

Technical Manual TesiMod Operating Terminal BT20N Bolt Mounting

Version 1.0 issued 16th January 2001

Sütron electronic GmbH Kurze Straße 29 70794 Filderstadt Tel.: ++49 7 11 / 77 09 80 Fax: ++49 7 11 / 77 09 86 0 Email: support@suetron.de Internet: www.suetron.de

V1.0 16.01.2001 First Edition

This manual and the illustrations it contains are protected by copyright law. Use of this manual by third parties in a manner that is contrary to copyright terms is prohibited. No part of this document may be reproduced, translated or archived in any form or by means, electronic or photographic, or altered without the express written permission of the Sütron electronic GmbH. Acting in a manner that is contrary to these terms makes the party liable to damages.

Sütron electronic reserves the right to make changes that reflect technical advances.

Table of Contents

1	Explanation of Symbols	. 5
2	The Operating Terminal BT20N	. 5
2.1	Front View	. 6
2.2 2.2.1 2.2.2 2.2.3 2.2.4 2.2.4.1 2.2.4.2	Keyboard Editing Keys Control Keys Special Keys Function Keys Function Key Arrangement Slide-in Identification Strips for the Function Keys	7 8 9 9 9
2.3	Rear View	12
2.3.1 2.3.2 2.3.3 2.3.4 2.3.5 2.3.6 2.3.7 2.3.8 2.3.8	Standard Standard with Parallel Outputs InterBus SUCOnet K PROFIBUS-DP MPI CAN-Bus LON-Bus InterBus Optical Fibre	13 14 15 16 17 18 19 20
2.4 2.4.1	Mounting the Terminal Front Panel Dimensions	
2.4.1	Side View, Mounting Depth	
2.4.3	Panel Cutout	
2.5	Pin Assignments	25
2.5.1	Pin Assignment X1 Supply Voltage	
2.5.2	Pin Assignment X2.1 / X2.2 InterBus	
2.5.3 2.5.4	Pin Assignment X2.1 / X2.2 SUCOnet K Pin Assignment X2 PROFIBUS-DP	
2.5.5	Pin Assignment X2 MPI	
2.5.6	Pin Assignment X2.1 / X2.2 CAN-Bus	31
2.5.7	Pin Assignment X2 LON-Bus	32
2.5.7	Pin Assignment InterBus Optical Fibre	
2.5.8	Pin Assignment X3 SER1 TTY / 20 mA Current Loop	
2.5.9 2.5.10	Pin Assignment X3 SER1 RS485 Pin Assignment X3 SER1 RS232c	
2.3.10		50

/000-1017/ © Copyright by Sütron electronic GmbH BT20NB_grau_eng_V10.300000QK0

2.5.11 2.5.12	Pin Assignment X3 SER2 RS232c Pin Assignment X4 Parallel Outputs	
2.6	Shielding	37
2.7 .1 2.7.2 2.7.3 2.7.4 2.7.5 2.7.6	Display Display Contrast Setting Default Contrast Setting Character Attributes Font Normal Font Zoom ASCII Character Set Table	39 39 39 39 40 40
2.8	User-Mode Switch	42
2.9	Battery	43
2.10	Fuse	44
2.11	Application Memory	44
2.12 2.12.1 2.12.2 2.12.3 2.12.4 2.12.5 2.12.6 2.12.7	Diagnosis LEDs InterBus SUCOnet K PROFIBUS-DP MPI CAN LON. InterBus Optical Fibre	44 45 45 45 45 45
3	Technical Data	47
4	Declaration of Conformity	50
5	Index	52
Α	Appendix A	4-1
A.1	Shielding of SubminD - Interconnections	A-1

1 **Explanation of Symbols**

This manual uses the following symbols to indicate notes and hazardous situations.

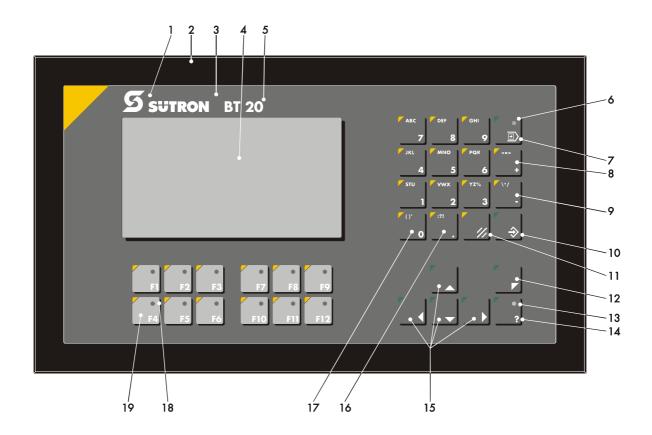
Notes for the User

General Danger

Specific Danger

2

The Operating Terminal BT20N


The operating terminal BT20N combines a compact structure with a large display and a clear keyboard.

In small mounting areas the compact structure with a low mounting depth is advantageous.

The LCD module supports character oriented positioning of graphics, text elements and variables. With the keyboard you can input process values and access several functions.

