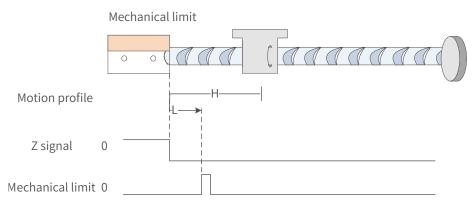
Homing mode 34: The motor runs in the forward direction at a low speed and stops at the first Z signal.



31) 6098h = 35

Homing mode 35: The present position is taken as the mechanical home, after homing is triggered (control word 6040:  $0x0F \rightarrow 0x1F$ ):

60E6h = 0 (Absolute homing):


6064h (Position actual value) is equal to 607Ch (Home offset) after homing is done.

60E6h = 1 (Relative homing):

6064h is the sum of the original value plus the home offset (607Ch) after homing is done.

32) 6098 = -1

The servo motor runs in the reverse direction at a high speed first. If the torque reaches the limit and the speed is near zero after the motor hits the mechanical limit, and such status persists, it indicates the motor reaches the mechanical limit position. In this case, the motor runs in the forward direction at a low speed and stops upon reaching the rising edge of the Z signal for the first time.



33) 6098 = -2

The servo motor runs in the forward direction at a high speed first. If the torque reaches the limit and the speed is near zero after the motor hits the mechanical limit, and such status persists, it indicates the motor reaches the mechanical limit position. In this case, the motor runs in the reverse direction at a low speed and stops upon reaching the rising edge of the Z signal for the first time.

	Mechanical limit
Caaa Faaaaa	
Motion profile H	r <b>←</b> L_
Z signal 0	
Mechanical limit 0	
CAUT	ION
Keep sufficient clearance between the positive limit proper acceleration rate. Failure to comply may cause	-

# 7.9.5 Related Parameters

Index 6040h	ndex		ontrol wo	& Effective Time Immediately			Str	Data ructure		VAR	Data Type	Uint16
	Access	RW	RW Mapping RPDO		Related Mode	All		ie Range	0 to	o 65535	Default	0
Defines	s the con	trol con	nmands.									
bit		Name			Descript	ion						
0	Swite	ch on	1	1: Valid, 0: Invalid								
1	Enab	le volta	ge 1	Valid, (	): Invalid							
2	Quic	k stop	0	Valid,	1: Invalid							
3	Runn	ing	1	Valid, (	): Invalid							
4	New	set-poir	nt	-> 1: ho -> 0: ho	0							
8	Halt		0: Keep present running state 1: Halt									
	Na	Setting Condition						Data	a		Data Tupo	Llint16

Index 6041h	Name		Status worc	I	Condition & Effective Time	-	Data Structure	VAR	Data Type	Uint16
	Access	RO				All	Value Range	-	Default	0
Shows th	ie servo drive	status.								
bit	Na	me		Description						
0	Ready to sw	vitch on	1: Valid	, 0: Invali	d					
1	Switch on		1: Valid	, 0: Invali	1					
2	Operation e	enabled	1: Valid	, 0: Invali	d					
3	Fault		1: Valid	, 0: Invali	d					
4	Voltage ena	bled	1: Valid	, 0: Invali	d					
5	Quick stop		0: Valid	, 1: Invali	d					
6	Switch on d	lisabled	1: Valid	, 0: Invali	d					
7	Warning		1: Valid	1: Valid, 0: Invalid						
8	Manufactur	er-specif	ic Undefi	Undefined						
9	Remote		1: Valid 0: Inval	1: Valid, control word activated						
			0: Hom	e not loca	ated					
10	Target reac	hed		e located						
12		- t I	0: Hom	e not fou	nd					
12	Homing att	ained	1: Hom	e found						
13	Homing orr	0: No homing er			ror					
	Homing error 1: Ho			1: Homing error occurs						
15		0: Hom	0: Home not located							
15	Home find		1: Hom	1: Home located						

Index 6098h	Name	Но	oming metho	od	Setting Condition & Effective Time	During running & At stop	Data Structure	VAR	Data Type	int8			
	Access	RW	Mapping	RPDO	Related Mode	НМ	Value Range	-2 to +35	Default	0			
Defines tl	ne homing	method.											
Mode					Descri	ption							
-2	Home: Z	Forward homing: Home: Z signal Deceleration point: forward mechanical limit											
-1	Home: Z	Reverse homing: Home: Z signal Deceleration point: reverse limit position											
1		signal tion poir	nt: negative l of the N-OT s			d before rea	aching the Z s	signal.					
2	Home: Z Decelera	The falling edge of the N-OT signal must be reached before reaching the Z signal. Forward homing: Home: Z signal Deceleration point: positive limit switch (P-OT) The falling edge of the P-OT signal must be reached before reaching the Z signal.											
3	Home: Z Decelera	tion poir	it: home swi			must be rea	ached before	reaching th	ne Z signal.				
4		signal tion poir	it: home swi n the same s			nust be rea	ched before	reaching th	e Z signal.				
5	Reverse Home: Z Decelera	homing: signal tion poir	ıt: home swi	tch (HW)			ached before						
6	Forward Home: Z Decelera	homing: signal tion poir	ıt: home swi	tch (HW)			ched before						
7		signal tion poir	it: home swi		ne HW signal	must be rea	ached before	reaching tl	ne Z signal.				
8	Forward Home: Z Decelera	homing: signal tion poir	ıt: home swi	tch (HW)									
9	Home: Z Decelera	The rising edge on the same side of the HW signal must be reached before reaching the Z signal. Forward homing: Home: Z signal Deceleration point: home switch (HW) The rising edge on the other side of the HW signal must be reached before reaching the Z signal.											
10	Home: Z Decelera	tion poir	it: home swi		ne HW signal	must be rea	ached before	reaching tl	ne Z signal.				

Index 6098h	Name	Ho	oming metho	od	Setting Condition & Effective Time	During running & At stop	Data Structure	VAR	Data Type	int8		
	Access	RW	Mapping	RPDO	Related Mode	НМ	Value Range	-2 to +35	Default	0		
11	Home: Z Decelera	verse homing: me: Z signal celeration point: home switch (HW) e falling edge on the same side of the HW signal must be reached before reaching the Z signal.										
12	Home: Z Decelera	Reverse homing: Home: Z signal Deceleration point: home switch (HW) The rising edge on the same side of the HW signal must be reached before reaching the Z signal.										
13	Decelera	signal or ition poin	it: home swi ⁻	tch (HW)	e home switc e HW signal r		ched before I	reaching th	e Z signal.			
14	Homing Home: Z Decelera	in the rev signal or ition poin	verse direction the other sint: home swi	on: de of the tch (HW)	e home switc	h	iched before					
15 to 16	N/A											
17 to 32	Similar t	Similar to 1 to 14. However, the deceleration point overlaps with the home.										
33	Reverse	Reverse homing. The home is the Z signal.										
34	Forward	homing.	The home is	the Z sig	gnal.							
35	The pres	he present position is used as the home.										

Index 6099h _	Name	Homing speeds		Setting Condition & Effective Time	-	Data Structure	ARR	Data Type	Uint32			
			Mapping	Yes	Related Mode	НМ	Value Range	OD data range	Default	OD default value		
Defines t	Defines the two speed values used in the homing mode											

Defines the two speed values used in the homing mode.

- Speed during search for switch
- Speed during search for zero

Sub- index	Name	Number	of homing sp indexes	eed sub-	Setting Condition & Effective Time	-	Data Structure	-	Data Type	Uint8	
0h	Access	RO	Mapping	NO	Related Mode	-	Value Range	2	Default	2	

Sub- index	Name	Speed	d during sea switch	rch for	Setting Condition & Effective Time	During running & At stop	Data Structure	-	Data Type	Uint 32
1h	Access	RW	Mapping	RPDO	Related Mode	НМ	Value Range	0 to (232-1) (Velocity unit/s)	Default	1747627

Defines the speed during searching for the deceleration point signal. A large setting value helps prevent E601.0 (Homing timeout) caused by a prolonged homing process.

Note: After finding the deceleration point, the slave decelerates and blocks the change of the home signal during deceleration. To prevent encountering the home signal during deceleration, set the switch position of the deceleration point signal properly to leave sufficient deceleration distance or increase the homing acceleration rate to shorten the deceleration time.

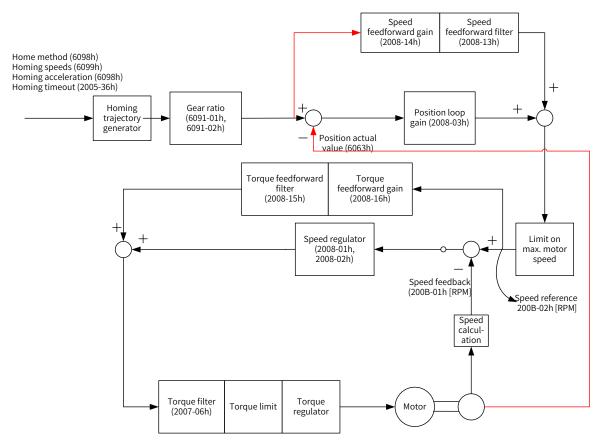
Sub- index	Name	Speed	during search	n for zero	Setting Condition & Effective Time	During running & At stop	Data Structure	-	Data Type	int32
2h	Access	RW	Mapping	RPDO	Related Mode	НМ	Value Range	10 to (232-1) (velocity unit/s)	Default	100

Defines the speed during searching for the home signal. A small setting value helps avoid overshoot during stop at a high speed, which prevents large deviation between the stop position and the preset mechanical home.

Index	Name	Hom	ing acceleration		Setting Condition & Effective Time	During running & At stop	Data Structure	VAR	Data Type	DUINT32
609Ah	Access	RW	Mapping	RPDO	Related Mode	НМ	Value Range	0 to (2 ³² -1) (Acceleration unit/s ²⁾	Default	100

Defines the acceleration rate in the homing mode <mark>and indicates the position reference (position unit) increment per second</mark>.

The setting value takes effect after homing is started.


In the homing mode, if 605Dh (Halt option code) is set to 2, the servo drive decelerates to stop as defined by 609Ah. For 609Ah, the setting value 0 will be forcibly changed into 1.

## 7.9.6 Recommended Configuration

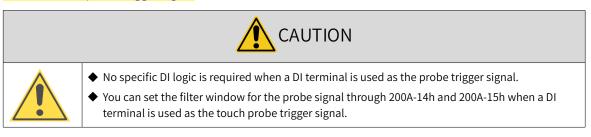
The basic configuration for the homing mode is shown in the following table.

RPDO	TPDO	Description
6040: Control word	6041:Status word	Mandatory
6098: Homing method		Optional
6099-01: Speed during search for switch		Optional
6099-02: Speed during search for zero		Optional
609A: Homing acceleration		Optional
	6064: Position actual value	Optional
6060: Modes of operation	6061: Modes of operation display	Optional

## 7.9.7 Function Block Diagram



# 7.10 Auxiliary Functions


The servo drive offers the following auxiliary functions:

- Motor protection
- DI filter time setting
- Touch probe function (latch function)

## 7.10.1 Touch Probe Function (Latch Function)

The latch function latches the position actual value (position unit) when an external latch input signal or the Z signal changes.

The SV660N offers two touch probes to record the positions corresponding to the rising edge or fall edge of each touch probe signal, which means four positions can be latched. Use DI5 when a DI terminal is to be used as the probe trigger signal.



Related Objects

Index (HEX)	Sub-index (HEX)	Name	Access	Data Type	Unit	Value Range	Default
2003	03	DI1 function selection	RW	Uint16	-	0 to 65535	14
2003	0B	DI5 function selection	RW	Uint16	-	0 to 65535	39
60B8	00	Touch probe function (latch Function)	RW	Uint16	-	0 to 65535	0
60B9	00	Touch probe status	RO	Uint16	-	-	0
60BA	00	Touch probe 1 positive edge	RO	int32	Position unit	-	0
60BB	00	Touch probe 1 negative edge	RO	int32	Position unit	-	0
60BC	00	Touch probe 2 positive edge	RO	int32	Position unit	-	0
60BD	00	Touch probe 2 negative edge	RO	int32	Position unit	-	0
60D5	00	Touch probe 1 positive edge counter	RO	Uint16	-	-	0
60D6	00	Touch probe 1 negative edge counter	RO	Uint16	-	-	0
60D7	00	Touch probe 2 positive edge counter	RO	Uint16	-	-	0
60D8	00	Touch probe 2 negative edge counter	RO	Uint16	-	-	0

Operation procedures

Observe the following procedures when using DI5 as the probe trigger signal.

Requirement: continuous latching of the touch probe 1 positive value

- 1) Set the function of DI5 by setting 0x2003-0B to 38.
- 2) Set the touch probe function in 0x60B8.

The definition of each bit of the touch probe function (0x60B8) is shown in the following table.

Bit	Description	Remarks
	Touch probe 1 function selection	
0	0: Switch off touch probe 1	
	1: Enable touch probe 1	
	Touch probe 1 trigger mode	
1	0: Single trigger mode (Latches the position at the first trigger event.)	
	1: Continuous trigger mode	Bit0 to Bit5: settings related to touch probe 1
	Touch probe 1 trigger signal selection	When the DI terminal is used as the touch probe triggering signal, the DI source is non-
2	0: DI signal	modifiable once the touch probe is enabled.
	1: Z signal	For an absolute encoder, the Z signal refers
3	N/A	to the zero point of the single-turn position
	Touch probe 1 positive edge	feedback of the motor.
4	0: Switch off sampling at positive edge	
	1: Enable sampling at positive edge	
	Touch probe 1 negative edge	
5	0: Switch off sampling at negative edge	
	1: Enable sampling at negative edge	

Bit	Description	Remarks
6 to 7	N/A	
	Touch probe 2 function selection	
8	0: Switch off touch probe 2	
	1: Enable touch probe 2	
	Touch probe 2 trigger mode	
9	0: Single trigger mode (Latches the position at the first trigger event.)	
	1: Continuous trigger mode	
	Touch probe 2 trigger signal selection	
10	0: DI signal	Bit8 to Bit13: settings related to touch probe 2
	1: Z signal	
11	N/A	
	Touch probe 2 positive edge	
12	0: Switch off sampling at positive edge	
	1: Enable sampling at positive edge	
	Touch probe 2 negative edge	
13	0: Switch off sampling at negative edge	
	1: Enable sampling at negative edge	
14 to 15	N/A	

Set 0x60B8 to 0x0013 in this example.

#### 3) Read the touch probe status through 0x60B9.

The definition of each bit of the touch probe status (0x60B9) is shown in the following table.

Bit	Description	Remarks
0	Touch probe 1 function selection 0: Switch off touch probe 1 1: Enable touch probe 1	
1	Touch probe 1 positive edge value 0: No positive edge value stored 1: Positive edge value stored	Bit0 to Bit7: status of touch probe 1
2	Touch probe 1 negative edge value 0: No negative edge value stored 1: Negative edge value stored	
3 to 7	N/A	
8	Touch probe 2 function selection 0: Switch off Touch probe 2 1: Enable touch probe 2	
9	Touch probe 2 positive edge value 0: No positive edge value stored 1: Positive edge value stored	Bit8 to Bit15: status of touch probe 2
10	Touch probe 2 negative edge value 0: No negative edge value stored 1: Negative edge value stored	
11 to 15	-	

In this example, you can read bit1 of 0x60B9 to check whether the function of position latch at positive edge of touch probe 1 is enabled.

4) Read the latch position of the touch probe.

The four position values of the touch probe are saved in 0x60BA to 0x60BD.

In this example, if the function of position latch at positive edge of touch probe 1 is executed, you can read the position value through 0x60BA (Touch probe 1 positive edge, position unit). The latch times can be obtained through 0x60D5.

The following figure shows the function setting sequence and status feedback of the touch probe in the preceding example, which takes DI5 as the trigger signal and adopts positive edge latch.

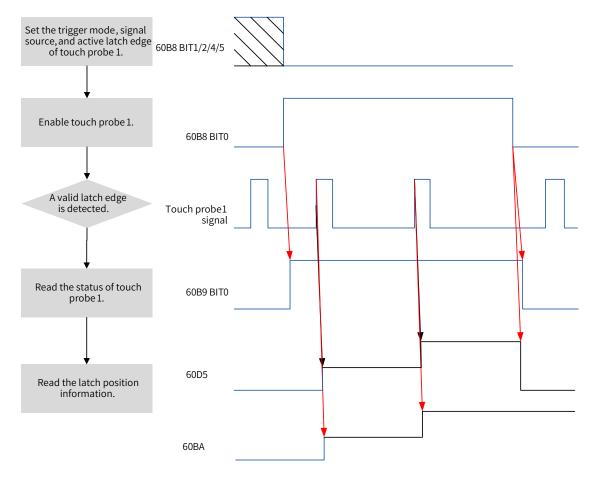



Figure 7-84 Procedures for use of the touch probe

### 7.10.2 Software Limit

Traditionally, the limit is defined by the external sensor signal connected to CN1, which is known as the hardware limit.

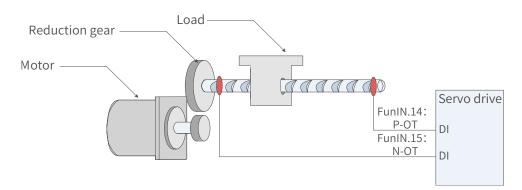



Figure 7-85 Installation of limit switches

### ■ Comparison between the hardware limit and software limit

	Hardware limit	Software limit		
1	Restricted to linear movement and single-turn rotation movement.	1	Applicable to linear movement and rotation movement.	
2	External mechanical limit switches are required.	2	Removes the need for hardware wiring, preventing malfunction due to poor contact.	
3	Suffered from the risk of mechanical slip.		Dravants molfunction due to machanical slip	
4	Fails to judge or alarm the out-of-limit situation after power-off.	3	Prevents malfunction due to mechanical slip through internal position comparison.	

The software limit works by comparing the set limit value with the internal feedback value. If the latter exceeds the former, a warning will be reported and the servo drive stops. This function is available in both absolute and incremental position modes. To use this function in the incremental position mode, set 200A-02h to 2 to make the servo drive perform homing upon power-on before the software limit applies.

### **Related objects:**

200A-02h H0A-01	Name	Absolute position limit		Setting Condition & Effective Time	At stop & Immediately	Data Structure	-	Data Type	Uint16	
	Access	RW	Mapping	-	Related Mode	All	Value Range	0 to 2	Default	0
This object determines whether the absolute position limit is activated and the conditions for activation.										
Value	Value Absolute Position Limit Selection									

value	Absolute Position Limit Selection
0	Disabled
1	Enabled
2	Enabled after homing

If the absolute position limit is enabled, the servo drive stops according to the setting of 2002-08h (Stop mode at overtravel) when the absolute position feedback reaches the limit value.

607D-01h	Name	Min	Min position limit		Setting Condition & Effective Time	running &	Data Structure	_	Data Type	int32
	Access	RW	Mapping	RPDO	Related Mode	All	_	$-2^{31}$ to +( $2^{31}$ -1) (position unit)	Default	-2 ³¹

This object defines the minimum software position limit relative to the mechanical zero point.

607D-02h	Name	May position limit		Setting Condition & Effective Time	running k	Data Structure	-	Data Type	int32	
	Access	RW	Mapping	RPDO	Related Mode	All	Value Range	$-2^{31}$ to +( $2^{31}$ -1) (position unit)	Default	2 ³¹ -1
This objec	This object defines the maximum software position limit relative to the mechanical zero point.									

• Ensure the value of 607D-01h is less than or equal to 607D-02h. If 607D-01h is set to a value larger than 607D-02h, the servo drive reports EE09.0 (Wrong software position limit).
<ul> <li>In the absolute rotation mode or single-turn mode, ensure 607D-01 and 607D-02 are within the mechanical position limit. Otherwise, the servo drive reports EE09.0.</li> </ul>
<ul> <li>Ensure the value of 607Ch (Home offset) is within the software limit range. Otherwise, the servo drive reports EE09.0.</li> </ul>

## 7.10.3 Position Comparison

The position comparison works by comparing the instantaneous position data with the value prestored in the data array and, once available, outputs a DO signal with pulse width settable for use in subsequent motion control. Such comparison is implemented through FPGA, removing the risk of software communication delay between different chips. Accurate comparison can also be performed on the motion axis rotating at a high speed.

For position comparison, you can select "active high" or "active low" for the DO terminal. When "active high" is selected, the corresponding DO is activated when it is connected to the common terminal and deactivated when it is disconnected from the common terminal. When "active low" is selected, the corresponding DO is deactivated when it is connected to the common terminal and activated when it is disconnected from the common terminal. There are three DO terminals for the SV660N servo drive.

### **1** Applicable conditions

Position comparison is available only when the following conditions are fulfilled.

Cor	Conditions for Position Comparison		
Control mode All the control modes			
	<ul> <li>After EtherCAT communication is confirmed</li> </ul>		
Others	◆ After homing is done		
	<ul> <li>Motor rotating normally with critical parameters (control parameters included) set properly</li> </ul>		

### 2 Related Objects

The configurable DO logic functions are listed as follows:

- 0: No definition
- 1: Servo ready (SRDY)
- 2: Motor rotating
- 9: Brake
- 10: Warning (WARN)
- 11: Alarm (ALRM)
- 25: Position Comparison (CMP)
- 32: STO EDM

When position comparison is enabled, you can allocate function 25 (Position comparison) to any one of the three DOs, and the DO you select will act as the position comparison output signal.

### Parameters for position comparison

### Group H18: Position comparison output

Para. No.	Name	Description				
	ł	- 118: Position Comparison Output				
H18-00	Position comparison switch	1: Enabled				
H18-02	Position comparison resolution	Defines the number of pulses per revolution. For example, if H18-02 is set to 2, the number of pulses per revolution is 2 ²⁴ . 0: 24-bit 1: 23-bit 2: 22-bit 3: 21-bit 4: 20-bit 5: 19-bit 6: 18-bit 7: 17-bit				
H18-03	Position comparison mode	0: Single comparison 1: Cyclic comparison				
H18-04	Present position as zero	1: Enabled				
H18-05	Position comparison output width	Defines the active pulse width of the DO when the comparison point is reached. The value range is 0 to 2047 (unit: 0.1 ms).				
H18-07	Start point of position comparison	Activated when H18-00 is set to 1 again.				
H18-08	End point of position comparison	Activated when H18-00 is set to 1 again.				
H18-09	Present status of position comparison	0: No comparison n: Waiting for No. N comparison point				
H18-10	Real-time position feedback	Displays the present position value during position comparison. Value range: $-2^{31}$ to $2^{31}-1$				
H18-12	Zero offset of position comparison	Defines the offset value after the present position is taken as the zero point. Value range: -2 ³¹ to +2 ³¹ -1				
H19-00	Target position comparison point 1	Defines the comparison value of the first target position. Value range: -2 ³¹ to 2 ³¹ -1				
H19-02	Attribute of position comparison point 1	<ul> <li>Defines the attribute of the first comparison point.</li> <li>0: Skip this point</li> <li>1: Output DO active signal if current position changes from less than to more than the comparison point</li> <li>2: Output DO active signal if current position changes from more than to less than the comparison point</li> <li>3: Output DO active signal in both situations</li> </ul>				
H19-03	Target position comparison point 2	Defines the second target position comparison value.Value range: $-2^{31}$ to $2^{31}-1$				
H19-05	Attribute of position comparison point 2	<ul> <li>Defines the attribute of the second comparison point.</li> <li>0: Skip this point</li> <li>1: Output DO active signal if current position changes from less than to more than the comparison point</li> <li>2: Output DO active signal if current position changes from more than to less than the comparison point</li> <li>3: Output DO active signal in both situations</li> </ul>				

Para. No.	Name	Description
H19-06	Target position comparison point 3	Defines the 3rd target position comparison value. Value range: $-2^{31}$ to $2^{31}-1$
		Defines the attribute of the third comparison point. 0: Skip this point 1: Output DO active signal if current position changes from less than to
H19-08	H19-08 Attribute of position comparison point 3	<ul> <li>a. Output Do active signal if current position changes from response than to</li> <li>2: Output DO active signal if current position changes from more than to</li> <li>less than the comparison point</li> </ul>
		3: Output DO active signal in both situations
H19-09	Target position comparison point 4	Defines the 4th target position comparison value. Value range: $-2^{31}$ to $2^{31}-1$
		Defines the attribute of the 4th comparison point. 0: Skip this point
H19-11	Attribute of position comparison point 4	1: Output DO active signal if current position changes from less than to more than the comparison point
		2: Output DO active signal if current position changes from more than to less than the comparison point
		3: Output DO active signal in both situations
H19-12	Target position comparison point 5	Defines the 5th target position comparison value. Value range: -2 ³¹ to 2 ³¹ -1
	Attribute of position	Defines the attribute of the 5th comparison point. 0: Skip this point 1: Output DO active signal if current position changes from <mark>less than</mark> to
H19-14	comparison point 5	<ul> <li>more than the comparison point</li> <li>2: Output DO active signal if current position changes from more than to less than the comparison point</li> <li>3: Output DO active signal in both situations</li> </ul>
H19-15	Target position comparison point 6	Defines the 6th target position comparison value. Value range: $-2^{31}$ to $2^{31}-1$
		Defines the attribute of the 6th comparison point: 0: Skip this point
H19-17	Attribute of position comparison point 6	<ol> <li>Output DO active signal if current position changes from less than to more than the comparison point</li> <li>Output DO active signal if current position changes from more than to</li> </ol>
		less than the comparison point 3: Output DO active signal in both situations
	Target position comparison	Defines the 7th target position comparison value.
H19-18	point 7	Value range: -2 ³¹ to 2 ³¹ -1
		Defines the attribute of the 7th comparison point. 0: Skip this point
H19-20	Attribute of position	1: Output DO active signal if current position changes from less than to more than the comparison point
	comparison point 7	2: Output DO active signal if current position changes from more than to less than the comparison point
		3: Output DO active signal in both situations
H19-21	Target position comparison point 8	Defines the 8th target position comparison value. Value range: $-2^{31}$ to $2^{31}-1$

Para. No.	Name	Description
		Defines the attribute of the 8th comparison point. 0: Skip this point
H19-23	Attribute of position comparison point 8	1: Output DO active signal if current position changes from less than to more than the comparison point
		2: Output DO active signal if current position changes from <mark>more than</mark> to less than the comparison point
		3: Output DO active signal in both situations

#### 3 Run

- 1) Description
- Position comparison switch (H18-00)

When the value of H18-00 changes from 0 to 1, position comparison starts and the value of H18-09 (Present status of position comparison) is updated to the start point of position comparison. When the value of H18-00 changes to 0, position comparison stops and the present comparison status is cleared.

Position comparison resolution (H18-02)

The comparison resolution defines the number of pulses per revolution. Given the maximum and minimum limits on the target position (defined by group H19), you can reset the resolution when data overflow occurs on the comparison value. For example: H18-02 = 7-17bit

The maximum value of the target position is  $2^{31}-1$ , and the motor rotates by  $2^{31}-1/2^{17}$  circles.

The target position in group H19 is only related to the set resolution.

■ Single comparison mode (H18-03 = 0)

In the single comparison mode, when comparison of the end point is done, the comparison function is switched off automatically and the present comparison value is cleared to zero. The comparison function can be enabled again only when the position comparison <del>switch</del> is switched on again.

The real-time position feedback in the single comparison mode is an absolute value, which means it is an accumulative value based on the preceding comparison point. Such value will not be cleared automatically.

■ Cyclic comparison mode (H18-03 = 1)

In the cyclic comparison mode, the comparison function will not be switched off when the comparison of the end point is done, and the present comparison value will be set as the start point for comparison. Each time the comparison of a certain point is done, the value of H18-10 (Real-time position feedback) is cleared and re-counted for cyclic comparison.

In the cyclic comparison mode, the target position is a relative and incremental value. Each time the comparison of a certain point is done, the real-time position feedback is cleared and re-counted to be compared with the new target point.

Position comparison output width (H18-05)

When the position comparison conditions are fulfilled, the servo drive outputs DO active level signal. The width of the active signal can be set by H18-05 (value range: 1 to 2047 x 0.1 ms).

When the DO output is active, the comparison logic is suspended and no comparison will be performed. In this case, ensure the operating time between two target points is larger than the DO output width.

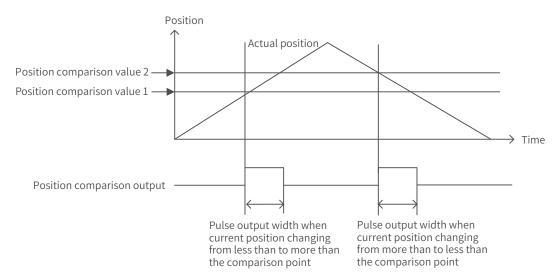
Target position comparison point

There are eight target position comparison points in total. The comparison point is a 32-bit signed number. The target position comparison value and the comparison attribute value must be updated to

the related parameters in group H19 in advance.

■ Start point for comparison (H18-07)

The start point indicates the position of the first comparison point. For example, if the start point is set to 5, the comparison starts from the fifth target position point.

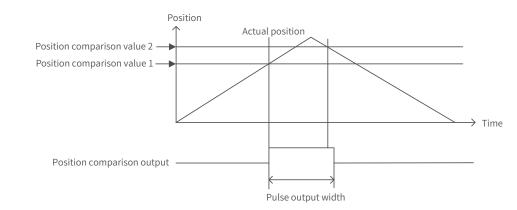

End point for comparison (H18-08)

The end point indicates the position of the last comparison point. For example, if the end point is set to 7, the comparison stops or restarts from the start point after the comparison of the 7th target position point is done.

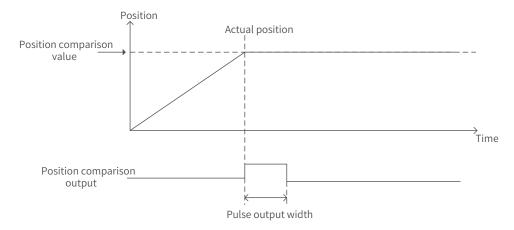
Zero offset of position comparison (H18-12)

The value of H18-10 (Real-time position feedback) will be changed to the offset value defined by H18-12 (Zero offset of position comparison) at the rising edge ( $0 \rightarrow 1$ ) of H18-04 (Present position as zero).

- 2) Running
- When the position feedback of the encoder passes the target position comparison values (H19-00 to H19-21), the DO outputs the time width pulse defined by H18-05 (Position comparison output width), as shown in the following figure.




When the attribute of the target point is set to 1 (Output DO active signal if current position changes from less than to more than the comparison point), the DO outputs the position comparison signal when the encoder passes the target position comparison value with position changing from less than to more than the comparison point.


When the attribute of the target point is set to 2 (Output DO active signal if current position changing from more than to less than the comparison point), the DO outputs the position comparison signal when the encoder passes the target position comparison value with position changing from more than to less than the comparison point.

When the attribute of the target point is set to 3 (Output DO active signal under both situations), the DO outputs position comparison signal when the encoder passes the target position comparison value with position changing in either way.

When the action direction reverses and multiple position comparison values are set, no comparison will be performed once the position comparison DO output is active. Therefore, ensure the operating time between two target points is larger than the pulse output width. As shown in the following figure, no comparison is performed because the pulse output width is larger than the operating time between the two target points.



Only one pulse will be output when the stop position is the same with the position comparison value, as shown in the following figure.



3) Interface of the software tool

For the convenience of setting the target position comparison value, the software tool provides the function of division setting. Set a proper comparison mode, start point, and end point first.

- In the single comparison mode, set the total running distance and number of comparison points. After clicking "等分设定 " (Division setting), the target value of the first point is updated to "Distance x 1/Number of comparison points", the target value of the second point is updated to "Distance x 2/ Number of comparison points", and the target value of the Nth point is updated to "Distance x N/ Number of comparison points".
- In the cyclic comparison mode, "距离长度" (Distance length) is used to set the operating distance between two adjacent point. "比较点数" (Comparison points) is used to set the numbers of points to be compared cyclically. After clicking "等分设定" (Division setting), the target values of the 1st to the Nth comparison points are updated to the values set in "距离长度" (Distance length).

择轴 轴1 🔻	位置比	較监控					
	位置比	较当前状态 1.00	0000	1	位置比较实时位置 -9.	000000	
置比较设置							
置比较输出使能 1[使能(上升沿有效)] ▼	目标位	置参数设置					
	距离长	度 800000	比较点数 5		等分设定	上传	下载
昆比较值分辨率 1[1-23bit] ▼							)
	行号	描述	地址	设定值	当前值	最小值	最大值
昱比较模式选择 0[单次比较模式] ▼	▼ 1	位置比较1目标值	1900	0	160000	-2147483648	2147483647
	2	位置比较1属性值	1902	1	1	0	3
前位置为零点 0[不使能] 🔻	V 3	位置比较2目标值	1903	0	320000	-2147483648	2147483647
	☑ 4	位置比较2属性值	1905	1	1	0	3
	✓ 5	位置比较3目标值	1906	0	480000	-2147483648	2147483647
Lubich (Lubich)	V 6	位置比较3属性值	1908	1	1	0	3
V较输出宽度 20	7	位置比较4目标值	1909	0	640000	-2147483648	2147483647
0.000000 - 204.700000	V 8	位置比较4属性值	190B	1	1	0	3
	9	位置比较5目标值	190C	0	800000	-2147483648	2147483647
比较的起始点 1	☑ 10	位置比较5属性值	190E	1	1	0	3
0 - 8	V 11	位置比较6目标值	190F	0	0	-2147483648	2147483647
	☑ 12	位置比较6属性值	1911	***	0	0	3
(較的终止点 5)	V 13	位置比较7目标值	1912	0	0	-2147483648	2147483647
0 - 8	☑ 14	位置比较7属性值		***	0	0	3
0 0	V 15	位置比较8目标值	1915	***	0	-2147483648	2147483647
教季点偏青 0	V 16	位置比较8属性值	1917	***	0	0	3
-2147483648 - 2147483647							
设定 读取							

## 7.11 Absolute System

For the wiring and battery installation of the absolute encoder, see <u>"3.4 Connection of the Servo Drive and</u> <u>Servo Motor Encoder Cables</u>".

### 7.11.1 Descriptions for Use of the Absolute System

Overview

The absolute encoder records the single-turn position and the number of revolutions. With a single-turn resolution up to 8388608 (2²³), the encoder can record 16-bit multi-turn data. The absolute system works in the position, speed, and torque control modes. When the servo drive is powered off, the encoder performs data backup using the power supplied by the battery. The servo drive therefore can calculate the absolute mechanical position through the encoder after power-on, removing the need for homing.

When using the absolute encoder, set 2000-01h (Motor code) to 14101 (Inovance 23-bit absolute encoder) and set 2002-02h (Absolute system selection) based on actual conditions. Er.731 will be reported when the battery is connected for the first time. Set 200D-15h (Absolute encoder reset selection) to 1 (Reset the encoder fault) to reset the encoder fault, and then perform the homing operation.



When the value of 2002-03h (Rotation direction), 200D-15h (Absolute encoder reset selection) or the mechanical gear ratio is modified, an abrupt change will occur on the mechanical position, requiring a homing operation. After homing is done, the servo drive calculates the difference value between the absolute mechanical position and the encoder absolute position and stores the difference value in the EEPROM.

- Related objects
- Absolute system setting

Set 2000-01h (Motor code) to 14101 (Inovance 23-bit absolute encoder), and select the absolute position mode through 2002-02h (Absolute system mode).

Name	Motor code			Setting Condition & Effective Time	At stop Next power-on	Data Structure	-	Data Type	Uint16
Access	Access RW Mapping		-	Related Mode	-	Value Range	0 to 65535	Default	14101
motor co	de.								
9		Motor S	N			Descript	tion		
0 Inc	Inovance motor with increme			ntal encoder	Encode	r resolution:	1048576 (2 ²	⁰ )	
1 Inc	Inovance motor with absolute en				Encode	r resolution:	8388608 (2 ²	³ )	
	Access motor co	Access RW motor code.	Access RW Mapping motor code. Motor S Inovance motor with incl	Access RW Mapping - motor code. Motor SN D Inovance motor with increme	Name     Motor code     Condition & Effective Time       Access     RW     Mapping     -     Related Mode       motor code.     Motor SN     -     -     -       Motor SN     Inovance motor with incremental encoder     -     -     -	Name     Motor code     Condition & Effective Time     At stop Next power-on       Access     RW     Mapping     -     Related Mode     -       motor code.     -     Motor SN     -     -       Inovance motor with incremental encoder     Encode	Name     Motor code     Condition & Effective Time     At stop Next power-on     Data Structure       Access     RW     Mapping     -     Related Mode     -     Value Range       motor code.     Motor SN     Structure     Description       Inovance motor with incremental encoder     Encoder resolution:	Name     Motor code     Condition & Effective Time     At stop Next power-on     Data Structure     -       Access     RW     Mapping     -     Related Mode     -     Value Range     0 to 65535       motor code.     -     Motor SN     Description       Inovance motor with incremental encoder     Encoder resolution: 1048576 (2 ²	Name     Motor code     Condition & Effective Time     At stop Next power-on     Data Structure     -     Data Type       Access     RW     Mapping     -     Related Mode     -     Value Range     0 to 65535     Default       motor code.     Motor SN     Description     Encoder resolution: 1048576 (2 ²⁰ )

H02-01	Name	Abso	lute system n	node	Setting Condition & Effective Time	At stop & Next power-on	Data Structure	-	Data Type	Uint16	
2002-02h	Access	RW	Mapping	-	Related Mode	All	Value Range	0 to 4	Default	0	

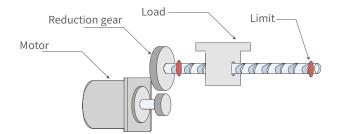
Defines the mode of the absolute system.

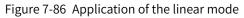
Value	Absolute system mode	Description	Remarks
0	Incremental position mode	The encoder is used as a <mark>bus</mark> -type incremental encoder without power-off memory.	Battery not <mark>needed</mark> No multi-turn <mark>fault</mark>
1	Absolute position linear mode	The encoder is used as an absolute encoder with power-off memory. This mode is applicable to applications where the load movement range is fixed and multi-turn data overflow will not occur. The multi-turn data range in the absolute position linear mode is –32768 to +32767.	Battery needed, battery fault reported upon <mark>occurrence</mark> Multi-turn counting error and overflow fault reported upon occurrence
2	Absolute position rotation mode	The encoder is used as an absolute encoder with power-off memory. This mode is mainly applicable to the applications where the load movement range is unlimited and only single-turn position feedback is needed.	Battery needed, battery fault reported upon <mark>occurrence</mark> Multi-turn overflow fault not reported upon <mark>occurrence</mark>
3	Absolute position linear mode 2	The encoder is used as an absolute encoder with power-off memory. This mode is applicable to applications where the multi-turn data overflow fault can be left unattended.	Battery needed, battery fault reported upon <mark>occurrence</mark> Multi-turn overflow fault not <mark>detected</mark>
4	Single-turn absolute mode	In this mode, only the single-turn position of the encoder is recorded.	Battery not <mark>needed</mark> No multi-turn <mark>fault</mark>

### Encoder feedback data

The feedback data of an absolute encoder is divided into the number of revolutions and the encoder position within one turn. For the incremental position mode, there is no feedback data concerning the number of revolutions.

H0B-70	Number of revolutions of the				Setting Condition		Data			
200B-47h	Name	Number of revolutions of the absolute encoder		& Effective Time	-	Structure	-	Data Type	Uint16	
	Access	RO	Mapping TPDO		Related Mode	All	Value Range	-	Default	-
Represents	Represents the number of revolutions of the absolute				ncoder.					


H0B-71 200B-48h	Name	Single-turn position feedback of the absolute encoder			Setting Condition & Effective Time	-	Data Structure	-	Data Type	Uint32
	Access	RO	Mapping	TPDO	Related Mode	All	Value Range	- (unit: encoder unit)	Default	-


Represents the single-turn position feedback of the encoder. If the encoder resolution is  $R_{E}$  (for example,  $R_{E} = 2^{23}$ ), the range is 0 to ( $R_{E}$ -1).

H0B-77	Name	Absolu	te position (	low 32	Setting Condition	_	Data	_	Data Type	Uint32
200B-4Eh	Nume	bits) of absolute encoder			& Effective Time		Structure		butu type	011132
	Access	RO	O Mapping TPDO		Related Mode	All		- (unit: encoder unit)	Default	-
H0B-79 200B-50h	Name		e position (l absolute er	0	Setting Condition & Effective Time	-	Data Structure	-	Data Type	int32
	Access	RO	D Mapping TPDO F		Related Mode	All	Value Range	- (unit: encoder unit)	Default	-
Represents	s the absolu	ıte positi	on feedback	of the	encoder.					

## 7.11.2 Absolute Position Linear Mode

This mode is applicable to applications where the **load** movement range is fixed and multi-turn data overflow will not occur.





Assume the absolute mechanical position (200B-3Bh and 200B-3Dh) is  $P_M$ , the encoder absolute position is  $P_E$ , the position offset in the absolute position linear mode (2005-2Fh and 2005-31h) is  $P_O$ , their relation will be:  $P_M = P_E - P_O$ 

Assume the electronic gear ratio is B/A, and the mechanical absolute position (reference unit) is 200B-08h, then the following formula applies:

 $200B-08h = P_M/(B/A)$ 

The multi-turn data range in the absolute position linear mode is –32768 to +32767. If the number of forward revolutions is larger than 32767 or the number of reverse revolutions is smaller than –32768, E735.0 (Encoder multi-turn counting overflow) will occur. In this case, set 200D-15h (Absolute encoder reset selection) to 2 (Reset the encoder fault and multi-turn data) to reset the multi-turn data and perform homing again. In special occasions, you can set 200A-25h (Multi-turn overflow fault of absolute encoder) to 1 (Hide) to hide E735.0 or use absolute position linear mode 2.

2005-2Fh	Name	Position of position lin	offset in the ear mode (	Setting Condition & Effective Time	At stop & Next power-on	Data Structure	-	Data Type	Uint32	
H05-46	Access	RW	Mapping	-	Related Mode	All	Value Range	$-2^{31}$ to +(2^{31}-1) (encoder unit)	Default	0
2005-31h	Name		Position offset in the absolute position linear mode (high 32 bits)			At stop & Next power-on	Data Structure	-	Data Type	int32
H05-48	Access	RW	Mapping	-	Related Mode	All	Value Range	$-2^{31}$ to +(2^{31}-1) (encoder unit)	Default	0

These parameters define the offset of the absolute mechanical position (encoder unit) relative to the absolute position (encoder unit) of the encoder in the linear mode (2002-02 = 1).

Position offset in the absolute position linear mode = Encoder absolute position - Mechanical absolute position Note:

◆ The offset of the absolute position linear mode (2005-2Fh and 2005-31h) is 0 by default. If homing is performed, the servo drive automatically calculates the deviation between the encoder absolute position and the mechanical absolute position after homing, assigns the value to 2005-2Fh and 2005-31h, and stores the value to EEPROM.

200B-08h	Name	<mark>Absolu</mark>	te position co	ounter	Setting Condition & Effective Time	At stop & Immediately	Data Structure	-	Data Type	int32
H0B-07	Access	RO	Mapping	-	Related Mode	All	Value Range	-231 to +231 ( <mark>encoder</mark> unit)	Default	0

Represents the current absolute position (reference unit) of the motor in the position mode.

200B-3Bh	Name	Mechanical absolute position (low 32 bits)			Setting Condition & Effective Time	-	Data Structure	-	Data Type	Uint32	
H0B-58	Access	RO	Mapping	-	Related Mode	All	Value Range	- (unit: encoder unit)	Default	-	
200B-3Dh	Name	Mechanical absolute position (high 32 bits)			Setting Condition & Effective Time	-	Data Structure	-	Data Type	int32	
H0B-60	Access	RO	Mapping	-	Related Mode	All	Value Range	(unit: encoder unit)	Default	-	
Represents	Represents the mechanical absolute position.										

Index	Name	Position actual value*			Setting Condition & Effective Time	-	Data Structure	VAR	Data Type	int 32
6063h	Access	RO	Mapping	TPDO	Related Mode	All	Value Range	- (unit: encoder unit)	Default	0

Represents the absolute position of the motor (encoder unit). The value is equal to 200B-3Bh in the absolute position mode.

Index 6064h	Name	Positi	ion actual	value	Setting Condition & Effective Time	-	Data Structure	VAR	Data Type	int 32
	Access	RO	RO Mapping TPDO		Related Mode	All	Value Range	- (unit: position unit)	Default	0

Represents the absolute position feedback in user defined units.

Position actual value (6064h) x Gear ratio (6091h) = Position actual value* (6063h)

200A-25h	Name	Absolute c	e encode overflow			Setting Condition & Effective Time	At stop & Immediately	Data Structure	-	Data Type	Uint16
	Access	RW	Марріг	ng	No	Related Mode All		Value Range	0 to 1	Default	0
This object	t is used to	hide E735.	0 (Encoc	der n	nulti-turn o	verflow fau	lt) in the abso	lute positio	n linear	mode.	
	Valu	e			D	escription					
	0			0: Not hide							
	1					1: Hide					

## 7.11.3 Absolute Position Rotation Mode

This mode is mainly applicable to applications where the load movement range is <mark>unlimited</mark>. The number of <mark>unidirectional revolutions</mark> of the motor is less than 32767 upon power failure, a<del>s shown in the following figure</del>.

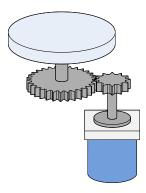
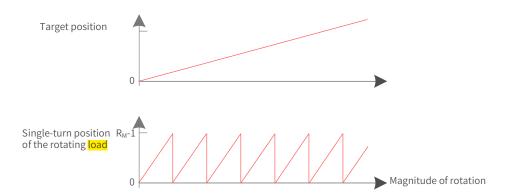
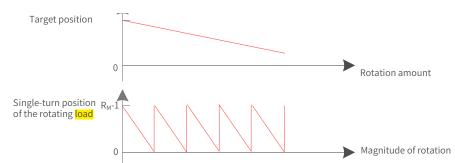





Figure 7-87 Rotating load

The single-turn position range of the rotating load is 0 to  $(R_M-1)$   $(R_M: Encoder pulses per load revolution)$ . When the gear ratio is 1:1, the variation law of the target position and the single-turn position of the rotating load during forward running is shown as follows.



The variation law of the target position and the single-turn position of the rotating load during reverse running is shown as follows.



When the motor works in the absolute rotation mode while the servo drive works in the HM mode, the setting range of the home offset is 0 to ( $R_M$ -1). If the home offset is set to a value outside this range, the servo drive reports EE09.1 (Home setting error).

The multi-turn data range is unlimited in the absolute position rotation mode. Therefore, E735.0 (Encoder multi-turn counting overflow) is hidden automatically.

2005-33h	Name	absolute p	ical gear rat position rota (numerator)	tion mode	Setting Condition & Effective Time	At stop & Immediately	Data Structure	-	Data Type	Uint16
	Access RW		Mapping	-	Related Mode	All	Value Range	1 to 65535	Default	1
2005-34h	Mechanical gear ratio in the absolute position rotation mode (denominator)		tion mode	Setting Condition & Effective Time	At stop & Immediately	Data Structure	-	Data Type	Uint16	
	Access	RW	Mapping	-	Related Mode	All	Value Range	1 to 65535	Default	1
2005-35h	Name	absolute p	<mark>r load revolu</mark> position rota (low 32 bits)	tion mode	Setting Condition & Effective Time	At stop & Immediately	Data Structure	_	Data Type	Uint32
	Access	RW	Mapping	-	Related Mode	All	Value Range	0 to (2 ³² -1) (encoder unit)	Default	0

**Related parameters** 

2005-37h	Name		offset in the otation mod bits)	o (high 22	Setting Condition & Effective Time	At stop & Immediately	Data Structure	-	Data Type	int32
2003-3711	Access	RW	Mapping	-	Related Mode	All	Value Range	0 to 127 (unit: encoder unit)	Default	0

This parameter defines the ratio of the feedback pulses (encoder unit) per load revolution to the absolute position feedback of the encoder when the absolute system works in the rotation mode (2002-02 = 2).

Assume the encoder resolution is  $R_E$ , the encoder pulses per revolution is  $R_M$ :

when 2005-35h <mark>or</mark> 2005-37h are set to 0:

 $R_{M} = R_{E} \times 2005-33h/2005-34h$ 

when 2005-35h or 2005-37h <mark>are set to 0</mark>:

 $R_{M} = 2005-37h \times 2^{32} + 2005-35h$ 

Note:

◆ The servo drive calculates the mechanical absolute position based on 2005-35h and 2005-37h first. If 2005-35h and 2005-37h are set to 0, the servo drive performs calculation based on 2005-33h and 2005-34h.

200B-52h	Name	-	position of t <mark>ad</mark> (low 32 bit	-	Setting Condition & Effective Time	-	Data Structure	-	Data Type	int 32
	Access	RO	Mapping	TPDO	Related Mode	All	Value Range	(unit: encoder unit)	Default	-
2005 54	Name	-	position of t <mark>d</mark> (high 32 bi	-	Setting Condition & Effective Time	-	Data Structure	-	Data Type	Uint32
200B-54h	Access	RO	Mapping	TPDO	Related Mode	All	Value Range	- (unit: encoder unit)	Default	-

Represents the single-turn position (encoder unit) of the rotating load.

Value range:  $(-R_M+1)$  to  $(R_M-1)$ 

200B-56h	Name	-	-turn positior rotating <mark>load</mark>		Setting Condition & Effective Time	-	Data Structure	-	Data Type	int 32
2008-360	Access	RO	Mapping	TPDO	Related Mode	All	Value Range	- (unit: position unit)	Default	-
Represents	the single-	turn posit	ion of the rot	ating <mark>load</mark>	(position u	nit).				

Index	Name	Posit	Position actual value*			-	Data Structure	VAR	Data Type	int 32
6063h	Access	RO	Mapping	TPDO	Related Mode	All	Value Range	- (unit: encoder unit)	Default	0

Represents the absolute single-turn position of the rotating load (encoder unit). This value is equal to 200B-52h in the absolute position mode.

Index	Name	Pos	ition actual	value	Setting Condition & Effective Time	-	Data Structure	VAR	Data Type	int 32
6064h	Access	RO	Mapping	TPDO	Related Mode	All	Value Range	- (unit: position unit)	Default	0

Represents the single-turn absolute position feedback of the rotating load in real time. This value is equal to 200B-56h in the absolute position mode.

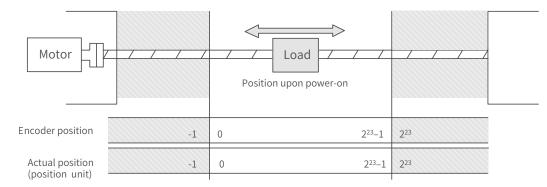
Position actual value (6064h) x Gear ratio (6091h) = Position actual value* (6063h)

### 7.11.4 Single-Turn Absolute Mode

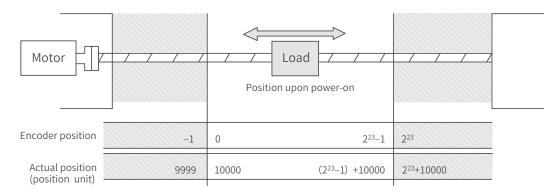
This mode is mainly applicable to applications where the **load** movement range is within the single-turn range of the encoder. In this case, the absolute encoder needs no battery as it records the single-turn data only.

1) Target position input range of EtherCAT communication

If a 23-bit absolute encoder is used in the single-turn absolute mode, the servo drive works in the CSP or PP mode, and the electronic gear ratio is 1:1:


When 607Ch (Home offset) is set to 0, the target position range is 0 to  $(2^{23}-1)$ .

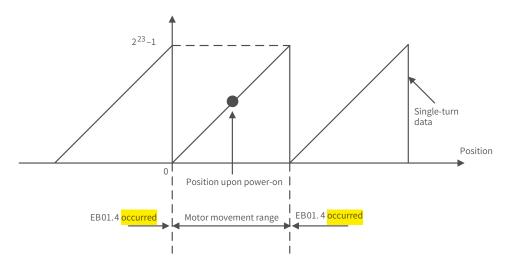
After homing is done, the target position range is 607Ch to  $(2^{23}-1+607Ch)$ .


If the target position is set to a value outside the preceding range, EB01.4 (Target position beyond upper/lower limit) will be reported.

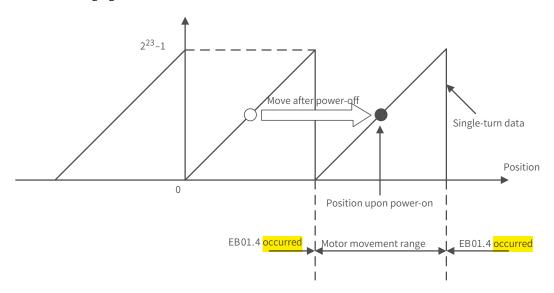
2) Example

When the gear ratio is 1:1, and 607Ch is set to 0, the diagram is shown as follows.

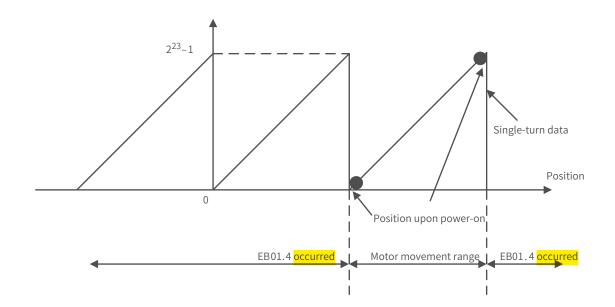



When the gear ratio is 1:1, and 607Ch is set to 10000, the diagram is shown as follows.




3) Precaution for the motor position upon power-on

The motor movement range is determined by the motor position upon power-on. (Take the 23-bit absolute encoder as an example)


a) Position upon power-on: The motor movement range shown in the following figure is derived from the single-turn data range at the power-on position.



b) To change the motor movement range, turn off the power supply at the position shown in the preceding figure, and turn on the power supply again after the motor moves to the position shown in the following figure.



c) Note: When the power supply is switched on near the motor movement range, EB01.4 (Target position beyond the limit) may easily occur.



### 7.11.5 Precautions for Use of the Battery Box

E731.0 (Encoder battery fault) will be reported when the battery is connected for the first time. Set 200D-15h (Absolute encoder reset selection) to 1 (Reset the encoder fault) to reset the fault, and then perform homing.

When the battery voltage detected is smaller than 3.0 V, Er.730 (Encoder battery warning) occurs. Replace the battery according to the following procedures:

Step 1: Power on the servo drive and keep it in non-running state.

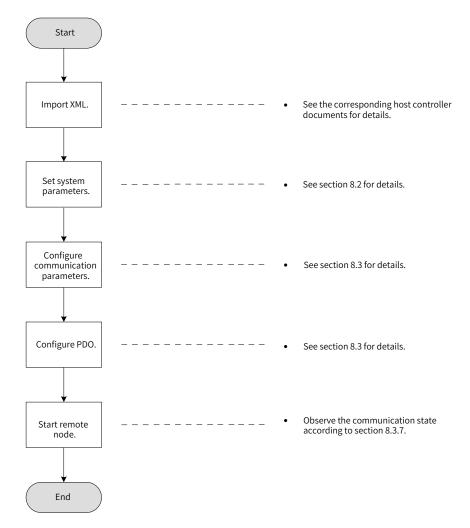
Step 2: Replace the battery.

Step 3: The servo drive automatically remove E730.0 (Encoder battery warning). If there is no other warning, make the servo drive run normally.

If you replace the battery after power-off, E731.0 (Encoder battery fault) will be reported and an abrupt change will occur on the multi-turn data. In this case, set 200D-15h to 1 to reset the fault, and then perform homing again.

When the servo drive is in the power-down state, ensure the maximum motor speed does not exceed 6000 RPM so that the encoder position can be recorded accurately.

Keep the battery box in environments within the required ambient temperature range and ensure the battery is in reliable contact and has sufficient power capacity. Otherwise, encoder data loss may occur.


Related parameter

200D-15h	Name	Absol	ute encoder r selection	eset	Setting Condition & Effective Time	At stop & Immediately	Data Structure	-	Data Type	Uint16
	Access	RW	Mapping	-	Related Mode	All	Value Range	0 to 2	Default	0
This param	eter is used	to reset	the encoder	fault o	r the multi-turn	data.				
V	alue		D	escrip	tion					
	0	No o	peration							
	1	Rese	t the encoder	fault						
	2	Rese	t the encoder	fault a	ind multi-turn da	ata				



The absolute position of the encoder changes abruptly after reset of the multi-turn data feedback. In this case, perform mechanical homing.

# **8** Communication Configurations



# 8.1 Overview of the EtherCAT Protocol

EtherCAT features high-performance, low cost, easy use and flexible topology. It is applicable to industrial applications requiring ultra-high speed I/O network. EtherCAT adopts standard Ethernet physical layer with twisted pairs or optical fibers (100Base-TX or 100Base-FX) used as the transmission media.

An EtherCAT system includes the master and the slave. The master requires a common network adapter, and the slave requires a special slave control chip, such as ET1100, ET1200, and FPGA.

EtherCAT can process data at the I/O layer, without any subbus or gateway delay:

- One system covers all devices, including input/output devices, sensors, actuators, drives, and displays.
- Transmission rate: 2 x 100 Mbit/s (high-speed Ethernet, full duplex mode).
- Synchronization: number of nodes between two devices: 300, cable length: 120 m, synchronization jitter: < 1 μs</p>

#### Refresh time:

256 DI/DOs: 11 μs 1000 DI/DOs distributed in 100 nodes:30 μs = 0.03 ms 200 AI/AOs (16-bit): 50 μs, sampling rate: 20 kHz 100 servo axes (8 byte IN+OUT for each): 100 μs = 0.1 ms 12000 DI/DOs: 350 μs To support more types of devices and applications, the following EtherCAT-based application protocols are established:

- CANopen over EtherCAT (CoE)
- Safety over EtherCAT (SoE, servo drive safety compliant with IEC 61800-7-204)
- Ethernet over EtherCAT (EoE)
- File over EtherCAT (FoE)

The slave only needs to support the most suitable application protocol.




Figure 8-1 EtherCAT networking

# 8.2 System Parameters

## 8.2.1 Parameter Address Structure

Parameter access address: Index + Subindex, both are hexadecimal data.

The CiA402 protocol imposes the following limits on the parameter address.

Index (Hex)	Description
0000-0FFF	Data type description
1000-1FFF	CoE communication object
2000-5FFF	Manufacturer-specific object
6000-9FFF	Sub-protocol object
A000-FFFF	Reserved

## 8.2.2 System Parameter Settings

Necessary parameter settings are required for the SV660N servo drive to be connected to the EtherCAT fieldbus network.

Index	Sub- index	Name	Value Range	Default
2002	01h	Control mode	0: Speed mode 1: Position mode 2: Torque control mode 9: EtherCAT mode 255: This axis is not used.	9
200E	02h	Save parameter values modified through communication to EEPROM	0: Not save 1: Save 2XXXh series parameters 2: Save 6XXXH series parameters 3: Save all parameters	3
200E	16	EtherCAT slave alias	0 to 65535	0





Before saving parameters to EEPROM, set 200E-02h to a proper value. Otherwise, the parameters will be restored to the default values at next power-on.

# 8.3 EtherCAT Communication Basis

# 8.3.1 EtherCAT Communication Specifications

	Item	Specifications			
Communication protocol		IEC 61158 Type 12, IEC 61800-7 CiA 402 Drive Profile			
	SDO	SDO request, SDO response			
	Mapping	Variable PDO mapping			
		Profile position mode (PP)			
		Profile velocity mode (PV)			
Application layer		Profile torque mode (PT)			
	CiA402	Homing mode (HM)			
		Cyclic synchronous position mode (CSP)			
		Cyclic synchronous velocity mode (CSV)			
		Cyclic synchronous torque mode (CST)			
	Transmission protocol	100BASE-TX (IEEE802.3)			
Physical layer	Maximum distance	100 m			
	Interface	RJ45 x 2 (INT, OUT)			

# 8.3.2 Communication Structure

Multiple protocols can be transmitted using the EtherCAT. The IEC 61800-7 (CiA 402)-CANopen motion control sub-protocol is used for the SV660N servo drive.

The following figure shows the EtherCAT communication structure at CANopen application layer.

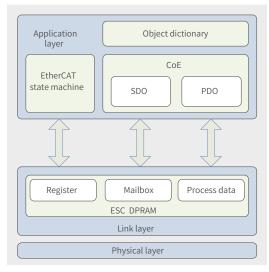
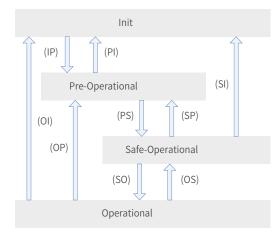




Figure 8-2 EtherCAT communication structure at CANopen application layer

The object dictionary in the application layer contains communication parameters, application process data and PDO mapping data. The process data object (PDO) contains the real-time data generated during running, which is read and written cyclically. In the SDO mailbox communication, the communication parameter objects and PDO objects are accessed and modified non-cyclically.

## 8.3.3 State Machine

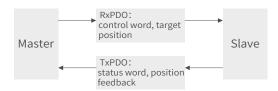
The following figure shows the state transition diagram of the EtherCAT state machine.





The EtherCAT state machine must support the following four states and coordinate the state relation between the master and slave applications during initialization and operation.

The four states are Init (I), Pre-Operational (P), Safe-Operational (S), and Operational (O).


Transition from Init state to Operational state must be in the sequence of "Init  $\rightarrow$  Pre-Operational  $\rightarrow$  Safe-Operational  $\rightarrow$  Operational". During transition from Operational state to Init state, certain steps can be skipped. The following table lists the state transition and initialization process.

Status	SDO	RPDO	TPDO	Description
Init (I)	No	No	No	Communication initialization No communication is available in the application layer, and the master can only read and write the EtherCAT slave controller (ESC) register.

Status	SDO	RPDO	TPDO	Description	
IP	No	No	No	The master configures the slave addresses, mailbox, and distributed clock (DC). The master requests the Pre-Operational state.	
Pre-Operational (P)	Yes	No	No	Mailbox data communication in the application layer (SDO)	
PS	Yes	No	No	The master uses the process data mapping of SDO initialization. The master configures the SM channel used by the process data communication. The master configures the FMMU. The master requests the Safe-Operational state.	
Safe-Operational (S)	Yes	No	Yes	SDO, TPDO, and distributed clock mode can be used.	
SO	Yes	No	Yes	The master sends valid output data to request the Operational state.	
Operational (O)	Yes	Yes	Yes	Normal operational state Both the input and output are valid. Mailbox communication can still be used.	

## 8.3.4 Process Data

The real-time data transmission of EtherCAT is achieved through PDO. The PDO can be divided into RPDO (Reception PDO) and TPDO (Transmission PDO) based on the data transmission direction. The RPDO transmits the master data to the slave, and TPDO returns the slave data to the master.



The SV660N servo drive allows users to assign the PDO list and define the PDO mapping object.

#### 1 PDO mapping

The PDO mapping is used to establish the mapping relation between the object dictionary and the PDO. 1600h to 17FFh are RPDOs, and 1A00h to 1BFFh are TPDOs. The SV660N series servo drive provides six RPDOs and five TPDOs, as listed in the following table.

RPDO	1600h	Variable mapping
(Six)	1701h to 1705h	Fixed mapping
TPDO	1A00h	Variable mapping
(Five)	1B01h to 0x1B04h	Fixed mapping

#### 2 Fixed PDO mapping

The SV660N provides five fixed RPDOs and four fixed TPDOs.

The following table lists the typical instances of the RPDOs and TPDOs.

Control Mode	PP CSP					
	Mapping objects (four, <mark>12 bytes</mark> )					
1701	6040h (Control word)					
1701h	607Ah (Target position)					
(Outputs)	60B8h (Touch probe function)					
	60FEh sub-index 1 (Physical outputs)					
	Mapping objects (nine, <mark>28 bytes</mark> )					
	603Fh (Error code)					
	6041h (Status word)					
	6064h (Position actual value)					
1B01h	6077h (Torque actual value)					
(Inputs)	60F4 (Following error actual value)					
	60B9 (Touch probe status)					
	60BA (Touch probe 1 positive edge)					
	60BC (Touch probe 2 positive edge)					
	60FD (Digital inputs)					
Control Mode	PP/PV/PT/CSP/CSV/CST					
	Mapping objects (7, <mark>19 bytes</mark> )					
	6040h (Control word)					
1700	607Ah (Target position)					
1702h	60FFh (Target velocity)					
(Outputs)	6071h (Target torque)					
	6060h (Modes of operation)					
	60B8h (Touch probe function)					
	607Fh (Max profile velocity)					
	Mapping objects (9, <mark>25 bytes</mark> )					
	603Fh (Error code)					
	6041h (Status word)					
	6064h (Position actual value)					
1B02h	6077h (Torque actual value)					
(Inputs)	6061h (Modes of operation display)					
	60B9 (Touch probe status)					
	60BA (Touch probe 1 positive edge)					
	60BC (Touch probe 2 positive edge)					
	60FD (Digital inputs)					
Control Mode	PP/PV/CSP/CSV					
	Mapping objects (7, <mark>17 bytes</mark> )					
	6040h (Control word)					
	607Ah (Target position)					
1703h	60FFh (Target velocity)					
(Outputs)	6060h (Modes of operation)					
	60B8h (Touch probe function)					
	60E0h (Positive torque limit value)					
	60E1h (Negative torque limit value)					
	· · · · · · · · · · · · · · · · · · ·					

	Manning abjects (10, 20 by tes)
	Mapping objects (10, <mark>29 bytes</mark> )
	603Fh (Error code)
	6041h (Status word)
	6064h (Position actual value)
1B03h	6077h (Torque actual value)
(Inputs)	60F4 (Following error actual value)
(	6061h (Modes of operation display)
	60B9 (Touch probe status)
	60BA (Touch probe 1 positive edge)
	60BC (Touch probe 2 positive edge)
	60FD (Digital inputs)
Control Mode	PP/PV/PT/CSP/CSV/CST
	Mapping objects (9, <mark>23 bytes</mark> )
	6040h (Control word)
	607Ah (Target position)
	60FFh (Target velocity)
1704h	6071h (Target torque)
(Outputs)	6060h (Modes of operation)
	60B8h (Touch probe function)
	607Fh (Max profile velocity)
	60E0h (Positive torque limit value)
	60E1h (Negative torque limit value)
	Mapping objects (9, <mark>25 bytes</mark> )
	603Fh (Error code)
	6041h (Status word)
	6064h (Position actual value)
1B02h	6077h (Torque actual value)
(Inputs)	6061h (Modes of operation display)
	60B9 (Touch probe status)
	60BA (Touch probe 1 positive edge)
	60BC (Touch probe 2 positive edge)
	60FD (Digital inputs)
Control Mode	PP/PV/CSP/CSV
	Mapping objects (8, <mark>19 bytes</mark> )
	6040h (Control word)
	607Ah (Target position)
	60FFh (Target velocity)
1705h	6060h (Modes of operation)
(Outputs)	60B8h (Touch probe function)
	60E0h (Positive torque limit value)
	60E1h (Negative torque limit value)
	60B2h (Torque offset)

	Mapping objects (10, <mark>29 bytes</mark> )
	603Fh (Error code)
	6041h (Status word)
	6064h (Position actual value)
1B04h	6077h (Torque actual value)
(Inputs)	6061h (Modes of operation display)
(inputs)	60F4 (Following error actual value)
	60B9 (Touch probe status)
	60BA (Touch probe 1 positive edge)
	60BC (Touch probe 2 positive edge)
	606C (Velocity actual value)

#### 3 Variable PDO mapping

The SV660N provides one fixed RPDO and one fixed TPDO.

Variable PDO	Index	Max. Number of Mapping Objects Max. Byte Len		Default Mapping Object	
	1600b	10	40	6040h (Control word)	
RPDOI	RPDO1 1600h		40	607Ah (Target position) 60B8 (Touch probe function)	
		10	40	603F (Error code)	
	1A00h			6041h (Status word)	
				6064h (Position actual value)	
TPDO1				60BC (Touch probe 2 positive edge)	
				60B9 (Touch probe status)	
				60BA (Touch probe 1 positive edge)	
				60FD (Digital inputs)	

#### 4 Sync Manager PDO Assignment

Several PDO mapping objects are included during EtherCAT cyclic data communication. The CoE defines the PDO mapping object list of the sync manager with 0x1C10 to 0x1C2F. The PDOs can be mapped to different sub-indexes.

The SV660N series servo drive supports assignment of one RPDO and one TPDO, as described in the following table.

Index	Sub-index	Description
0x1C12	01h	One of 0x1600 and 0x1701 to 0x1705 used as the actual RPDO
0x1C13	01h	One of 0x1A00 and 0x1B01 to 0x1B04 used as the actual TPDO

#### 5 PDO configuration

PDO mapping parameters contain the indicators of the process data for PDOs, including the index, subindex and mapping object length. The sub-index 0 indicates the number (N) of mapping objects in the PDO, and the maximum length of each PDO is 4 x N bytes. One or multiple objects can be mapped simultaneously. Sub-indexes 1 to N indicate the mapping content, as defined below:

Bits	31		16	15		8	7		0
Meaning	Index			Sub-index		0	bject Leng	th	

The index and sub-index define the position of an object in the object dictionary. The object length indicates the bit length of the object in hexadecimal, as shown below:

Object Length	Bit Length		
08h	8-bit		
10h	16 bit		
20h	32-bit		

For example, the mapping parameter of the 16-bit control word 6040h-00 is 60400010h.

■ Observe the following procedures for PDO mapping:

1) Invalid PDO: Write 0 to sub-index 00h of 1C12h (or 1C13h).

Clear the original mapping content: All the original mapping content of the PDO is cleared when 0 is written to the sub-index 00h of the mapping object.

Write the PDO mapping content: Write the content in sub-indexes 1 to 10 according to the preceding mapping definition.

Write the total number of PDO mapping objects: Write the number of mapping objects written to sub-indexes 0–10 to the sub-index 0 of the mapping object.

2) Valid PDO: Write 1 to sub-index 00h of 1C12h (or 1C13h).

Configure the PDO only when the EtherCAT state machine is in Pre-Operation state ("2" displayed on the keypad). Otherwise, an error is reported.

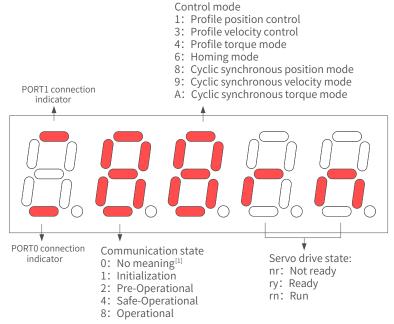
Do not save PDO configuration parameters to EEPROM. Configure the mapping objects again every time upon power-on. Otherwise, the mapping objects are the default parameters.

An SDO fault code is returned during the following operations:

- Modify PDO parameters in non Pre-Operational state.
- Write a value outside 1600/1701–1705 to 1C12h, and write a value outside 1A00/1B01–1B04 to 1C13h.

## 8.3.5 Service Data Object (SDO)

EtherCAT SDO is used to transfer non-cyclic data, such as communication parameter configuration and servo drive running parameter configuration. The CoE service types include:


- Emergency message
- SDO request
- SDO response
- TxPDO
- RxPDO
- Remote TxPDO transmission request
- Remote RxPDO transmission request
- SDO message

The SV660N supports SDO request and SDO response.

# 8.3.6 Distributed Clock (DC)

The DC enables all EtherCAT devices to use the same system time and allows synchronous task execution of the slaves. A slave can generate synchronous signals according to the synchronized system time. The SV660N series servo drive supports the DC synchronization mode only. The synchronization cycle, which is controlled by SYNC0, varies with different motion modes.

# 8.3.7 Status Indication



[1] If the value 0 is displayed, it indicates no value or the value 0 is written to 0x6060h.

#### Figure 8-4 Status indication

Communication connection status

The connection status of the two RJ45 ports are indicated by the "-" on the upper and lower part of the first LED on the keypad. The upper "-" corresponds to PORT1, and the lower "-" corresponds to PORT0.

Solid OFF: No communication is detected in the physical layer.

Solid ON: Communication is detected in the physical layer.

Communication running status

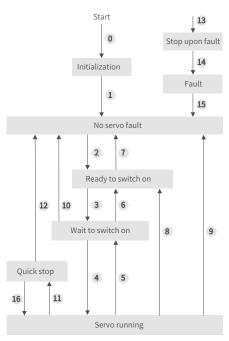
The 2nd LED indicates the status of the EtherCAT state machine of the slave, as described in the following table.

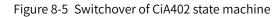
Status	SDO	RPDO	TPDO	Description	Display
Init	No	No	No	Communication initialization	"1", solid ON
Pre-Operational	Yes	No	No	Network configuration initialized SDO available	"2", blinking at a interval of 400 ms
Safe-Operational	Yes	No	Yes	SDO and TPDO available, distributed clock mode available	"4", blinking at a interval of 1200 ms, ON for 200 ms and OFF for 1000 ms
Operational	Yes	Yes	Yes	Normal operational state	"8", steady on

## Servo mode display

The 3rd LED indicates the control mode of the servo drive, as described in the following table.

Modes of operation (6060h)	Display
1: Profile position mode	1
3: Profile velocity mode	3
4: Profile torque mode	4
6: Homing mode	6
8: Cyclic synchronous position mode	8
9: Cyclic synchronous velocity mode	9
10: Cyclic synchronous torque mode	A


#### Servo status display


The 4th and 5th LEDs indicate the slave servo status, as described in the following table.

Status	Description	Display
Reset	Init	"Reset"
Not ready	Initialization is done. The control power is turned on but the main power is still off. Not ready	"nr"
Ready	The main power is turned on but the S-ON signal is deactivated. Ready	"ry" The character "y" blinks when the motor speed is not 0 RPM. When the communication layer is in Pre-Operational or Safe-Operational state, the blinking frequency is the same as that of characters "2" or "4" (communication status). When the communication layer is in Init or Operational state, the blinking frequency is 2 Hz.
Run	The S-ON signal is activated and the motor is energized. Run	"rn" The character "n" blinks when the motor speed is not 0 RPM. When the communication layer is in Pre-Operational or Safe-Operational state, the blinking frequency is the same as that of characters "2" or "4" (communication status). When the communication layer is in Init or Operational state, the blinking frequency is 2 Hz.

# 8.3.8 Overview of CiA402

The SV660N servo drive can run in the specified status only when it is instructed according to the flowchart defined in the standard CiA402 protocol.





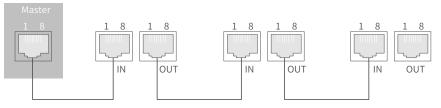
The states are described in the following table.

Init	Initialization of the servo drive and internal self-check are done.
mit	Parameters cannot be set. Functions cannot be executed.
No fault	No fault exists in the servo drive or the fault is cleared.
No laut	Parameters can be set.
Deady to switch on	The servo drive is ready.
Ready to switch on	Parameters can be set.
Wait to switch on	The servo drive is waiting to be switched on.
Walt to Switch on	Parameters can be set.
	The servo drive is running properly and a certain running mode is enabled. The motor is
Running	powered on and starts running when the speed reference is not 0.
	Parameters with the setting condition of "During running" can be set.
Quickstop	The quick stop function is activated and the servo drive is in the process of quick stop.
Quick stop	Parameters with the setting condition of "During running" can be set.
Stop at fault	A fault occurs on the servo drive and the servo drive is in the process of stop.
Stop at fault	Parameters with the setting condition of "During running" can be set.
Fault	The stop process is done and all the functions are prohibited. Parameters can be modified for the convenience of troubleshooting.

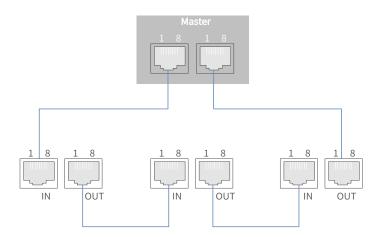
# 8.3.9 Basic Characteristics

Interfaces

The EtherCAT cables are connected to the network ports (including IN and OUT) equipped with metal shield. The electrical characteristics are compliant with IEEE 802.3 and ISO 8877 standards.




Pin	Definition	Description
1	TX+	Data transmitting (+)
2	TX-	Data transmitting (-)
3	RX+	Data receiving (+)
4	NULL	Not connected
5	NULL	Not connected
6	RX-	Data receiving (-)
7	NULL	Not connected
8	NULL	Not connected


Topology connection

The EtherCAT features flexible topological structure, as shown in the following figures.

■ Linear connection



Redundancy ring connection



■ Communication cable

The Ethernet Category 5 (100BASE-TX) network cable or high-strength shielded network cable is used as the EtherCAT communication cable. The network cables used for the servo drive must also be shielded with cable length less than 100 m. The shielded network cable enhances the anti-interference capacity of the system.

#### EMC standard

The servo drive complies with the following standards:

IEC/EN61800-3:2004 (Adjustable speed electrical power drive systems---part 3:EMC requirements and specific test methods)

# 9 Troubleshooting

# 9.1 Faults and Warnings

Faults and warnings are divided into the following three levels based on severity: No.1 > No.2 > No.3.

- No. 1 non-resettable fault
- No. 1 resettable fault
- No. 2 resettable fault
- No. 3 resettable warning

"Resettable" means the keypad stops displaying the fault/warning status once a reset signal is input.

To reset a fault/warning, use one of the following two methods:

- Set 200D-02h to 1 (Fault reset).
- Set the rising edge of bit7 of the control word 0x6040 through the host controller.

To reset a No. 1 fault and a No. 2 fault, turn off the S-ON signal and input the fault reset signal.

For the No. 3 warnings, the servo drive resets warnings automatically after the warning source is cleared. Related parameter

Para. No.	Name	Value Range	Function	Setting Condition	Effective Time	Default Value
200Dh- 02h	Fault reset	0: No operation 1: Reset the fault and warning	Stops the fault display when a resettable fault/warning occurs. Restores to "0: No operation" immediately after fault reset.	At stop	Immediately	0

# 9.2 Communication Faults and Warning Codes

List of fault codes

Fault	Display	Name	Туре	Resettable or Not	Fault Range	
	E101.0	System parameter error	No.1	No	Servo drive fault	
E101	E101.1	Parameters in group 2000h/2001h being abnormal	No.1	No	Servo drive fault	
E102	E102.0	Logic configuration fault	No.1	No	Servo drive fault	
EIUZ	E102.8	Software version mismatch	No.1	No	Servo drive fault	
	E104.1	MCU running timeout	No.1	No	Servo drive fault	
E104	E104.2	Current loop running timeout	No.1	No	Servo drive fault	
	E104.4	Reference update timeout	No.1	No	Servo drive fault	
E105	E105.0	Internal program error	No.1	No	Servo drive fault	
	E108.0	Parameter write timeout	No.2	Yes	Servo drive fault	
	E108.1	Parameter read timeout	No.2	Yes	Servo drive fault	
E108	E108.2	Invalid check on data written in EEPROM	No.2	Yes	Servo drive fault	
	E108.3	Invalid check on data read in EEPROM	No.2	Yes	Servo drive fault	

Fault	Display	Name	Туре	Resettable or Not	Fault Range	
	E120.0	Unknown encoder type	No.1	No	Axis fault	
-	E120.1	Unknown motor model	No.1	No	Axis fault	
E120	E120.2	Unknown drive model	No.1	No	Axis fault	
	E120.5	Mismatch of the motor current and drive current	No.1 No		Axis fault	
-	E120.6	Mismatch of FPGA and motor model	No.1	No	Axis fault	
	E122.0	Multi-turn absolute encoder setting error	No.2	Yes	Axis fault	
E122 (set by software)	E122.1	Different DIs allocated with the same function	No.2	Yes	Axis fault	
	E122.3	Upper limit invalid	No.2	Yes	Axis fault	
F120	E136.0	Encoder parameter error	No.1	No	Axis fault	
E136 -	E136.1	Encoder communication error	No.1	No	Axis fault	
	E150.0	STO signal input protection activated	No.1	Yes	Servo drive fault	
-	E150.1	STO signal input error	No.1	Yes	Servo drive fault	
E150	E150.2	Abnormal voltage detected	No.1	Yes	Servo drive fault	
	E150.3	STO upstream optocoupler detection failure	No.1	Yes	Servo drive fault	
-	E150.4	PWM Buffer detection failure	No.1	Yes	Servo drive fault	
	E201.0	Phase-P overcurrent	No.1	No	Servo drive fault	
	E201.1	Phase-U overcurrent	No.1	No	Axis fault	
E201 -	E201.2	Phase-V overcurrent	No.1	No	Axis fault	
-	E201.4	Phase-N overcurrent	No.1	No	Servo drive fault	
	E208.0	MCU position reference updated frequently	No.1	Yes	Axis fault	
E208	E208.2	Encoder communication timeout	No.1	Yes	Axis fault	
-	E208.3	Current sampling fault	No.1	Yes	Axis fault	
-	E208.4	FPGA current loop operation timeout	No.1	Yes	Axis fault	
E210	E210.0	Output shorted to ground	No.1	No	Axis fault	
E234	E234.0	Runaway protection	No.1	No	Axis fault	
E400	E400.0	Main circuit overvoltage	No.1	Yes	Servo drive fault	
E410	E410.0	Main circuit undervoltage	No.1	Yes	Servo drive fault	
F 420	E420.0	Phase loss	No.2	Yes	Servo drive fault	
E420 -	E420.1	PL signal error	No.2	Yes	Servo drive fault	
5500	E500.0	Motor overspeed	No.1	Yes	Axis fault	
E500 -	E500.1	Speed feedback overflow	No.1	Yes	Axis fault	
	E602.0	Angle auto-tuning error	No.1	Yes	Axis fault	
E602	E602.2	Wrong UVW phase sequence detected during angle auto-tuning	No.1	Yes	Axis fault	
E620	E620.0	Motor overload	No.1	Yes	Axis fault	
E630	E630.0	Locked rotor	No.1	Yes	Axis fault	
E640	E640.0	IGBT over-temperature	No.1	Yes	Axis fault	
E650	E650.0	Heatsink over-temperature	No.1	Yes	Axis fault	
E661	E661.0	Auto-tuned gain values too low	No.2	Yes	Axis fault	

Fault	Display	Name	Туре	Resettable or Not	Fault Range
E731	E731.0	Encoder battery failure	No.2	Yes	Axis fault
E733	E733.0	Encoder multi-turn counting error	No.2	Yes	Axis fault
E735	E735.0	Encoder multi-turn counting overflow	No.2	Yes	Axis fault
	E740.2	Absolute encoder error	No.1	No	Axis fault
E740	E740.3	Absolute encoder single-turn calculation error	No.1	No	Axis fault
	E740.6	Encoder write error	No.1	No	Axis fault
EB00	EB00.0	Position deviation too large	No.2	Yes	Axis fault
EDUU	EB00.1	Position deviation overflow	No.2	Yes	Axis fault
EA33	EA33.0	Encoder read/write check error	No.1	No	Axis fault
	EB01.1	Position reference increment too large for once	No.2	Yes	Axis fault
EB01	EB01.2	Position reference increment too large continuously	No.2	Yes	Axis fault
	EB01.3	Reference overflow	No.2	Yes	Axis fault
	EB01.4	Reference value beyond the single-turn position limits in the absolute mode	No.2	Yes	Axis fault
	EE09.0	Software limit setting error	No.2	Yes	Axis fault
	EE09.1	Home setting error	No.2	Yes	Axis fault
EE09	EE09.2	Gear ratio over the limit	No.2	Yes	Axis fault
	EE09.3	No synchronization signal	No.2	Yes	Axis fault
	EE09.5	PDO mapping over the limit	No.2	Yes	Axis fault
	EE08.0	Synchronization loss	No.2	Yes	Servo drive fault
EE08	EE08.1	Network status switchover error	No.2	Yes	Servo drive fault
	EE08.2	IRQ loss	No.2	Yes	Servo drive fault
	EE11.0	ESI check error	No.2	Yes	Servo drive fault
EE11	EE11.1	Unsuccessful reading of EEPROM	No.2	Yes	Servo drive fault
	EE11.2	Unsuccessful update of EEPROM	No.2	Yes	Servo drive fault
EE12	EE12.0	External devices of EtherCAT being abnormal	No.1	No	Servo drive fault
EE13	EE13.0	Synchronization cycle setting error	No.2	Yes	Servo drive fault
EE15	EE15.0	Synchronization cycle error too large	No.2	Yes	Servo drive fault

#### ■ List of warning codes

Warning	Display	Name	Туре	Resettable or not	Fault Range
E121	E121.0	Invalid S-ON command	No.3	Yes	Warning
E600	E600.0	Inertia auto-tuning failure	No.3	Yes	Warning
E601	E601.0	Homing warning	No.3	Yes	Warning
E601 E601.1	E601.1	Home switch error	No.3	Yes	Warning
E730	E730.0	Encoder battery warning	No.3	Yes	Warning
E900	E900.0	Emergency stop	No.3	Yes	Warning

Warning	Display	Name	Туре	Resettable or not	Fault Range
	E902.0	Invalid DI setting	No.3	Yes	Warning
E902	E902.1	Invalid DO setting	No.3	Yes	Warning
	E902.2	Invalid torque reached setting	No.3	Yes	Warning
E908	E908.0	Invalid check byte of model identification	No.3	Yes	Warning
E909	E909.0	Motor overload	No.3	Yes	Warning
E920	E920.0	Regenerative resistor overload	No.3	Yes	Warning
E922	E922.0	Resistance of external regenerative resistor too small	No.3	Yes	Warning
E924	E924.0	Braking transistor over-temperature	No.3	Yes	Warning
E941	E941.0	Parameter modifications not activated	No.3	Yes	Warning
E942	E942.0	Parameter saved frequently	No.3	Yes	Warning
E950	E950.0	Forward overtravel	No.3	Yes	Warning
E952	E952.0	Reverse overtravel	No.3	Yes	Warning
EE09	EE09.4	Homing method setting error	No.3	Yes	Warning

# 9.3 Solutions to Faults

■ E101.0: System parameter error

Direct cause:

The total number of parameters changes, which generally occurs after software update.

Values of parameters in groups 2002h and above exceed the limit, which generally occurs after software update.

Root Cause	Confirming Method	Solution
	Check whether the voltage drops during control power (L1C, L2C) cutoff or whether instantaneous power failure occurs.	Restore the default setting (2002-20h = 1), and write the parameters again.
	Measure whether the control power voltage on the non-drive side fulfills the following specifications:	
1. The control	220 V servo drive:	
power voltage drops instantaneously.	Effective value: 220 V to 240 V	Increase the power capacity or replace by a
instantancousty.	Allowable deviation: –10% to +10% (198 V to 264 V)	power supply of larger capacity. Restore the default settings (2002-20h = 1) and write the parameters again.
	380 V drive:	
	Effective value: 380 V to 440 V	
	Allowable deviation: –10% to +10% (342 V to 484 V)	
2. Instantaneous power failure occurs during parameter storage	Check whether instantaneous power failure occurs during parameter storage.	Power on the system again, restore the default settings (2002-20h = 1) and write the parameters again.
3. The number of parameter-write operations exceeds the limit.	Check whether parameter update is performed frequently from the host controller.	Change the parameter writing method and write parameters again. If the servo drive is faulty, replace it.

Root Cause	Confirming Method	Solution
4. The software is updated.	Check whether the software is updated.	Reset the servo drive model and the servo motor model, and restore default settings (2002-20h = 1).
5. The servo drive is faulty.	If the fault persists after several times of restart and parameter initialization, the servo drive is faulty.	Replace the servo drive.

■ E101.1: Parameters in group 2000h/2001h being abnormal

#### Direct cause:

The total number of parameters changes, which generally occurs after software update.

Parameter values in group 2000h/2001h exceed the limit, which generally occurs after software update.

Root Cause	Confirming Method	Solution
1. Instantaneous power failure occurs during parameter storage.	Check whether instantaneous power failure occurs during parameter storage.	Set the servo drive model (2001-0Bh) to a wrong value first and power on again, and then set the servo drive model to a correct value and power on again.
2. Instantaneous power failure occurs during motor parameter writing.	Check whether instantaneous power failure occurs during motor parameter writing.	Write the motor parameters using the software tool.
3. The software is updated.	Check whether the software is updated.	Set the servo drive model (2001-0Bh) to a wrong value first and power on again, and then set the servo drive model to a correct value and power on again.
4. The servo drive is faulty.	If the fault persists after repeated execution of steps 1 and 2 and restart of the servo drive, it indicates the servo drive is faulty.	Replace the servo drive.

#### ■ E102.0: Logic configuration fault

#### Direct cause:

The FPGA- or MCU-related hardware is damaged, resulting in communication failure between the MCU and FPGA.

Root Cause	Confirming Method	Solution
The FPGA is faulty.	The fault persists after the servo drive is powered off and on several times.	Replace the servo drive.

#### ■ E102.8: Software version mismatch

Cause	Confirming Method	Solution
The software version of MCU or FPGA is wrong.	Check whether the MCU firmware version (H01-00) is 9xx.x (the fourth digit displayed on the keypad is 9). Check whether the FPGA firmware version (H01-01) is 9xx.x (the fourth digit displayed on the keypad is 9).	Contact Inovance for technical support and update the software version.

#### ■ E104.1: MCU running timeout

#### Direct cause:

Access to MCU times out.

Root Cause	Confirming Method	Solution
1. The FPGA is faulty.		
2. The communication handshake between FPGA and host is abnormal.	The fault persists after the servo drive is powered off and on several	Replace the servo drive.
3. Access timeout occurs between the host and the coprocessor.	times.	

#### ■ E104.2: Current loop running timeout

#### Direct cause:

The running time of the current loop exceeds the scheduling time. This fault is reported only in the commissioning stage.

Root Cause	Confirming Method	Solution
The time interval of MCU torque interrupt scheduling is abnormal.	The fault persists after the servo drive is powered off and on several times.	Replace the servo drive.

#### ■ E104.4: Command update timeout

Direct cause:

Take the moment of entering the interrupt as the starting time, if the duration of command writing in MCU is longer than the FPGA starting position and speed regulator time, a warning will be reported.

Root Cause	Confirming Method	Solution
The interrupt time of the current loop is too long.	Check whether the interrupt time of the torque loop is too long by using the software tool.	Hide the unnecessary functions.

#### ■ E105.0: Internal program error

Direct cause:

The total number of parameters is abnormal during parameter reading/writing through the EEPROM.

The parameter value range is abnormal, which generally occurs after software update.

Root Cause	Confirming Method	Solution
1. An EEPROM fault occurs.	Check the causes according to the method described in E101.0.	Restore the default settings (2002- 20h = 1) and power on the servo drive again.
2. The servo drive is faulty.	The fault persists after the servo drive is powered off and on several times.	Replace the servo drive.

#### ■ E108.0: Parameter write timeout

#### Direct cause:

Parameter values cannot be written to EEPROM.

Root Cause	Confirming Method	Solution
An error occurs when writing parameters to EEPROM.	Modify a certain parameter value, power on the servo drive again, and check whether the modified value is saved.	If the modified value is not saved and the fault persists after the servo drive is powered off and on again, replace the servo drive.

#### ■ E108.1: Parameter read timeout

#### Direct cause:

Parameter values cannot be read in EEPROM.

Root Cause	Confirming Method	Solution
An error occurs when reading parameter values in EEPROM.	Modify a certain parameter value, power on the servo drive again, and check whether the modified value is saved.	If the modified value is not saved and the fault persists after the servo drive is powered off and on again, replace the servo drive.

#### ■ E108.2: Invalid check on data written in EEPROM

Cause	Confirming Method	Solution
The check on the data written in EEPROM fails.	Modify a certain parameter value, power on the servo drive again, and check whether the modified value is saved.	If the modified value is not saved and the fault persists after the servo drive is powered off and on again, replace the servo drive.

#### ■ E108.3: Invalid check on data read in EEPROM

Cause	Confirming Method	Solution
The check on the data read in EEPROM fails.	Modify a certain parameter value, power on the servo drive again, and check whether the modified value is saved.	If the modified value is not saved and the fault persists after the servo drive is powered off and on several times, replace the servo drive.

#### ■ E120.0: Unknown encoder type

Direct cause:

The servo drive detects the encoder type during initialization upon power-on. If the encoder type does not comply with the requirement, the servo drive reports E120.0.

Root Cause	Confirming Method	Solution
The encoder type does not match the servo drive.	Check whether the encoder model is correct.	Replace the encoder.

#### ■ E120.1: Unknown motor model

Direct cause:

The servo drive detects the motor model (H00-00) during initialization upon power-on. If the motor model does not exist, the servo drive reports E120.1.

Root Cause	Confirming Method	Solution
The motor model is set	Check whether H00-00 (Motor	Set H00-00 to a proper value that matches the
improperly.	code) is set properly.	motor model.

#### ■ E120.2: Unknown drive model

#### Direct cause:

The servo drive detects the servo drive model (H01-10) during initialization upon power-on. If the servo drive model does not exist, the servo drive reports E120.2.

Root Cause	Confirming Method	Solution
The servo drive model is set improperly.	Check whether H01-10 (Servo drive series No.) is set properly.	Set H01-10 to a proper value that matches the servo drive model.

#### ■ E120.5: Mismatch of the motor current and drive current

Direct cause:

The rated output current of the servo drive is higher than the rated current of the motor.

Root Cause	Confirming Method	Solution
The internal scaling value is abnormal.	Check whether the servo drive model is correct. If the set current sampling coefficient is too large, calculation overflow will occur.	Replace with a servo drive of lower rated output current or a motor with higher rated current.

#### ■ E120.6: Mismatch of FPGA and motor model

Direct cause:

1. The motor model is set improperly, causing mismatch and malfunction of the servo drive.

2. The motor model is set properly, but the motor encoder is not supported by the servo drive.

Root Cause	Confirming Method	Solution
The FPGA does not support the motor encoder.	Check whether the FPGA firmware version (H01-01) supports the motor encoder.	Update the program or replace the motor.

#### ■ E122.0: Multi-turn absolute encoder setting error

Root Cause	Confirming Method	Solution
The motor does not match the absolute position mode or the motor cide is set improperly.	Check the motor nameplate to see whether the motor is equipped with an absolute encoder. Check whether 200D-01h (Motor code) is set properly.	Set 200D-01h (Motor code) correctly according to the motor nameplate or replace with a matching motor.

■ E122.1: Different DIs allocated with the same function

Root Cause	Confirming Method	Solution
1. The same function is allocated to different DIs.	View 2003-03h, 2003-05h to 2003-15h, 2017-01h, and 2017-03h to 2017-1Fh to check whether they are allocated with the same DI function No	Allocate different DI functions to the parameters that have been allocated with the same DI function. To activate the allocation, restart the control circuit or turn off the S-ON signal and send a "RESET" signal.
2. The DI function No. exceeds the number of DI functions.	Check whether the MCU firmware is updated.	Restore default settings (2002-20h = 1) and power on the servo drive again.

#### ■ E122.3: Upper limit invalid

Cause	Confirming Method	Solution
The upper limit value of the mechanical single-turn position exceeds 2 ³¹ in the absolute position rotation mode.	Check the setting of the mechanical gear ratio, the upper limit of the mechanical single-turn position and the electronic gear ratio when the servo drive runs in the absolute position rotation mode (H02-01 = 2).	Reset the mechanical gear ratio, the upper limit of the mechanical single- turn position and the electronic gear ratio to ensure the upper limit of the mechanical single-turn position (reference range) does not exceed $2^{31}$ .

#### ■ E136.0: Encoder parameter error

#### Direct cause:

When the servo drive reads parameters in the encoder ROM, no parameters are saved there or parameter values are inconsistent with the agreed values.

Root Cause	Confirming Method	Solution
1. The servo drive model does not match with the servo motor model.	View the servo drive and servo motor nameplates to check whether the devices used are Inovance SV660N series servo drive and servo motor.	Replace with the mutually-matching servo drive and servo motor.
2. A parameter check error occurs or no parameter is stored in the serial incremental encoder ROM.	Check whether the encoder cable provided by Inovance is used. For cable specifications, see <u>"1.4 Cable</u> <u>Models"</u> . Ensure the cable is intact and in good contact at both ends to allow reliable connection. Measure signals PS+, PS-, +5V and GND at both ends of the encoder cable and observe whether signals at both ends are consistent. For definition of signals, see <u>"3 Wiring"</u>	Use the encoder cable provided by Inovance. Ensure the cable is connected to the motor securely and tighten the screws on the servo drive side. Use a new encoder cable if necessary. Do not bundle the encoder cables with the power cables (RST, UVW). Route encoder cables and power cables through different routes.
3. The servo drive is faulty.	The fault persists after servo drive is powered off and on again.	Replace the servo drive.

■ E136.1: Encoder communication error

Direct cause:

- 1. The encoder cable is disconnected.
- 2. The encoder communication is disturbed.

Root Cause	Confirming Method	Solution
The FPGA and motor encoder communication is faulty during initialization upon power-on.	Observe the value of H0B-28 to see whether it is not 0.	Check whether the encoder cables are connected properly. Check whether the motor model is set properly. Check whether H01-00 (MCU firmware version) and H01-01 (FPGA firmware version) are set properly.

#### ■ E150.0: STO signal input protection activated

#### Direct cause:

The STO input protection applies (safety state).

Root Cause	Confirming Method	Solution
1. The STO is activated.	Check whether the STO function is activated.	There is no need to take any actions. Clear the fault through fault reset after the STO terminal is restored.
2. The STO power supply is abnormal.	Check whether the 24 V power supply for the STO is stable.	Tighten the cables that are loosened or disconnected.
3. The STO is deactivated.	The fault persists after preceding actions are taken.	Replace the servo drive.

#### ■ E150.1: STO signal input error

#### Direct cause:

The single-channel input of STO is invalid.

Root Cause	Confirming Method	Solution
1. The STO power supply is abnormal.	Check whether the 24 V power supply for the STO is stable.	Tighten the cables that are loosened or disconnected.
2. The STO input resistor is abnormal.	The 24 V power supply is disconnected due to resistor drift after the STO function is enabled, but the single-channel STO input is normal.	Replace the servo drive.
3. The STO is deactivated.	The fault persists after preceding actions are taken.	Replace the servo drive.

#### ■ E150.2: Abnormal voltage detected

Direct cause:

The MCU monitors the 5 V power supply provided to the PWM Buffer to detect whether overvoltage and undervoltage occurs. If the voltage is abnormal, E150.2 will be displayed.

Root Cause	Confirming Method	Solution
The 5 V power supply provided to the Buffer is abnormal.	Check the 5 V power supply.	Replace the servo drive.

■ E150.3: STO upstream optocoupler detection failure

Direct cause:

Short circuit occurs on the optocoupler of the upstream hardware circuit of STO.

Root Cause	Confirming Method	Solution
Short circuit occurs on the upstr optocoupler of STO1 or STO2.	am The servo drive does not display E150.0 when the 24 V power supply is powered off and on again.	Replace the servo drive.

#### ■ E150.4: PWM Buffer detection failure

Direct cause:

An errors occurs on the PWM Buffer chip during initialization detection upon power-on (the PWM signal cannot be blocked).

Root Cause	Confirming Method	Solution
The Buffer fails to block the PWM waves.	This fault persists after the servo drive is powered off and on several times.	Replace the servo drive.

#### ■ E201.0: Phase-P overcurrent

Direct cause:

High current flows through the positive pole of the DC-AC circuit.

Root Cause	Confirming Method	Solution
High current flows through the positive pole of the DC-AC circuit.	Collect the current feedback using the software tool to check whether the current is abnormal.	<ul> <li>The motor parameters are set improperly, adjust the motor parameters.</li> </ul>
		<ul> <li>The current loop parameters are set improperly, adjust the current loop parameters.</li> </ul>
		<ul> <li>The speed loop parameters are set improperly, adjust the speed loop parameters.</li> </ul>
		<ul> <li>If the servo drive runs improperly, replace it.</li> </ul>

#### ■ E201.1: Phase-U overcurrent

Cause	Confirming Method	Solution
A current higher than the threshold is collected in the phase-U current.	Check the phase-U current (H0B-38) when the fault occurs.	<ul> <li>Check whether H01-38 is set properly.</li> <li>Check whether the motor parameters are set properly.</li> <li>Check whether the current loop parameters are set properly.</li> <li>Check whether the servo drive runs properly.</li> </ul>

#### ■ E201.2: Phase-V overcurrent

Root Cause	Confirming Method	Solution
A current higher than the threshold is collected in the phase-V current.	Check the phase-V current (H0B-39) when the fault occurs.	<ul> <li>Check whether H01-38 is set properly.</li> <li>Check whether the motor parameters are set properly.</li> <li>Check whether the current loop parameters are set properly.</li> <li>Check whether the servo drive runs properly.</li> </ul>

#### ■ E201.4: Phase-N overcurrent

Direct cause:

Overcurrent is detected in phase-N of the hardware.

Root Cause	Confirming Method	Solution
High current flows through the negative pole of the DC-AC circuit.	Collect the current feedback using the software tool to check whether the current is abnormal.	<ul> <li>The motor parameters are set improperly, adjust the motor parameters.</li> </ul>
		<ul> <li>The current loop parameters are set improperly, adjust the current loop parameters.</li> </ul>
		<ul> <li>The speed loop parameters are set improperly, adjust the speed loop parameters.</li> </ul>
		<ul> <li>If the servo drive runs improperly, replace it.</li> </ul>

■ E208.0: MCU position reference updated frequently

Find the fault cause through the internal fault code (200B-2Eh).

Root Cause	Confirming Method	Solution
1 MCU	200B-2Eh = 1208:	
1. MCU communication times out.	The internal chip is damaged.	
	200B-2Eh = 0208:	Replace the servo drive.
2. FPGA operation times out.	Find the cause according to preceding cause 1.	

#### ■ E208.2: Encoder communication timeout

#### Direct cause:

The servo drive fails to receive the data fed back by the encoder in three consecutive cycles.

Root Cause	Confirming Method	Solution
The servo drive fails to receive the data returned by the encoder in three consecutive cycles.	<ul> <li>Check the bit12 of H0B-30.</li> <li>The encoder cables are connected improperly.</li> <li>The encoder cables are loosened.</li> <li>The encoder cables are too long.</li> <li>The encoder communication suffers from interference.</li> <li>The encoder is faulty.</li> </ul>	<ul> <li>Check whether the motor model is correct.</li> <li>Check whether encoder cables are in proper condition.</li> <li>Check whether the encoder version (H00-04) is set properly.</li> <li>If servo drive runs improperly, replace it.</li> </ul>

■ E208.3: Current sampling fault

Cause	Confirming Method	Solution
The phase-U and phase-V current sampling are abnormal.	Check whether there is large equipment generating interferences on site and whether there are multiple interference sources in the cabinet. The internal current sampling chip is damaged.	<ul> <li>Check whether the servo drive and motor are grounded and shielded properly.</li> <li>Install magnetic ring on the motor power cables and encoder cables.</li> <li>Replace the servo drive.</li> </ul>

■ E208.4: FPGA current loop operation timeout

#### Cause:

The operation time of the current loop exceeds the interval threshold.

■ E210.0: Output shorted to ground

#### Direct cause:

The servo drive detects abnormal motor phase current or bus voltage during self-check upon power-on.

Root Cause	Confirming Method	Solution
1. Power (UVW) cables of the servo drive are short-circuited to ground.	Disconnect UVW cables from the motor and check whether the UVW cables are short circuited to ground (PE).	Re-connect or replace the servo drive power cables.
2. The motor is short circuited to ground.	After ensuring power cables of the servo drive and motor cables are connected securely, check whether the insulation resistance between UVW terminals of the servo drive and the grounding cable (PE) is at $M\Omega$ -level.	Replace the servo motor.
3. The servo drive is faulty.	Remove power cables from the servo drive. The fault persists after the servo drive is powered off and on several times.	Replace the servo drive.

#### ■ E234.0: Runaway Protection

Direct cause:

The torque reference direction is in reverse to the speed feedback direction in the torque control mode.

The speed feedback direction is in reverse to the speed reference direction in the position or speed control modes.

Root Cause	Confirming Method	Solution
1. The UVW cables are connected improperly.	Check whether UVW phase sequence on the servo drive is consistent with that on the motor side.	Connect UVW cables according to the correct phase sequence.
2. The initial phase detection on the motor rotor is incorrect due to interference signals upon power-on.	The UVW phase sequence is correct, but E234.0 occurs when the servo drive is enabled.	Power on the servo drive again.

Root Cause	Confirming Method	Solution
3. The encoder model is wrong or the wiring is improper.	View the servo drive and servo motor nameplates to check whether the devices used are Inovance SV660N series servo drive and servo motor.	Replace with the mutually-matching servo drive and servo motor. If you use Inovance SV660N series servo drive and servo motor, ensure that 2000-01h is set to 14000. Re-confirm the motor model, encoder type, and encoder cable connections.
4. The encoder cables are connected improperly, corroded or loosened.	Check whether the encoder cable provided by Inovance is used. Check whether the cable is worn out, corroded or loosened. Switch off the S-ON signal, rotate the motor shaft manually, and check whether the value of 200B-0Bh (Electrical angle) changes as the motor rotates.	Re-weld, tighten or replace the encoder cable.
5. The gravity load is too heavy in vertical axis applications.	Check whether the load of the vertical axis is too heavy. Adjust brake parameters 2002-0Ah to 2002-0Dh and then check whether the fault can be removed.	Reduce the load of the vertical axis, improve the stiffness level or hide this fault without affecting the safety performance or normal use.
6. Improper parameter settings cause excessive vibration.	The stiffness level is set too high and causes excessive vibration.	Set a proper stiffness level to avoid excessive vibration.

#### ■ E400.0: Main circuit overvoltage

Direct cause:

The DC bus voltage between P and N exceeds the overvoltage threshold.

220 V servo drive: Normal value: 310 V Overvoltage threshold: 420 V

380 V servo drive: Normal value: 540 V Overvoltage threshold: 760 V

Root Cause	Confirming Method	Solution
1. The main circuit input voltage is too high.	Check the power input specification of the servo drive and measure whether the RST voltages on the servo drive side complies with the following specifications: ◆ 220 V servo drive: Effective value: 220 V to 240 V Allowable deviation: -10% to +10% (198 V to 264 V) ◆ 380 V servo drive:	Replace or adjust the power supply according to the specifications.
	Effective value: 380 V to 440 V	
	Allowable deviation: –10% to +10% (342 V to 484 V)	
	Check whether the power input to the servo drive is unstable, affected by lightning strike or complies with preceding specifications.	Connect a surge protection device and then switch on the power supply. If the fault persists, replace the servo drive.

Root Cause	Confirming Method	Solution
3. The regenerative resistor fails.	If an internal regenerative resistor is used (2002-1Ah = 0), check whether P and D are jumpered. If yes, measure the resistance between C and D. If an external regenerative resistor is used (2002-1Ah = 1, 2), measure the resistance between P and C. For the specification of the regenerative resistor, see <u>"1.1.4 Specifications of the</u> <u>Regenerative Resistor"</u> .	<ul> <li>If the resistance is "∞" (infinite), the regenerative resistor is disconnected internally.</li> <li>If an internal regenerative resistor is used, replace with an external regenerative resistor (2002-1Ah = 1, 2) and remove the jumper between P and D. Select an external regenerative resistor of the same resistance and power as the internal one.</li> <li>If an external regenerative resistor is used, replace with a new external regenerative resistor is used, replace with a new external regenerative resistor and connect it between P and C. Set 2002-1Bh (Power of external regenerative resistor) and 2002-1Ch (Resistance of external regenerative resistor) and solver the external regenerative resistor) properly according to the specifications of the external regenerative resistor used.</li> </ul>
4. The resistance of the external regenerative resistor is too large, and energy absorption during braking is insufficient.	Measure the resistance of the external regenerative resistor between P and C, and compare the measured value with the recommended value.	Connect a new external regenerative resistor of recommended resistance between P and C. Set 2002-1Bh (Power of external regenerative resistor) and 2002-1Ch (Resistance of external regenerative resistor) properly according to the specification of the external regenerative resistor actually used.
5. The motor is in abrupt acceleration/ deceleration status and the maximum braking energy exceeds the energy absorption value.	Confirm the acceleration/deceleration time during running and measure whether the DC bus voltage between P and N exceeds the fault threshold during deceleration.	Ensure the voltage input to the main circuit is within the specified range, and then increase the acceleration/deceleration time if allowed.
6. The bus voltage sampling value deviates greatly from the measured value.	Check whether the bus voltage (200B-1Bh) complies with the following specifications: 220 V servo drive: 200B-1Bh > 420 V 380 V servo drive: 200B-1Bh > 760 V Measure whether the DC bus voltage between P and N is within the normal range and smaller than the value defined by 200B-1Bh.	Contact Inovance for technical support.
7. The servo drive is faulty.	The fault persists after main circuit is powered off and on several times.	Replace the servo drive.

### ■ E410.0: Main circuit undervoltage

#### Direct cause:

The DC bus voltage between P and N is lower than the undervoltage threshold.

220 V servo drive: Normal value: 310 V Undervoltage threshold: 200 V

Root Cause	Confirming Method	Solution	
1. The main circuit power supply is unstable or fails.	Check the specifications of the main circuit power supply. Measure whether the input voltage of the main circuit on the non-drive side and the drive side (L1, L2) complies with the following specifications:		
2. Instantaneous power failure occurs.	220 V servo drive: Effective value: 220 V to 240 V Allowable deviation: –10% to +10% (198 V to 264 V) All the three phases must be measured.	Increase the power capacity.	
3. Voltage drop occurs during running.	Observe the input voltage of the servo drive to check whether the same power supply is used to power up other devices, resulting in insufficient power capacity and voltage drop.		
4. Phase loss: A single- phase power supply is used for a three-phase servo drive.	Check whether the wiring of the main circuit is proper and whether the phase loss fault detection (200A-01h) is hidden.	Replace the cables and connect the main circuit cables properly. Three-phase: L1, L2, L3	
5. The servo drive is faulty.	Check whether the bus voltage (200B-1Bh) complies with the following specifications: 220 V servo drive: 200B-1Bh < 200 V The fault persists after the main circuit (L1, L2) is powered off and on several times.	Replace the servo drive.	

#### ■ E420.0: Phase loss

#### Direct cause:

One-phase or two-phase loss occurs on a three-phase servo drive.

Root Cause	Confirming Method	Solution
1. The three- phase input cables are connected improperly.	Check whether main cables (L1, L2, L3) on the drive side and non-drive side are in good condition and connected properly.	Replace the cables and connect the main circuit cables properly.
2. A single-phase power supply is applied to a three- phase servo drive.	Measure whether the input voltage of the main circuit complies with the following specifications. • 220 V servo drive:	A three-phase servo drive of 0.75 kW (2001-03h = 5) is allowed to run under a single-phase power supply.
3. The three-phase power supply is unbalanced or the voltage of all the three phases are too low.	Effective value: 220 V to 240 V Allowable deviation: −10% to +10% (198 V to 264 V) ◆ 380 V servo drive: Effective value: 380 V to 440 V Allowable deviation: −10% to +10%	If the input voltage complies with the specifications, set 200A-01h to 2 (Power input phase loss warning and fault inhibited). If input voltage does not comply with the specifications, replace or adjust the power
	(342 V to 484 V) All the three phases must be measured.	supply.
4. The servo drive is faulty.	The fault persists after the main circuit (L1, L2, L3) is powered off and on several times.	Replace the servo drive.

## ■ E420.1: PL signal error

Root Cause	Confirming Method	Solution
The power voltage signal is abnormal.		It is recommended to use the standard voltage signal.

#### ■ E500.0: Motor overspeed

Direct cause:

The actual speed of the servo motor exceeds the overspeed threshold.

Root Cause	Confirming Method	Solution
1. The UVW phase sequence of motor cables is incorrect.	Check whether UVW phase sequence on the servo drive side is consistent with that on the motor side.	Connect UVW cables according to the correct phase sequence.
	Check whether the overspeed threshold is smaller than the maximum motor speed required in actual applications.	
2. 200A-09h is set improperly.	Overspeed threshold = 1.2 times the maximum motor speed (200A-09h = 0)	Reset the overspeed threshold according to actual mechanical requirements.
	Overspeed threshold = 200A-09h (the set value of 200A-09h is not 0 and less than 1.2 times the maximum motor speed).	
	Check whether the motor speed corresponding to the input reference exceeds the overspeed threshold.	Position control mode
	<ul> <li>Position control mode</li> </ul>	CSP: Decrease the position reference increment for a single synchronization
	In CSP mode, view the gear ratio 6091-01h/6091-02h to check the	cycle. The host controller should cover the position ramp when generating references.
	speed reference increment for a single synchronization cycle and convert it to the corresponding speed value.	PP: Decrease the value of 6081h or increase the acceleration/deceleration ramp (6083h, 6084h).
3. The input reference	In PP mode, view the gear ratio 6091-01h/6091-02h and define the value of 6081h (Profile velocity).	HM: Decrease 6099-01h and 6099-02h, or increase the acceleration/deceleration ramp (609Ah).
is higher than the overspeed threshold.	In HM mode, view the gear ratio 6091-01h/6091-02h, and define the value of 6099-01h and 6099-02h.	Decrease the gear ratio according to actual conditions.
	◆ Speed control mode:	• Speed mode:
	View the gear ratio (6091h), the target velocity (60FFh), the speed limit values (2006-09h and 2006-0Ah), and the maximum profile velocity (607Fh).	Decrease the target velocity, speed limit, gear ratio. In PV mode, increase the speed ramp in 6083h and 6084h. In CSV mode, the host controller should cover the speed ramp.
	◆ Torque control mode:	◆ Torque control mode:
	View the speed limits defined by 2007-14h and 2007-15h and check the corresponding speed limit value.	Set the speed limit to a value smaller than the overspeed threshold.
4. The motor speed overshoots.	Check whether the speed feedback exceeds the overspeed threshold by using the software tool.	Adjust the gain or running conditions.
5. The servo drive is faulty.	The fault persists after servo drive is powered off and on again.	Replace the servo drive.

#### ■ E500.1: Speed feedback overflow

Direct cause:

The FPGA speed measurement overflows.

Root Cause	Confirming Method	Solution
The FPGA speed measurement is abnormal.	Check whether the bit9 of H0B-30 is 1.	<ul> <li>The speed feedback is abnormal, check whether the encoder version (H00-04) is proper.</li> <li>Replace the encoder cables.</li> <li>The encoder cables suffer from interference. Re-connect the grounding cable and the shielded cable or install a magnetic ring.</li> </ul>

#### ■ E602.0: Angle auto-tuning error

Direct cause:

Abnormal jitter occurs on the encoder feedback during angle auto-tuning.

Root Cause	Confirming Method	Solution
An encoder feedback error occurs.	Check if the encoder communication suffers from interference.	Check the wiring of the encoder hardware.

■ E602.2: Wrong UVW phase sequence detected during angle auto-tuning

#### Direct cause:

A wrong UVW phase sequence is detected during angle auto-tuning.

Root Cause	Confirming Method	Solution
The UVW cables are connected reversely, which is detected during angle auto-tuning.	-	Exchange the cables of any two phases and perform auto-tuning again.

#### ■ E620.0: Motor overload

Direct cause:

The accumulative heat of the servo motor reaches the fault threshold.

Root Cause	Confirming Method	Solution
		Connect cables according to the correct wiring diagram.
1. The motor and encoder cables are	Check the wiring among the servo drive, servo motor and encoder	It is recommended to use the cables provided by Inovance.
connected improperly.	according to the correct wiring diagram.	If you use customized cables, ensure such cables are made and connected based on the hardware wiring instructions.
2. The load is too heavy. The motor keeps outputting the effective torque	Check the overload characteristics of the servo drive or servo motor.	Replace with a high-power servo drive and a matching servo motor.
higher than the rated value.	Check whether the average load ratio (200B-0DH) keeps exceeding 100.0%.	Reduce the load and increase the acceleration/deceleration time.
3. The acceleration/deceleration is too frequent or the load inertia is too large.	Calculate the mechanical inertia ratio or perform inertia auto-tuning, and view the value of 2008-10h (Load inertia ratio). Confirm the single running cycle when the servo motor runs cyclically.	Increase the acceleration/ deceleration time during single running.
4. The gain is improper or the stiffness level is too high.	Observe whether the motor vibrates and generates abnormal noise during running.	Adjust the gain.

Root Cause	Confirming Method	Solution
5. The servo drive or motor models are set improperly.	View the serial encoder motor model in 2000-06h and servo drive model in 2001-0Bh.	View the servo drive nameplate and set the servo drive model in 2001-0Bh and use a matching servo motor according to <u>"1.1 Introduction</u> <u>to the Servo Drive"</u> .
	Check the RUN command and motor speed (200B-01h) through the software tool or the keypad:	
	<ul> <li>RUN command in the position control mode: 200B-0Eh</li> </ul>	
	(Position reference counter)	
6. Locked-rotor occurs due to mechanical factors, resulting in	<ul> <li>RUN command in the speed control mode: 200B-02h</li> </ul>	Eliminate mechanical factors.
overload during running.	(Speed reference)	
	<ul> <li>RUN command in the torque control mode: 200B-03h</li> </ul>	
	(Internal torque reference)	
	Check whether the RUN command in the corresponding mode is not 0 but the motor speed is 0.	
7. The servo drive is faulty.	The fault persists after servo drive is powered off and on again.	Replace the servo drive.

#### ■ E630.0: Locked rotor

#### Direct cause:

The actual motor speed is lower than 10 RPM but the torque reference reaches the limit, and such status persists for the duration defined by 200A-21h.

Root Cause	Confirming Method	Solution
1. Power output phase (UVW) loss or incorrect phase sequence occurs on the servo drive.	Perform motor trial run without load and check cable connections and the phase sequence.	Re-connect the cables according to the correct wiring diagram or replace the cables.
2. The motor parameters (especially the pole pairs) are set improperly and the motor angle auto-tuning is not performed.	Read parameters in group H00 to check whether the pole pairs are set properly. Perform angle auto-tuning on the motor several times and check whether the value of H00-28 is consistent during angle auto-tuning.	Modify the motor parameter values.
3. The communication commands suffer from interference.	Check whether jitter occurs on the commands sent from the host controller and whether EtherCAT communication suffers from interference.	Check whether the communication circuit between the host controller and the servo drive suffers from interference.

Root Cause	Confirming Method	Solution
	Check the RUN command and motor speed (H0B-00) through the software tool or the keypad.	
	<ul> <li>RUN command in the position control mode: H0B-13</li> </ul>	
	(Position reference counter)	
	<ul> <li>RUN command in the speed control mode: H0B-01</li> </ul>	Check whether any mechanical part gets stuck or eccentric.
4. The motor rotor is locked due to mechanical factors.	(Speed reference)	
	<ul> <li>RUN command in the torque control mode: H0B-02</li> </ul>	
	(Internal torque reference)	
	Check whether the RUN command in the corresponding mode is not 0 but the motor speed is 0.	
	Check the current feedback (torque reference) waveform.	

■ E640.0: IGBT over-temperature

Direct cause: The IGBT temperature reaches the fault threshold defined by H0A-18 (IGBT overtemperature threshold).

■ E650.0: Heatsink over-temperature

Direct cause:

The power module temperature of the servo drive is higher than the over-temperature protection threshold.

Root Cause	Confirming Method	Solution
1. The ambient temperature is too high.	Measure the ambient temperature.	Improve cooling conditions to lower down the ambient temperature.
2. The servo drive is powered off frequently to reset the overload fault.	View the fault records: Check for overload fault (set 200B-22h and view 200B-23h) or warning (E3.610, E3.620, E3.630, E3.650).	Change the fault reset mode and perform reset 30s after overload. Increase the capacity of the servo drive and servo motor. Increase the acceleration/deceleration time and reduce the load.
3. The fan is damaged.	Check whether the fan rotates during running.	Replace the servo drive.
4. The installation direction and clearance of the servo drive are improper.	Check whether the servo drive is installed properly.	Install the servo drive according to the installation standards.
5. The servo drive is faulty.	The fault persists after power-off for five minutes and restart.	Replace the servo drive.

■ E661.0: Auto-tuned gain values too low

Direct cause:

1. The vibration cannot be suppressed. Enable vibration suppression manually to eliminate the vibration.

2. Excessive positioning overshoot occurs. Check whether the positioning threshold is too low. Increase the acceleration/deceleration time and lower the response level.

3. The command suffers from noises. Modify the electronic gear ratio to improve the command resolution, or increase the command filter time constant in the "Parameter configuration" interface.

4. The current fluctuates. Check whether the machine suffers periodic fluctuation.

5. The vibration cannot be suppressed if the load carries large inertia. In this case, increase the acceleration/deceleration time to ensure the motor current is unsaturated.

■ E731.0: Encoder battery failure

Direct cause:

The battery voltage of the absolute encoder is lower than 2.8 V.

Root Cause	Confirming Method	Solution
, , , , , , , , , , , , , , , , , , ,	Check whether the battery is connected during power-off.	Set 200D-15h to 1 to clear the fault.
The battery voltage of the encoder is too low.	Measure the battery voltage.	Replace with a new battery of the matching voltage.

#### ■ E733.0: Encoder multi-turn counting error

Direct cause:

The encoder multi-turn counting is wrong.

Root Cause	Confirming Method	Solution
,	Set 200D-15h to 2 to clear the fault. E733.0 persists after the servo drive is powered off and on again.	Replace the servo motor.

#### ■ E735.0: Encoder multi-turn counting overflow

#### Direct cause:

The multi-turn counting overflow occurs on the absolute encoder.

Root Cause	Confirming Method	Solution
The number of forward revolutions exceeds 32767 or the number of reverse revolutions exceeds 32768.	Check whether the value of H0B- 70 (Number of absolute encoder revolutions) is 32767 or 32768 when the servo drive works in the absolute position linear mode (H02- 01 = 1).	Set H0D-20 (Absolute encoder reset selection) to 2 (Reset the encoder fault and multi-turn data) and power on the servo drive again. Perform homing if necessary.

#### ■ E740.2: Absolute encoder error

#### Direct cause:

Communication timeout occurs on the absolute encoder.

Root Cause	Confirming Method	Solution
		<ul> <li>Check whether H00-00 (Motor code) is set properly.</li> </ul>
The communication between the	Check whether the value of H0B-28	<ul> <li>Check whether encoder cables are connected properly.</li> </ul>
servo drive and the encoder is abnormal.	(Absolute encoder fault information given by FPGA) is not 0.	<ul> <li>Check whether the servo drive and servo motor are grounded properly. You can install a magnetic ring on the encoder to reduce interference.</li> </ul>

■ E740.3: Absolute encoder single-turn calculation error

Root Cause	Confirming Method	Solution	
An internal fault occurs on the		<ul> <li>Check whether the encoder version (H00-04) is proper.</li> </ul>	
encoder.	Check whether bit7 of H0B-28 is 1.	<ul> <li>Check whether encoder cables are in proper condition.</li> </ul>	
		<ul> <li>Replace the servo motor.</li> </ul>	

■ E740.6: Encoder write error

Direct cause:

A write error occurs on the encoder.

Root Cause	Confirming Method	Solution
An error occurs during writing the position offset after angle auto-tuning.	-	Check whether the encoder cable shield and the grounding cable are connected properly.

■ EB00.0: Position deviation too large

Direct cause:

The position deviation is larger than the value defined by 6065h in the position control mode.

Root Cause	Confirming Method	Solution
1. Power output (UVW) phase loss or incorrect phase sequence occurs on the servo drive.	Perform motor trial run without load and check the cable connections.	Re-connect the cables according to the correct wiring diagram or replace the cables.
2. The servo drive UVW cables or the encoder cables are disconnected.	Check the cable connections.	Re-connect the UVW cables. The UVW phase sequence on the servo drive side must be consistent with that on the motor side. Replace with new cables if necessary and ensure the cables are connected properly.
3. The motor rotor is locked due to	Check the RUN command and motor speed (200B-01h) through the software tool or the keypad: RUN command in the position control mode: 200B-0Eh	
	(Position reference counter) RUN command in the speed control mode: 200B-02h	Eliminate mechanical factors.
mechanical factors.	(Speed reference)	
	RUN command in the torque control mode: 200B-03h	
	(Internal torque reference)	
	Check whether the RUN command in the corresponding mode is not 0 but the motor speed is 0.	
4. The servo drive gain is low.	Check the position loop gain and speed loop gain of the servo drive. 1st gain: 2008-01h to 2008-03h	Adjust the gain manually or perform gain auto-tuning.
	2nd gain: 2008-04h to 2008-06h	

Root Cause	Confirming Method	Solution
5. The position reference increment is too large.	<ul> <li>Position control mode:</li> <li>In CSP mode, view the gear ratio 6091-01h/6091-02h to check the speed reference increment for a single synchronization cycle and convert it to the corresponding speed value.</li> <li>In PP mode, view the gear ratio 6091-01h/6091-02h and define the value of 6081h (Profile velocity).</li> <li>In HM mode, view the gear ratio 6091-01h/6091-02h, and define the value of 6099-01h and 6099-02h.</li> </ul>	<ul> <li>CSP: Decrease the position reference increment for a single synchronization cycle. The host controller should cover the position ramp when generating references.</li> <li>PP: Decrease the value of 6081h or increase the acceleration/ deceleration ramp (6083h, 6084h).</li> <li>HM: Decrease 6099-01h and 6099-02h, or increase the acceleration/deceleration ramp (609Ah).</li> <li>Decrease the gear ratio according to actual conditions.</li> </ul>
6. The value of 6065h (Following error window) is too small in relative to the running condition.	Check whether the value of 6065h is too small.	Increase the value of 6065h.
7. The servo drive or servo motor is faulty.	Monitor the running curves through the oscilloscope function of the software tool: position reference, position feedback, speed reference, and torque reference	If the position reference is not 0, but the position feedback is always 0, replace the servo drive/motor.

# ■ EB00.1 (Following error actual value)

#### Direct cause:

The position deviation is too large.

Root Cause	Confirming Method	Solution
1. Power output (UVW) phase loss or incorrect phase sequence occurs on the servo drive.	Perform motor trial running without load and check the cable connections.	Re-connect the cables according to the correct wiring diagram or replace the cables.
2. The servo drive UVW cables or the encoder cables are disconnected.	Check the wiring.	Re-connect the UVW cables. The UVW phase sequence on the servo drive side must be consistent with that on the motor side. Replace with new cables if necessary and ensure the cables are connected properly.

Root Cause	Confirming Method	Solution
	<ul> <li>Check the RUN command and motor speed (200B-01h) through the software tool or the keypad:</li> <li>RUN command in the position control mode: 200B-0Eh</li> </ul>	
3. The motor rotor is locked due to mechanical factors.	<ul> <li>(Position reference counter)</li> <li>◆ RUN command in the speed control mode: 200B-02h</li> <li>(Speed reference)</li> <li>◆ RUN command in the torque control mode: 200B-03h</li> <li>(Internal torque reference)</li> <li>Check whether the RUN command in the corresponding mode is not 0 but the motor speed is 0.</li> </ul>	Eliminate mechanical factors.
The servo drive gain is low.	Check the position loop gain and speed loop gain of the servo drive. 1st gain: 2008-01h to 2008-03h 2nd gain: 2008-04h to 2008-06h	Adjust the gain manually or perform gain auto-tuning.
5. The position reference increment is too large.	<ul> <li>Position control mode:</li> <li>In CSP mode, view the gear ratio 6091-01h/6091-02h to check the speed reference increment for a single synchronization cycle and convert it to the corresponding speed value.</li> <li>In PP mode, view the gear ratio 6091-01h/6091-02h and define the value of 6081h (Profile velocity).</li> <li>In HM mode, view the gear ratio 6091-01h/6091-02h, and define the value of 6099-01h and 6099-02h.</li> </ul>	<ul> <li>CSP: Decrease the position reference increment for a single synchronization cycle. The host controller should cover the position ramp when generating references.</li> <li>PP: Decrease the value of 6081h or increase the acceleration/deceleration ramp (6083h, 6084h).</li> <li>HM: Decrease the value of 6099-01h and 6099-02h or increase the acceleration/ deceleration ramp (609Ah).</li> <li>Decrease the gear ratio according to actual conditions.</li> </ul>
6. The value of 6065h (Following error window) is too small in relative to the running condition.	Check whether the value of 6065h is too small.	Increase the value of 6065h.
7. The servo drive or the servo motor is faulty.	Monitor the running curves through the oscilloscope function of the software tool: position reference, position feedback, speed reference, and torque reference	If the position reference is not 0 but the position feedback is always 0, replace the servo drive or the servo motor.

#### ■ EA33.0: Encoder read/write check error

#### Direct cause:

Internal parameters of the encoder are abnormal.

Root Cause	Confirming Method	Solution
1. The serial incremental encoder cable is disconnected or loosened.	Check the encoder cable connection.	Check for wrong connection, disconnection and poor contact of the encoder cable. Route the motor cable and encoder cable through different routes.

Root Cause	Confirming Method	Solution
2. An error occurs when reading/writing the RS485 encoder parameters.	If the fault persists after the servo drive is powered off and on several times, the encoder is faulty.	Replace the servo motor.

#### ■ EB01.1: Position reference increment too large for once

Cause	Confirming Method	Solution
1. The target position increment is too large. Check the variation value between two adjacent target positions by using the software tool.	1. Check whether the maximum motor speed fulfills the application requirement. If yes, reduce the target position reference increment, which is to lower the profiled reference speed. If not, replace the servo motor.	
	positions by using the software	2. Before switching the modes or enabling the servo drive, check whether the target position is aligned with current position feedback.
		3. The communication time sequence of the host controller is abnormal, leading to slave data receiving error. Check the communication time sequence of the host controller.

#### ■ EB01.2: Position reference increment too large continuously

#### Direct cause:

The target position increment exceeds the limit value N times consecutively.

Root Cause	Confirming Method	Solution
1. The target position	Check the variation value between two adjacent target	<ol> <li>Check whether the maximum motor speed fulfills the application requirement. If yes, reduce the target position reference increment, which is to lower the profiled reference speed. If not, replace the servo motor.</li> <li>Before switching the modes or enabling the</li> </ol>
	positions by using the software	servo drive, check whether the target position is aligned with current position feedback.
		3. The communication time sequence of the host controller is abnormal, leading to slave data receiving error. Check the communication time sequence of the host controller.

#### ■ EB01.3: Command overflow

Cause	Confirming Method	Solution
The target position is still in the process of transmission when the servo limit or software limit signal is activated and the 32-bit upper/low limit is reached.	Check whether the host controller keeps outputting commands when the overtravel warning occurs.	Detect the servo limit signal (bit0 and bit1 of 60FD recommended) through the host controller and stop the host controller from transmitting the limit direction command after the servo limit signal is activated.

■ EB01.4: Reference value beyond the single-turn position limits in the absolute mode

Cause	Confirming Method	Solution
The target position exceeds the upper/lower limit of the unit position in the single- turn absolute mode.	Check whether the set value of the target position is within the single-turn upper/lower limit.	Set the target position to a value within the upper/ lower limit.

#### ■ EE09.0: Software limit setting error

Root Cause	Confirming Method	Solution
The lower limit of the software is larger than or equal to the upper limit.	Check the value of 607D-01 and 607D-02.	Reset the value of 607D-01 and 607D-02 and ensure the former is smaller than the latter.

#### ■ EE09.1: Home setting error

Direct cause:

The home offset exceeds the upper/lower limit.

Root Cause	Confirming Method	Solution
1. The home offset is beyond the software limit.	The home offset is beyond the software limit when the encoder works in the incremental mode, absolute linear mode, or single- turn absolute mode.	Set the home offset to a value within the software limit.
2. The home offset is beyond the upper/lower limit in the rotation mode.	The home offset is beyond the mechanical single-turn upper/ lower limit when the encoder works in the rotation mode.	Set the home offset to a value within the limit.

#### ■ EE09.2: Gear ratio over the limit

#### Direct cause:

The electronic gear ratio exceeds the limit: (0.001 x Encoder resolution/10000, 4000 x Encoder resolution/10000)

Root Cause	Confirming Method	Solution
The set electronic gear ratio exceeds	Check whether the ratio of 6091-01h to 6091-02h exceeds the preceding range.	Set the gear ratio to a value within the preceding range.

#### ■ EE09.3: No synchronization signal

Direct cause:

The MCU does not receive the synchronization signal when the servo communication is switched to OP state.

Root Cause	Confirming Method	Solution
1. The communication synchronization clock is configured improperly.	Replace with another master (such as Beckhoff, Omron PLCs) and perform tests to compare between different masters.	Solve the problem of improper configuration.
2. The IN/OUT port for EtherCAT communication is connected reversely.	Check whether the IN/OUT port is connected reversely.	Connect the IN and OUT ports according to the correct sequence.

Root Cause	Confirming Method	Solution
3. The slave controller chip is damaged.	If the problem persists after master replacement, measure the synchronization signal generated from the slave controller chip with an oscilloscope. If there is no signal, the slave controller chip is damaged.	Replace the slave controller chip.
4. The MCU pins are damaged.	Test the synchronization signal generated from the slave controller chip with an oscilloscope. If there is a signal, the pin of the MCU chip is damaged.	Replace MCU chip.

#### ■ EE09.5: PDO mapping over the limit

Root Cause	Confirming Method	Solution
The number of the mapping objects	Check the number of self-index	The number of the mapping objects
in TPDO or RPDO exceeds 10.	configured by 1600h or 1A00h.	in TPDO or RPDO cannot exceed 10.

# 9.4 Solutions to Warnings

■ E121.0: Invalid S-ON command

Direct cause:

The S-ON signal is set repeatedly.

Root Cause	Confirming Method	Solution
<ol> <li>The servo drive is enabled internally the same time when the S-ON signal is activated through communication.</li> </ol>	Check whether the S-ON signal is sent from the host controller when the auxiliary functions (200D-03h, 200D-04h, 200D-0Ch) are used.	Switch off the S-ON signal sent from the host controller.
The S-ON signal is sent from the DI and the software tool simultaneously.	Check whether the S-ON signal is sent from the DI terminal and the software tool simultaneously.	Switch off the redundant S-ON signal.

■ E600.0: Inertia auto-tuning failure

Direct cause:

1. The vibration cannot be suppressed. Enable vibration suppression manually to eliminate the vibration.

2. The auto-tuned values fluctuate dramatically. During ETune operations, the stroke of the lead screw can be shortened by increasing the maximum running speed and reducing the acceleration/deceleration time.

3. Mechanical connections of the load are loosened or eccentric. Remove the mechanical fault.

4. A warning occurs during auto-tuning and causes interruption. Clear the fault and perform inertia autotuning again.

5. The vibration cannot be suppressed if the load carries large inertia. In this case, increase the acceleration/deceleration time to ensure the motor current is unsaturated.

■ E601.0: Homing warning

Direct cause:

The home is not found within the time defined by 2005-24h.

Root Cause	Confirming Method	Solution
1. The home switch fails.	There is only high-speed search but no low-speed search during homing. After high-speed search for the home, the servo drive keeps low-speed search in the reverse direction.	If a hardware DI is used, check whether FunIN.31 (HomeSwitch) has been allocated to a certain DI in group 2003h and then check the wiring of the DI. Manually change the DI logic and observe whether the servo drive receives DI level change through 200B-04h. If not, the wiring of the DI is incorrect. If yes, a fault occurs during the homing. Carry out the homing operation correctly.
2. The set homing duration is too short.	Check whether the value of 2005-24h (Duration limit of homing) is too small.	Increase the value of 2005-24h.
3. The speed in high- speed search for the home switch signal is too low.	Check the distance between the initial position of homing and the home switch. Then check whether the value of 6099- 01h is too small, resulting in a prolonged homing process.	Increase the value of 6099-01h.

#### ■ E601.1: Homing switch error

Root Cause	Confirming Method	Solution
The home switch is set improperly.	Check whether the limit signals at both sides are activated simultaneously. Check whether the limit signal and the deceleration point signal/home signal are activated simultaneously.	Set the position of the hardware switch properly.

# ■ E730.0: Encoder battery warning

Root Cause	Confirming Method	Solution
The encoder battery voltage is lower than 3.0 V.	Measure the battery voltage.	Replace with a new battery of matching voltage.

# ■ E900: Emergency stop

Direct cause:

The logic of the DI (including hardware DI and VDI) allocated with FunIN.34 (EmergencyStop) is valid.

Root Cause	Confirming Method	Solution
The DI function 34 (FunIN.34: Emergency stop) is triggered.	Check whether the logic of the DI allocated with FunIN.34 is valid.	Check the running mode and clear the DI braking signal without affecting the safety performance.

#### ■ E902.0: Invalid DI setting

Direct cause:

The DI function is set to a invalid value.

Root Cause	Confirming Method	Solution
The logics of DI1 to DI5 are set to invalid values.	Check whether the logics of 2003-03h, 2003-05h, 2003-07h to 2003-09h and 2003- 0Bh are set to invalid values.	Set the DI logic to a valid value.

#### ■ E902.1: Invalid DO setting

Direct cause:

The DO function is set to a invalid value.

Root Cause	Confirming Method	Solution
The logics of DO1 to DO3 are set to invalid values.	Check whether the logics of 2004-01h, 2004-03h, and 2004-05h are set to invalid values.	Set the DO logic to a valid value.

#### ■ E902.2: Invalid torque reached setting

Cause	Confirming Method	Solution
The torque reached DO parameter setting is invalid in the torque control mode.	Check whether the value of 2007-17h is smaller than or equal to the value of 2007- 18h (unit: 0.1%).	The value of 2007-17h must be larger than the value of 2007-18h.

#### ■ E908.0: Invalid check bit of model identification

#### Direct cause:

The first two check bits of model identification are incorrect, indicating the model identification fails.

Root Cause	Confirming Method	Solution
1. The model identification parameters are not written.	The warping persists ofter restart	1. Write the model identification parameters again.
2. The check bits of model identification are incorrect.	The warning persists after restart.	2. Set H01-72 to 1 to hide the model identification function.

#### ■ E909.0: Motor overload warning

Direct cause:

The accumulative heat of the motor reaches the warning threshold (90% of the maximum allowable heat).

Root Cause	Confirming Method	Solution
1. The meter and		Connect cables based on the correct wiring diagram.
1. The motor and encoder cables are connected improperly or in poor contact. Check the wiring among the servo drive, servo motor and encoder according to the correct wiring diagram.		It is recommended to use the cables provided by Inovance.
	If you use customized cables, ensure such cables are made and connected based on the hardware wiring instructions.	
2. The load is too heavy. The motor keeps outputting the effective	Check the overload characteristics of the servo drive or servo motor.	Replace with a high-power servo drive and a matching servo motor.
torque higher than the rated value.	Check whether the average load ratio (200B-0Dh) keeps exceeding 100.0%.	Reduce the load and increase the acceleration/deceleration time.

Root Cause	Confirming Method	Solution
3. The acceleration/ deceleration is too frequent or the load inertia is too large.	Check the mechanical inertia ratio or perform inertia auto-tuning. Then view the value of 2008-10h (Load inertia ratio). Confirm the single running cycle when the servo motor runs cyclically.	Increase the acceleration/deceleration time.
4. The gain is improper or the stiffness level is too high.	Observe whether the motor vibrates and generates abnormal noise during running.	Adjust the gain.
5. The servo drive or motor models are set improperly.	View the motor model in 2000-06h and the servo drive model in 2001-03h.	View the servo drive nameplate and set the servo drive model in 2001-03h. Update the motor model to a proper value.
6. Locked-rotor occurs due to mechanical factors, resulting in overload during running.	<ul> <li>Check the RUN command and the motor speed (200B-01h) through the software tool or the keypad:</li> <li>RUN command in the position control mode: 200B-0Eh</li> <li>(Position reference counter)</li> <li>RUN command in the speed control mode: 200B-02h</li> <li>(Speed reference)</li> <li>RUN command in the torque control mode: 200B-03h</li> <li>(Internal torque reference)</li> <li>Check whether the RUN command in the corresponding mode is not 0 but the motor speed is 0.</li> </ul>	Eliminate mechanical factors.
7. The servo drive is faulty.	Power off and on the servo drive again.	If the fault persists after restart, replace the servo drive.

## ■ E920.0: Regenerative resistor overload

#### Direct cause:

The accumulative heat of the regenerative resistor reaches the warning threshold (90% of the maximum allowable heat).

Root Cause	Confirming Method	Solution
1. The external regenerative resistor is connected improperly, disconnected or	Remove the external regenerative resistor and measure whether the resistance of the resistor is " $\infty$ " (infinite). Measure whether the resistance between P and C is " $\infty$ " (infinite).	Replace with a new external regenerative resistor and measure its resistance. If the resistance is consistent with the nominal value, connect it between P and C.
loosened.		Select a new cable and connect it between P and C.
2. The jumper between terminals P and D is shorted or loosened when an internal regenerative resistor is used.	Measure whether the resistance between P and D is " $\infty$ " (infinite).	Select a new cable and connect it between P and D.

Root Cause	Confirming Method	Solution
3. The setting of 2002- 1Ah is incorrect when an external regenerative resistor is used.	View the set value of 2002-1Ah. Measure the resistance of the external regenerative resistor connected between P and C. Check whether the resistance	Set 2002-1Ah to a proper value according to <u>"5.4.3 Regenerative Resistor Settings"</u> : 2002-1Ah = 1 (External, naturally ventilated) 2002-1Ah = 2 (External, forcible cooling)
4. The resistance of the external regenerative resistor used is too large.	is too large by comparing it with value listed in <u>"Table 5-3 Specifications of the</u> regenerative resistor for SV660N series	Select a proper regenerative resistor according to Table 5-3.
5. The value of 2002-1Ch (Resistance of external regenerative resistor) is larger than the resistance of the external regenerative resistor actually used.	<u>servo drive"</u> . Check whether the value of 2002-1Ch is larger than the resistance of the external regenerative resistor connected between P and C.	Set 2002-1Ch according to the resistance of the external regenerative resistor actually used.
6. The input voltage of the main circuit exceeds the specification.	<ul> <li>Check whether the input voltage of the main circuit on servo drive side complies with the following specifications:</li> <li>◆ 220 V servo drive:</li> <li>Effective value: 220 V to 240 V</li> <li>Allowable deviation: -10% to +10% (198 V to 264 V)</li> <li>◆ 380 V servo drive:</li> <li>Effective value: 380 V to 440 V</li> <li>Allowable deviation: -10% to +10% (342 V to 484 V)</li> </ul>	Replace the power supply or adjust the power voltage according to the specification.
7. The load inertia ratio is too large.	Perform inertia auto-tuning according to <u>"6.2 Inertia Auto-tuning</u> ", or calculate the total mechanical inertia according to mechanical parameters. Check whether the actual load inertia ratio exceeds 30.	Select an external regenerative resistor of large capacity and set 2002-1Bh (Power of
8. The motor speed is too high, and deceleration is not completed within the required time. The motor is in continuous deceleration status during cyclic motion.	View the motor speed curve during cyclic motion and check whether the motor is in the deceleration status for a long time.	external regenerative resistor) according to the actual value. Select a servo drive of large capacity. Reduce the load if allowed. Increase the acceleration/deceleration time if allowed. Increase the motor running cycle if allowed.
9. The capacity of the servo drive or regenerative resistor is insufficient.	View the single-cycle speed curve of the motor and calculate whether the maximum braking energy can be absorbed completely.	
10. The servo drive is faulty.	-	Replace the servo drive.

■ E922.0: Resistance of the external regenerative resistor too small

Direct cause:

The value of 2002-1Ch (Resistance of external regenerative resistor) is smaller than the value of 2002-16h (Minimum permissible resistance of regenerative resistor).

Root Cause	Confirming Method	Solution
When an external regenerative resistor is used (2002-1Ah = 1, 2), ensure the resistance of the external regenerative resistor is smaller than the minimum value allowed by the servo drive.	Measure the resistance of the external regenerative resistor connected between P and C and check whether it is smaller than the value of 2002-16h.	<ul> <li>If yes, connect an external regenerative resistor that matches the servo drive between P and C and set 2002-1Ch (Resistance of external regenerative resistor) according to the actual resistance.</li> <li>If not, set 2002-1Ch according to the resistance of the external regenerative resistor actually used.</li> </ul>

■ E924.0: Braking transistor over-temperature

#### Cause:

The estimated temperature of the braking transistor is higher than H0A-38 (Maximum protection threshold)

■ E941.0: Parameter modifications not activated

Root Cause	Confirming Method	Solution
The parameters modified are those whose "Effective time" is "Next power-on".	Check whether the modifications of these parameters are activated at next power- on.	Power on the servo drive again.

■ E942.0: Parameter saved frequently

#### Direct cause:

The total number of parameters modified simultaneously exceeds 200.

Root Cause	Confirming Method	Solution
A large number of parameters are modified and saved frequently to EEPROM (200E-02h = 1, 3).	Check whether parameters are modified quickly and frequently through the host controller.	Check the running mode. For parameters that need not be saved in EEPROM, set 200E-02h to 0 before the write operation of the host computer.

#### ■ E950.0: Forward overtravel warning

Cause	Confirming Method	Solution
1. The logic of the DI allocated with FunIN.14 is valid (Forward driving inhibited).	Check whether a DI in group 2003h is allocated with FunIN.14 and check whether the DI logic of the corresponding bit of 200B-04h (Monitored DI status) is valid.	Check the running mode and on the prerequisite of ensuring safety, send a reverse run command or rotate the motor to deactivate the logic of the DI allocated with FunIN.14.
2. The servo drive position feedback reaches the positive software limit.	Check whether the position feedback (0x6064) is close to the value of 0x607D-02.	Ensure the load stroke is within the software limit range.

■ E952.0: Reverse overtravel warning

Root Cause	Confirming Method	Solution
The logic of the DI allocated with FunIN.15 (Reverse driving inhibited) is valid.	Check whether a DI in group 2003h is allocated with FunIN.15 and check whether the DI logic of the corresponding bit of 200B-04h (Monitored DI status) is valid.	Check the running mode and on the prerequisite of ensuring safety, send a reverse run command or rotate the motor to deactivate the logic of the DI allocated with FunIN.15.

■ EE09.4: Homing method setting error

Direct cause:

The homing method (0x6098h) is set improperly.

Root Cause	Confirming Method	Solution
The homing method (0x6098) is set to a value outside the range of [-2 to 14] when the absolute position single-turn mode is used (H02-01 = 4).	Check the set value of 0x6098.	Set 0x6098 to a value within the specified range.
The homing method (0x6098) is set to a value outside the range of [-2, 14], [17, 30], and [33,35] when the absolute position single-turn mode is not used.	Check the set value of 0x6098.	Set 0x6098 to a value within the specified range.

# **9.5 Solutions to Communication Faults**

This section describes solutions to communication faults.

■ EE08.0: Synchronization loss

#### Direct cause:

Synchronous signal loss occurs on the master during synchronous communication.

Root Cause	Confirming Method	Solution
1. The data received by the slave is abnormal during synchronous communication.	Check whether the shielded twisted pair is used as the communication cable. Check whether the servo drive is grounded properly. Check whether the Ethernet port of the servo drive is damaged.	<ul> <li>Use the shielded twisted pairs.</li> <li>Connect the cables according to the wiring instructions.</li> <li>Check the network connection status through the first LED on the keypad.</li> </ul>
2. The data sent by the master is abnormal during synchronous communication.	The synchronization clock of the host controller is not activated. Excessive error occurs on the synchronization clock of the host controller.	<ul> <li>Measure the synchronization cycle by using the oscilloscope function of the software tool or an actual oscilloscope.</li> <li>If the synchronization cycle is 0, the synchronization clock of the host controller is not activated. In this case, check whether the Ethernet cable connected to each slave comes in from the IN port and out from the OUT port. If yes, restart the network. If the network cables are connected in the correct sequence, without the need for prior check, restart the network directly</li> <li>If the synchronization cycle is within the permissible fluctuation range (2 µs) of the servo drive, increase the value of 200E-21h (Threshold of EtherCAT synchronization error) of the slave.</li> </ul>

■ EE08.1: Network status switchover error

Cause	Confirming Method	Solution
When the servo is enabled, the network status switches from OP to non-OP.	Check whether the network status switches from OP to non-OP.	Check the network status switchover program of the host controller.

#### ■ EE08.2: IRQ loss

Direct cause:

Synchronization signal loss occurs on the master during synchronous communication.

Root Cause	Confirming Method	Solution
1. The data received by the slave is abnormal during synchronous communication.	Check whether the shielded twisted pair is used as the communication cable. Check whether the servo drive is grounded properly. Check the Ethernet port of the servo drive is damaged.	Use the shielded twisted pairs. Connect the cables according to the wiring instructions. Check the network connection status through the first LED on the keypad.
2. The data sent by the master is abnormal during synchronous communication.	The synchronization performance of the host controller is unsatisfactory.	Check the synchronization performance of the host controller and increase the value of 200E-21h (Threshold of EtherCAT synchronization error) of the slave.

#### ■ EE11.0: ESI check error

#### Direct cause:

Uploading of the XML file fails during EtherCAT communication.

Root Cause	Confirming Method	Solution
<ol> <li>The XML file is not written to the EEPROM.</li> <li>The XML file in the EEPROM is modified unexpectedly.</li> </ol>	Check whether the XML version displayed in H0E-96 is normal.	Write the XML file to the EEPROM.

## ■ EE11.1: Unsuccessful reading of EEPROM

Direct cause:

#### The EEPROM communication of external EtherCAT devices fails.

Root Cause	Confirming Method	Solution
The EtherCAT data in the EEPROM cannot be read.	This fault persists after the servo drive is powered off and on several times.	Replace the servo drive.

#### ■ EE11.2: Unsuccessful update of EEPROM

Direct cause:

The communication is normal but the message error or loss occurs on the EEPROM.

Root Cause	Confirming Method	Solution
The EtherCAT data in the EEPROM cannot be updated.	This fault persists after the servo drive is powered off and on several times.	Replace the servo drive.

# ■ EE12.0: External devices of EtherCAT being abnormal

Direct cause:

The EtherCAT network cannot be initialized.

Root Cause	Confirming Method	Solution
1. The FPGA firmware is not programmed.	Check whether the value of 2001-02h is 09xx.Y.	Program the FPGA firmware.
2. The servo drive is faulty.	Connect to the master and check whether the servo drive is faulty.	Replace the faulty servo drive.

■ EE13.0: Synchronization cycle setting error

Cause	Confirming Method	Solution
The synchronization cycle is not a integral multiple of 125 μs or 250 μs.	Check the setting of the synchronization cycle in the controller.	Set the value of synchronization cycle to an integral multiple of 125 μs or 250 μs.

■ EE15.0: Synchronization cycle error too large

#### Direct cause:

The synchronization cycle error exceeds the threshold.

Root Cause	Confirming Method	Solution
Excessive synchronization cycle error occurs on the controller.	Measure the synchronization cycle of the controller by using a digital oscilloscope or the oscilloscope function of the software tool.	Increase the value of 200E-21h.

# **10 Application Cases**

# Case 1 AM600 series controller as the host controller



This section describes how to configure the SV660N series servo drive in working with the AM600 series controller.

1) Opening the software and creating an AM600 project

Select "AM600-CPU1608TP" as shown below.

〕新建工程						<b>—</b> ×
	oraries ojects	F	模板(T):	<mark>泛Ⅲ 技术</mark> Project before V(0.0.9.7)	Standard project	<mark>泛Ⅲ 技术</mark> V(0.0.9.10) Project
A project c 名称(N): 位罟(L):	- 660N应用第	device, one applic		mempty implemen		PRG
					确定	取消
	- 可编程设备 - 程序PLC_P - 循环任务,	的标准工程。本口 行,如下指定 RG,采用如下指 每200毫秒调用 R装的最新版本的	指定的语言 用一次程序PL(		//象:	
	:备(D): .C_PRG在:	AM600-CPU160 结构化文本(ST		zhen Inovance (	Control Techno	logy) 🗸
					确定	取消

2) Adding an SV660N servo drive as a slave

Open the network configuration and import the ECT file of SV660N. Add an SV660N servo drive as a slave, as shown below.

文件编辑视图 工程编译 7			1 (= 9= 4= += S   ¢				۲
							<ul> <li>              ─────────────────────────</li></ul>
◎ = う 660N总用案例	- # X	Network Configuration			入ECT文件 Q 放大 Q	19.1. co	◆ Maritig 篇 外现表 ● A A     AM600-RTU-COP ▲
Device (AM600-CPU 1608TP/TN		· 緧复制 倘和贴 命删除 也		文件 图 每入GSD文件 圖 每,	VECTON IN CO	- 08 ×1× 80	H3U PLC
Cevice Diagnosis			▶ 🖉串口0 ■ Modbus 🗎	站 🔲 Modbus 从站	自由协议		A IS580
Network Configuration		1 to 100	T Ster.				MD380/MD500_V1.1
	🌊 打开		Citation 1	B Chilles HB	C Ballet		MD810 INV_V3.0
● 副 PLC 逻辑 ■ ② Application	C→ → [19.0	5.17] 660N应用案例 > 材料	▶ XML文件		▼ 4 搜索 XMLS	7件	▲ MD810_REC_V13.0 ● 定 第三方厂商
- C F F F F F F F F F F F F F F F F F F	组织 ▼ 新建文件夹					H - 1 (	□ □ J 以太网口
PLC_PRG (PRG)	3200 VIIABOCT 20		At al.	107			MODBUS_TCP
= 👹 任务配置	☆ 收藏夹	▲ 名称	修改日		大小		🖨 📂 Inovance
🖻 🥩 MainTask	1 下载	SV660_1Axis_V0.04	I-0506 2019)	5/20 17:26 XML 文档	311 KB		AM600_0808ETNE_1 AM600_1616ETNE_1
BLC_PRG							AM600_EtherCAT_S
HIGH_SPEED_IO (High :	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>						AM600-2HCE_1.0.4. AM600-4PME_1.0.4.
-	Autodesk 300						AM600-RTU-ECTA_1 ES810N_ECAT_v1.1 =
	<b>篇 库</b>						GR 10_0808ETNE_1.
	Subversion						GR10_1616ETNE_1. GR10-4ADE_1.3.0.0
	₩ 视频						
							GR10-8TCE_1.3.0.0 IS620N ECAT v2.6.
	⊇ 文档						IS810_1Axis_V1.00
	👌 音乐	-					IS810_2Axis_V2.00 SV510N_ECAT_v1.1
							SV660_1Axis_V0.04
	文1	牛名(N):			EtherCAT XI	ML File(*.xml)	SV820_3Axis_V3.00 SV820_4Axis_V4.00
					打开(O)	取消	❷ 第三方厂商
🗋 POUs 🧝 设备							
	は か か か か か か の の の の の の の の の の の の の	■ Modbus 主站 ■ Modbus 主站 ■ CANopen 主站 =t ■ ModbusTCP 主站	导入GSD文件 副导入 ○ Modbus 从站 ○ Modbus 从站 ○ CANlink 主站 ○ Modbus ICP 从动	<ul> <li>自由协议</li> <li>自由协议</li> <li>CANlink 从站</li> </ul>		• % +	徐设备列表
							□ SV5100_FCAT_v1.1.2 □ SV660_1Axis_V0.04 □ SV820_3Axis_V3.00 □ SV820_4Axis_V4.00 ○ 第三方厂商

#### 3) PDO mapping

Select " 使能专家设置 " (Enable expert setting) and perform PDO mapping in the process data according to the control needs. In Case 1, CSP is used as the control mode and the default values of 1600 and 1A00 are used for PDO parameters.

· 관 · 관 ×	/ 🚳 gvi. 👔 plc_prg	POU W Axis III INOSV660N X
□ 1 660N应用案例 □ 1 0 Evice (AM600-CPU1608TP/TN)	常规	
Device Diagnosis     Network Configuration	过程数据	自动增量地址 0 ⑦ 使能专家设置 EUTERCAT.**
- HercAT Config	启动参数(SD0)	· 分布式时钟
□ 副 PLC 逻辑	在线	法择 DC DC-Synchron ▼
GVL	在线CoE	☑ 使能 4000 同步单元周期(↓s)
- 111 库管理器 	伺服功能码	Sync0: I Smco使能
POU (PRG)	ESC 寄存器	◎ 同步单元周期 x1  4000  月期时间 (µs)
🖹 🎯 任务配置 📄 🍪 ETHERCAT	EtherCAT I/O映射	●用户定义 0 使 偏移时间 (µs)
④ ETHERCAT.EtherCAT_Task ④ POU	状态	Sync1: I Synci使能
😑 🍪 MainTask	信息	◎ 同步单元周期 x1 → 4000 定 周期时间(µs)
- 🕮 PLC_PRG		●用户定义 ● 備移时间 (µs)
HIGH_SPEED_IO (High Speed IO Module)		▷ 启动检查 ▷ 超时
B InoSV660N (SV660_1Axis_V0.04)		▷ DC周期単元控制: 分配给本地微处理器
Axis (Axis)		从站别名
		◎ 禁止 ◎ 酸當站占别名 (AD 0 0x0012) 1001 (二)
POUs 🕱 设备		◎ 配置站点别名 (AD 0 0x0012) 1001 ÷

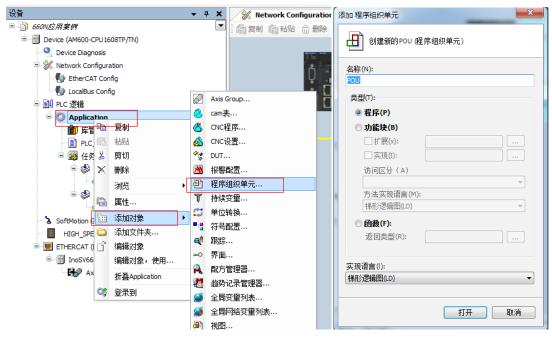
6601应用案例	■							給出(	字节): 18
Device (AM600-CPU 1608TP/TN)	-m./h	😸 増加 📄 編編	🗙 删除 全部折叠 全部显示	▼ 加载PDO 💽	PD0分配	/ PDO 配置	PDO数据大小		(字节):18 (字节):32
Device Diagnosis	过程数据	40.5 40.00			an attain t	Le ate	vis and		
🗏 🛞 Network Configuration		输入/输出	名字	索引	子索引	长度		标志	SM
- 🐏 EtherCAT Config	启动参数(SDO)	- ☑ → 输出	Outputs	16#1600	16#00	18.0		可编辑	2
LocalBus Config			Controlword	16#6040	16#00	2.0	UINT		
□ 副利 PLC 逻辑	在线		Target position	16#607A	16#00	4.0	DINT		
			Touch probe function	16#60B8	16#00	2.0	UINT		
- O Application	在线CoE	- 🔽 🄶 輸出	Physical outputs	16#60FE	16#01	4.0	UDINT		
- 🧭 GVL		- 🔽 🄶 輸出	Target velocity	16#60FF	16#00	4.0	DINT		_
節 库管理器	伺服功能码		Target torgue	16#6071	16#00	2.0	INT		
PLC_PRG (PRG)	1 Sharo Sharo	● 🔲 🌳 輸出	Outputs	16#1701	16#00	12.0		F	
	ESC 寄存器	● 🔃 🔶 輸出	Outputs	16#1702	16#00	19.0		F	
POU (PRG)	C3C 8) 17 60	* 🔳 🔶 輸出	Outputs	16#1703	16#00	17.0		F	
🖃 🧱 任务配置	EtherCAT I/OB##1	◎ 📃 🔶 輸出	Outputs	16#1704	16#00	23.0		F	
😑 🌑 ETHERCAT	Edition for the state	😐 📰 🄶 輸出	Outputs	16#1705	16#00	19.0		F	
ETHERCAT.EtherCAT_Task	状态	😑 🗹 🔶 輸入	Inputs	16#1A00	16#00	32.0		可编辑	3
POU	1/08		Error code	16#603F	16#00	2.0	UINT		
	400		Statusword	16#6041	16#00	2.0	UINT		
🖹 🍪 MainTask	信息		Position actual value	16#6064	16#00	4.0	DINT		
B PLC PRG			Torque actual value	16#6077	16#00	2.0	INT		
SoftMotion General Axis Pool			Following error actual value	16#60F4	16#00	4.0	DINT		
			Touch probe status	16#60B9	16#00	2.0	UINT		
HIGH_SPEED_IO (High Speed IO Module)			Touch probe pos1 pos value	16#60BA	16#00	4.0	DINT		
ETHERCAT (EtherCAT Master)			Touch probe pos2 pos value	16#60BC	16#00	4.0	DINT		
InoSV660N (SV660_1Axis_V0.04)			Digital inputs	16#60FD	16#00	4.0	UDINT		
Axis (Axis)			Velocity actual value	16#606C	16#00	4.0	DINT		
		申 □ 🔶 输入	Inputs	16#1B01	16#00	28.0		F	
		😐 🗐 🔶 输入	Inputs	16#1802	16#00	25.0		F	
		● 🗐 😓 輸入	Inputs	16#1B03	16#00	29.0		F	
Us 😤 设备		⊞ = □ ← 輸入	Inputs	16#1804	16#00	29.0		F	

#### 4) Configuring axis parameters

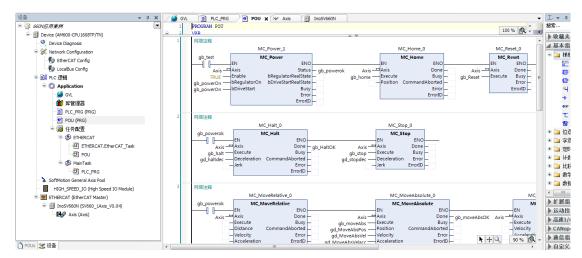
Set the software limit and the running mode in basic axis settings.

응출 · · · · · · · · · · · · · · · · · · ·	
☞ III Device (AM600-CPU 1608TP/Th) 每基本设置	i i i i i i i i i i i i i i i i i i i
Device Deprovis     Pütäpi     Eéklőzi     Eéklőzi	
● ※ Network Configuration ● 使能 负向限制值 0.0 毫米 ● 梯形	
BetherCAT Config  原点参数设置  「中国中北体」  「中国中北地」  「中国中北体」  「中国中北中北  「中国中北中北  「中国中北中北  「中国中北  「中国  「中国	
● 100 a 2 mm 日 自 お除射 / 用作公告 ● 我性模式 正向限制值 1000.0 毫米 ○ 二次方	
SoftMotord/9Exit28	
MI Free Has SM Drive ETC GenericDSP402: 1/0	
■ / / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1 / + 1	=
※ 任务配置 信息 CTX(限制)(SMC_ControlAxsis)/Pop) 位置添后管理	
dl ETHERCAT_EtherCAT_Task	
① POU 30 1000 10000 常后限制: 1.0 变米	
🖹 🍪 MainTask	
- ∰ Pic_PRG	
SoftWoton General Axis Pool	
IIGH_SFEED_JO (High Speed IO Module) IIIGH_SFEED_JO (High Speed IO Module) IIIIGH_SFEED_JO (High Speed IO Module) IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	
= ■ (I=HEKAI (cmrcL4) Master) =	
with was form	
Danie las 108	-

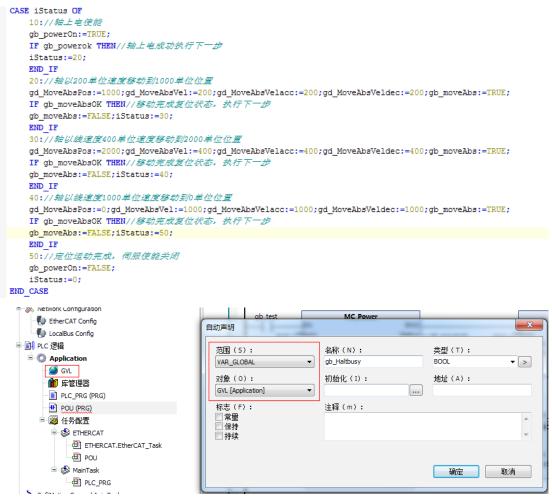
Select 16#800000 for the 23-bit encoder and 16#100000 for the 20-bit encoder during unit conversion. In Case 1, the single-circle stroke is set to 60 mm, and 1 mm/s equals to 1 RPM of the motor.


· 문화 👻 문 🗙	🖉 GVL 📄 PLC_PRG 🖷	POU He Axis X M InoSV660N
🖃 🔄 660N应用案例		
Device (AM600-CPU1608TP/TN)	轴基本设置	用户单位
Q Device Diagnosis	单位操算	◎ 脉冲 ◎ 蚕米 ◎ 微米 ◎ 纳米 ◎ 度 ◎ 英寸
= 🛞 Network Configuration	中世操体	行程距离
- 🐌 EtherCAT Config	原点參数设置	
🐌 LocalBus Config		电机磁转一圈的指令脉冲数 16#800000 指令脉冲/转
■ 副 PLC 逻辑	自动映射/其他设置	
🖹 🔘 Application	SoftMotion的驱动器:调试	<ul> <li>不使用交速装置</li> </ul>
🎑 GVL		工作台旋转一颗的工作行程 60 毫米/時
一 🎁 库管理器	SM_Drive_ETC_GenericDSP402: I/O 映射	
PLC_PRG (PRG)		参考:单位换算公式 由机能转一圈的指令脉冲数[DINT]
POU (PRG)	状态	电机旋转一圈的指令那种颜[D1V1] 脉冲数(pulse)=
三 🌃 任务配置	信息	工作台旋转一圈的工作行程[LREAL]
= 🕸 ETHERCAT		○ 使用变速装置
ETHERCAT.EtherCAT_Task		
- @ POU		工作台旋转一圈的工作行程 100 毫米/转
🖹 🍪 MainTask		(如果轴类型是能转模式,请参考轴基本设置界面的旋转周期值)
DIC_PRG		
SoftMotion General Axis Pool		齿轮比分子(下图中(5)的齿数) 1
HIGH_SPEED_IO (High Speed IO Module)		齿轮比分母(下图中(4)的齿数) 1
ETHERCAT (EtherCAT Master)     InoSV660N (SV660_1Axis_V0.04)		
Axis (Axis)		轴类型为线性模式
AXIS (AXIS)		参考: 单位换算公式
		电机旋转一圈的指令脉冲数[DINT] 齿轮比分子[DINT]
		脉冲数(pulse)=
🗋 POUs 😹 设备		T LEPH MERK ( MM ) T LEI J E LANG ( J M ( J M ) )

Select the homing mode according to actual needs. See <u>"7.9.4 Homing Operation"</u> for details on the homing mode.


·상품 ~ 무 X	💋 GVL 📄 PLC_PRG 🖷	POU Se Axis X 👔 InoSV660N
상품 · · · · · · · · · · · · · · · · · · ·		POU       '¥ Ans ★ 圖 Instition         原点返回设置       回零方式         原点返回设置       10 毫米/s         原点返回隙门違度       10 毫米/s         原点返回隙门違度       2 毫米/s         原点返回隙门違度       2 毫米/s         原点返回隙门違度       2 毫米/s         原点返回隙门違度       2 毫米/s         原点返回線時間       50000 *10ms         回零方式35,以当前位置为机械原点,进行原点回零
🗋 POUs 🞯 设备		

#### 5) Adding a program


Add a program to control the servo axis position, as shown below.



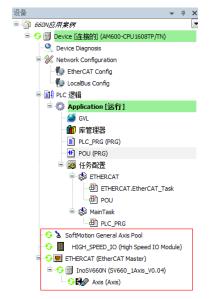
Implement the basic functions such as homing and positioning through adding the function block.



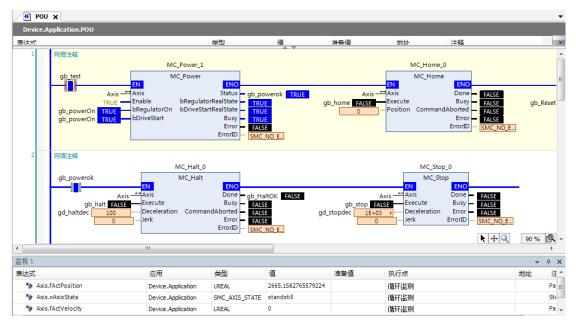
To implement directional motion through the logic program, call variables through different POUs and set the variables as global variables.



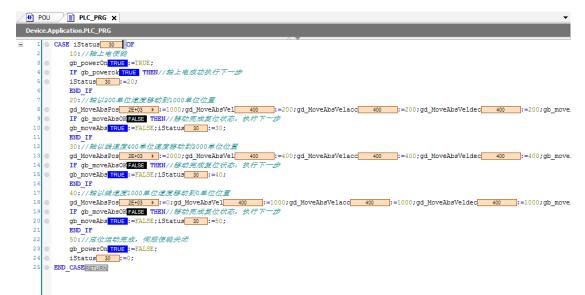
After editing the program, click "编译" (Compile) to detect whether the program is correct.


文件 编辑 视图 工程 编译 在线 调试	工具 窗口	」帮助	
🗎 🖆 🖬 🕌 🗠 🗠 👗 🗞 🔍 🖊	i ‱   a-b   ,	* ** ** **	📾   猶一 🗗   🔠   🧐 🧐 , 🔳 🔍   (目 昭 姓 祖 왕   々   第
			编译 (F11)
设备	▼ 7 X	🖉 🖉 🖉	PLC_PRG X HP POU He Axis I InoSV660N
□ 0 660N应用案例	•		SR iStatus OP
Device (AM600-CPU1608TP/TN)		2	10:// 結上电信路
Device Diagnosis		3	gb_powerOn:=TRUE;
- 🖗 Network Configuration		4	IF gb_powerok THEN// 釉上电成功执行下一步
EtherCAT Config		5	iStatus:=20;
		6	END IF

6) Downloading and performing commissioning on the program


After the program detection is done, download the program to PLC. The program can be activated upon running. Before downloading, scan the PLCs first to select the target PLC, and then click the download icon, as shown below.

文件编辑视图工程编译在线调试工具部门 管路器目录目∞ ∞ % 哈哈 × Ⅰ科 综合语言	<b>#B)</b> ⊠ ▼ 1° 1 ∰ 😋 ♂ → 📲 ≪ 1 (⊒ <⊒ ≤⊒ ≤⊒ ≤⊒ 3 1 ⇔ 1 ∰	
상备	GVL PRG H POU Axis M InoSV660N De	evice X
660N近用素例     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0	通讯设置	
Network Configuration     Wetwork Configuration     EtherCAT Config	透择设备 给控制器选择网络路径:	
● LocalBus Config 〒 回)PLC 逻辑 ● ② Application	aliz@ee_04f*f*f#fmfix* ■ Sateway-1 ▲ M660-CPU1608TP [0001.8058]	<b>节点名:</b> ▲ 扫描网络 ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲
→ W Application - G GVL - 简 序管理器 - 副 p(c ppc (ppc))		节点地址: 0001.8058 也取4


After log-in, ensure the servo drive and the axis are in normal state.



Monitor critical parameters through the monitoring function. Start the testing procedures to perform basic tests such as homing and positioning.



After the testing is done, perform directional running program.



# Case 2 Omron NX1P2 controller as the host controller

This section describes how to configure the SV660N series servo drive in working with Omron NX1P2 controller.

1) Installing the Sysmac Studio software

It is recommended to install the Sysmac Studio software of V1.10 or later.

2) Importing the device description file (V2.5 or later recommended)

Use the device description file of "SV660_1Axis_V0.04-0506.xml" or later version. The file path is as follows:

OMRON\Sysmac Studio\IODeviceProfiles\EsiFiles\UserEsiFiles

If the file is stored in this path for the first time, the Sysmac Studio software must be restarted.

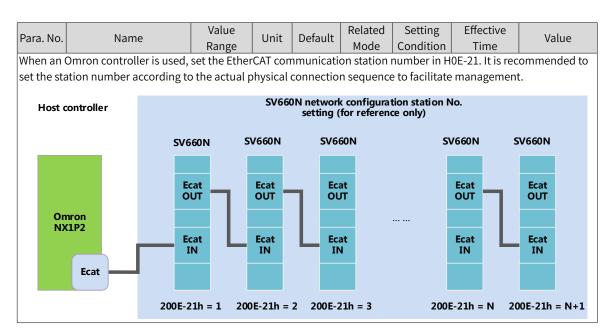
3) Setting the network connection attribute of the computer

If the computer is connected to the controller through an USB, this step can be skipped.

If the computer is connected to the controller through the Ethernet, set the TCP/IP attribute of the computer, as shown below.

Internet 协议版本 4 (TCP/IPv4) 属	性 <u> </u>
常规	
如果网络支持此功能,则可以获 您需要从网络系统管理员处获得	取自动指派的 IP 设置。否则, 适当的 IP 设置。
◎ 自动获得 IP 地址(0) ○ 使用下面的 IP 地址(S):	
■ 火用 (L): IP 地址(I):	192 . 168 . 250 . 2
子网掩码(U):	255 .255 .255 .0
默认网关 (0):	· · · ·
<ul> <li>自动获得 DNS 服务器地址</li> <li>使用下面的 DNS 服务器地址</li> <li>首选 DNS 服务器(P):</li> </ul>	
备用 DNS 服务器(A):	· · · · · · · · · · · · · · · · · · ·
	<b>确定</b> 取消

4) Configuring the servo drive


Recommended version:

The MCU version of the PCB software is "H0100 = 0900.1" or higher.

The FPGA version of the PCB software is "H0100 = 0902.1" or higher.

Pay attention to the setting of H0E-21.

Para.	No.	Name	Value Range	Unit	Default	Related Mode	Setting Condition	Effective Time	Value
H0E	21	EtherCAT slave alias	0-65535	-	0	-	At stop	Immediately	Any value but 0



5) Creating a project

Device: Select the device according to the actual controller model.

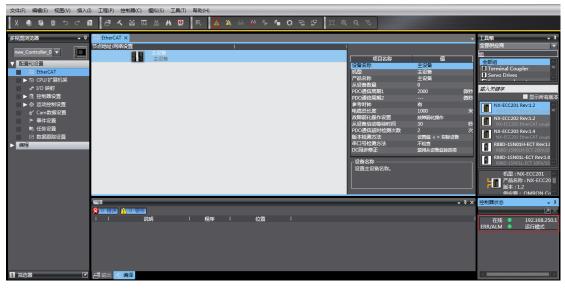
Version: Use V1.09 or later versions. NX1P2-1140DT supports V1.13 only.

Sysmac Studio		
		_
<ul> <li>高线</li> <li>新建工程(N)</li> <li>行打开工程(O)</li> <li>部 导入(D</li> <li>雪 导出(E)</li> <li>存线</li> <li>夕 连接到设备(C)</li> <li>许可(L)</li> <li>ご 许可(L)</li> <li>OMAKCAN Internal Use Conty</li> <li>総余天政 178</li> </ul>	正程馬性         正程名称       660Ntest         作者          注释          关型       标准工程         送給       NX1P2         版本       1.3	<ul> <li>↓</li> <li>↓</li></ul>

#### 6) Communication setting

After entering the main interface, set the connection mode between the computer and the controller in "控制器" (Controller)→"通讯设置" (Communication setting).

Select "USB→ 远程连接" (USB→Remote connection) to perform "USB 通讯测试" (USB communication test). If the test is passed, go to the next step.


Select "Ethernet→Hub 连接" (Ethernet→Hub connection), set the IP to 192.168.250.1 (IP controlled by NX), and then perform "Ethernet 通讯测试" (Ethernet communication test). If the test is passed, go to the next step.

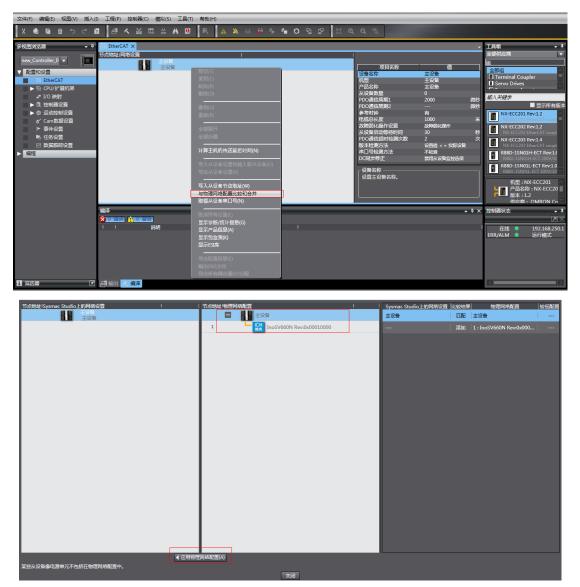
■ 通信设置	
▼ 连接类型	
请选择一个在线时每次与控制器连接时使用的方法	<u></u> .
● Ethernet-直接连接	
● USB-远程连接 ● Ethernet-Hub连接	&
💮 每次在线连接时,请从以下选项中选择。	
■ Ethernet-直接连接 ■ USB-远程连接	
■ Ethernet-Hub连接	
	▏ڴ゠゠゠゙゠ゖゖ゚ゖ゛゚゚゚゚゚゚゚゚゠゠゠゠゠ゖゖゖゖ
▼ 远程IP地址	
指定远程P地址。	
	192.168.2501
USE	3通信测试 Ethernet通信测试
测试成功	
▼选项	
✓ 在线时确认序列ID。 ✓ 离线时检查强制刷新。	
▼ 响应监测时间 设置与控制器连接的响应监测时间。	
2 (秒)	
	· · · · · · · · · · · · · · · · · · ·

7) Scanning the device

Switch the controller to the online running mode.

Observe the controller status in the lower right corner: online, running mode.



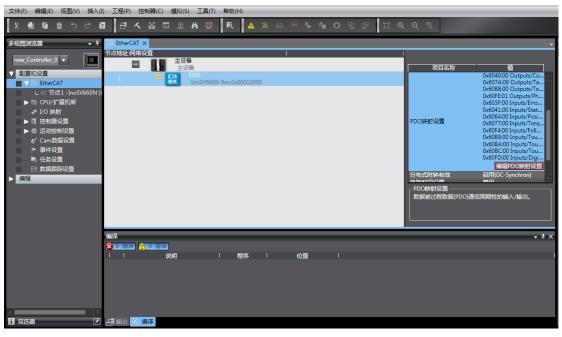

A prompt is displayed if it is a new controller.



Click " 是 " (Yes). The name here is the project name.

Scan the devices and add slaves.

Right click " 配置和设置 " (Configuration and setting)→"EtherCAT"→" 主设备 " (Master device), and select " 与物理网络配置比较和合并 " (Compare and merge with physical network configurations). The controller scans all the slaves within the network (an error will be reported if the station number is 0). After scanning, click " 应用物理网络配置 " (Apply physical network configurations) in the pop-up window to add the slave. You can view in the main page for the slaves added.




文件(F) 編編(E) 视图(V) 插入(I) 工程(P) 控制器(C) 模拟(S) 工具(T) 帮助(H)		
X ● 9 ● つ ご 2   ご へ 26 両 金 林 10   両   本 💫 🖇 🖗 🦘 🖬 0 兄 27   江 6	1 Q 100	
FRIEm/CAT ×     Tolsty / 保佑役名         ・          ・         ・	項目名称         値           利益         Ind5/460N           利益         Ind5/460N           利益         Ind5/460N           利益         No.06000000           市法         日本           中口:         日本           市法         日本           中口:         日本           小田(日本)         日本           中口:         日本           小田(日本)         日本           小田(日本         日本           小田(日本	工具相 0     全通明成時     金通明成時     マート     マー      マー     マー     マー     マー       マー     マー     マー     マー     マー     マー     マー     マー     マー     マー     マー     マー     マー     マー     マー     マー     マー     マー     マー     マー     マー     マー     マー     マー     マー     マー     マー     マー     マー     マー     マー     マー     マー     マー     マー     マー     マー     マー     マー     マー     マー     マー     マー     マー     マー     マー     マー     マー     マー     マー     マー     マー     マー     マー     マー     マー     マー     マー     マー
	- 0 ×	社が高化式 0 (月) 在述 0 ERR/ALM 0 近行機式

8) Setting parameters

Switch the controller to the offline mode and set PDO mapping, axis parameters, and the DC clock.

### 8-1) Setting PDO mapping



Select the editable RPDO and TPDO provided by SV660N for configuration.

2 编辑	員PDO映射设置	B.							-	x
PDO映	鲥				包含在Output	ts中的PC	)O条目			
		过	程数据大	:小:輸入 176[位] / 11472[位] 輸出 64[位] / 11472[位]	<u>索引</u> 0x6040:00	大小 16[位]	数据 <u>类型</u>   UINT	PDO条目名	称	注释
选择	輸入/輸出	名称	标志		0x607A:00	32[位]	DINT	Target position		
		未选择				16[位]		Touch probe functi	on	
ŏ	输出	Outputs	可编辑							1
ŏ	輸出	Outputs								
Ŏ	輸出	Outputs								
Ŏ	輸出	Outputs								
Õ	輸出	Outputs								
	輸出	Outputs								
		未选择								
ŏ	輸入	Inputs	可编辑							
ŏ	输入	Inputs								
Ŏ	輸入	Inputs								
Ŏ	輸入	Inputs								
Ŏ	輸入	Inputs								
					<					
_								Lite	T#2 _2	+*
								上移		挤
						编辑P	DO入口	添加PDO条目	删除PDO含	裮
								确定	取消 反	立用

Modify the PDO mapping object through " 添加 PDO 条目 " (Add PDO entries) and " 删除 PDO 条目 " (Delete PDO entries). The frequently used mapping parameters are shown below.

<u>RPDO</u>			
索引	□ 犬小	数据类型	PDO条目名称
0x6040:00	16[位]	UINT	Controlword
0x6060:00	8[位]	SINT	Modes of operation
0x607A:00	32[位]	DINT	Target position
0x60B8:00	16[位]	UINT	Touch probe function
<u>TPDO</u>			
索引		数据类型	PDO条目名称
索引 0x6041:00	16[位]	UINT	Statusword
索引			
索引 0x6041:00	16[位]	UINT	Statusword
索引 0x6041:00 0x6061:00	16[位] 8[位]	UINT SINT	Statusword Modes of operation display
索引 0x6041:00 0x6061:00 0x6064:00	16[位] 8[位] 32[位]	UINT SINT DINT	Statusword Modes of operation display Position actual value

8-2) Setting axis parameters

Right click " 运动控制设置 " (Motion control setting) → " 轴设置 " (Axis setting) and add " 轴设置 " (Axis setting) as shown below.

多视图浏览器	▼ 配置和设置
new_Controller_0 ▼ :	▼ III EtherCAT
	∟-□ 节点1:InoSV660N (E001)
▼ 配置和设置 ▼ 冊 EtherCAT	▶ 🔄 CPU/扩展机架
L -□ 节点1:InoSV660N (	↓ I/O 映射
▶ 国 CPU/扩展机架	▼ 國 控制器设置
↓ I/O 映射	∟□ 操作设置
▼	∟≓ 内置EtherNet/IP端口设置
L 師 操作设置 L 部 内置EtherNet/IP 端口	
	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
∟卌 内存设置	▼ ④ 运动控制设置
▼ @ 运动控制设置	<ul> <li>▼ ☆ 抽设置</li> </ul>
■ L ^企 抽设置 本 法 法 法 法 法 法 法 法 法 法 法 法 法 法 法 法 法 法 法	▲ MC Axis000 (0,MC1)
L 橋 添加 → 运动控制轴(M)	
▶ 事	
	Cam数据设置
●	▶ 事件设置
▶ 编程 😥 0 错误 🚹 0 警告	No. 任务设置
说明	☑ 数据跟踪设置

"MC_Axis000" can be renamed through a simple click. For example, if it is named as " 卷针轴 " (Rewind axis), the axis variable " 卷针轴 " (Rewind axis) used in the NX program represents control on this SV660N servo axis.

Double-click "MC_Axis000" and configure the SV660N device of the corresponding station in the corresponding basic axis setting interface.

1) Axis allocation



轴号 (Axis No.): Represents the Ethernet communication station No. of the servo drive, which is also the value of H0E-21.

轴使用 (Axis used): Represents the axis in use.

轴类型 (Axis type): Represents the servo axis.

输出设备 1 (Output device 1): Select the SV660N servo drive.

2) Detailed settings

Select the PDO mapping objects according to step 8-1, which is to allocate the output parameters (controller to device) and input parameters (device to controller). Note that the object name, node number, and index number must be set correctly. Each mapping object selected in step 8-1 must be allocated correctly. Otherwise, an error will be reported.

▼详细设置		_					
恢复默认值							
功能名称		设备		1		过程数据	
★ 1. Controlword	节点:11	节点:1 InoSV660N(E001) 🔹			6040h-00.0(Outputs_Control word_6040_00)		
★ 3. Target position	节点:11	InoSV660N(E001)		607Ah-00	.0(Outpu	ts_Target position_607A_00) 🔹 🔻	
5. Target velocity	<未分	🕄 >		<未分配:			
7. Target torque	<未分	<b>11</b> >		< 未分配:			
9. Max profile Velocity	<未分	配 >		<未分配:			
11. Modes of operation		InoSV660N(E001)	<b>_</b>			ts_Modes of operation_6060_00) 🔻	
15. Positive torque limit value	<未分		•	<未分配:			
16. Negative torque limit value	<未分			<未分配:			
21. Touch probe function		InoSV660N(E001)		60B8h-00	.0(Outpu	ts_Touch probe function_60B8_0( 🔻	
44. Software Switch of Encoder's Inp	out <未分	記 >		< 未分配:	>		
<ul> <li>- 輸入(设备到控制器)</li> </ul>							
★ 22. Statusword		节点:1 InoSV66	ON(E		6041h-00.0(Inputs_Stat 🔻		
★ 23. Position actual value		节点:1 InoSV660N(E001)				6064h-00.0(Inputs_Pos v	
24. Velocity actual value		<未分配> ▼				<未分配> ▼	
25. Torque actual value		<未分配>				<未分配> ▼	
<ol> <li>27. Modes of operation displa</li> </ol>	v	<未分配>				<未分配> ▼	
40. Touch probe status	<i></i>	节点:1 InoSV66	ON/E	001)		6089h-00.0(Inputs_Tou 🔻	
41. Touch probe pos1 pos val	10	节点:1 InoSV660N(E001)				60BAh-00.0(Inputs_Tot V	
				N1)			
42. Touch probe pos2 pos val	ue	<未分配>			<未分配> ▼		
43. Error code		节点:1 InoSV660N(E001)				603Fh-00.0(Inputs_Errc v	
45. Status of Encoder's Input S	lave	<未分配>				<未分配> ▼	
46. Reference Position for csp		<未分配>				<未分配>	
40. Reference Position for Csp	下水力的产				<b>×水力則×</b>		
+ 输入(设备到控制器)				_	_		
28. Positive limit switch	带齿:1 Iee	SV660N(E001)		60EDb-001	(Inpute	Digital inputs_60FD_00)	
29. Negative limit switch		SV660N(E001)	÷			Digital inputs_60FD_00)	
30. Immediate Stop Input		SV660N(E001)				Digital inputs 60FD 00)	
32. Encoder Phase Z Detection		SV660N(E001)				Digital inputs_60FD_00)	
33. Home switch		SV660N(E001)				Digital inputs_60FD_00)	
37. External Latch Input 1		SV660N(E001)				Digital inputs_60FD_00)	
38. External Latch Input 2		SV660N(E001)				Digital inputs_60FD_00)	

60FDh must be mapped to objects by bit. The mapping must be consistent with that in the Omron controller. SV660N only support the positive/negative limit switch and home switch.

- 数字输入		
28. Positive limit switch	节点:1 InoSV660N(E001) 🔹 🔻	▼ 60FDh-00.1(Inputs_Digital inputs_60FD_00) ▼
29. Negative limit switch	节点:1 InoSV660N(E001) 🔹 🔻	<ul> <li>60FDh-00.0(Inputs_Digital inputs_60FD_00)</li> </ul>
30. Immediate Stop Input	<未分配> ▼	▼   <未分配>
32. Encoder Phase Z Detection	<未分配> ▼	▼ <未分配> 🔍
33. Home switch	节点:1 InoSV660N(E001) 🔹 🔻	60FDh-00.2(Inputs_Digital inputs_60FD_00)
37. External Latch Input 1	<未分配> ▼	▼   <未分配>
38. External Latch Input 2	<未分配> ▼	▼ 〈未分配〉 🔍 🔍





The axis configuration of SV660N needs to be performed manually.

8-3) Unit conversion setting

Set " 电机转 1 圈的指令脉冲数 " (Pulses per motor revolution) based on the resolution of the motor in use (example: 8388608 pulses for 23-bit motor). To facilitate commissioning, set to 60 mm per revolution, indicating 1 mm/s equals to 1 RPM of the motor.

单位换算设置
▼ 单元
显示单位 🗎 脉冲 💿 毫米 🕒 微米 🕒 納米 🕒 度 🕒 英寸
▼ 行程距离
电机转一周的指令脉冲数 8388608 脉冲/rev (1)
○ 不使用变速箱 电机转一周的工作行程 60 毫米/rev (2) 。参考: 单位换算公式
(1)电机每转的命令脉冲计数[UDINT] 脉冲数 [pulse] = (2)电机每转的工作行程距离[LREAL]

Select the "显示单位" (Display unit) based on the actual running unit when setting the gear ratio. All the position-type parameters in the host controller will be displayed in this unit.

8-4) Operation settings	8-4)	Operation	settings
-------------------------	------	-----------	----------

<b>後</b> 操作设置				
▼速度/加速度/减速度				_
最大速度	6000 毫米/s	速度警告值	0 %	
启动速度 最大点进速度	0			
最大加速度	0 室米/s^2	加速度警告值	0 %	
最大减速度 加速度/减速度招出	0	减速度警告值	0 %	
换向操作选择				
▼扭矩				
正扭矩警告值	0 %	负扭矩警告值	0 %	
▼ 监测				
定位范围	2 毫米	定位检查时间	0 ms	
实际速度演波器的时间常数	0 ms	零位置范围	10 毫米	

速度 / 加速度 / 减速度 (Speed/Acceleration/Deceleration): Set the maximum speed of the load according to actual conditions. If the motor speed converted from the set value exceeds 6000 RPM, a prompt will be displayed in the form of a red box.
 If the acceleration/deceleration rate is 0, the running curve will be generated based on the maximum

acceleration/deceleration rate. If there is no special requirement, this parameter needs no setting.

- I 扭矩 (Torque): If the warning value is set to 0, no warning will be reported. If there is no special requirement, this parameter needs no setting.
- 监测 (Monitoring): Set " 定位范围 " (Positioning range) and " 零位置范围 " (Zero position range) based on actual motor and mechanical conditions. If the set value is too small, positioning or homing may not be completed.

8-5) Software <mark>limit</mark>

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
▼ 软件限位					
软件的限位 正软件限位 负软件限位	无效 2147483647 2147483648 毫米 毫米				
▼ 位置偏移					
位置偏移超出值位置偏移警告值	0				

The set software limit will be activated after homing.

#### 8-6) Homing

中 原点返回设置	
▼ 原点返回方法	
原点返回方法零位置预设 ▼ 原点输入信号 使用Z相输入 ▼ 原点返回开始方向 止方向 ▼ 原点输入检测方向 止方向 ▼	正限位編入时操作选项 医转/立即停止 一一 负限位编入时操作选项 医转/立即停止 一一
原点接近信号	
Z相輸入	
正限位输入	
负限位输入	

The homing mode involves the servo drive and the host controller. Set the homing mode according to the following table.

Description of NX Software	Servo Drive Function	Terminal Configuration
Home proximity signal	Home switch (FunIN.31)	-
Positive limit input	P-OT (FunIN.14)	DI1
Negative limit input	N-OT (FunIN.15)	DI2

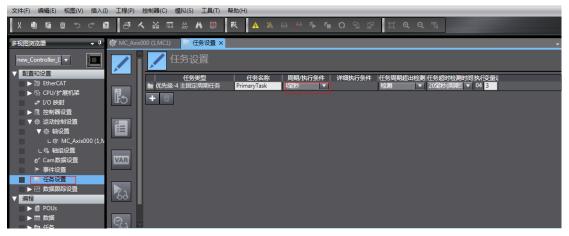
Select the homing mode of the host controller and set the homing speed, acceleration, and home offset based on actual mechanical conditions.

Introduction to homing

Function block: MC_Home and MC_HomeWithParameter

- 1) Set MC_Home in the preceding figure and MC_HomeWithParameter in the function block.
- 2) The two function blocks both include 10 kinds of homing modes.

MC_Home	MC_HomeWithParameter
接近反转/原点接近输入 OFF 接近反转/原点接近 ON 原点接近输入 OFF 原点接近输入 ON 限位输入 OFF 接近反转/原点输入掩码距离 仅限位输入 接近反转/保持时间	Designates the homing action to be modified. 0: Promixity reverse turn/home proximity input OFF 1: Proximity reverse turn/home proximity input ON 4: Home proximity input OFF 5: Home proximity input ON 8: Limit input OFF 9: Proximity reverse turn/home input mask distance 11: Limit inputs only 12: Proximity reverse turn/holding time 13: No home proximity input/holding home input 14: Zero position preset


- Home proximity input OFF: The host controller searches for the home signal after reaching the falling edge of the home proximity switch.
- Home proximity input ON: The host controller searches for the home signal after reaching the rising edge of the home proximity switch.
- Proximity reverse turn: If the home proximity signal is ON when homing is enabled, the host controller reverses the running direction immediately after reaching the falling edge of the home proximity signal.

- Home input mask distance: The host controller masks the homing signal within a set distance after receiving the home proximity signal (for example, edge change of home proximity signal) and starts to receive the home signal only after the set distance is passed.
- Holding time/Contact time: The host controller masks the home signal within a set period after receiving the home signal (for example, edge change of home proximity signal) and starts to receive the home signal only after the set period elapses.
- Zero position/Home preset: The host controller uses the current position as the home and the motor does not act. The host controller writes the home offset to the position reference/position feedback.



#### 8-7) DC clock

The default clock is 1 ms. The synchronization clock (cycle of primary fixed-cycle tasks) named "PDO communication cycle" can be modified in the "任务设置" (Task setting) interface. The modification will be activated after switching to the online state at next power-on.



9) Program control

After configurations are done, you can control the servo drive operations through the PLC program. If the "MC_POWER" module is used, it is recommended to add the servo status bit "MC_Axis000.DrvStatus. Ready" (MC_Axis000 is the axis name). This is to prevent the situation where the PLC program is running but the communication configuration is not done.


多视图浏览器 🚽 🌾	🗱 МС_А	Axis000 (1,MC1) 🔽 任务设置 🔄 Section0 - Program0 🗙
▼ 配置和设置 ▶ 凝 EtherCAT	变量 0	power1 MC_Axis000DnStatus
<ul> <li>▶ © CPU/扩展机架</li> <li>* 1/0 除射</li> <li>▶ 限 控制器设置</li> <li>▼ 奇 运动控制设置</li> <li>▼ 奇 抽设置</li> </ul>		 使能 使能 大志の した した した した した した した した した
1 2 MC Avie000 (1 M	1	
<ul> <li>▶ 22 数据跟踪设置</li> <li>業程</li> <li>▼ 値 POUs</li> <li>▼ 値 程序</li> <li>▼  Program0</li> </ul>		CommandAbotted — 統入受量 Error — 統入受量 Error D — 統入受量
L ● Section0     L ● Section0     L ● 功能     L ● 功能     L ● 功能     L ● 動 数据     ト 酌 任务	2	Moreigg           gb_powerOK         gb_jogF           MC_Axis000         Axis           PositiveEnable         Busy           使能就成OK         gb_jogB-           VegativeEnable         Busy
<		gd_jogV-Velocity Error一統入支援 gd_jogV-Acceleration ErrordD-統入支援 gd_jogV-Deceleration

10) Online running

After all the settings and programming procedures are done, switch to the online state, and click so download the program to the controller.

Click to use the synchronization function. This function serves to compare the difference between the current program and the program in the controller, allowing users to determine whether to download the program to the controller, upload it from the controller " or leave it unchanged based on the difference.

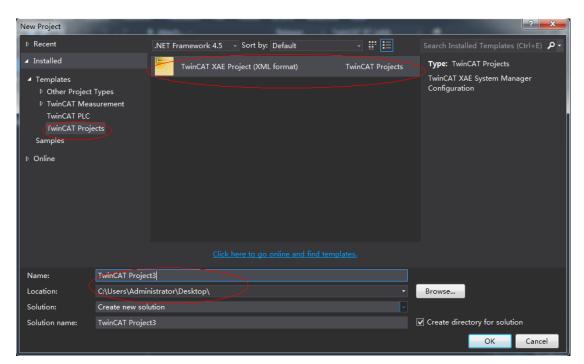
You can monitor the data through the monitoring list or collect the data waveform by using the data tracking function during running.



services managers warmed as and of										
X 🖲 🖬 🖄 to ct f	2 5	ت 🔏 🗡	<b>a 1</b> 1	) R	🗛 🔉 63	ka 🖡	<b>କ ୦</b> ମୁ ଶ	р Д <b>Q Q</b>	ŭ	
多視图浏览器 🚽 🕂	🐼 MC_Ax	is000 (1,MC1)	6 任务设置	ł 🚽 🛃 Secti	on0 - Program0	₩ 数据	3跟踪0 ×			-
new_Controller_0 🔻		· •	/工具机物と		5 5	₫" %2 X#	目前(空秒)▼	3		.0 🔻
▼ 配置和设置	跟踪类型		7 采样间隔 指詞			銀踪号 0				
► ₩ EtherCAT		彩样 4500	- 最大 	数据存储大小(	MB) 100 达到上限时 個					
▶ ▷ CPU/扩展机架			ata\DataTrace\							
<ul> <li>↓ 1/0 beging</li> <li>▶ 限 控制器设置</li> </ul>			ata\DataTrace\ 式切换到运行模式		又14前级 期间更新图					
▼ ☆ 运动控制设置	■ 川畑橋	SERVICE SET	名称		線回到2001回 線量 Y轴最小値	iV抽屉十值。	光标	最小	最大	平均
▼ @ 抽设置		MC Axis00		0 0			873.077030181885	873.076887130737	873.077087402344	873.0769937727397
∟		MC_Axis00	0.Act.Vel	0 0	0	0	0.007152557373046	88 -0.042915344238281	3 0.0429153442382813	-3.551418755236714e-
□ □ ◎ 轴组设置	<				_			-		>
<ul> <li></li></ul>	+ =									
● 伊田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田	ΠQC	ι								
			MC_Axis000.A	ct.Pos (0,873.	077030181885	)				
■ 数据跟踪0			采样号 -		_					
▼ 编程	800									
V 📋 POUs										
▼ III 程序 ▼ III Program0	0- <del>1</del>									
V № Programu L . Section0		-1000	0 1000	2000	3000 400	0 5000	6000 70 时间(毫秒)	00 8000 9000	10000 11000	12000 13000
し罵 功能			_				-31-3(-ab-127)			
し国 功能块			·							
▶ Ⅲ 数据										
▶ 由 任务										
<		-1000	0 1000	2000	3000 400	0 5000	6000 70 Byti司(亭秋))	00 8000 9000	10000 11000	12000 13000

# Case 3 Beckhoff TwinCAT3 as the host controller

The following section describes how to configure the SV660N servo drive in working with Beckhoff TwinCAT3.


1) Installing the TwinCAT software

The TwinCAT3 software, which supports Win7 32-bit or 64-bit systems, can be downloaded from the official website of Beckhoff.

The Ethernet adapter must be 100M-Ethernet adapter with Intel chip. If the Ethernet adapter of other brands is used, the EtherCAT operation may fail.

- a) Copy the SV660N EtherCAT configuration file (SV660_1Axis_V0.04-0506) to the TwinCAT installation directory: TwinCAT\3.1\Config\Io\EtherCAT.
- b) Open TwinCAT3 and create a New Twincat3 Project.

文件(E)	编辑(E)	视图(⊻)	调试( <u>D</u> )	TwinCAT	TwinSAFE	PLC	团队( <u>M</u> )	工具(I)	测试( <u>S</u> )	分析( <u>N</u> )	窗口(W)	帮助( <u>H</u> )
G -	o 📅 -	*a - 齨	i 🗳 🗋							- 🕨	附加	
									-⊇ ▶			
解决方案	资源管理器					Ψ×	起始页 🚽	×				
00	<u>م</u> ا											m
								-				
								NĪ	n			
								V V I				
							New	/ TwinCAT				Get St
							New	v Project				14 concern
									am Found	ation Serv		
							Recent P	rojects —				
								page afte		oad		
							Show	page on s	startup			



#### 2) Installing the TwinCAT network adapter drive

FILE EDIT	VIEW PROJECT BUILD	DEBUG TV	VINCAT TWINSAFE	PLC TOOLS SCOP	E WIND	OW HELP				
0.0	- "o - 🔄 ピ ピ 👗 🗗	高 🤊 🔡	Activate Configuratio	n		TwinCAT RT (x64)	- 🎜	- 4	ت 🖬 🛳 🖾 🖂 🕨	
Build 4022.20	(Loaded - 🝦 🔛 🧾	📚 🔨 🧰 🛤	Restart TwinCAT Syst	tem						
C Solution Ex			Restart TwinCAT (Co	onfig Mode)				Properties		• 4 ×
s 000	ĩo-⊡ ⊁	\$	Reload Devices					TwinCAT Project3		
9								-		
		6	Toggle Free Run Stat	ite				<u>₽</u>		
	n 'TwinCAT Project3' (1 proje	ect) 🜔	Show Online Data					<ul> <li>Security EncryptFile</li> </ul>	False	
	nCAT Project3 SYSTEM		Show Sub Items					SignFile	False	
	MOTION		Security Managemer	nt						
	PLC	156 18	Access Bus Coupler/	/IP Link Register						
	SAFETY C++		Update Firmware/EE	PROM						
▶ 🗮			Show Realtime Ether	met Compatible Devices						
			File Handling							
			EtherCAT Devices							
			About TwinCAT							

Open "Show Real Time Ethernet Compatible Devices..." in the menu shown in the preceding figure. In the displayed dialog box, select the local website in "Incompatible devices", and click "Install". After installation is done, the installed network adapter will be displayed in "Installed and ready to use devices".

Build 4022.20 (Loaded - + 計 副 副 学 ● ● < <local> Solution Explorer Search Solution TwinCAT Project3 (1 project) ● SYSTEM ● SYSTEM ● MOTION ● PLC ● SAFETY ● TyO ● TyO ● TyO ● Strained and teady to use devices(tealtime capable) ● Tyo ● Subted devices ● Strained and ready to use devices(tealtime capable) ● Strained and ready to use devices ● Strained and ready to use</local>
Solution Explorer       ・         Solution Explorer (Ctrl+:)       ・         Solution TwinCAT Project3 (1 project)       ・         ・       Solution TwinCAT Project3 (1 project)         ・       System         ・       System         ・       System         ・       Stabile devices
Certer Adapters Update List Update List Search Solution Explorer (Ctrl+;) Search Solution TwinCAT Project3' (1 project)  Final Instaled and ready to use devices(tealtime capable)  Final Instaled and ready to use devices(for demo use only)  Final Instaled and ready to use devices(for demo use only)  Final Instaled and ready to use devices(for demo use only)  Final Instaled and ready to use devices(for demo use only)  Final Instaled and ready to use devices(for demo use only)  Final Instaled and ready to use devices(for demo use only)  Final Instaled and ready to use devices(for demo use only)  Final Instaled and ready to use devices(for demo use only)  Final Instaled and ready to use devices  Final Instaled and ready to use devices(for demo use only)  Final Instaled and ready to use devices(for demo use only)  Final Instaled and ready to use devices(for demo use only)  Final Instaled and ready to use devices(for demo use only)  Final Instaled and ready to use devices(for demo use only)  Final Instaled and ready to use devices  Final Instaled and ready to use devices  Final Instaled and ready to use devices(for demo use only)  Final Instaled and ready to use devices  Final Instaled and ready to use devices(for demo use only)  Final Instaled and ready to use devices  Final Instaled and r

# 3) Searching for devices

a) Create a project and start searching for devices. Select " 🔭 Devices " , and

click " 📉 " as shown below.

TwinCAT Project3 - Microsoft Visual Studio (Administrator) FILE EDIT VIEW PROJECT BUILD DEBUG TWINCA	T TWINSAFE PLC	TOOLS SCOPE WIN	IDOW HELP	
c.o 閻・白・��    🔐   よ 己 台   ク・ペ・	► Attach	Release	- TwinCAT RT (x64)	- <b>"</b>
Build 4022.20 (Loaded 🚽 🚽 🔝 🔳 🔳 🎓 🏹 💷 💽	<local></local>			• ≡ ⋲]   ५• ଓ ৫ ⊨
Solution Explorer				
Search Solution Explorer (Ctrl+;)				
Solution 'TwinCAT Project3' (1 project)     ■ TwinCAT Project3     ■ Solution 'TwinCAT Project3     ■ MOTION     ■ PLC     ■ SAFETY     ■ C++     ■ 'Tyo     Tyo     ■ PLC     ■ SAFETY     ■ 'Tyo     ■ Mappings				
	Error List			- <del>-</del>
		🛕 0 Warnings 🛛 🚺 12 M	essages "Search B	
	Description	File		n Project

b) Click "确定" (OK).

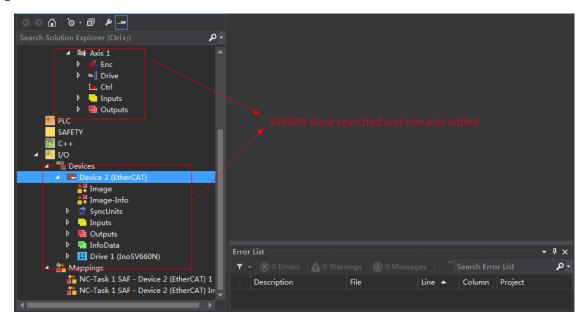
+ ۲ × • • م			
2" (1 个项目)			
	Microsoft Visual Studio		
	确定取消		
	整个解決方案 → 😣 错误 0 ႔ 警告 0 🚺 消息 0 Clear 😽		
	「 「 说明	项目	文件

c) Click "OK".

×	I new I/O devices found          ✓ Device 1 (EtherCAT Automation Protocol)       体地注接 (TwinCAT-Intel PCI Ethernet Automation Protocol)	් /≣ ී)   එ ප	5 B
	Error List		
	🝸 👻 0 Errors 🛛 🛕 0 Warnings 👔 0 Messages 🛛 Clear		
	Description	<u>Filo</u>	Line +

d) Click " 是 " (Yes).

- م		Microsoft Visual Studio ② Scan for boxes 是(Y)	★			
	错误列表					• 🕶 🗆
	整个解决方案	👻 错误 0 🚺 警告 0	🚺 消息 0 🛛 Clear 🛛 🌴		"搜索错误列表	
	🦷 说明 🛆			项目	文件	行


e) Click "OK".

- م				
	EtherCAT drive(s) add Append linked axis to:	ed NC - Configuration CNC - Configuration	OK Cancel	

f) Click " 否 " (No).

		Microsoft Visual Studio Activate Free Ru 是(Y)	n 否(N)			
	错误列表					<b>•</b> 1
	整个解决方案	🔹 区 错误 0 🚺 警告 0	🚺 消息 0 🛛 Clear 🛛 🎽		"搜索错误列表	
) 1 ) Info	"说明 🛆			项目	文件	行
) Into	2017/5/27 10:2 init'.	22:19 051 ms   'Drive 1 (SV82)	0N)' (1001): Timeout: 'eoe			

g) The device search is done, as shown below.

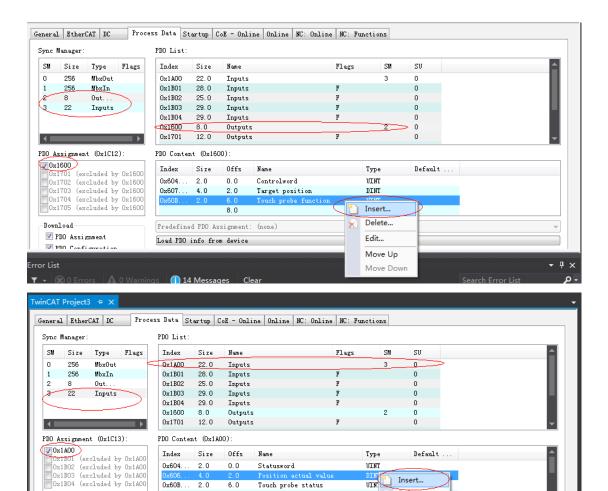


#### 4) Configuring servo drive parameters

Configure the parameters through SDO communication in "CoE-Online" interface. When 200E-01h is set to 3, the parameter values modified through SDO communication will be saved upon power failure.

To modify 6060h to the CSP mode (8), follow the procedures shown in the following image.

Solution Explorer ⓒ ⓒ 🟠 बि न 🗗 🕨 💻 Search Solution Explorer (Ctrl+;)	۳ × ۲ + -	winCAT Projec Onl: General		NC: Onlin Pr	e ocess Data	Start	NC: Functio		Properties     Drive 1 (Inos	SV660N) SV660_1
✓ ➡ Axis 1 ▷ ≪ Enc ▷ ◄ Drive ► Ctrl	•	Update Advanc Add to St	ed		ingle Updat 🗌 Module OD (		line De Set Value	Dialog	<ul> <li>Misc (Name)</li> <li>Disabled</li> </ul>	Dri SM
Inputs		Index	Name		Flags	Value				
Outputs					*		Dec:			OK
PLC		- 605D - 605E	Halt option Code		RW	1	Hex:	0x08		Cancel
SAFETY			Fault Reaction of		RW P	2		0,000		Cancer
64 C++		6060	Modes of operati Modes of operati		RO P	8	Float			
▲ 🔀 I/O		6062	Position demand		RO P	0				
		6063	Position demand Position actual		RO P					
		6064	Position actual		ROP		Bool:	0	1	Hex Edit
Device 2 (EtherCAT)		6065	Following error		RW P	0x01A	Binary:	08		1
🚔 Image		6066	Following error		RW P	0x000				
🚔 Image-Info		6067	Position window		RW P	0x000	Bit Size:	1 9 8	0 16 🔘 32 🔘	64 🔘 ?
Þ 🛷 SyncUnits		6068	Position window	time	RW P	0x000		-		
👂 📒 Inputs		606C	Velocity actual	value	RO P					
Outputs			Volonite mindom		RW P	0x000	a (10)	<b>T</b>		
InfoData								-		
Drive 1 (InoSV660N)	E	rror List						····· • • • •	<	
A Mappings		🍸 👻 🛞 O Er		gs 🕕 14 N	lessages			م	• Misc	
🔐 NC-Task 1 SAF - Device 2 (E	therCAT) 1	Descripti	on F	ile	Line 🔺	Colu	mn Proje	vet.		
NC-Task 1 SAF - Device 2 (E	therCAT) In	Descripti			Line _	Con	inin Proje			


# NOTE

This operation is available only when H02-00 (Control mode) is set to 9 (EtherCAT mode).

#### 5) Configuring PDO

Select 0x1600 and 0x1A00 as shown in the following figure. Change the current PDO only if it does not fulfill your needs. To modify the PDO, right click the PDO Content window, click "Delete" to delete the redundant PDO or click "Insert" to add the PDO needed.

• <del>•</del> ×



Touch probe status

Touch probe pos1 pos value

DIN

107.00

DIN

Insert...

Delete...

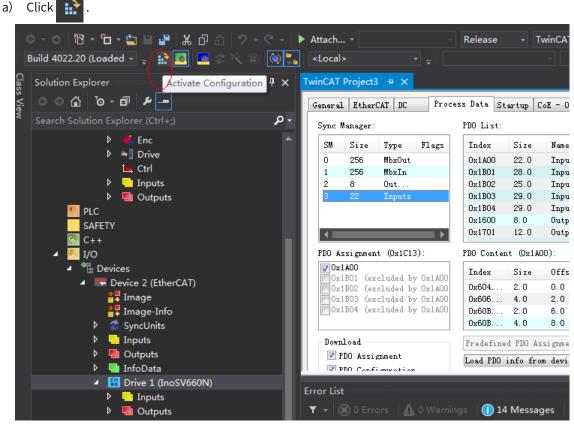
Move Up

Move Down

Edit...

0x606

Download-


📝 PDO Assignment

PDO Confirmation

0x60B... 2.0 6.0 0x60B... 4.0 8.0

Load PDO info from device

Predefined PDO Assignment: (none)



6) Activating the configuration and switching to the running mode

b) Click " 确定 " (OK).

: 🔤 💷 🕸 🌂 🗇 💽	<loca< th=""><th>&gt;</th><th></th><th>•] _∓ 8</th><th></th><th></th><th></th><th>*</th><th>∣⋺⋗</th><th>$= \{$</th></loca<>	>		•] _∓ 8				*	∣⋺⋗	$= \{$
- Ŧ × Ţ	winCAT	Project	3 ⇒ ×							
-	Genera	1 Ether	CAT DC	Pro	ces	s Data ;	Startup	CoE - Onlin	e Online	NC:
+;) • •	Sync	Manager:			_	PDO List	:			
	SM	Size	Type	Flags		Index	Size	Name		
	0	256	MbxOut			0x1A00	22.0	Inputs		
	1	256	MbxIn			0x1B01	28.0	Inputs		
	2	8	Out		_	0x1B02	25.0	Inputs		
ts	3	22	Micros	soft Visu	ial S	Studio			×	
nerCAT) fo		1B01 (ex 1B02 (ex 1B03 (ex 1B04 (ex	cel cel				ations wi 确定		取消	] 1al sta pos
		load —				Predefi	ned PDO .	Assignment:	(none)	
		PDO Assi PDO Corf	gnment i <i>m</i> rotion			Load PD	) info fi	rom device		
noSV660N)						_	_	_	_	
E	rror Lis	t managana								0000000
ts	<b>T</b> - (		ors 🗛			s 🚺	14 Mess	ages Clea	r	
te 🛛		escriptio								

c) After clicking " 确定 " (OK), the device enters OP status as shown in the "Online" interface, and the 3rd LED on the keypad displays 8, the keypad display_88RY.

• <del>•</del> • ×	TwinCAT Project3 👷 🗙
	General EtherCAT DC Process Data Startup CoE - Online Online NC: Online NC: Functions
- م	State Machine     Init     Bootstrap       Pre-Op     Safe-Op     Current State:     OP       Op     Clear Error     Clear Error
1	DLL Status Port A: Carrier / Open Port B: No Carrier / Closed Port D: No Carrier / Closed Port D: No Carrier / Closed
	File Access over EtherCAT Download Upload

- 7) Controlling the servo drive through NC controller or PLC program
- 7-1) Servo drive running in the CSP mode
- a) Set the unit.

The unit is "mm" during testing.

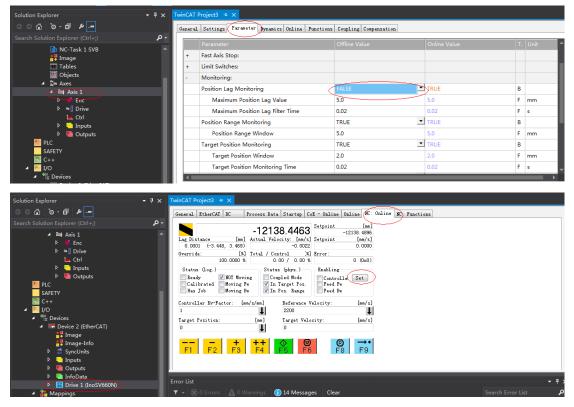
Solution Explorer 🔹 🖣 🗙	TwinCAT Project3 🕈 🗙
○○☆ ७~๗ ⊁ ━	General Settings Barameter Dynamics Online Functions Coupling Compensation
Search Solution Explorer (Ctrl+;)	Link To I/O Drive 1 (InoSV660N) Link To PLC Axis Type: CANopen DS402/Profile MDP 742 (e.g. EtherCAT CoE Drive) Unit: mm Display (Only) Position: µm Velocity: mm/min
<ul> <li>▶ ■ Outputs</li> <li>▶ ■ Drive</li> <li>L Ctrl</li> </ul>	Result     Velocity:     Acceleration:     Jerk:       mm     mm/s     mm/s2     mm/s3
	Axis Cycle Time / Access Divider Divider: 1  Cycle Time (ms): 2.000 Modulo: 0

b) Set the scaling factor.

Solution Explorer 🔹 🖣 🗙 🚺	winCAT P	Project3 🗢 🗙				
○○☆ io - i ≠ -	General	NC-Encoder Parameter Time Compensation Online				
Search Solution Explorer (Ctrl+;)			- (0)			
🖨 NC-Task 1 SVB		Parameter	Offline Value	Online Value	т.	Unit
🚔 Image	-	Encoder Evaluation:				
IIII Tables		Invert Encoder Counting Direction	FALSE	FALSE	в	
Objects ⊿ äa Axes		Scaling Factor Numerator	0.000007152557373	<b>€</b> -0001	F r	mm/INC
Axis 1		Scaling Factor Denominator (default: 1.0)	1.0	1.0	F	
🕑 🔦 Enc		Position Bias	0.0	0.0	F r	nm
Þ ≊∎Drive		Modulo Factor (e.g. 360.0°)	360.0	360.0	Fr	nm
🔛 Ctrl 🕨 🦳 Inputs		Tolerance Window for Modulo Start	0.0	0.0	F r	nm
Outputs		Encoder Mask (maximum encoder value)	0xFFFFFFFF	OxFFFFFFF	D	
PLC		Encoder Sub Mask (absolute range maximum va	0x000FFFFF	0x000FFFFF	D	
SAFETY G-++		Reference System	'INCREMENTAL'	'INCREMENTAL'	E	
▲ 🔽 I/O	-	Limit Switches:				-

■ Scaling factor: distance corresponding to the encoder pulses per position feedback

For example, 8388608 pulses per motor revolution corresponds to the distance of 60 mm, and the scaling factor is: 60/8388608 = 0.000007152557373 mm/Inc.


c) Set the encoder feedback mode to "PosVelo".

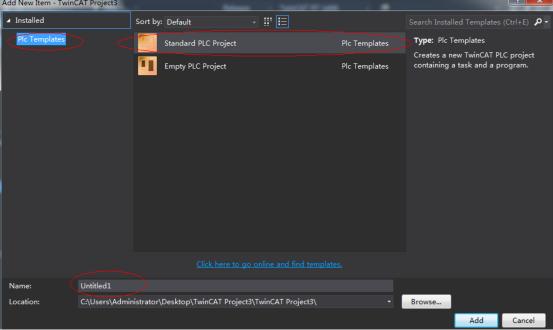
이 습 🍈 - 🗗 🕨 💻 Inch Solution Explorer (Ctrl+;)	• م	neral NC-Encoder Parameter Time Compensa	ion Online		
					T. Unit
💼 NC-Task 1 SVB		+ Encoder Evaluation:			
Tables		+ Limit Switches:			
Objects		+ Filter:			
<ul> <li>▲ axes</li> <li>▲ axis 1</li> </ul>		+ Homing:			
🕩 🐫 Enc		- Other Settings:			
▷ 🍽 Drive		Encoder Mode	POSVELO'	POSVELO'	E
i≞. Ctri ▷ 💛 Inputs		Position Correction	FALSE	FALSE	В
<ul> <li>Inputs</li> <li>Inputs</li> <li>Outputs</li> </ul>		Filter Time Position Correction (P-1	F1) 0.0	0.0	F s
PLC SAFETY SAFETY C++ IND C+		Download ) [ Upload ) [ Expand All ]	Collapse All Select All		

Descriptions for "Other Settings":

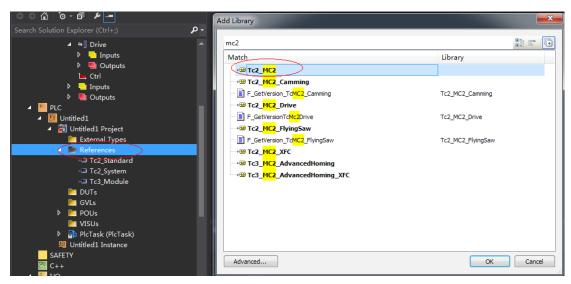
- Encoder mode: There are three encoder modes: Pos, PosVelo, and PosVeloAcc.
- Pos: The encoder only calculates the position and is used when the position loop is in the servo drive.
- PosVelo: The encoder only calculates the position and speed and is used when the position loop is in TWinCAT NC.
- PosVeloAcc: The TWinCAT NC uses the encoder to determine the position, speed, and acceleration.
- d) Jogging test

Hide the system deviation temporarily.




Click "Set" to display a dialog box and then click "All" to enable the servo drive. Perform jogging through F1 to F4. The jog speed is set as follows.

° û 'o - ₫ <i>⊭</i> —	G	ener al	Settings Parameter Bynanics Online Functi	ons Coupling Compensation			
	- م		Parameter	Offline Value	Online Value	T.	Unit
Solution 'TwinCAT Project3' (1 project)	<b>A</b>	+	Maximum Dynamics:				_
SYSTEM		+	Default Dynamics:				
<ul> <li>MOTION</li> <li>MC-Task 1 SAF</li> </ul>		-	Manual Motion and Homing:				
MC-Task I SAF RC-Task 1 SVB			Homing Velocity (towards plc cam)	30.0	30.0	F	mm/s
🚔 Image			Homing Velocity (off plc cam)	30.0	30.0	F	mm/s
Tables			Manual Velocity (Fast)	600.0	600.0	F	mm/s
⊿ ∄a Axes			Manual Velocity (Slow)	100.0	100.0	F	mm/s
Axis 1			Jog Increment (Forward)	5.0	5.0	F	mm
▷ ♣ Enc ▷ ➡ Drive			Jog Increment (Backward)	5.0	5.0	F	mm
L. Ctrl		+	Fast Axis Stop:				
<ul> <li>Inputs</li> <li>Outputs</li> </ul>		+	Limit Switches:				


7-2) Controlling the servo operations through the PLC

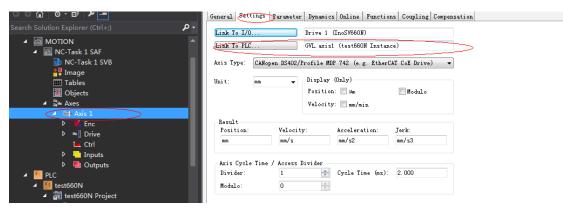
a) Create a PLC program.

Search Soluti	on E	xplorer (Ctrl+;)	۔ م
		Axes	A
-		Axes Axis 1	
		K Enc	
		I ≇ Drive	
		▶ Inputs	
		🕨 ங Outputs	
		🖮 Ctrl	
		nputs	
		🖣 Outputs	
PI	c ت	Add New Item	Ins
5. 5. C			Shift+Alt+A
🔺 🧮 I/	<b>*</b> 0	Add Existing Item	
<b>⊿</b> *Ę			
4			
		Hide PLC Configuration	
		image-into	
		SyncUnits	
		Inputs Outputs	
Add New Iter	n - Tv	vinCAT Project3	

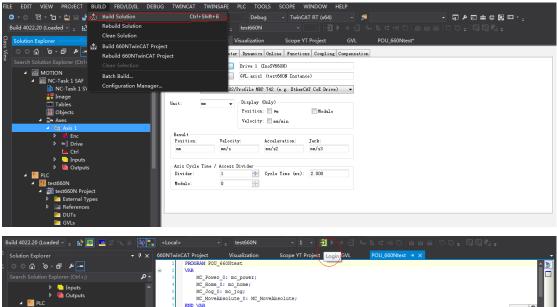


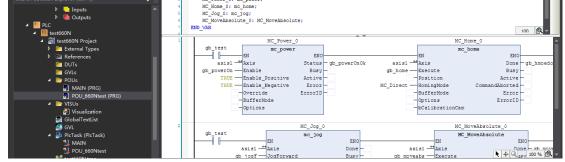
b) Add a motion control library for the convenience of calling the motion control function block.




c) Create a POU program.

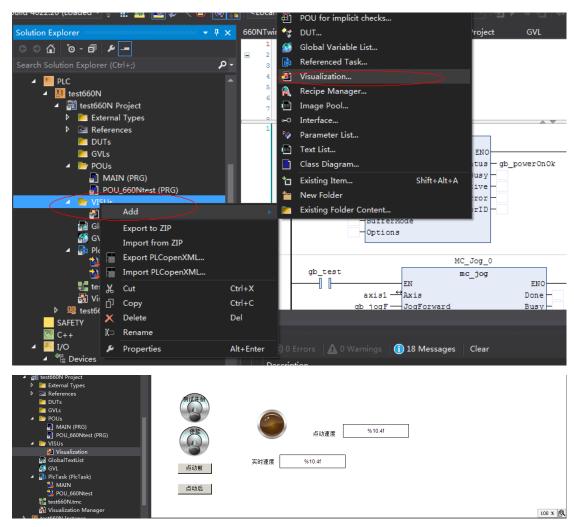
Solution Explorer 🔹 👎 🗙	Add POU
Search Solution Explorer (Ctrl+;)	Create a new POU (Program Organization Unit)
Li Ctrl	
▶ <mark></mark> Inputs	Name:
Outputs	POU
✓ Untitled1	Туре
4 🛗 Untitled1 Project	Program
👂 🚞 External Types	Function Block
<ul> <li>References</li> </ul>	Extends:
-□ Tc2_MC2	
•□ Tc2_Standard	
- Tc2_System	Access specifier:
- Tc3_Module	
📁 DUTs 🛅 GVLs	Method implementation language:
POUs	Ladder Logic Diagram (LD) 👻
MAIN (PRG)	© Function
VISUs	Return type:
🔺 🚡 PlcTask (PlcTask)	
🗟 MAIN	Err Implementation language:
🕮 Untitled1 Instance	Ladder Logic Diagram (LD)
SAFETY	
🔂 C++	
▲ 🔄 I/O	Eri Open Cancel


d) Call the motion module to implement some simple actions of the servo drive and input the final program to PLCtask.


▲ 🛄 test650N	7 E	ND_VAR	A 7		100
🖌 📰 test660N Project	1	MC_Power		MC_H	me_0
External Types		gb_test mc_powe	r	mc_1	iome
References		EN	ENO	EN	ENO
🛅 DUTs		axis1 🛶 Axis	Status gb_powerOnOk	axis1 — Axis	Done <mark>db_hmoedo</mark>
🛅 GVLs		gb_powerOn — Enable	Busy -	gb_home — Execute	Busy -
🔺 🚞 POUs		TRUE Enable_Positive	Active	- Position	Active -
📑 MAIN (PRG)		TRUE Enable_Negative	Error -	MC_Direct - HomingMode	CommandAborted -
POU_660Ntest (PRG)		- Override - BufferMode	ErrorID -	-BufferMode	Error - ErrorID -
🔺 🗁 VISUs		- Options		- options - bCalibrationCam	Errorib
📲 Visualization		options		Dearibracioneam	
🚰 GlobalTextList					
🚮 GVL	2		MC_Jog_0	MC_Mc	oveAbsolute_0
PICTask (PicTask)		gb_test	mc_jog	MC_1	foveAbsolute
MAIN -		EN	ENO	EN	ENO
POU_660Ntest		axisl — Axis	Done -	axisl — Axis	Done — ab. move ▶ + Q _{13V} 100 % 🔍 —
test660N.tmc	4	gb 1ogF JogForwa	rd Busy-	gb moveabs - Execute	
🚮 Visualization Manager					
test660N Instance					- † ×
SAFETY		Errors 🛛 🛕 0 Warnings 🗐 19 Messa	iges Clear		Search Error List 🖉 🗸
C++					

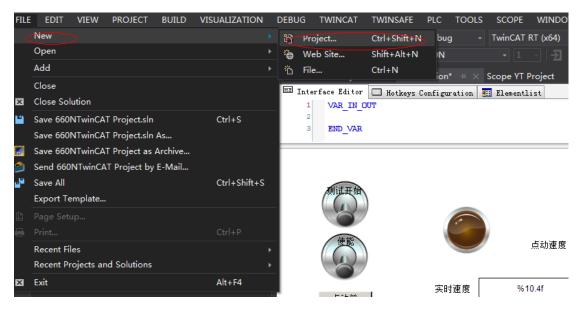
e) Link the axis to the variable defined in the PLC.




f) Compile the program. If there is not fault, activate the configuration and log onto the PLC.






g) Click "Start" to make the servo drive run.





8) Adding the HMI interface to control the servo drive through the HMI interface

- 9) Using the scope view function of Beckhoff.
- a) Add a scope view project as shown in the following figure.



New Project			? <b>X</b>
▶ Recent	.NET Framework 4.5 👻 Sort by: Default	- # 🗉	Search Installed Templates (Ctrl+E) 🏼 🔎 🗸
<ul> <li>Installed</li> <li>Templates         <ul> <li>Other Project Types</li> <li>TwinCAT Measurement</li> <li>BodePiot</li> <li>Scope</li> <li>TwinCAT PLC</li> <li>TwinCAT Projects</li> <li>Samples</li> <li>Online</li> </ul> </li> </ul>	Impty Measurement Project         Impty Measurement Project         Impty Scope Array Bar Project         Impty Scope YT Project         Impty Scope YT NC Project         Impty Scope YT Project with Reporting         Impty Scope XY Project         Impty Scope XY Project	TwinCAT Measurement TwinCAT Measurement TwinCAT Measurement TwinCAT Measurement TwinCAT Measurement TwinCAT Measurement	Type: TwinCAT Measurement Creates a Measurement Scope NC Project that includes a Chart and an time based Axis for the primary NC- Axis Parameter with local linked Channels.
	Scope XY Project with Reporting Bode Plot <u>Click here to go online ar</u>	TwinCAT Measurement TwinCAT Measurement nd find templates.	
Name: TwinCAT Mea	surement Project2		
Location: C:\Users\Adm	inistrator\Desktop\【19.05.17】660N应用案例	\倍福\660NTwinCAT Project ▼	Browse
Solution: Add to solution	n	•	
Solution name: TwinCAT Mea			Create directory for solution
			OK Cancel

b) Add parameters to be monitored to monitor these parameters during PLC running.

Build 4022.20 (Loaded 🚽 🚽 🔐 🧱 🗾 🕏 🔨 🖨 🔘	<local></local>	→ _ਦ test660N	• 1 • - <b>J</b> • =			
Solution Explorer 👻 👎	660NTwinCAT Project	Visualization*	Scope YT Project 👳 🗙 🕻	GVL POU_660Ntest		Record
○○☆ io・i ≠	Chart 0.00:00:10.0	00:000 H I I I		(↔ 仓 ⊯ 座 奖 条 ₫		↓ ↓
					Start: 00:00:00 End: C	0100100 Post 00100100
Solution '660NTwinCAT Project' (2 projects)     To 660NTwinCAT Project     TwinCAT Measurement Project1     Goope YT Project	0.5					
Chart      Maxis      MAris      ActPos      MActVelo      Maxis      ActVelo      Maxis      Maxis	0.3					
₩ Activelo ₩ SetVelo ₩ Cursor Л Trigger	0.1 -					
	-0.1 -					
	-0.3 - -0.4 -					
	-0.5 J	1.000s 2.000s	3.000s 4.000s	5.000s 6.000s	7.000s 8.00	0s 9.000s 10.000s

# 11 Appendix

# 11.1 Standards Compliance

# 11.1.1 CE Certification

CE Mark



Figure 11-1 CE Mark

- The CE mark indicates compliance with European safety and environmental regulations. The European Norm includes the Machinery Directive for machinery manufacturers, the Low Voltage Directive for electronics manufacturers, and EMC directive for electromagnetic interference control.
- 2) The CE mark is required for engaging in commercial business (production, importation, and distribution) in Europe.
- 3) This servo drive carries the CE mark and complies with the following directives:
- Low Voltage Directive: 2014/35/EU
- EMC Directive: 2014/30/EU
- 4) Machines and devices integrated with this servo drive must also be CE certified.
- 5) The integrator who integrates this servo drive into other products and attaches CE mark to the final assembly has the responsibility of ensuring compliance with CE standards and the European Norm.

## 11.1.2 Low Voltage Directive Compliance

This servo drive has been tested according to IEC 61800-5-1, and it complies with the Low Voltage Directive.

Abide by the following requirements to enable machines and devices integrated with this servo drive to comply with the Low Voltage Directive.

Installation location

Install the servo drive in places with overvoltage and pollution respectively not higher than category 3 and severity 2 in accordance with IEC60664.

■ Fuse on the input side (primary side)

To prevent accidents caused by short circuit, connect an UL-compliant fuse on the input side. Select the fuse according to the following table.

Servo Drive Series	Servo Drive Model	Rated Input Current	Bussmann FWH Series (UL-compliant)					
Single-phase 220 V								
Size A	SV660NS1R6I	2.3	FWP-15B					
SIZE A	SV660NS2R8I	4	FWP-20B					
Size B	SV660NS5R5I	7.9	FWP-20B					
Three-phase 220 V								
Size B	SV660NS6R6I	3.7	FWP-20B					

#### Table 11-1 Recommended fuse model

NOTE

When the fuse burns or the wiring breaker trips, do not switch on the power supply or operate the machine immediately. Check the cable connections and the models of peripherals to identify the cause. If the cause cannot be identified, contact Inovance. Do not switch on the power supply or operate the machine without permission before identifying the cause.

• Each input cable of the servo drive must be connected to a fuse. When a fuse burns, replace all the fuses.

■ In-cabinet installation to prevent entry of foreign objects

The SV660N series servo drive must be installed in a cabinet with the fire-proof housing that provides effective electrical and mechanical protection. The installation must conform to local laws and regulations and related IEC requirements.

■ Grounding

For a servo drive of class 400 V, connect the neutral point of the servo drive power supply to the ground.

## **11.1.3 EMC Directive Compliance**

Electromagnetic compatibility (EMC) describes the ability of electrical and electronic devices to work properly in the electromagnetic environment without introducing electromagnetic interferences that disturb the operation of other local devices or systems. In other words, EMC includes two aspects: 1) The electromagnetic interference generated by a device during normal operation cannot exceed a certain limit.

2) The device must have sufficient immunity to the electromagnetic interference in the environment.

Abide by the following requirements to make SV660N series servo drives comply with the European EMC directive 2014/30/EU, EN 61800-3 C2, IEC 61800-3, and IEC 61800-5-2:

- 1) Install the recommended external EMC filter on the servo drive's input end and the shielded cable on the output end. Ensure that the filter is reliably grounded and the output cable shield is grounded 360 degrees with a cable gland. See section 11.1.5 for selection of the EMC filter.
- 2) Install the recommended AC reactor on the input end. See section 11.1.5 for selection of the reactor.
- 3) Use a shielded cable between the servo drive and the motor. See <u>"3 Wiring"</u> for selection and layout of the cables.
- 4) Install and wire the servo drive according to the recommended wiring method. See <u>"3 Wiring"</u> for details.
- 5) Install a common mode filter if necessary.



- When applied in the first environment, the servo drive may generate radio interference. In addition to the CE compliance requirements described in this chapter, take measures to prevent the radio interference if necessary.
- ◆ The manufacturer of the system integrated with this drive is responsible for compliance of the system with the European EMC directive and standard EN 61800-3:2004 +A1:2012 according to the system application environment.

# 11.1.4 Definition of EMC Terms

First environment: Environment that includes domestic premises, and establishments directly connected without intermediate transformers to a low-voltage power supply network which supplies buildings used for domestic purposes

Second environment: Environment that includes all establishments other than those directly connected to a low-voltage power supply network which supplies buildings used for domestic purposes

Category C1 drive: Power drive system (PDS) with rated voltage less than 1000 V, intended for use in the first environment

Category C2 drive: PDS with rated voltage less than 1000 V, which is neither a plug-in device nor a movable device and, when used in the first environment, is intended to be installed and commissioned only by professionals

Category C3 drive: PDS with rated voltage less than 1000 V, intended for use in the second environment and not intended for use in the first environment

Category C4 drive: PDS with rated voltage equal to or above 1000 V, or rated current equal to or above 400 A, or intended for use in complex systems in the second environment

## 11.1.5 Selection of EMC Filters

EMI filter

The following series of filters fulfill the EN 61800-3 C2 emission requirement of CE certification. Connect the filter and the servo drive to the same grounding reference surface to enable reliable grounding of the filter. The cable between the filter and the servo drive must be shielded cable with length less than 30 cm.

1) Appearance



Figure 11-2 Schaffner FN3258 series filter



Figure 11-3 Schaffner FN2080 series filter

#### Recommended Model Selection

The recommended Schaffner models are listed in the following table.

Series	Servo Drive Model	Rated Input Current	Filter Model				
Selles	Servo Drive Model	(In)	(Manufactuer: Schaffner)				
Single-phase 220 V							
Size A	SV660NS1R6I	2.3	FN2090-3-06				
SIZE A	SV660NS2R8I	4	FN2090-4-06				
Size B	SV660NS5R5I	7.9	FN2090-8-06				
Three-phase 220 V							
Size B	SV660NS6R6I	3.7	FN 3258-7-44				

Table 11-2 Recommended EMC input filters

#### 2) Mounting dimensions (FN2080 and FN3258)

Multiple servo drives can be connected to the same external EMI filter if the following conditions are met:

- The single-phase device is connected to a single-phase EMI filter, and the three-phase device is connected to a three-phase EMI filter.
- The total **power** consumption of the connected **device** must be equal to or less than the rated current allowed by the EMI filter.
- Dimensions of Schaffner FN2080 series filters (1-16 A)

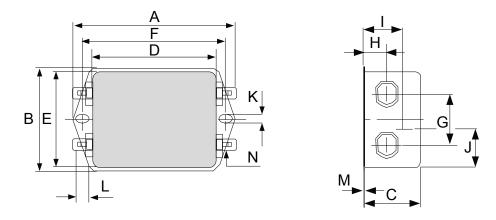



Figure 11-4 Dimensions of FN2080 series filters (1–16 A) (unit: mm)

Rated Current (A)	A	В	С	D	E	F	G	Н	I	J	К	L	М	N
1	85	54	30.3	64.8	49.8	75	27	12.3	20.8	19.9	5.3	6.3	0.7	6.3 x 0.8
3	85	54	40.3	64.8	49.8	75	27	12.3	29.8	11.4	5.3	6.3	0.7	6.3 x 0.8
6	113.5±1	57.5±1	45.4±1	94±1	56	103	25	12.4	32.4	15.5	4.4	6	1	6.3 x 0.8
10	156±1	57.5±1	45.4±1	130.5±1	56	143	25	12.4	32.5	15.5	5.3	6	1	6.3 x 0.8
12	156±1	57.5±1	45.4±1	130.5±1	56	143	25	12.4	32.5	15.5	5.3	6	1	6.3 x 0.8
16	119±1	85.5±1	57.6±1	98.5±1	84.5	109	40	15.6	-	42.25	4.4	7.4	1.2	6.3 x 0.8

Table 11-3 Dimensions of FN2080 series filters (1-16 A) (unit: mm)

Dimensions of Schaffner FN3258 series filters (7-180 A)

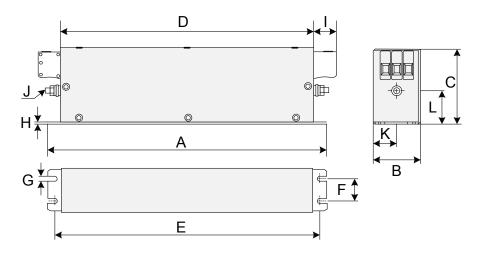



Figure 11-5 Dimensions of FN3258 series filters (7-180 A) (unit: mm)

Rated Input Current (A)	A (mm)	B (mm)	C (mm)	D (mm)	E (mm)	F (mm)	G (mm)	H (mm)	l (mm)	J	K (mm)	L (mm)
7	190	40	70	160	180	20	4.5	1	22	M5	20	29.5
16	250	45	70	220	235	25	5.4	1	22	M5	22.5	29.5
30	270	50	85	240	255	30	5.4	1	25	M5	25	39.5
42	310	50	85	280	295	30	5.4	1	25	M6	25	37.5
55	250	85	90	220	235	60	5.4	1	39	M6	42.5	26.5
75	270	80	135	240	255	60	6.5	1.5	39	M6	40	70.5
100	270	90	150	240	255	65	6.5	1.5	45	M10	45	64
130	270	90	150	240	255	65	6.5	1.5	45	M10	45	64
180	380	120	170	350	365	102	6.5	1.5	51	M10	60	47

Table 11-4 Dimensions of FN3258 series filters (7-180 A)

#### 3) Safety capacitance box and ferrite core

To filter out part of the interference generated during running, connect a safety capacitance box and wind a ferrite core around the input/output cable in some applications.

The safety capacitance box must be grounded to the grounding terminal of the servo drive with a grounding cable as short as possible (within 15 cm).

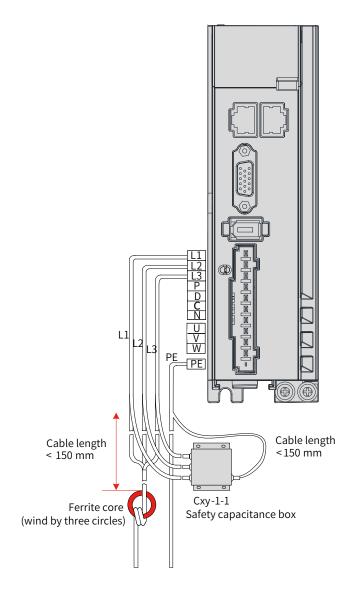



Figure 11-6 Installation of the capacitance box and the ferrite core

Dimension drawing of the safety capacitance box

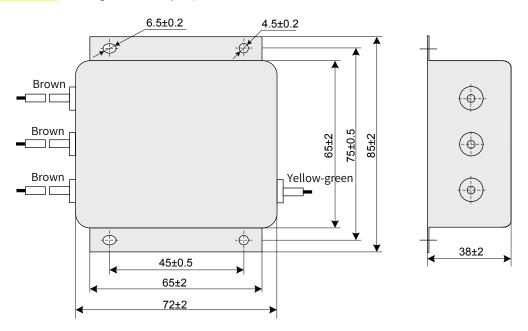



Figure 11-7 Dimensions of the safety capacitance box

Safety Capacitance Box Model	Code	Dimension (Width x Depth x Height) (mm)	Mounting Dimension (Width x Depth) (mm)	
Cxy-1-1	11025018	85 x 72 x 38	45 x 75	

Table 11-5	Dimensions of the safety capacitance box
------------	------------------------------------------

#### ■ Selection of the output ferrite core

To reduce the noise current and the interference to neighboring devices, install the output ferrite core around the U/V/W power cables (PE excluded) near the servo drive side.

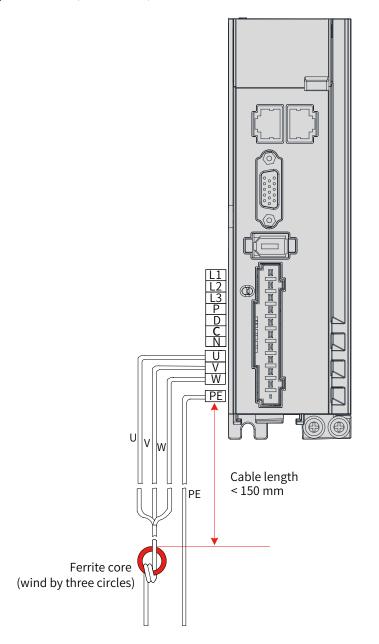


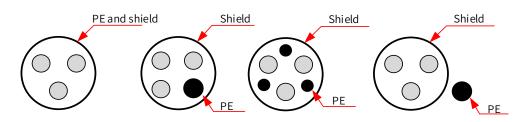

Figure 11-8 Installation of the output ferrite core (external)



Figure 11-9 Appearance of the output ferrite core (external)

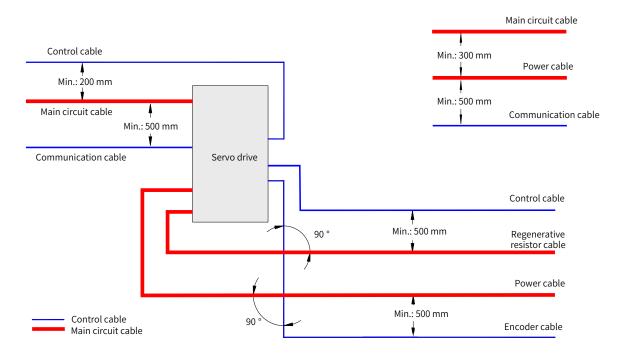
Ferrite Core Model	Code	Dimension (Outer Diameter x Inner Diameter x Thickness) (mm)		
CTRC 0930 -1B	11013003	19.5 x 9 x 35		
7427122S	11013046	32.8 x 13.5 x 28		
DY644020H	11013031	64 x 40 x 20		
DY805020H	11013032	80 x 50 x 20		
DY1207030H	11013033	120 x 70 x 30		

#### AC input reactor


The AC input reactor is an option used to suppress the harmonics in the input current. In applications where strong suppression of harmonics is required, install an external AC input reactor.

### 11.1.6 Cable Requirements and Routing

#### Requirements on Power Cables


To fulfill the EMC requirements of CE marking, use shielded cables. Shielded cables are classified into three-conductor cables and four-conductor cables. If the conductivity of the cable shield cannot meet the requirement, add a separate PE cable, or use a four-conductor shielded cable, of which one phase conductor is PE cable. The cable shield, which serves to suppress the emission and conduction of the radio frequency interference, must be made of co-axial copper braids with a weaving density larger than 85% to enhance shielding and conductivity performance.

Power cables recommended are shielded cables, as shown in the following figure.



- Requirements on wiring
- 1) The motor cables and PE shielded cables (twisted) must be as short as possible. For motor cables over 100 meters, install an output filter or a dv/dt reactor.
- 2) It is recommended to adopt shielded cables as control cables.
- 3) It is recommended to adopt shielded cables as motor brake cables.

- 4) The motor cables must be routed away from other cables. The motor cables of several servo drives can be routed in parallel.
- 5) It is recommended that the motor cables, power input cables and control cables be routed in different cable duct. The motor cables and other cables cannot be routed in parallel for a long distance. This is to prevent the electromagnetic interference caused by rapid change of the drive output voltage.
- 6) If the control cable must pass through the power cable, make sure the angle between them is close to 90 degrees. Other cables cannot pass through the servo drive.
- Power input and output cables and signal cables (such as control cables) of the servo drive should, if possible, be laid vertically rather than in parallel.
- 8) Cable ducts must be in good connection and well grounded. Aluminum cable ducts can be used to improve equal potential.
- The grounding plane of different equal potential must be connected properly with cables of above 16 mm².
- 10) The filter, the servo drive and the motor must be properly connected to systems, with the conductive metal kept in full contact.



■ The recommended wiring diagram is shown below.

## 11.1.7 Solutions to Leakage Current

The servo drive outputs high-speed pulse voltage, which may generate high-frequency leakage current. It is recommended to use a residual current device (RCD) with action current no less than 100 mA. If multiple servo drives share the same RCD, the action current of this RCD must be no less than 300 mA.

Factors that affect the leakage current are listed as follows:

- Distributed capacitance of the motor
- Carrier frequency
- Type and length of the motor cables.
- EMI filter

When the leakage current generated by the servo drive triggers the RCD to act, take the following measures:

- Increase the rated action current of the RCD.
- Replace the original RCD with a time-delay type-B RCD.
- Reduce the carrier frequency.
- Shorten the length of the output drive cables.
- Wind the ferrite core around the power cables (PE cable excluded). Recommended RCD brands are Chint and Schneider.

#### 11.1.8 Solutions to Common EMC Problems

The servo drive generates strong interferences. Although EMC measures are taken, interference may still exist due to improper wiring or grounding during use. When the servo drive interferes with other devices, adopt the following solutions.

Interference Type	Solution					
	◆ Reduce the carrier frequency without compromising the performance.					
	◆ Shorten the servo drive cable length.					
	◆ Wind the ferrite core around the power cables (PE cable excluded).					
RCD tripping	◆ For tripping at the moment of power-on, disconnected the capacitor that carries larger capacity (disconnect the grounding end of the external or internal filter and the grounding end of the grounding Y capacitor of the input terminal).					
	<ul> <li>For tripping during running or enabling, take leakage current suppression measures (install a leakage current filter, or install a safety capacitor and wind the ferrite core, or wind the ferrite core).</li> </ul>					
	◆ Connect the motor housing to the PE terminal of the servo drive.					
	<ul> <li>Connect the PE terminal of the servo drive to the PE terminal of the mains power supply.</li> </ul>					
	<ul> <li>Route the power cables (main circuit cables, power cables, and regenerative resistor cables), control cables, and signal cables through different routes.</li> </ul>					
	◆ Wind the ferrite core around the power cables (PE cable excluded).					
Interference generated during running	<ul> <li>Install a capacitor to the interfered signal port or wind the ferrite core around this port.</li> </ul>					
	<ul> <li>Install a matching resistor between the communication cable source and the load end.</li> </ul>					
	<ul> <li>Add an auxiliary reference ground wire if the differential cable pair are used for communication.</li> </ul>					
	<ul> <li>Adopt shielded cables as communication cables</li> </ul>					
	<ul> <li>Apply additional common-ground connection between devices and cabinets.</li> </ul>					

Table 11-7	Solutions to common	EMC interference problem	IS
------------	---------------------	--------------------------	----

## 11.1.9 UL Certification



Figure 11-10 UL/cUL mark

The UL/cUL mark is commonly applied to products in the United States and Canada. It indicates that UL has performed product tests and evaluations, and determined that their stringent standards for product safety have been met. For a product to receive UL certification, the main components inside that product must also be UL certificated.

This series of servo drives have been tested in accordance with UL standard UL508C and comply with UL standards. Abide by the following requirements to enable machines and devices integrated with this servo drive to comply with UL standards.

Installation location

Install the servo drive in a place with pollution degree 1 or 2 (UL standard).

■ Ambient temperature

Run the servo drive in an ambient temperature not higher than 50° C.

■ Wiring example

See <u>"3 Wiring</u>" or the wiring diagram that complies with the Low Voltage Directive.

■ Wiring of main circuit terminals

To meet UL standard, use UL-compliant crimping terminals to crimp the cables on main circuit terminals with the tools recommended by the terminal manufacturer for crimping. Use crimping terminals with insulated cladding or insulated sleeves.

Adopt UL-compliant insulated copper cables as main circuit cables, and the continuous maximum allowable temperature of such cables is 75° C.

Select the cable dimension and tightening torque according to "3 Wiring" during wiring.

(Note: " $\left(\frac{1}{2}\right)$ " indicates the grounding terminal defined in IEC/EN60417-5019)

Fuse on the input side (primary side)

To prevent accidents caused by short circuit, connect a fuse that complies with UL standards on the input side. See <u>"Table 11-1 Recommended fuse model"</u> for fuse selection.

See the specifications and model selection of the servo drive for the input and output current of the servo drive.

See <u>"Table 11-1 Recommended fuse model"</u> for fuse model recommendations.



- When the fuse burns or the wiring breaker trips, do not switch on the power supply or operate the machine immediately. Check the wiring and the models of peripherals to identify the cause. If the cause cannot be identified, contact Inovance. Do not switch on the power supply or operate the machine without permission before identifying the cause.
- Each input cable of the servo drive must be connected to a fuse. When a fuse burns, replace all the fuses.

■ Short-circuit withstand capacity

This series of servo drives adopt the Bussmann FWH series fuses, which can be used in a 480 V (400 V class) and below mains circuit with short-circuit current less than 100,000 A.

# 11.2 List of Object Groups

# **Description of Object Groups**

Parameter access address: Index + subindex, both are hexadecimal data.

The CiA402 protocol establishes the following constraints on the parameter address.

Index (Hex)	Description
0000-0FFF	Data type description
1000-1FFF	CoE communication object
2000-5FFF	Manufacturer-defined object
6000-9FFF	Sub-protocol object
A000-FFFF	Reserved

# **Object Group 1000h**

Index (hex)	Sub-index (hex)	Name	Accessibility	PDO Mapping	Data Type	Unit	Data Range	Default		
1000	00	Device Type	RO	NO	UINT32	-	-	0x00020192		
1008	00	Manufacturer device name	RO	NO	-	-	-	SV660N-ECAT		
1009	00	Manufacturer hardware version	RO	NO	-	-	-	Determined by the software version		
100A	00	Manufacturer software version	RO	NO	-	-	-	Determined by the hardware version		
				ID objec	t		-			
	00	Highest sub-index No. included in the ID object	RO	NO	UINT8	-	-	0x04		
1018	01	Vendor ID	RO	NO	UINT32	-	-	0x00100000		
	02	Product code	RO	NO	UINT32	-	-	0x000C010D		
	03	Revision number	RO	NO	UINT32	-	-	0x00010001		
	04	Serial No.	RO	NO	UINT32	-	-	0x0000000		
	Manufacturer software version									
	00	Number of Sync Manager channels	RO	NO	UINT8	-	-	0x04		
	01	Communication type SM0	RO	NO	UINT8	-	-	0x01		
1C00	02	Communication type SM1	RO	NO	UINT8	-	-	0x02		
	03	Communication type SM2	RO	NO	UINT8	-	-	0x03		
	04	Communication type SM3	RO	NO	UINT8	-	-	0x04		

Index (hex)	Sub-index (hex)	Name	Accessibility	PDO Mapping	Data Type	Unit	Data Range	Default				
			RPDO mapp	oing object	in group	1600						
	00	Number of mapped application objects in group 1600	RW	NO	UINT8	-	0-0x0A	0x03				
	01	1st application object	RW	NO	UINT32	-	0–0xFFFFFFFF	0x60400010				
	02	2nd application object	RW	NO	UINT32	-	0-0xFFFFFFFF	0x60600008				
1000	03	3rd application object	RW	NO	UINT32	-	0-0xFFFFFFFF	0x60B80010				
1600	04	4th application object	RW	NO	UINT32	-	0-0xFFFFFFFF	-				
	05	5th application object	RW	NO	UINT32	-	0-0xFFFFFFFF	-				
	06	6th application object	RW	NO	UINT32	-	0-0xFFFFFFFF	-				
	07	7th application object	RW	NO	UINT32	-	0-0xFFFFFFFF	-				
	08	8th application object	RW	NO	UINT32	-	0-0xFFFFFFF	-				
	09	9th application object	RW	NO	UINT32	-	0-0xFFFFFFFF	-				
	0A	10th application object	RW	NO	UINT32	-	0-0xFFFFFFFF	-				
			RPDO mapp	ing object	s in group	0 1701						
		Number of mapped application objects in group 1701	RO	NO	UINT8	-	-	0x04				
1701	01	1st application object	RO	NO	UINT32	-	-	0x60400010				
	02	2nd application object	RO	NO	UINT32	-	-	0x607A0020				
	03	3rd application object	RO	NO	UINT32	-	-	0x60B80010				
	04	4th application object	RO	NO	UINT32	-	-	0x60FE0120				
	RPDO mapping objects in group 1702											
	00	Number of mapped application objects in group 1702	RO	NO	UINT8	-	-	0x07				
	01	1st application object	RO	NO	UINT32	-	-	0x60400010				
1702	1 07	2nd application object	RO	NO	UINT32	-	-	0x607A0020				
	03	3rd application object	RO	NO	UINT32	-	-	0x60FF0020				
	04	4th application object	RO	NO	UINT32	-	-	0x60710010				
	05	5th application object	RO	NO	UINT32	-	-	0x60600008				
	06	6th application object	RO	NO	UINT32	-	-	0x60B80010				
	07	7th application object	RO	NO	UINT32	-	-	0x607F0020				
			RPDO mapp	ing object	s in group	0 1703						
	00	Number of mapped application objects in group 1703	RO	NO	UINT8	-		0x07				
	01	1st application object	RO	NO	UINT32	-		0x60400010				
1703	02	2nd application object	RO	NO	UINT32	-		0x607A0020				
	03	3rd application object	RO	NO	UINT32	-		0x60FF0020				
	04	4th application object	RO	NO	UINT32	-		0x60600008				
	05	5th application object	RO	NO	UINT32	-		0x60B80010				
	06	6th application object	RO	NO	UINT32	-		0x60E00010				
	07	7th application object	RO	NO	UINT32	-		0x60E10010				

Index (hex)	Sub-index (hex)	Name	Accessibility	PDO Mapping	Data Type	Unit	Data Range	Default
			RPDO mapp	ing objects	s in group	0 1704	<u> </u>	I
	00	Number of mapped application objects in group 1704	RO	NO	UINT8	-	-	0x09
	01	1st application object	RO	NO	UINT32	-	-	0x60400010
	1 07	2nd application object	RO	NO	UINT32	-	-	0x607A0020
1704	03	3rd application object	RO	NO	UINT32	-	-	0x60FF0020
	04	4th application object	RO	NO	UINT32	-	-	0x60710010
	05	5th application object	RO	NO	UINT32	-	-	0x60600008
	06	6th application object	RO	NO	UINT32	-	-	0x60B80010
	07	7th application object	RO	NO	UINT32	-	-	0x607F0020
	08	8th application object	RO	NO	UINT32	-	-	0x60E00010
	09	9th application object	RO	NO	UINT32	-	-	0x60E10010
			RPDO mapp	oing objects	s in group	0 1705		
	00	Number of mapped application objects in group 1705	RW	NO	UINT8	-	-	0x08
	01	1st application object	RW	NO	UINT32	-	-	0x60400010
1705	02	2nd application object	RW	NO	UINT32	-	-	0x607A0020
	03	3rd application object	RW	NO	UINT32	-	-	0x60FF0020
	04	4th application object	RW	NO	UINT32	-	-	0x60600008
	05	5th application object	RW	NO	UINT32	-	-	0x60B80010
	06	6th application object	RW	NO	UINT32	-	-	0x60E00010
	07	7th application object	RW	NO	UINT32	-	-	0x60E10010
	08	8th application object	RW	NO	UINT32	-	-	0x60B20010
			Mapping	objects in	group 1A	.00		
	00	Number of mapped application objects in group 1A00	RW	NO	UINT8	-	0-0x0A	0x07
	01	1st application object	RW	NO	UINT32	-	0–0xFFFFFFF	0x60410010
	02	2nd application object	RW	NO	UINT32	-	0–0xFFFFFFFF	0x60640020
	03	3rd application object	RW	NO	UINT32	-	0-0xFFFFFFFF	0x60B90010
1A00	04	4th application object	RW	NO	UINT32	-	0-0xFFFFFFFF	0x60BA0020
	05	5th application object	RW	NO	UINT32	-	0-0xFFFFFFFF	0x60BC0020
	06	6th application object	RW	NO	UINT32	-	0-0xFFFFFFFF	0x603F0010
	07	7th application object	RW	NO	UINT32	-	0-0xFFFFFFFF	0x60FD0010
	08	8th application object	RW	NO	UINT32	-	0-0xFFFFFFFF	-
	09	9th application object	RW	NO	UINT32	-	0–0xFFFFFFFF	-
	0A	10th application object	RW	NO	UINT32	-	0-0xFFFFFFFF	-

Index (hex)	Sub-index (hex)	Name	Accessibility	PDO Mapping	Data Type	Unit	Data Range	Default
			Mapping	objects in	group 1B	01	<u> </u>	1
	00	Number of mapped application objects in group 1B01	RO	NO	UINT8	-	-	0x09
	01	1st application object	RO	NO	UINT32	-	-	0x603F0010
	02	2nd application object	RO	NO	UINT32	-	-	0x60410010
1B01	03	3rd application object	RO	NO	UINT32	-	-	0x60640020
	04	4th application object	RO	NO	UINT32	-	-	0x60770010
	05	5th application object	RO	NO	UINT32	-	-	0x60F40020
	06	6th application object	RO	NO	UINT32	-	-	0x60B90010
	07	7th application object	RO	NO	UINT32	-	-	0x60BA0020
	08	8th application object	RO	NO	UINT32	-	-	0x60BC0020
	09	9th application object	RO	NO	UINT32	-	-	0x60FD0010
			Mapping	objects in	group 1B	02		
	00	Number of mapped application objects in group 1B02	RO	NO	UINT8	-	-	0x09
	01	1st application object	RO	NO	UINT32	-	-	0x603F0010
	02	2nd application object	RO	NO	UINT32	-	-	0x60410010
1B02	03	3rd application object	RO	NO	UINT32	-	-	0x60640020
	04	4th application object	RO	NO	UINT32	-	-	0x60770010
	05	5th application object	RO	NO	UINT32	-	-	0x60610008
	06	6th application object	RO	NO	UINT32	-	-	0x60B90010
	07	7th application object	RO	NO	UINT32	-	-	0x60BA0020
	08	8th application object	RO	NO	UINT32	-	-	0x60BC0020
	09	9th application object	RO	NO	UINT32	-	-	0x60FD0010
			Mapping	objects in	group 1B	03		
		Number of mapped application objects in group 1B03	RO	NO	UINT8	-	-	0x0A
	01	1st application object	RO	NO	UINT32	-	-	0x603F0010
	02	2nd application object	RO	NO	UINT32	-	-	0x60410010
	03	3rd application object	RO	NO	UINT32	-	-	0x60640020
1B03	04	4th application object	RO	NO	UINT32	-	-	0x60770010
	05	5th application object	RO	NO	UINT32	-	-	0x60F40020
	06	6th application object	RO	NO	UINT32	-	-	0x60610008
	07	7th application object	RO	NO	UINT32	-	-	0x60B90010
	08	8th application object	RO	NO	UINT32	-	-	0x60BA0020
	09	9th application object	RO	NO	UINT32	-	-	0x60BC0020
-	0A	10th application object	RO	NO	UINT32	-	-	0x60FD0010

Index (hex)	Sub-index (hex)	Name	Accessibility	PDO Mapping	Data Type	Unit	Data Range	Default					
			Mapping	objects in	group 1B	04		1					
	00	Number of mapped application objects in group 1B04	RO	NO	UINT8	-	-	0x0A					
	01	1st application object	RO	NO	UINT32	-	-	0x603F0010					
	02	2nd application object	RO	NO	UINT32	-	-	0x60410010					
1004	03	3rd application object	RO	NO	UINT32	-	-	0x60640020					
1B04	04	4th application object	RO	NO	UINT32	-	-	0x60770010					
	05	5th application object	RO	NO	UINT32	-	-	0x60610008					
	06	6th application object	RO	NO	UINT32	-	-	0x60F40020					
	07	7th application object	RO	NO	UINT32	-	-	0x60B90010					
-	08	8th application object	RO	NO	UINT32	-	-	0x60BA0020					
	09	9th application object	RO	NO	UINT32	-	-	0x60BC0020					
		10th application object	RO	NO	UINT32	-	-	0x606C0020					
			Sync Mana	ger 2_RPD	O assignr	nent							
1C12	1 00	Number of assigned RPDOs	RW	NO	UINT8	-	0-0x01	0x01					
	01	1st PDO mapping object index of assigned RPDO	RW	YES	UINT16	-	0-0xFFFF	0x1701					
	Sync Manager 2_TPDO assignment												
1C13	00	Number of assigned TPDOs	RW	NO	UINT8	-	0-0x1	0x01					
	01	1st PDO mapping object index of assigned TPDO	RW	YES	UINT16	-	0-0xFFFF	0x1B01					
			Sync Manage	r 2 Synchro	onization	output							
		Number of synchronization parameters	RO	NO	UINT8	-	-	0x20					
	01	Synchronization type	RO	NO	UINT16	-	-	0x0002					
	02	Cycle Time	RO	NO	UINT32	ns	-	0					
1C32	04	Synchronization types supported	RO	NO	UINT16	-	-	0x0004					
	05	Minimum cycle time	RO	NO	UINT32	ns	-	0x0003D090					
·	06	Calculation and copy time	RO	NO	UINT32	ns	-	-					
	09	Delay time	RO	NO	UINT32	ns	-	-					
	20	Synchronization error	RO	NO	BOOL	-	-	-					

Index (hex)	Sub-index (hex)	Name	Accessibility	PDO Mapping	Data Type	Unit	Data Range	Default
			Sync Manage	er 2 Synchr	onizatior	n input		
	00	Number of synchroni- zation parameters	RO	NO	UINT8	-	-	0x20
	01	Synchronization type	RO	NO	UINT16		-	0x0002
	02	Cycle Time	RO	NO	UINT32	ns	-	0
1C33	04	Synchronization types supported	RO	NO	UINT16	-	-	0x0004
	05	Minimum cycle time	RO	NO	UINT32	ns	-	0x0003D090
	06	Calculation and copy time	RO	NO	UINT32	ns	-	-
	09	Delay time	RO	NO	UINT32	ns	-	-
	20	Synchronization error	RO	NO	BOOL	-	-	-

# Object Group 2000h

Para	ameter (	Group								
Hexad		Decimal		Ontine Description		Default	Min.	14/: - + -	Setting	Effective
Group	Index	Para.	Name	Option Description	Value Range	Default	unit	Width	Condition	Time
Gloup	Code	No.								
		1	I	2000h/H00 Servo m	otor parameters	S				
	01h	H00-00	Motor code	-	0–65535	14101	1	16 bits	At stop	Next power-on
	03h	H00-02	Customized software version	-	0-0xFFFFFFFF	0	1	32 bits	-	-
	05h	H00-04	Encoder version	-	0–65535	0	0.1	16 bits	-	-
2000	06h	H00-05	Serial encoder motor code	-	0–65535	0	1	16 bits	-	-
	07h	H00-06	FPGA customized No.	-	0–65535	0	1	16 bits	-	-
	08h	H00-07	STO version		0–65535	0	1	16 bits	-	-
	09h	H00-08	Serial encoder type	-	0–65535	0	1	16 bits	At stop	Next power-on
		1	1	2001h/H01: Servo d	rive parameters	5	1			
	01h	H01-00	MCU firmware version	-	0–65535	0	0.1	16 bits	-	-
	02h	H01-01	FPGA firmware version	-	0–65535	0	0.1	16 bits	-	-
2001	0Bh	H01-10	Servo series No.	2: 1R6 3: S2R8 5: S5R5 60005: S6R6 6: S7R6 7: S012 10001: T3R5 10002: T5R4 10003: T8R4 10004: T012 10005: T017 10006: T021 10007: T026	0–65535	3	1	16 bits	At stop	Next power-on
	0Ch	H01-11	Voltage class of the drive unit	-	0–65535	220	1 V	16 bits	-	-
	0Dh	H01-12	Rated power of the servo drive	-	0–1073741824	40	0.01 kW	32 bits	-	-
	0Fh	H01-14	Max. output power of the servo drive	-	0–1073741824	40	0.01 kW	32 bits	-	-
	11h	H01-16	Rated output current of the servo drive	-	0–1073741824	280	0.01 A	32 bits	-	-
	13h	H01-18	Max. output current of the servo drive	-	0–1073741824	1010	0.01 A	32 bits	-	-
	29h	H01-40	DC bus overvoltage protection threshold	-	0–2000	420	1 V	16 bits	-	-
		1		2002h/H02 Basic coi	ntrol parameter	S				
2002	01h	H02-00	Control mode	0: Speed mode 1: Position mode 2: Torque mode 9: EtherCAT mode	0–9	9	1	16 bits	At stop	Immedi- ately

Para	ameter (	Group								
		Decimal	Name	Option Description	Value Range	Default	Min.	Width	Setting	Effective
Group	Index Code	Para.	Nume	option Description	value nange	Denaut	unit	Width	Condition	Time
	02h	No.	Absolute system selection	0: Incremental mode 1: Absolute position linear mode 2: Absolute position rotation mode 3: Absolute position linear mode, no encoder overflow alarm 4: Absolute position single-turn mode	0-4	0	1	16 bits	At stop	Next power-on
	03h	H02-02	Rotation direction	0: CCW direction as the forward direction 1: CW direction as the forward direction	0-1	0	1	16 bits	At stop	Next power-on
2002	08h	H02-07	Stop mode upon overtravel	0: Coast to stop, keeping de-energized state 1: Stop at zero speed, keeping position lock state 2: Stop at zero speed, keeping de-energized state 3: Ramp to stop as defined by 6085h/609Ah, keeping de-energized state 4: Ramp to stop as defined by 6085h/609Ah, keeping position lock state 5: DB stop, keeping de-energized state 6: DB stop, keeping DB state 7: Not responding to overtravel, displaying the alarm only	0–7	1	1	16 bits	At stop	Immedi- ately
	09h	H02-08	Stop mode at No. 1 fault	0: Coast to stop, keeping de-energized state 1: DB Stop, keeping de-energized state 2: DB Stop, keeping DB state	0-2	2	1	16 bits	At stop	Immedi- ately
	0Ah	H02-09	Delay from brake output ON to command received	-	0–500	250	1 ms	16 bits	During running	Immedi- ately
	0Bh	H02-10	Delay from brake output OFF to motor de-energized	-	50-1000	150	1 ms	16 bits	During running	Immedi- ately
	0Ch	H02-11	Motor speed threshold at brake output OFF in the rotation status	-	20–3000	30	1 RPM	16 bits	During running	Immedi- ately

Para	meter (	Group								
Hexad		Decimal	Name	Option Description	Value Range	Default	Min.	Width	Setting	Effective
Group	Index	Para.	Name	option Description	value Range	Delault	unit	width	Condition	Time
oroup	Code	No.								
	0Dh	H02-12	Delay from S-ON OFF to brake output OFF in the rotation state	-	1–1000	500	1 ms	16 bits	During running	Immedi- ately
	10h	H02-15	Warning display on keypad	0: Output warning information immediately 1: Not output warning information	0-1	0	1	16 bits	During running	Immedi- ately
	11h	H02-16	Brake switch	0: Disable 1: Enable	0-1	1	1	16 bits	During running	Immedi- ately
	16h	H02-21	Permissible min. resistance of regenerative resistor	-	1-1000	40	1Ω	16 bits	-	-
	17h	H02-22	Power of built- in regenerative resistor	-	0–65535	0	1 W	16 bits	-	-
	18h	H02-23	Resistance of built-in regenerative resistor	-	0–65535	0	1Ω	16 bits	-	-
	19h	H02-24	Resistor heat dissipation coefficient	-	10-100	30	1%	16 bits	During running	Immedi- ately
2002	1Ah	H02-25	Regenerative resistor type	0: Built-in 1: External, naturally ventilated 2: External, forced air cooling 3: No regenerative resistor needed	0-3	3	1	16 bits	During running	Immedi- ately
	1Bh	H02-26	Power of external regenerative resistor	-	1-65535	40	1 kW	16 bits	During running	Immedi- ately
	1Ch	H02-27	Resistance of external regenerative resistor	-	1-1000	50	1Ω	16 bits	During running	Immedi- ately
	1Fh	H02-30	User password	-	0–65535	0	1	16 bits	During running	Immedi- ately
	20h	H02-31	System parameter initialization	0: No operation 1: Restore default settings 2: Clear fault records	0–2	0	1	16 bits	At stop	Immedi- ately
	21h	H02-32	Group H0B parameter selection	-	0–99	50	1	16 bits	During running	Immedi- ately
	24h	H02-35	Keypad data refresh rate	-	0–20	0	1 Hz	16 bits	During running	Immedi- ately
	2Ah	H02-41	Factory password	-	0–65535	0	1	16 bits	During running	Immedi- ately

Para	ameter (	Group								
	ecimal	Decimal					Min.		Setting	Effective
	Index	Para.	Name	Option Description	Value Range	Default	unit	Width	Condition	Time
Group	Code	No.								
		1		2003h/H03 Terminal	input paramete	rs			1	
	03h	H03-02	DI1 function selection	0: No definition 1: S-ON 2: Fault reset 14: Positive limit switch 15: Negative limit switch 31: Home switch 34: Emergency stop	0–65535	14	1	16 bits	During running	Immedi- ately
	04h	H03-03	DI1 logic soloction	<ul><li>38: Touch probe 1</li><li>39: Touch probe 2</li><li>0: Normally open</li></ul>	0-1	0	1	16 bits	During	Immedi-
		103.03		1: Normally closed			-	10 0113	running	ately
	05h	H03-04	DI2 function selection	H03-02 for details.	0–65535	15	1	16 bits	During running	Immedi- ately
	06h	H03-05	DI2 logic selection	0–1 See the description of H03-03 for details.	0-1	0	1	16 bits	During running	Immedi- ately
	07h	H03-06	DI3 function	0–39 See the description of H03-02 for details.	0–65535	31	1	16 bits	During running	Immedi- ately
2003	08h	H03-07	DI3 logic selection	0–1 See the description of H03-03 for details.	0-1	0	1	16 bits	During running	Immedi- ately
	09h	H03-08	DI4 function	0–39 See the description of H03-02 for details.	0–65535	39	1	16 bits	During running	Immedi- ately
	0Ah	H03-09	DI4 logic selection	0–1 See the description of H03-03 for details.	0-1	0	1	16 bits	During running	Immedi- ately
	0Bh	H03-10	DI5 function	0–39 See the description of H03-02 for details.	0–65535	38	1	16 bits	During running	Immedi- ately
	0Ch	H03-11	DI5 logic selection	0–1 See the description of H03-03 for details.	0-1	0	1	16 bits	During running	Immedi- ately
	3Dh	H03-60	DI1 filter time	-	0–50000	50	0.01 ms	16 bits	During running	Immedi- ately
	3Eh	H03-61	DI2 filter time	_	0–50000	50	0.01 ms	16 bits	During running	Immedi- ately
	3Fh	H03-62	DI3 filter time	-	0–50000	50	0.01 ms	16 bits	During running	Immedi- ately
	40h	H03-63	DI4 filter time	-	0–50000	50	0.01 ms	16 bits	During running	Immedi- ately
	41h	H03-64	DI5 filter time	-	0–50000	50	0.01 ms	16 bits	During running	Immedi- ately

Para	ameter	Group								
		Decimal	Norma	Ontion Description		Default	Min.	Width	Setting	Effective
Group	Index	Para.	Name	Option Description	Value Range	Default	unit	width	Condition	Time
Gloup	Code	No.								
		1	1	2004h/H04 Terminal C	Output Paramete	ers	1			
	01h	H04-00	DO1 function selection	0: No definition 1: Servo ready 2: Motor rotating 9: Brake output 10: Warning 11: Fault 25: Comparison output 32: STO EDM	0-32	1	1	16 bits	During running	Immedi- ately
	02h	H04-01		0: Normally open 1: Normally closed	0-1	0	1	16 bits	During running	Immedi- ately
2004	03h	H04-02	selection	0–32 See the description of H04-00 for details.	0-32	11	1	16 bits	During running	Immedi- ately
	04h	H04-03	DO2 logic selec-	0–1 See the description of H04-01 for details.	0-1	0	1	16 bits	During running	Immedi- ately
	05h	H04-04	DO3 function	0–32 See the description of H04-00 for details.	0-32	9	1	16 bits	During running	Immedi- ately
	06h	H04-05	DO3 logic selec- tion	0–1 See the description of H04-01 for details.	0-1	0	1	16 bits	During running	Immedi- ately
			1	2005h/H05 Position c	ontrol paramete	ers			1	
	05h	H05-04	First-order low- pass filter time constant	-	0–65535	0	0.1 ms	16 bits	At stop	Immedi- ately
	06h	H05-05	Average filter time constant 1	-	0–1280	0	0.1 ms	16 bits	At stop	Immedi- ately
	07h	H05-06	Average filter time constant 2	-	0-1280	0	0.1 ms	16 bits	At stop	Immedi- ately
	14h	H05-19	Speed feedforward control selection	0: No speed feedforward 1: Internal speed feedforward 2: 60B1 as speed feedforward 3: Zero phase control	0–3	1	1	16 bits	At stop	Immedi- ately
2005	24h	H05-35	Duration limit of homing	-	0–65535	50000	0.1s	16 bits	During running	Immedi- ately
	33h	H05-50	Numerator of the mechanical gear ratio in absolute position rotation mode	-	1–65535	1	1	16 bits	At stop	Immedi- ately
	34h	H05-51	Denominator of mechanical gear ratio in absolute position rotation mode	-	1–65535	1	1	16 bits	At stop	Immedi- ately
	35h	H05-52	Pulses per revolution of the load in absolute position rotation mode (low 32 bits)	-	0-4294967295	0	1p	32 bits	At stop	Immedi- ately

Para	ameter (	Group								
		Decimal	Name	Option Description	Value Bange	Default	Min.	Width	Setting	Effective
Group	Index Code	Para. No.	Name	Option Description	Value Range	Delault	unit	wiath	Condition	Time
2005	37h	H05-54	Pulses per revolution of the load in absolute position rotation mode (high 32 bits)	-	0-4294967295	0	lp	32 bits	At stop	Immedi- ately
				2006h/H06 Speed co	ntrol parameter	rs				
	04h	H06-03	Speed reference	-	-6000 to +6000	200	1 RPM	16 bits	During running	Immedi- ately
	06h	H06-05	Acceleration ramp time of speed reference	-	0–65535	0	1 RPM	16 bits	During running	Immedi- ately
	07h	H06-06	Deceleration ramp time of speed reference	-	0-65535	0	1 RPM	16 bits	During running	Immedi- ately
	09h	H06-08	Forward speed limit	-	0–6000	6000	1 RPM	16 bits	During running	Immedi- ately
	0Ah	H06-09	Reverse speed limit	-	0–6000	6000	1 RPM	16 bits	During running	Immedi- ately
	0Bh	H06-10	Deceleration unit under emergency stop	0: x 1 1: x 10 2: x 100	0-2	0	1	16 bits	At stop	Immedi- ately
2006	0Ch	H06-11	Torque feedforward control selection	0: No torque feedforward 1: Internal torque feedforward 2: 60B2 as external torque feedforward	0-2	1	1	16 bits	During running	Immedi- ately
	0Dh	H06-12	Jog speed acceleration ramp time	-	0–65535	10	1 ms	16 bits	During running	Immedi- ately
	0Eh	H06-13	Speed feedforward smoothing filter	-	0–2000	0	1	16 bits	During running	Immedi- ately
	11h	H06-16	Motor speed threshold	-	0-1000	20	1 RPM	16 bits	During running	Immedi- ately
	1Dh	H06-28	Spline torque compensation selection	0: Disable 1: Enable	0-1	1	1	16 bits	During running	Immedi- ately
			-	2007h/H07 Torque co	ontrol paramete	rs				
	04h	H07-03	Torque reference value set through keypad	-	-3000 to +3000	0	0.1%	16 bits	During running	Immedi- ately
	06h	H07-05	Torque reference filter time constant 1	-	0–3000	79	0.01 ms	16 bits	During running	Immedi- ately
2007	07h	H07-06	Torque reference filter time constant 2	-	0–3000	79	0.01 ms	16 bits	During running	Immedi- ately
2007	0Ah	H07-09	Forward internal torque limit	-	0–3000	3000	0.1%	16 bits	During running	Immedi- ately
	0Bh	H07-10	Reverse internal torque limit	-	0–3000	3000	0.1%	16 bits	During running	Immedi- ately
	10h	H07-15	Emergency stop torque	-	0–3000	1000	0.1%	16 bits	During running	Immedi- ately
	12h	H08-17	Zero phase delay	-	0–40	0	1 ms	16 bits	During running	Immedi- ately

Para	ameter	Group								
Hexad	ecimal	Decimal	Name	Option Description	Value Range	Default	Min.	Width	Setting	Effective
Group	Index Code	Para. No.	Nume	option beschption	value nange	Delaute	unit	Width	Condition	Time
	14h	H07-19	Forward internal speed limit in torque control	-	0–6000	3000	1 RPM	16 bits	During running	Immedi- ately
	15h	H07-20	Reverse internal speed limit in torque control	-	0–6000	3000	1 RPM	16 bits	During running	Immedi- ately
	16h	H07-21	Base value for torque arrival	-	0-3000	0	0.1%	16 bits	During running	Immedi- ately
2007	17h	H07-22	Torque output value when torque arrival DO signal turned on	-	0–3000	200	0.1%	16 bits	During running	Immedi- ately
	18h	H07-23	Torque output value when torque arrival DO signal turned off	-	0–3000	100	0.1%	16 bits	During running	Immedi- ately
	25h	H07-36	Time constant of low-pass filter 2	-	0-10000	0	0.01 ms	16 bits	During running	Immedi- ately
	26h	H07-37	rorque reference	0: First-order filter 1: Biquad filter	0-1	0	1	16 bits	During running	Immedi- ately
	27h	H07-38	Attenuation ratio of biquad filter	-	0–50	16	1	16 bits	At stop	Immedi- ately
				2008h/H08 Gair	parameters	-	-		-	
	01h	H08-00	Speed loop gain	-	1–20000	400	0.1	16 bits	During running	Immedi- ately
	02h	H08-01	Speed loop integral time constant	-	15-51200	1989	0.01 ms	16 bits	During running	Immedi- ately
	03h	H08-02	Position loop gain	-	1–20000	640	0.1 Hz	16 bits	During running	Immedi- ately
	04h	H08-03	2nd speed loop gain	-	1–20000	750	0.1 Hz	16 bits	During running	Immedi- ately
2008	05h	H08-04	2nd speed loop integral time constant	-	15-51200	1061	0.01 ms	16 bits	During running	Immedi- ately
	06h	H08-05	2nd position loop gain	-	1–20000	1200	0.1 Hz	16 bits	During running	Immedi- ately
	09h	H08-08	2nd gain mode setting	0: Fixed at the 1st gain, P/PI switchover through bit26 of 60FE 1: 1st/2nd gain switchover valid, with H08-09 as the switchover condition	0-1	1	1	16 bits	During running	Immedi- ately

Parameter Group										
		Decimal	Namo	Option Description	Value Range	Default	Min.	Width	Setting	Effective
Group	Index	Para.	Name		Value Range	Delault	unit	width	Condition	Time
2008	0Ah	No.	Gain switchover condition	0: Fixed at 1st gain (PS) 1: Switchover through bit26 of 60FE 2: Torque reference too large (PS) 3: Speed reference change ratio too large (PS) 5: Speed reference high/low-speed threshold (PS) 6: Position deviation too large (P) 7: Position reference available (P) 8: Positioning unfinished (P) 9: Actual speed (P) 10: Position reference existed + Actual speed (P)	0–10	0	1	16 bits	During running	Immedi- ately
	0Bh	H08-10	Gain switchover delay	-	0–10000	50	0.1 ms	16 bits	During running	Immedi- ately
	0Ch	H08-11	Gain switchover level	-	0–20000	50	1	16 bits	During running	Immedi- ately
	0Dh	H08-12	Gain switchover hysteresis	-	0–20000	30	1	16 bits	During running	Immedi- ately
	0Eh	H08-13	Position gain switchover time	-	0–10000	30	0.1 ms	16 bits	During running	Immedi- ately
	10h	H08-15	Load inertia ratio	-	0-12000	100	0.01	16 bits	During running	Immedi- ately
	12h	H08-17	Zero phase delay	-	0-40	0	1 ms	16 bits	During running	Immedi- ately
	13h	H08-18	Speed feedforward filter time constant	-	0–6400	50	0.01 ms	16 bits	During running	Immedi- ately
	14h	H08-19	Speed feedforward gain	-	0–1000	0	0.1%	16 bits	During running	Immedi- ately
	15h	H08-20	Torque feedforward filter time constant	-	0–6400	50	0.01 ms	16 bits	During running	Immedi- ately
	16h	H08-21	Torque feedforward gain	-	0–3000	0	0.1%	16 bits	During running	Immedi- ately
	17h	H08-22	Speed feedback filter option	0: Average filter on speed feedback inhibited 1: 2 times of average filter on speed feedback 2: 4 times of average filter on speed feedback 3: 8 times of average filter on speed feedback 4: 16 times of average filter on speed feedback		0	1	16 bits	At stop	Immedi- ately
	18h	H08-23	Cutoff frequency of low-pass filter of speed feedback		100-4000	4000	1 Hz	16 bits	During running	Immedi- ately
	19h	H08-24	PDFF control coefficient		0–1000	1000	0.1%	16 bits	During running	Immedi- ately

Parameter Group										
Hexadecimal Decimal		Decimal	Namo	Option Description	Value Pango	Default	Min.	Width	Setting	Effective
Group	Index Code	Para. No.	- Name	Option Description	Value Range	Delault	unit	wiath	Condition	Time
2008	1Ch	H08-27	Speed observer cutoff frequency	-	10–2000	170	1 Hz	16 bits	During running	Immedi- ately
	1Dh	H08-28	Speed observer inertia correction coefficient	-	10-10000	100	0.01%	16 bits	During running	Immedi- ately
	1Eh	H08-29	Speed observer filter time	-	2–2000	80	0.01 ms	16 bits	During running	Immedi- ately
	1Fh	H08-30	Disturbance compensation time	-	2-10000	20	0.01 ms	16 bits	During running	Immedi- ately
	20h	H08-31	Disturbance observation cutoff frequency	-	10-1700	600	1 Hz	16 bits	During running	Immedi- ately
	21h	H08-32	Disturbance compensation gain	-	0-100	0	1%	16 bits	During running	Immedi- ately
	22h	H08-33	Disturbance observer inertia correction coefficient	-	1-10000	100	0.01%	16 bits	During running	Immedi- ately
	29h	H08-40	opeca observer	0: Disabled 1: Enabled	0-1	0	1	16 bits	During running	Immedi- ately
	2Bh	H08-42	inoucl control	0: Disabled 1: Enabled	0-1	0	1	16 bits	During running	Immedi- ately
	2Ch	H08-43	Model gain	-	0–20000	400	0.1	16 bits	During running	Immedi- ately
	2Fh	H08-46	Feedforward value	-	0-1024	950	0.1	16 bits	During running	Immedi- ately
	36h	H08-53	Medium and low frequency jitter suppression frequency 3	-	0–300	0	0.1 Hz	16 bits	During running	Immedi- ately
	37h	H08-54	Medium- and low- frequency jitter suppression compensation 3	-	0–200	0	1%	16 bits	During running	Immedi- ately
	39h	H08-56	Medium- and low- frequency jitter suppression phase modulation 3	-	0-600	100	1%	16 bits	During running	Immedi- ately
	3Ch	H08-59	Medium- and low- frequency jitter suppression frequency 4	-	0–300	0	0.1 Hz	16 bits	During running	Immedi- ately
	3Dh	H08-60	Medium- and low- frequency jitter suppression compensate 4	-	0–200	0	1%	16 bits	During running	Immedi- ately
	3Eh	H08-61	Medium- and low- frequency jitter suppression phase modulation 4	-	0-600	100	1%	16 bits	During running	Immedi- ately
	3Fh	H08-62	Position loop integral time constant	-	15-51200	51200	0.01	16 bits	During running	Immedi- ately

Para	ameter	Group								
		Decimal	News	Option Desci il	) (aluse D	Defe	Min.	14/: -1-1	Setting	Effective
Group	Index	Para.	Name	Option Description	Value Range	Default	unit	Width	Condition	Time
Group	Code	No.								
2008	40h	H08-63	2nd position loop integral time constant	-	15–51200	51200	0.01	16 bits	During running	Immedi- ately
2000	41h	H08-64	Speed observation feedback source	0: Disable 1: Enable	0-1	0	1	16 bits	During running	Immedi- ately
		T	1	2009h/H09 Gain auto-	tuning paramet	ers	1	1		I
	01h	H09-00	Gain auto-tuning mode	0: Invalid, gain parameters adjusted manually 1: Standard gain auto-tuning mode 2: Positioning mode 3: Interpolation mode + Inertia auto-tuning 4: Normal mode + Inertia auto-tuning 6: Quick positioning mode + Inertia	0-7	0	1	16 bits	During running	Immedi- ately
	02h	H09-01	Stiffness level selection	auto-tuning -	0-41	15	1	16 bits	During running	Immedi- ately
2009	03h	H09-02	Adaptive notch mode selection	0: Adaptive notch no longer updated 1: One adaptive notch activated (3rd notch) 2: Two adaptive notches activated (3rd and 4th notches) 3: Resonance point tested only, displayed in H09-24 4: Adaptive notch cleared, values of the 3rd and 4th notches restored to default settings	0-4	0	1	16 bits	During running	Immedi- ately
	04h	H09-03	Online inertia auto-tuning mode	0: Online auto-tuning turned off 1: Online auto-tuning turned on, changing slowly	0–3	0	1	16 bits	During running	Immedi- ately
	06h	H09-05	Offline inertia auto-tuning mode	0: Bidirectional 1: Unidirectional	0-1	0	1	16 bits	At stop	Immedi- ately
	07h	H09-06	Maximum speed of inertia auto-tuning	-	100-1000	500	1 RPM	16 bits	At stop	Immedi- ately
	08h	H09-07	Time constant for accelerating to the maximum speed during inertia auto-tuning	-	20-800	125	1 ms	16 bits	At stop	Immedi- ately

	ameter ( ecimal	∍roup Decimal					Min.		Setting	Effective
Group	Index Code	Para. No.	Name	Option Description	Value Range	Default	unit	Width	Condition	Time
	09h	H09-08	Inertia auto-tuning interval	-	50-10000	800	1 ms	16 bits	At stop	Immedi- ately
	0Ah	H09-09	Number of motor revolutions per inertia auto-tuning	-	0–65535	0	0.01	16 bits	-	-
	0Ch	H09-11	Vibration threshold		0-1000	0	0.1%	16 bits	During running	Immedi- ately
	0Dh	H09-12	1st notch frequency	-	50-4000	4000	1 Hz	16 bits	During running	Immedi- ately
	0Eh	H09-13	Width level of the 1st notch	-	0–20	2	1	16 bits	During running	Immedi- ately
	0Fh	H09-14	Depth level of the 1st notch	-	0–99	0	1	16 bits	During running	Immedi- ately
	10h	H09-15	2nd notch frequency	-	50–4000	4000	1 Hz	16 bits	During running	Immedi- ately
	11h	H09-16	Width level of the 2nd notch	-	0–20	2	1	16 bits	During running	Immedi- ately
	12h	H09-17	Depth level of the 2nd notch	-	0–99	0	1	16 bits	During running	Immedi- ately
	13h	H09-18	3rd notch frequency	-	50-4000	4000	1 Hz	16 bits	During running	Immedi- ately
	14h	H09-19	Width level of the 3rd notch	-	0–20	2	1	16 bits	During running	Immedi- ately
	15h	H09-20	Depth level of the 3rd notch	-	0–99	0	1	16 bits	During running	Immedi- ately
2009	16h	H09-21	4th notch frequency	-	50–4000	4000	1 Hz	16 bits	During running	Immedi- ately
	17h	H09-22	Width level of the 4th notch	-	0–20	2	1	16 bits	During running	Immedi- ately
	18h	H09-23	Depth level of the 4th notch	-	0–99	0	1	16 bits	During running	Immedi- ately
	19h	H09-24	Auto-tuned resonance frequency	-	0–2000	0	1 Hz	16 bits	-	-
	21h	H09-32	Gravity compensation	-	-1000 to +1000	0	0.1%	16 bits	During running	Immedi- ately
	22h	H09-33	Forward friction compensation	-	-1000 to +1000	0	0.1%	16 bits	During running	Immedi- ately
	23h	H09-34	Reverse friction compensation	-	-1000 to +1000	0	0.1%	16 bits	During running	Immedi- ately
	24h	H09-35	Friction compensation speed	-	10-300	20	0.1	16 bits	During running	Immedi- ately
	25h	H09-36	Friction compensation speed selection	0x00: Slow mode + Speed reference 0x01: Slow mode + Model speed 0x02: Slow mode + Speed feedback 0x10: Quick mode + Speed reference 0x11: Quick mode + Model speed 0x12: Quick mode + Speed feedback	0-0x12	0	1	16 bits	During running	Immedi- ately

Para	ameter	Group								
Hexad	ecimal	Decimal	Name	Option Description	Value Range	Default	Min.	Width	Setting	Effective
Group	Index Code	Para. No.					unit		Condition	Time
	26h	H09-37	Vibration monitoring time	-	0–65535	1200	1	16	During running	Immedi- ately
	27h	H09-38	Low-frequency resonance suppression frequency 1 at the mechanical end	-	1-1000	1000	0.1 Hz	16 bits	During running	Immedi- ately
	28h	H09-39	Low-frequency resonance suppression 1 at the mechanical end	-	0–3	2	1	16 bits	At stop	Immedi- ately
	2Ah	H09-41	5th notch frequency	-	50-8000	5000	1 Hz	16 bits	During running	Immedi- ately
	2Bh	H09-42	Width level of the 5th notch	-	0–20	2	1	16 bits	At stop	Immedi- ately
	2Ch	H09-43	Depth level of the 5th notch	-	0–99	0	1	16 bits	At stop	Immedi- ately
	2Dh	H09-44	Low-frequency resonance suppression frequency 2 at the mechanical end	-	0–2000	0	0.01	16 bits	During running	Immedi- ately
2009	2Eh	H09-45	Low-frequency resonance suppression response 2 at the mechanical end	-	1–1000	100	0.01	16 bits	During running	Immedi- ately
	30h	H09-47	Low-frequency resonance suppression width 2 at the mechanical end	-	0–200	100	0.01	16 bits	During running	Immedi- ately
	32h	H09-49	Low-frequency resonance suppression frequency 3 at the mechanical end	-	0–2000	0	0.01	16 bits	During running	Immedi- ately
	33h	H09-50	Low-frequency resonance suppression response 3 at the mechanical end	-	1-1000	100	0.01	16 bits	During running	Immedi- ately
	35h	H09-52	Low-frequency resonance suppression width 3 at the mechanical end	-	0–200	100	0.01	16 bits	During running	Immedi- ately
			· · · · · · · · · · · · · · · · · · ·	200Ah/H0A Fault and Pr	otection Param	eters				
200A	01h	H0A-00	Power input phase loss protection	0: Enable 1: Hide Note: In common-bus connection mode, set 200A-01h to 1. Otherwise, the servo drive cannot enter "rdy" state after power-on.	0-1	0	1	16 bits	During running	Immedi- ately

Para	ameter (	Group								
	ecimal	Decimal	Name	Option Description	Value Range	Default	Min.	Width	Setting	Effective
Group	Index Code	Para. No.	Name	Option Description	value kange	Delault	unit	wiath	Condition	Time
	02h	H0A-01	Absolute position limit selection	0: Disable 1: Enable 2: Enabled after homing	0-2	0	1	16 bits	At stop	Immedi- ately
	05h	H0A-04	Motor overload protection gain	-	50–300	100	1	16 bits	At stop	Immedi- ately
	09h	H0A-08	Overspeed threshold	-	0–10000	0	1 RPM	16 bits	During running	Immedi- ately
	0Dh	H0A-12	Runaway protection	0: Disable 1: Enable	0-1	1	1	16 bits	During running	Immedi- ately
	13h	H0A-18	IGBT over- temperature threshold	-	100–175	120	1°C	16 bits	During running	Immedi- ately
	14h	H0A-19	Probe 1 filter time constant	-	0–630	200	0.01 µs	16 bits	During running	Immedi- ately
	15h	H0A-20	Probe 2 filter time constant	-	0–630	200	0.01 µs	16 bits	During running	Immedi- ately
	18h	H0A-23	TZ signal filter time	-	0-31	15	125 ns	16 bits	At stop	Next pow- er-on
	1Ah	H0A-25	Filter time constant of speed feedback display value	-	0–5000	50	1 ms	16 bits	At stop	Immedi- ately
	1Bh	H0A-26	Motor overload selection	0: Not hide motor overload warning 1: Hide motor overload warning (E909.0) and fault (E620.0)	0-1	0	1	16 bits	At stop	Immedi- ately
200A	1Ch	H0A-27	Speed DO filter time constant	-	0–5000	50	1 ms	16 bits	During running	Immedi- ately
	21h	H0A-32	Time threshold for locked rotor over-temperature protection	-	10-65535	200	1 ms	16 bits	During running	Immedi- ately
	22h	H0A-33	Locked rotor over-temperature protection	0: Hide 1: Enable	0-1	1	1	16 bits	During running	Immedi- ately
	25h	H0A-36	Encoder multi- turn overflow fault	0: Not hide 1: Hide	0-1	0	1	16 bits	During running	Immedi- ately
	29h	H0A-40	Overtravel compensation switch	0: Compensation activated 1: Compensation inhibited	0-1	0	1	16 bits	At stop	Immedi- ately
	32h	H0A-49	Regenerative resistor over-temperature threshold	-	100-175	115	1°C	16 bits	During running	Immedi- ately
	33h	H0A-50	Encoder communication fault tolerance threshold	-	0-31	3	1	16 bits	During running	Immedi- ately
	34h	H0A-51	Phase loss detection filter times	-	3–36	20	55 ms	16 bits	During running	Immedi- ately
	35h	H0A-52	Encoder over-temperature threshold	-	0–150	0	1°C	16 bits	During running	Immedi- ately

Para	ameter (	Group								
	ecimal	Decimal					Min.		Setting	Effective
	Index	Para.	Name	Option Description	Value Range	Default	unit	Width	Condition	Time
Group	Code	No.								
	38h	H0A-55	Runaway current threshold	-	1000-4000	2000	0.1%	16 bits	During running	Immedi- ately
	3Ah	H0A-57	Runaway speed threshold	-	1-1000	50	1 RPM	16 bits	During running	Immedi- ately
200A	3Bh	H0A-58	Runaway speed filter time	-	1–1000	20	0.1 ms	16 bits	During running	Next pow- er-on
	3Ch	H0A-59	Runaway protection detection time	-	10-1000	30	1 ms	16 bits	During running	Immedi- ately
	I	1	11	200Bh/H0B Monito	ring parameters	1	1			
	01h	H0B-00	Speed feedback	-	-32767 to +32767	0	1 RPM	16 bits	-	-
	02h	H0B-01	Speed reference	-	-32767 to +32767	0	1 RPM	16 bits	-	-
	03h	H0B-02	Internal torque reference	-	-3000 to +3000	0	0.1%	16 bits	-	-
	04h	H0B-03	Monitored DI status	-	0-0x00FFFFFF	0	1	32 bits	-	-
	06h	H0B-05	Monitored DO status	-	0-0xFFFF	0	1	16 bits	-	-
	08h	H0B-07	Absolute position counter	-	-2147483648 to +2147483647	-	1p	32 bits	-	-
	0Ah		Mechanical angle	-	0–3600	0	0.1°	16 bits	-	-
	0Bh		Electrical angle	-	0–3600	0	0.1°	16 bits	-	-
	0Dh	H0B-12	Average load ratio	-	0–65535	0	0.1%	16 bits	-	-
	10h	H0B-15	Position following deviation (encoder unit)	-	-2147483648 to +2147483647	0	1p	32 bits	-	-
	12h	H0B-17	Feedback pulse counter	-	-2147483648 to +2147483647	0	1p	32 bits	-	-
200B	14h	H0B-19	Accumulative power-on time	-	0-4294967295	0	0.1s	32 bits	-	-
	19h	H0B-24	RMS value of phase current	-	0–65535	0	0.01 A	32 bits	-	-
	1Bh	H0B-26	Bus voltage	-	0–65535	0	0.1 V	16 bits	-	-
	1Ch	H0B-27	Power module temperature	-	0–65535	0	1°C	16 bits	-	-
	1Dh	H0B-28	Absolute encoder fault information given by FPGA	-	0–0xFFFF	0	1	16 bits	-	-
	1Eh	H0B-29	Axis status information given by FPGA	-	0-0xFFFF	0	1	16 bits	-	-
	1Fh	H0B-30	Axis fault information given by FPGA	-	0–0xFFFF	0	1	16 bits	-	-
	20h	H0B-31	Encoder fault information	-	0-0xFFFF	0	1	16 bits	-	-
	22h	H0B-33	Fault log	-	0–9	0	1	16 bits	During running	Immedi- ately
	23h	H0B-34	Fault code of the selected fault record	-	0-0xFFFF	0	1	16 bits	-	-

Para	meter (	Group								
Hexad	ecimal	Decimal	Name	Option Description	Value Range	Default	Min.	Width	Setting	Effective
Group	Index Code	Para. No.		- p			unit		Condition	Time
	24h	H0B-35	Time stamp upon occurrence of the selected fault	-	0-4294967295	0	0.1s	32 bits	-	-
	26h	H0B-37	Motor speed upon occurrence of the selected fault	-	-9999 to +9999	0	1 RPM	16 bits	-	-
	27h	H0B-38	Motor phase U current upon occurrence of the selected fault	-	-32768 to +32767	0	0.01 A	16 bits	-	-
	28h	H0B-39	Motor phase V current upon occurrence of the selected fault	-	-32768 to +32767	0	0.01 A	16 bits	-	-
	29h	H0B-40	Bus voltage upon occurrence of the selected fault	-	0–65535	0	0.1 V	16 bits	-	-
	2Ah	H0B-41	Input terminal state upon occurrence of the selected fault	-	0-0x00FFFFFF	0	1	32 bits	-	-
	2Ch	H0B-43	Output terminal state upon occurrence of the selected fault	-	0-0xFFFF	0	1	16 bits	-	-
	2Eh	H0B-45	Internal fault code	-	0-0xFFFF	0	1	16 bits	-	-
200B	2Fh	H0B-46	Absolute encoder fault information given by FPGA upon occurrence of the selected fault	-	0-0xFFFF	0	1	16 bits	-	-
	30h	H0B-47	System state information given by FPGA upon occurrence of the selected fault	-	0-0xFFFF	0	1	16 bits	-	-
	31h	H0B-48	System fault information given by FPGA upon occurrence of the selected fault	-	0-0xFFFF	0	1	16 bits	-	-
	32h	H0B-49	Encoder fault information upon occurrence of the selected fault	-	0-0xFFFF	0	1	16 bits	-	-
	34h	H0B-51	Internal fault code upon occurrence of the selected fault	-	0-0xFFFF	0	1	16 bits	-	-
	36h	H0B-53	Position following deviation (reference unit)	-	-2147483648 to +2147483647	0	1p	32 bits	-	-
	38h	H0B-55	Actual motor speed	-	-60000 to +60000	0	0.1 RPM	32 bits	-	-
	3Ah	H0B-57	Bus voltage of control circuit	-	0-65535	0	0.1 V	16 bits	-	-
	3Bh	H0B-58	Mechanical absolute position (low 32 bits)	-	0-4294967295	0	1p	32 bits	-	-

Para	meter (	Group								
	ecimal	Decimal					Min.		Setting	Effective
-	Index	Para.	Name	Option Description	Value Range	Default	unit	Width	Condition	Time
Group	Code	No.								
	3Dh	H0B-60	Mechanical absolute position (high 32 bits)	-	-2147483648 to +2147483647	0	1p	32 bits	-	-
	40h	H0B-63		0: None 1: Abnormal control power 2: Abnormal phase loss detection 3: Abnormal main circuit power detection	0-4	0	1	16 bits	-	-
	43h	H0B-66	Encoder temperature	-	-100 to +200	0	1°C	16 bits	-	-
	44h	H0B-67	Regenerative resistor load ratio	-	0–2000	0	0.1%	16 bits	-	-
	47h	H0B-70	Number of absolute encoder revolutions	-	0–65535	0	1	16 bits	-	-
	48h	H0B-71	Position of the absolute encoder within one turn	-	0-2147483647	0	1p	32 bits	-	-
200B	4Eh	H0B-77	Encoder position (low 32 bits)	-	0-4294967295		1p	32 bits	-	-
	50h	H0B-79	Encoder position (high 32 bits)	-	-2147483648 to +2147483647	0	1p	32 bits	-	-
	52h	H0B-81	Single-turn position of the rotating load (low 32 bits)	-	0-4294967295	0	1p	32 bits	-	-
	54h	H0B-83	Single-turn position of the rotating load (high 32 bits)	-	-2147483648 to +2147483647	0	1p	32 bits	-	-
	56h	H0B-85	Single-turn position of the rotating load (reference unit)	-	-2147483648 to +2147483647	0	1p	32 bits	-	-
	5Bh	H0B-90	Group No. of the abnormal parameter	-	0-0xFFFF	0	1	16 bits	-	-
	5Ch	H0B-91	Offset within the group of the abnormal parameter	-	0–65535	0	1	16 bits	-	-
				200Dh/H0D Auxiliary fu	unction parame	ters				
	01h	H0D-00	Software reset	0: No operation 1: Enable	0-1	0	1	16 bits	At stop	Immedi- ately
	02h	H0D-01	Fault reset	0: No operation 1: Enable	0-1	0	1	16 bits	At stop	Immedi- ately
	04h	H0D-03	Encoder initial angle auto-tuning	0: No operation 1: Enable	0-1	0	1	16 bits	At stop	Immedi- ately
200D	05h	H0D-04		0: No operation 1: Write ROM 2: Read ROM	0–2	0	1	16 bits	At stop	Immedi- ately
	06h	H0D-05	Emergency stop	0: No operation 1: Emergency stop	0-1	0	1	16 bits	During running	Immedi- ately
	0Ch	H0D-12	UV phase current balance correction	0: Disable 1: Enable	0-1	0	1	16 bits	During running	Immedi- ately

Para	ameter (	Group								
	ecimal	Decimal	Name	Option Description	Value Range	Default	Min.	Width	Setting	Effective
Group	Index	Para.	Name	option Description	Value Nalige	Delaute	unit	Width	Condition	Time
	Code	No.		0: No operation						
	12h	H0D-17	Forced DI/DO selection switch	1: Forced DI enabled, forced DO disabled 2: Forced DI disabled, forced DO enabled 3: Forced DI and DO enabled 4: EtherCAT forced DO enabled	0-4	0	1	16 bits	During running	Immedi- ately
200D	13h	H0D-18	Forced DI setting value	-	0x00-0x1F	0	1	16 bits	During running	Immedi- ately
	14h	H0D-19	Forced DO setting value	-	0x00-0x07	0	1	16 bits	During running	Immedi- ately
	15h	H0D-20	Absolute encoder reset selection	0: No operation 1: Reset the encoder fault 2: Reset the encoder fault and multi-turn data	0-2	0	1	16 bits	At stop	Immedi- ately
		r T	1	200Eh/H0E Auxiliary fu	inction paramet	ters	1	1		
	01h	H0E-00	Node address	-	0–127	1	1	16 bits	During running	Immedi- ately
200E	02h	H0E-01	Save objects written through communication to EEPROM	0: Not save parameters and object dictionaries written through communication to EEPROM 1: Save parameters written through communication to EEPROM 2: Save object dictio- naries written through communication to EEPROM 3: Save parameters and object dictionaries written through communication to EEPROM	0-3	3	1	16 bits	During running	Immedi- ately
	15h	H0E-20	EtherCAT slave name	-	0–65535	0	1	16 bits	-	-
	16h	H0E-21	EtherCAT slave alias	-	0–65535	0	1	16 bits	At stop	Immedi- ately
	17h	H0E-22	Number of synchronization interrupts allowed by EtherCAT	-	1–20	9	1	16 bits	During running	Immedi- ately
	19h	H0E-24	Synchronization loss count	-	0–65535	0	1	16 bits	-	-
	1Ah	H0E-25	Maximum value of invalid frames and errors of EtherCAT port 0 per unit time	-	0-0xFFFF	0	1	16 bits	-	-

Para	meter (	Group								
	ecimal	Decimal	Nama	Ontion Description	Value Dange	Default	Min.	Width	Setting	Effective
Group	Index	Para.	Name	Option Description	Value Range	Default	unit	Width	Condition	Time
Group	Code	No.								
	1Bh	H0E-26	Maximum value of invalid frames and errors of EtherCAT port 1 per unit time	-	0-0xFFFF	0	1	16 bits	-	-
	1Ch	H0E-27	Maximum value of transfer errors of EtherCAT port per unit time	-	0-0xFFFF	0	1	16 bits	-	-
	1Dh	H0E-28	Maximum value of EtherCAT data frame processing unit errors per unit time	-	0–0x0255	0	1	16 bits	-	-
	1Eh	H0E-29	Maximum value of link loss of EtherCAT port 0 per unit time	-	0-0xFFFF	0	1	16 bits	-	-
	20h	H0E-31	EtherCAT synchronization mode setting	-	0–2	1	1	16 bits	At stop	Next power-on
	21h	H0E-32	EtherCAT synchronization error threshold	-	100-4000	3000	1 µs	16 bits	At stop	Immedi- ately
	22h	H0E-33	Connection state between EtherCAT state machine and the port	-	0-65535	0	1	16 bits	-	-
200E	23h	H0E-34	Excessive CSP position reference increment count	-	0–7	1	1	16 bits	During running	Immedi- ately
	25h	H0E-36	lenhanced link	0: Disable 1: Enable	0-1	0	1	16 bits	During running	Next power-on
	26h	H0E-37		0: Disable 1: Enable	0-1	0	1	16 bits	During running	Next power-on
	51h	H0E-80	Modbus baud rate	0: 300 bps 1: 600 bps 2: 1200 bps 3: 2400 bps 4: 4800 bps 5: 9600 bps 6: 19200 bps 7: 38400 bps 8: 57600 bps 9: 115200 bps	0–9	9	1	16 bits	During running	Immedi- ately
	52h	H0E-81	Modbus data format	0: No parity, 2 stop bits (8-N-2) 1: Even parity, 1 stop bit (8-E-1) 2: Odd parity, 1 stop bit (8-O-1) 3: No parity, 1 stop bit (8-N-1)	0-3	3	1	16 bits	During running	Immedi- ately
	53h	H0E-82	Modbus response delay	-	0–20	0	1 ms	16 bits	During running	Immedi- ately

Para	ameter (	Group								
Hexad	ecimal	Decimal	Name	Option Description	Value Range	Default	Min.	Width	Setting	Effective
Group	Index	Para.	Name	option Description	value Range	Delaute	unit	Width	Condition	Time
Group	Code	No.								
	54h		Modbus communication timeout	-	0–600	0	1 ms	16 bits	During running	Immedi- ately
200E	5Bh	H0E-90	Modbus version No.	-	0–65535	0	0.01	16 bits	-	-
	5Eh	H0E-93	EtherCAT CoE version No.	-	0–65535	0	0.01	16 bits	-	-
	61h	H0E-96	XML version No.	-	0–65535	0	0.01	16 bits	-	-

# Object Group 6000h

The object group 6000h contains objects supported and related to sub-protocol DSP 402.

Index (hex)	Sub- index (hex)	Name	Accessibility	PDO Mapping	Data Type	Unit	Data Range	Default	Setting Condition	Effective Time
603F	00	Error code	RO	TPDO	UINT16	-	-	-	-	-
6040	00	Control word	RW	RPDO	UINT16	-	0-0xFFFF	0	During running	Immedi- ately
6041	00	Status word	RO	TPDO	UINT16	-	-	-	-	-
605A	00	Quick stop option code	RW	NO	INT16	-	0-0x07	0x02	During running	At stop
605C	00	Disable operation option code	RW	NO	INT16	-	0xFFFD-0x01	0	During running	At stop
605D	00	Stop option code	RW	NO	INT16	-	0x01-0x03	0x01	During running	At stop
605E	00	Fault reaction option code	RW	NO	INT16	-	0xFFFB-0x03	0x02	During running	At stop
6060	00	Modes of operation	RW	RPDO	INT8	-	0-0x0A	0	During running	Immedi- ately
6061	00	Modes of operation display	RO	TPDO	INT8	-	-	-	-	-
6062	00	Position demand value	RO	TPDO	INT32	Reference unit	-	-	-	-
6063	00	Position actual value	RO	TPDO	INT32	Encoder unit	-	-	-	-
6064	00	Position actual value	RO	TPDO	INT32	Reference unit	-	-	-	-
6065	00	Following error window	RW	RPDO	UINT32	Reference unit	0-0xFFFFFFFF	0x00300000	During running	Immedi- ately
6066	00	Following error time out	RW	RPDO	UINT32	ms	0-0xFFFF	0	During running	Immedi- ately
6067	00	Position window	RW	RPDO	UINT32	Reference unit	0-0xFFFFFFFF	0x000002DE	During running	Immedi- ately
6068	00	Position window time	RW	RPDO	UINT16	ms	0-0xFFFF	0	During running	Immedi- ately
606C	00	Velocity actual value	RO	TPDO	INT32	Reference unit/s	-	-	-	-
606D	00	Velocity window	RW	RPDO	UINT16	RPM	0-0xFFFF	0x0A	During running	Immedi- ately

Index (hex)	Sub- index (hex)	Name	Accessibility	PDO Mapping	Data Type	Unit	Data Range	Default	Setting Condition	Effective Time
606E	00	Velocity window time	RW	RPDO	UINT16	ms	0–0xFFFF	0	During running	Immedi- ately
606F	00	Velocity threshold	RW	RPDO	UINT16	RPM	0-0xFFFF	0x0A	During running	Immedi- ately
6070	00	Velocity threshold time	RW	RPDO	UINT16	ms	0-0xFFFF	0	During running	Immedi- ately
6071	00	Target torque	RW	RPDO	INT16	0.1%	0xF448– 0x0BB8	0	During running	Immedi- ately
6072	00	Max torque	RW	RPDO	UINT16	0.1%	0-0x0BB8	0x0BB8	During running	Immedi- ately
6074	00	Torque demand value	RO	TPDO	INT16	0.1%	-	0	-	-
6077	00	Torque actual value	RO	TPDO	INT16	0.1%	-	0	-	-
607A	00	Target position	RW	RPDO	INT32	Reference unit	0x80000000- 0x7FFFFFFF	0	During running	Immedi- ately
607C	00	Home offset	RW	RPDO	INT32	Reference unit	0x80000000- 0x7FFFFFFF	0	During running	Immedi- ately
			Softwa	re absolu	te positic	n limit		1		
	00	Highest sub-index supported		NO	UINT8	-	-	0x02	-	-
607D	01	Min position limit	RW	RPDO	INT32	Reference unit	0x80000000- 0x7FFFFFFF	0x80000000	During running	Immedi- ately
	02	Max position limit	RW	RPDO	INT32	Reference unit	0x80000000- 0x7FFFFFFF	0x7FFFFFFF	During running	Immedi- ately
607E	00	Polarity	RW	RPDO	UINT8	-	0-0xFF	0	During running	Immedi- ately
607F	00	Max profile velocity	RW	RPDO	UINT32	Reference unit/s	0-0xFFFFFFFF	0x06400000	During running	Immedi- ately
6081	00	Profile velocity	RW	RPDO	UINT32	User speed unit	0-0xFFFFFFFF	0x001AAAAB	During running	Immedi- ately
6083	00	Profile acceleration	RW	RPDO	UINT32	Reference unit/s ²	0-0xFFFFFFFF	0x0A6AAAAA	During running	Immedi- ately
6084	00	Profile deceleration	RW	RPDO	UINT32	Reference unit/s ²	0-0xFFFFFFFF	0x0A6AAAAA	During running	Immedi- ately
6085	00	Quick stop deceleration	RW	RPDO	UINT32	User ac- celeration unit	0-0xFFFFFFFF	0x7FFFFFFF	During running	Immedi- ately
6086	00	Motion profile type	RW	RPDO	INT16	-	0x8000- 0x7FFF	0	During running	Immedi- ately
6087	00	Torque slope	RW	RPDO	UINT32	0.1%/s	0-0xFFFFFFFF	0xFFFFFFFF	During running	Immedi- ately
					Gea	r ratio				
	00	Highest sub-index supported	RO	NO	UINT8	Uint8	-	0x02	-	-
6091	01	Motor revolutions	RW	RPDO	UINT32	-	0-0xFFFFFFFF	1	During running	Immedi- ately
	02	Shaft revolutions	RW	RPDO	UINT32	-	1-0xFFFFFFFF	1	During running	Immedi- ately
6098	00	Homing method	RW	RPDO	INT8	-	-2 to 35	0x01	During running	Immedi- ately

Index (hex)	Sub- index (hex)	Name	Accessibility	PDO Mapping	Data Type	Unit	Data Range	Default	Setting Condition	Effective Time
					Homir	ng speed				
c000	00	Highest sub-index supported	RO	NO	UINT8	-	-	0x02	-	-
6099	01	Speed during search for switch	RW	RPDO	UINT32	Reference unit/s	0-0xFFFFFFFF	0x001AAAAB	During running	Immedi- ately
	02	Speed during search for zero	RW	RPDO	UINT32	Reference unit/s	0– 0xFFFFFFFF	0x0002AAAB	During running	Immedi- ately
609A	00	Homing acceleration	RW	RPDO	UINT32	Reference unit/s ²	0-0xFFFFFFFF	0x0A6AAAAA	During running	Immedi- ately
60B0h	00	Position offset	RW	RPDO	INT32	Reference unit	0x80000000- 0x7FFFFFFF	0	During running	Immedi- ately
60B1h	00	Velocity offset	RW	RPDO	INT32	Reference unit/s	0x80000000- 0x7FFFFFFF	0	During running	Immedi- ately
60B2h	00	Torque offset	RW	RPDO	INT16	0.1%	0xF448- 0x0BB8	0	During running	Immedi- ately
60B8h	00	Touch probe function	RW	RPDO	UINT16	-	0-0xFFFF	0	During running	Immedi- ately
60B9h	00	Touch probe status	RW	TPDO	UINT16	-	-	0	-	-
60BAh	00	Touch probe 1 positive edge	RW	TPDO	INT32	Reference unit	-	0	-	-
60BBh	00	Touch probe 1 negative edge	RW	TPDO	INT32	Reference unit	-	0	-	-
60BCh	00	Touch probe 2 positive edge	RW	TPDO	INT32	Reference unit	-	0	-	-
60BDh	00	Touch probe 1 negative edge	RW	TPDO	INT32	Reference unit	-	0	-	-
60C5h	0	Max acceleration	RW	RPDO	UINT32	User ac- celeration unit	0-0xFFFFFFFF	0xFFFFFFFF	During running	Immedi- ately
60C6h	0	Max deceleration	RW	RPDO	UINT32	User ac- celeration unit	0-0xFFFFFFFF	0xFFFFFFFF	During running	Immedi- ately
60D5h	0x00	Touch probe 1 pos- itive edge counter	RO	TPDO	UINT16	-	-	0	-	-
60D6h	0x00	Touch probe 1 negative edge counter	RO	TPDO	UINT16	-	-	0	-	-
60D7h	0x00	Touch probe 2 positive edge counter	RO	TPDO	UINT16	-	-	0	-	-
60D8h	0x00	Touch probe 2 negative edge counter	RO	TPDO	UINT16	-	-	0	-	-
60E0h	00	Positive torque limit value	RW	RPDO	UINT16	0.1%	0-0x0BB8	0x0BB8	-	Immedi- ately
60E1h	00	Negative torque limit value	RW	RPDO	UINT16	0.1%	0-0x0BB8	0x0BB8	-	Immedi- ately

Index (hex)	Sub- index (hex)	Name	Accessibility	PDO Mapping	Data Type	Unit	Data Range	Default	Setting Condition	Effective Time
				Supporte	d Homin	g Methods				
	00	Highest sub-index supported	RO	NO	UINT8	-	-	0x1F	-	-
	01	1st supported homing method	RO	NO	UINT16	-	-	0x0301	-	-
	02	2nd supported homing method	RO	NO	UINT16	-	-	0x0302	-	-
	03	3rd supported homing method	RO	NO	UINT16	-	-	0x0303	-	-
	04	4th supported homing method	RO	NO	UINT16	-	-	0x0304	-	-
	05	5th supported homing method	RO	NO	UINT16	-	-	0x0305	-	-
	06	6th supported homing method	RO	NO	UINT16	-	-	0x0306	-	-
	07	7th supported homing method	RO	NO	UINT16	-	-	0x0307	-	-
	08	8th supported homing method	RO	NO	UINT16	-	-	0x0308	-	-
	09	9th supported homing method	RO	NO	UINT16	-	-	0x0309	-	-
	0A	10th supported homing method	RO	NO	UINT16	-	-	0x030A	-	-
60E3h	0B	11th supported homing method	RO	NO	UINT16	-	-	0x030B	-	-
002311	0C	12th supported homing method	RO	NO	UINT16	-	-	0x030C	-	-
	0D	13th supported homing method	RO	NO	UINT16	-	-	0x030D	-	-
	0E	14th supported homing method	RO	NO	UINT16	-	-	0x030E	-	-
	0F	15th supported homing method	RO	NO	UINT16	-	-	0x030Fh	-	-
	10	16th supported homing method	RO	NO	UINT16	-	-	0x0310	-	-
	11	17th supported homing method	RO	NO	UINT16	-	-	0x0311	-	-
	12	18th supported homing method	RO	NO	UINT16	-	-	0x0312	-	-
	13	19th supported homing method	RO	NO	UINT16	-	-	0x0313	-	-
	14	20th supported homing method	RO	NO	UINT16	-	-	0x0314	-	-
	15	21th supported homing method	RO	NO	UINT16	-	-	0x0315	-	-
	16	22th supported homing method	RO	NO	UINT16	-	-	0x0316	-	-
	17	23th supported homing method	RO	NO	UINT16	-	-	0x0317	-	-
	18	24th supported homing method	RO	NO	UINT16	-	-	0x0318	-	-

Index (hex)	Sub- index (hex)	Name	Accessibility	PDO Mapping	Data Type	Unit	Data Range	Default	Setting Condition	Effective Time
	19	25th supported homing method	RO	NO	UINT16	-	-	0x0319	-	-
	1A	26th supported homing method	RO	NO	UINT16	-	-	0x031A	-	-
	1B	27th supported homing method	RO	NO	UINT16	-	-	0x031B	-	-
60E3h	1C	28th supported homing method	RO	NO	UINT16	-	-	0x031C	-	-
	1D	29th supported homing method	RO	NO	UINT16	-	-	0x031D	-	-
	1E	30th supported homing method	RO	NO	UINT16	-	-	0x031E	-	-
	1F	31th supported homing method	RO	NO	UINT16	-	-	0x031F	-	-
60E6h	00	Additional position encoder resolution – encoder increments	RW	NO	UINT16	-	0-1	0	During running	Immedi- ately
60F4h	00	Following error actual value	RO	TPDO	INT32	Reference unit	-	-	-	-
60FCh	00	Position demand internal value	RO	TPDO	INT32	Encoder unit	-	-	-	-
60FDh	00	Digital inputs	RO	TPDO	UINT32	-	-	-	-	-
					Digita	l output				
	00	Highest sub-index supported	RO	NO	UINT8	-	-	0x02	-	-
60FEh	01	Physical outputs	RW	RPDO	UINT32	-	0-0xFFFFFFFF	0	During running	Immedi- ately
	02	Bit mask	RW	NO	UINT32	-	0-0xFFFFFFFF	0	During running	Immedi- ately
60FFh	00	Target velocity	RW	RPDO	INT32	Reference unit/s	0x80000000- 0x7FFFFFFF	0	During running	Immedi- ately
6502h	00	Supported drive modes	RO	NO	UINT32	-	-	0x000003AD	-	-

# SDO Abort Transfer Code

Abort Code	Function Description
0503 0000	Trigger bits are not alternated.
0504 0000	Timeout occurs in the SDO protocol.
0504 0001	The client/server command word is invalid or unknown.
0504 0005	Memory overflow occurs.
0601 0000	Access to objects is not supported.
0601 0001	Attempt to read a write-only <mark>object</mark>
0601 0002	Attempt to write a read-only object
0602 0000	The object does not exist in the object dictionary.
0604 0041	The object cannot be mapped to the PDO.
0604 0042	The number and length of mapped objects exceed the PDO length.

Abort Code	Function Description
0604 0043	General parameters are incompatible.
0604 0047	General device content is incompatible.
0606 0000	Accessing objects fails due to an hardware error.
0607 0010	The data type does not match and the service parameter length does not match.
0607 0012	The data type does not match and the service parameter is too long.
0607 0013	The data type does not match and the service parameter is too short.
0609 0011	The sub-index does not exist.
0609 0030	The value exceeds the parameter value range.
0609 0031	The parameter value entered is too large.
0609 0032	The parameter value entered is too small.
0609 0036	The maximum value is smaller than the minimum value.
0800 0000	General error
0800 0020	Data cannot be transmitted or stored to the application.
0800 0021	Data cannot be transmitted or stored to the application due to local control.
0800 0022	Data cannot be transmitted or stored to the application due to current device status.
0800 0023	An error occurs in the object dictionary or the object dictionary does not exist.
0800 0024	The value does not exist.

# 11.3 Safety Protection Function: STO

# 11.3.1 Description of Technical Terms

#### ■ Terms and abbreviations:

Terms/Abbreviations	Description	
Cat.	Classification of the safety-related parts of a control system. The categories are: B,1,2,3,4 (EN 13849-1).	
CCF	Common cause failure	
DC	Diagnostic coverage (%)	
DTI	Diagnostic test interval time	
SFF	Safe failure fraction	
HFT	Hardware fault tolerance	
PFH	Average frequency of dangerous failures per hour	
PL	Performance level	
SC	Systematic capability	
SIL	Safety integrity level	
Т1	Proof test interval	
T2	Diagnostic test interval	
DI	Digital input	
DO	Digital output	
РСВ	Printed circuit board	
МСО	Micro computer unit	
FPGA	Center processor unit	

#### Description of technical terms:

Terms Description		
Safe Torque Off (STO )The STO function brings the machine safely into a no-torque state and prevents it fr unexpected starting. If the motor is running when STO function is activated, it coasts stop.		
Safe state	Used to disable the PWM gating signal of the drive.	
System reset	Reset the servo system by shutting off the power or executing software reset.	
Proof test Used to detect the failure of the safety-related system, not applied to STO circuits.		
Mission time	Refers to the specified cumulative operating time of the safety-related parts of the servo drive during its overall lifetime.	

Overview of the safety drive with safety function is shown in Fig 11-1. The parts marked in the orange dashed line is the safety-related. They are integrated in the control board of the drive.

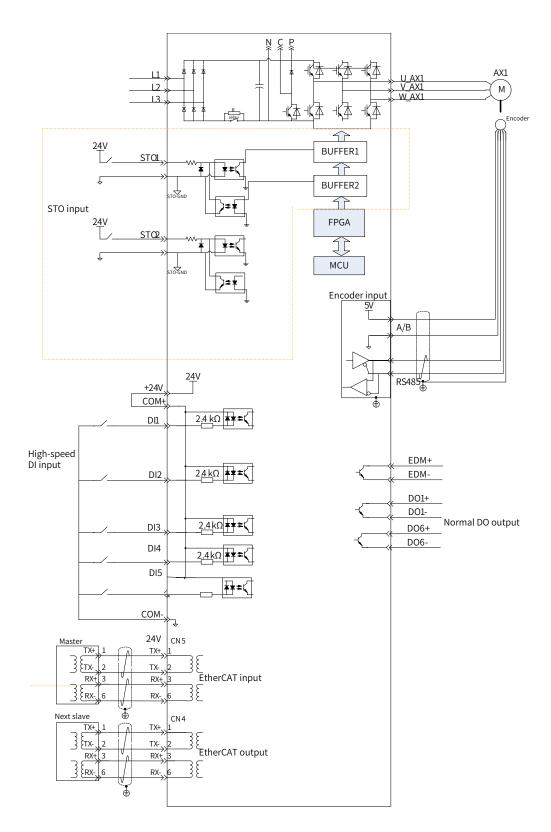



Figure 11-11 Overview of the safety drive

# 11.3.2 Standards Compliance

■ North American Standards (UL)

UL 61800-5-1

CSA C22.2 No. 274

European Directives

Low Voltage Directive 2014/35/EU EN 61800-5-1 and IEC 61800-5-1

Electromagnetic Compatibility Directive 2014/30/EU EN 61800-3, IEC 61800-3, and IEC 61800-5-2

Machinery Directive 2006/42/EC (functional safety)

■ Safety Standards

Model	Safety Standards	Standards
	Safety of machinery	ISO 13849-1: 2015
	Safety of machinery	IEC 60204-1: 2016
		IEC 61508: 2010, parts 1-7
SV660NXXX	Functional Safety	IEC 62061: 2015
		IEC 61800-5-2: 2016
		IEC 61326-3-1
	Electromagnetic Compatibility (EMC)	IEC 61800-3
		IEC 61800-5-2

### ■ Safety Performance

Items	Standards	Performance level
Cofoty integrity loval	IEC 61508	SIL3
Safety integrity level	IEC 62061	SILCL3
Probability of Dangerous Failure per	IEC 61508	$PFH \le 0.1 \times 10^{-7} [1/h]$
Hour (PFH)	IEC 62061	(10% of SIL3)
Performance level (PL)	ISO 13849-1	PL e (category 3)
Mean time to dangerous failure of each channel	ISO 13849-1	MTTFd: High
Ave. diagnostic coverage	ISO 13849-1	DCave: Medium
Stop category	IEC 60204-1	Stop category 0
Safety function	IEC 61800-5-2	STO
Mission time	IEC 61508	5 years
Hardware fault tolerance (HFT)	IEC 61508	1
Systematic capability (SC)	IEC 61508	3
Application mode	IEC 61508	High demand or continuous mode

### 11.3.3 General Safety Information

This section contains the warning symbols used in this user guide and the safety instructions which you must obey when you install, use or maintenance a safety option module of a servo drive. If you ignore the safety instructions, injury, death or damage may occur. Read this section before you start the installation.

Any illustrations, photographs, or examples used in this manual are provided as examples only and may not apply to all products to which this user guide is applicable.

The products and specifications described in this user guide or the content and presentation of the user guide may be changed without notice to improve the product and/or the user guide.

Pictogram	Signal word	Meaning	Consequences In Case of Disregard
Example:	DANGER	Imminent danger	Severe or fatal injuries
General danger	WARNINGS	Possible dangerous situation	Severe or fatal injuries
Specific danger (such as electric shock)	CAUTION	Possible dangerous situation	Minor injuries
$\langle \rangle$	STOP!	Possible high dangerous	Damage to the drive system or its environment
NOTE	NOTE	A Note containing information or tip which helps ensure correct operation of the product	-

■ Warnings, Cautions and Notes



• High attention is required for electrical installation and at the system design to avoid hazards either in normal operation or in the event of equipment malfunction.

System design, installation, commissioning and maintenance must be carried out by personnel who have the necessary training and experience. They must read the operating instruction and this safety information.

It is the responsibility of the machine builder/OEM/system integrator to make sure that the essential health and safety requirements specified in the Machinery Directive are met. Risk analysis and risk assessment is needed before using a product. Make sure that adequate measures are taken to eliminate/ reduce the relating risks and components chosen must meet the safety requirements.

# 11.3.4 Specifications

- Electrical safety complies with IEC 618:00-5-1:2016, over voltage category II.
- The environment test requirement complies with IEC 618:00 -5-1:2016.
- The operating conditions are as follows.

Items	Description					
Surrounding air/Storage temperature	0°C to 55°C /-20°C to +70°C					
Ambient/Storage humidity	20%–95% RH (without condensation)					
	Subject	Test conditions				
	Test reference	Test Fc of IEC 60068-2-6 4.6				
	Conditions	The EUT is powered up and operating normally.				
	Motion	Sinusoidal				
	Vibration ampli- tude/acceleration	-				
Vibration	10 Hz ≤ f ≤ 57 Hz	0,075 mm amplitude				
	57 Hz < f ≤ 150 Hz	1 g				
	Vibration duration	10 sweep cycles per axis on each of three mutu- ally perpendicular axes				
	Axes	X, Y, Z				
	Detail of mounting	According to manufacturer's specification				
	Subject	Test conditions				
	Test reference	Test Ea of IEC 60068-2-27: 2008 Table 17				
	Conditions	The EUT is powered up and operating normally.				
	Motion	Half-sine pulse				
Shock resistance	Shock amplitude/ time	50 m/s² (5 g) 30 ms				
	Number of shocks	3 per axis on each of three mutually perpendicu- lar axes				
	Axes	$\pm X, \pm Y, \pm Z$				
	Detail of mounting	According to manufacturer's specification				
	IP 20					
IP rating/Pollution degree (PD)	PD 2: free of corrosive or explosive gases; free of exposure to water, oil or chemicals; free of dust, salts or iron dust					
Altitude	2000 m or below					
Cooling method	Dry clean air (natural convection)					
Others	Free of static electricity, strong electromagnetic fields, magnetic fields o exposure to radioactivity					

■ The servo drive follows the EMC standards IEC 61800-3:2017, IEC 61326-3-1, and IEC 61800-5-2.

Others

Items	Description
	SV660NS1R6I-FS SV660NS2R8I-FS
	SV660NS5R5I-FS SV660NS6R6I-FS
	SV660NS7R6I-FS SV660NS012I-FS
Applicable Servo Drive	SV660NT3R5I-FS SV660NT5R4I-FS
	SV660NT8R4I-FS SV660NT012I-FS
	SV660NT017I-FS SV660NT021I-FS
	SV660NT026I-FS
Placement	Integrated in the control board of the servo drive
Safety function - Inputs	2 channels: STO1/STO2

The STO subsystem elements must always be likely to operate within the range of temperature, humidity, corrosion, dust, vibration, and other items specified above.

### 11.3.5 Installation

Since the STO function is integrated in the control board of the servo drive, its installation requirements are consistent with the servo drive. Observe the installation requirements of the servo drive.

Designers and installers must be trained to understand the requirements and principles of designing and installing safety-related systems.

# 11.3.6 Terminal and Wiring

This section describes the definition and function of the I/O connecting terminal (CN6) for STO.

See details in <u>"3.7 Definition and Connection of STO terminal</u>"

# 11.3.7 Requirement for Commission, Operation and Maintenance

#### 1 General

- Technicians must be trained to understand the requirements and principles of designing and commissioning safety-related systems.
- Those performing the maintenance must be trained to understand the requirements and principles of designing and operating safety-related systems.
- Operators must be trained to understand the requirements and principles of designing and operating safety-related systems.
- If the safety-related circuits on the control board fails to operate, replace it with a new one because it is not repairable.

#### 2 Commissioning checklists

■ Start-up test and validation

IEC 61508, EN IEC 62061 and EN ISO 13849 require that the final assembler of the machine validates the operation of the safety function with an acceptance test. The acceptance tests for the standard safety functions of the drive are described in the drive manuals. The tests for the optional safety functions are described in the appropriate option manuals.

The acceptance test must be performed:

1) at initial start-up of the safety function

2) after any changes related to the safety function (including wiring, components, and settings)

3) after any maintenance work related to the safety function.

The acceptance test of the safety function must be carried out by an authorized person with expertise and knowledge of the safety function. The test must be documented and signed by the authorized person.

Signed acceptance test reports must be stored in the logbook of the machine. The report shall include documentation of start-up activities and test results, references to failure reports and resolution of failures. Any new acceptance tests performed due to changes or maintenance need to be logged into the logbook.

Step	Action	Result	
1	Ensure that the servo drive can run and stop freely during the commissioning.		
2	Stop the servo drive (if running), switch the input power off and isolate the drive from the power line by a disconnector.		
3	Check the STO circuit connections against the circuit diagram.		
4	Check that the shield of the STO input cable is grounded to the drive frame.		
5	Close the disconnector and switch the power on.		
5.1	Test the STO signal #1 when the motor is stopped. Set STO1 and STO2 to "H". Give a stop command for the drive (if running) and wait until the motor shaft is at		
	standstill. Awake the STO function by disconnecting (low state or open-circuit) the STO input signal #1 and give a start command for the drive. Ensure that the motor stays at standstill and the LED display of the servo drive displays "E150.1".		
5.2	Set STO1 to "H", disable the ON/RUN command of the drive, then automatically reset the drive, enable ON/RUN command of the drive and check that the motor runs normally.		
5.3	<ul> <li>Test the STO signal #2 when the motor is stopped.</li> <li>Set STO1 and STO2 to "H".</li> <li>Give a stop command for the drive (if running) and wait until the motor shaft is at standstill.</li> <li>Awake the STO function by disconnecting (low state or open-circuit) the STO input signal #2 and give a start command for the drive.</li> </ul>		
	Ensure that the motor stays at standstill and the LED display of the servo drive displays "E150.1".		
5.4	Set STO2 to "H", disable the ON/RUN command of the drive, then automatically reset the drive, enable ON/RUN command of the drive and check that the motor runs normally.		

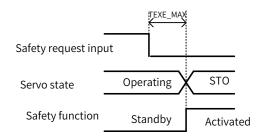
■ Start-up checklist

Step	Action	Result
	Test the STO channel #1 when the motor is running.	
	Set STO1 and STO2 to "H".	
	Start the drive and ensure the motor is running.	
6.1	Awake the STO function by disconnecting (low state or open-circuit) the STO input signal #1.	
	Ensure that the motor stops and the drive trips.	
	Reset the fault and try to start the drive.	
	Ensure that the motor stays at standstill and the LED display of the servo drive displays "E150.1".	
6.2	Set STO1 to "H", disable the ON/RUN command of the drive, then automatically reset the drive, enable ON/RUN command of the drive and check that the motor runs normally.	
	Test the STO channel #2 when the motor is running.	
	Set STO1 and STO2 to "H".	
	Start the drive and ensure the motor is running.	
6.3	Awake the STO function by disconnecting (low state or open-circuit) the STO input signal #2.	
	Ensure that the motor stops and the drive trips.	
	Reset the fault and try to start the drive.	
	Ensure that the motor stays at standstill and the LED display of the servo drive displays "E150.1".	
6.4	Set STO2 to "H", disable the ON/RUN command of the drive, then automatically reset the drive, enable ON/RUN command of the drive and check that the motor runs normally.	
7	Document and sign the acceptance test report which verifies that the safety function is safe and accepted to operation.	

#### **3** Special requirements

To fulfill SIL 3 PL e (cat3), power off the servo drive once per 3 months to perform the power-on diagnostic.

# 11.3.8 Safety Function: STO


#### **1** Description of safety function

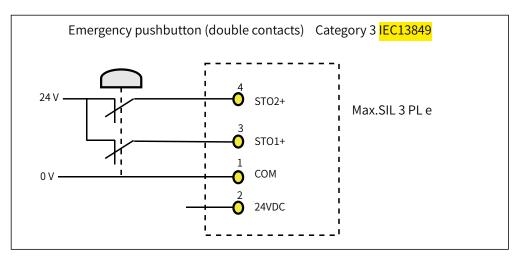
Safe Torque Off (STO) is a safety function that complies with IEC 61800-5-2:2016. It is built into Inovance SV660N series servo drives.

The STO function prohibits the control signal of the power semiconductors of the drive output end, preventing the drive from generating torque at the motor shaft end.

The STO function prevents the movement of the motor by two redundant external hardware signals: STO1 and STO2 that block the PWM signals to be transmitted to the power layer of the drive. These two +24VDC signals must be active to enable the <u>drive's</u> normal operations.

If either one or both signals are set low, the PWM signals are blocked within a time of 20 ms.




#### ■ The STO function table is as follows.

STO1 Input	STO2 Input	PWM Signal
Н	Н	Normal
L	Н	Inhibited
Н	L	Inhibited
L	L	Inhibited

STO (Safe Torque Off)		
Definition	Cuts off the force-producing power to the motor.	
Description	The STO function brings the machine safely into a no-torque state and prevents it from unexpected starting. If the motor is running when STO function is activated, it coasts to a stop.	
Safe state	Used to disable the PWM gating signal of the drive.	
Operating mode	High demand mode or continuous mode	

#### 2 Application example of safety function

■ Example 1: Direct Stop, stop category 0, safety stop: STO

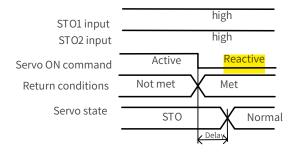


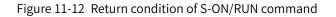
#### 3 Monitoring of safety function

The LED display of the servo drive displays the selected mode, the status, and the error information of the servo drive.

Error: Displays drive fault code.

You can select and modify the configuration through the keypad. See <u>"4 Keypad Display and Operations"</u> for the definition of the keypad.


Fault code	Status	Description
E150.0	STO activated by external request	Both of STO1/STO2 in "Low" state
E150.1	Status of STO1/STO2 not consistent	Only one of STO1/STO2 in "Low" state, status of STO1/STO2 inconsistent
E150.2	STO activated by diagnosis	OV/UV of 5 V power supply detected
E150.3	STO activated by diagnosis	Input circuits of STO working abnormally
E150.4	STO activated by diagnosis	Buffer circuits of STO working abnormally


Fault codes related to the STO function are shown below.

#### 4 STO status during exceptional operations

The exceptional operation refers to the duration of power-on and initialization, and how to return from the STO state.

- 1) The PWM buffer is disabled through pulling-up of the enable terminal during power-on, so the PWM signal is prohibited.
- 2) The PWM buffer is disabled through pulling-up of the enable terminal during initialization of MCU, so the PWM signal is prohibited. This condition is relieved once the initialization phase is finished and servo drive works normally.
- 3) When servo system enters safe state through the STO function, the safe state can be cleared to return to normal operation after auto-reset of the drive when all of the following conditions are met:
- The input state of the STO request must be "high".
- The S-ON or RUN command must be inactive.
- No dangerous faults exist.





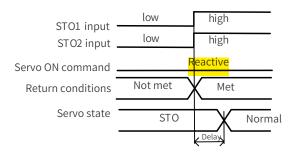


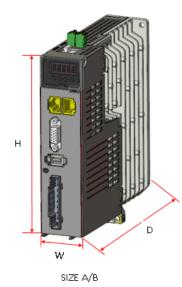

Figure 11-13 Return condition of external STO request state

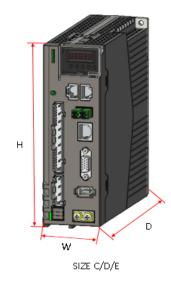
# 11.3.9 Trouble Shooting

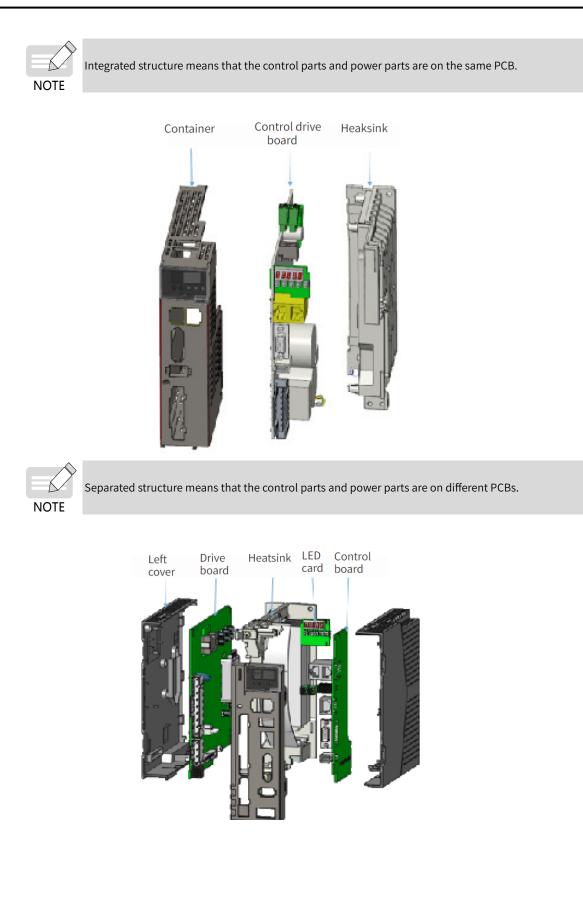
See the following table to identify the fault cause and the action to be taken. Contact your Inovance representative if the problem cannot be solved by the described corrective actions. Fault codes related to the STO function are shown below.

Fault Code	Cause	Action
E150.0	STO1/STO2 not connected to the 24 V input voltage	Connect the STO1 and STO2 to the 24 V input voltage signal.
E150.1	Input states of STO1/STO2 being inconsistent	<ol> <li>1) Ensure the requests for disconnecting the voltage of STO1 and STO2 are triggered simultaneously.</li> <li>2) The input circuit is abnormal and a certain STO input signal is still in "High" status after the 24 V signal is disconnected.</li> </ol>
E150.2	OV/UV of 5 V power supply detected	Restore the 5 V power supply to normal state.
E150.3	Input circuit of STO working abnormally	Fix the input circuit fault.
E150.4	Buffer circuit of STO working abnormally	Fix the buffer circuit fault.

### **11.3.10 Product Information**


#### 1 Nameplate and model number


See <u>"1.1.1 Nameplate and Model Number"</u> for details.


#### 2 Applicable servo drive

STO applies to the servo drives in the following two kinds of physical structures.

Size	Power Range	Physical Structure	W x H x D (mm³)
A	200 W to 400 W	Integrated structure	40 x 160 x 150
В	750 W to 850 W	Integrated structure	50 x 160 x 173
С	1 kW to 1.5 kW	Separated structure	55 x 170 x 173
D	1.8 kW to 3 kW	Separated structure	75 x 170 x 183
E	5 kW to 7.5 kW	Separated structure	90 x 250 x 230

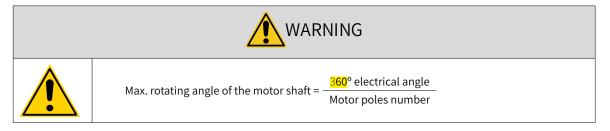


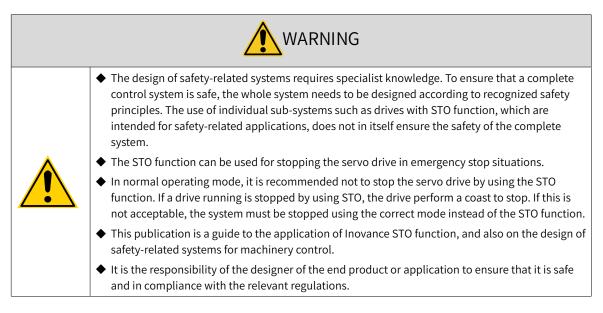




### 11.3.11 Precautions

This section describes the information needed before starting operation. Be sure to read the following safety instructions, risk assessment information, and limitations before starting operation. Safety function: use the STO function after properly understanding all <del>of</del> these information.


#### 1 Safety protective measures


Carefully read the following important precautions and observe them when using the safety function STO.

- The STO function is not intended as a replacement for an Emergency Stop function (E-stop). In an emergency situation, the power supply cannot be cut off if no other measure is taken, and the electrical parts of the motor and drive are still energized, incurring the risk of electric shock or other risks. Therefore, maintenance work on electrical parts of the drive or motor can only be carried out after isolating the drive system from the main power supply.
- Depending on the standards and requirements for a particular application, it may be possible to use STO as an integral part of an E-stop system. However, its main purpose is for use in a dedicated safety control arrangement whose purpose is to prevent any hazard from occurring, not for the use of an E-stop.
- An E-stop is often provided in a machine to allow for unexpected situations where an operator sees a hazard and can take action to prevent an accident.
- The design requirement for an E-stop differs from that of a safety interlock. Generally, the E-stop is required to be independent from any complex or intelligent control. It may use purely electromechanical devices to either disconnect the power or initiate a controlled quick stop through other means such as dynamic or regenerative braking.



In the use of permanent-magnet motors, reluctance motors, and salient-pole induction motors, in spite of the activation of the STO function, a possible (although highly unlikely) failure mode may cause two power devices in the drive to conduct incorrectly. The drive system can produce an alignment torque which maximally rotates the motor shaft by 180° electrical angle for a permanent-magnet motor, or by 90° electrical angle for a salient pole induction motor or reluctance motor. This possible failure mode must be allowed for in the machine system design.





#### 2 Risk assessment

- When using the safety function STO, be sure to perform risk assessment of the servo system in advance. Make sure that the safety integrity level of the standards is met.
- The following residual risks can be present even when the safety functions operate. Therefore, safety must always be given consideration during risk assessment.
- If external forces (such as gravitational force with a vertical axis) are applied when the safety functions are operating, the motor will rotate due to the action of these external forces. Use a separate mechanical brake to secure the motor.
- If the servo drive fails, the motor may operate within a range of 180 electrical degrees. Make sure that safety is ensured even in hazardous situations.
- The number of rotations and movement distance for each type of motor are listed below.

Rotational motor: 1/6 rotation max. (rotation angle at motor shaft conversion)

Direct drive motor: 1/20 rotation max. (rotation angle at motor shaft conversion)

Linear servo motor: 30 mm max.

# Shenzhen Inovance Technology Co., Ltd.

Add.: Building E, Hongwei Industry Park, Liuxian Road, Baocheng No. 70 Zone, Bao' an District, Shenzhen Tel: +86-755-2979 9595 Fax: +86-755-2961 9897 Service Hotline: 400-777-1260 http://www.inovance.com

# Suzhou Inovance Technology Co., Ltd.

Add.: No. 16 Youxiang Road, Yuexi Town, Wuzhong District, Suzhou 215104, P.R. China Tel: +86-512-6637 6666 Fax: +86-512-6285 6720 Service Hotline: 400-777-1260 http://www.inovance.com



Copyright © Shenzhen Inovance Technology Co., Ltd.