2.1 **Front View**

- Company Logo 1
- Front Panel 2
- 3 Front Cover
- Display 4
- Operating Terminal Type Logo 5
- Status-LED Data Release 6
- Special Key Data Release 7 Editing Key Plus 8
- 9
- Editing Key Minus Special Key Enter 10

- Special Key Clear 11
- Key Cursor Home 12
- Status-LED Help 13
- Special Key Help 14
- Key Cursor Right, Left, Up, Down 15
- Editing Key Dot 16
- Editing Keys 0 to 9, Alphabet 17
- Status-LED Function Keys 18
- Function Keys F1 to F12 19

2.2 Keyboard

The **BT20N** supports all important key functions in spite of the small measures. The keyboard is made up of mechanical short-stroke keys. The stroke distance is 0.5 mm and the key area is $16 \times 16 \text{ mm}$. The key elements are covered by an embossed polyester foil against environmental influences. This combination allows a sensitive use of the keys. The LEDs that are provided in some of the keys are integrated directly into the respective key element. The Status LEDs illuminate green. The keyboard has a lifetime of 1 mill switching cycles.

In transparent mode, the keys supply a fixed start and stop code. In standard mode, the function of the keys is as defined by the user.

2.2.1 Editing Keys

Key: **0** and () $^{\circ}$ is used to edit data within the editor. If the system variable Shift or ShiftCase is programmed, the characters (and) and $^{\circ}$ can be entered.

Key: **1 and STU** is used to edit data within the editor. If the system variable **Shift** or **ShiftCase** is programmed, the characters S and T and U can be entered.

Key: **2 and VWX** is used to edit data within the editor. If the system variable **Shift** or **ShiftCase** is programmed, the characters V and W and X can be entered.

Key: **3 and YZ%** is used to edit data within the editor. If the system variable **Shift** or **ShiftCase** is programmed, the characters Y and Z and % can be entered.

Key: **4 and JKL** is used to edit data within the editor. If the system variable **Shift** or **ShiftCase** is programmed, the characters J and K and L can be entered.

Key: **5 and MNO** is used to edit data within the editor. If the system variable **Shift** or **ShiftCase** is programmed, the characters M and N and O can be entered.

Key: **6 and PQR** is used to edit data within the editor. If the system variable **Shift** or **ShiftCase** is programmed, the characters P and Q and R can be entered.

Key: **7 and ABC** is used to edit data within the editor. If the system variable **Shift** or **ShiftCase** is programmed, the characters A and B and C can be entered.

Key: **8 and DEF** is used to edit data within the editor. If the system variable **Shift** or **ShiftCase** is programmed, the characters D and E and F can be entered.

Key: **9 and GHI** is used to edit data within the editor. If the system variable **Shift** or **ShiftCase** is programmed, the characters G and H and I can be entered.

Key: **Decimal Point and :?!** is used to edit data within the editor. If the system variable **Shift** or **ShiftCase** is programmed, the characters : and ? and ! can be entered.

Key: **Minus and** \times can be used to enter negative values within the editor. In the increment editor, the variable value is decremented by 1. When the key is held down, the function is repeated at a rate of repetition that is automatically increased. If the system variable **Shift** or **ShiftCase** is programmed, the characters \setminus and * and / can be entered.

Key: **Plus and** <=> can be used to enter positive values within the editor. In the increment editor, the variable value is incremented by 1. When the key is held down, the function is repeated at a rate of repetition that is automatically increased. If the system variable **Shift** or **ShiftCase** is programmed, the characters < and = and > can be entered.

2.2.2 Control Keys

Key: **Cursor left** can be programmed to directly select I/O masks. In the editor, it moves the cursor to the left.

Key: **Cursor right** can be programmed to directly select I/O masks. In the editor, it moves the cursor to the right.

Key: **Cursor up** can be programmed to directly select I/O masks. In the editor, it moves the cursor upwards.

Key: **Cursor down** can be programmed to directly select I/O masks. In the editor, it moves the cursor downwards.

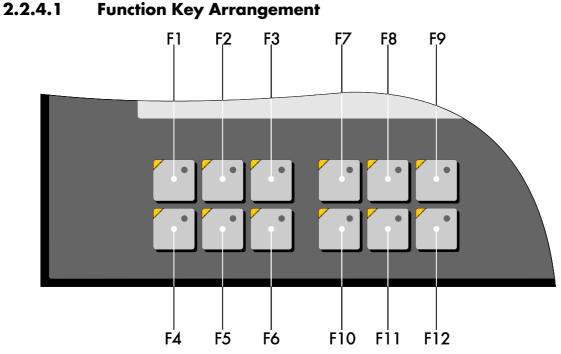
Key: **Cursor home** can be programmed to directly select I/O masks. In the editor, it moves the cursor to the position of the first input variable.

2.2.3 Special Keys

Key: **Help key** always displays the current help text (online help). When the status-LED help flashes, it signals that an error message is pending. The error or system message is always displayed in plain-text.

Key: **Data Release** key is used to switch from a menu into the editor. The status-LED data release lights up when the editing mode is active. When the Data Release key is pressed within the editor, the editing mode is exited.

Key: **Enter** is used to conclude data entry. When pressed while in the startup mask, the key switches into the setup mask.


Key: **Clear** deletes the character beneath the cursor when it is used in an editor. Deletes the selected messages from the data memory.

2.2.4 Function Keys

Funktion key F1 to F12 with integrated LEDs for functional feedback. The key functions can be freely assigned to a softkey functionality, either as direct access keys for menu control or to activate a function in the controller.

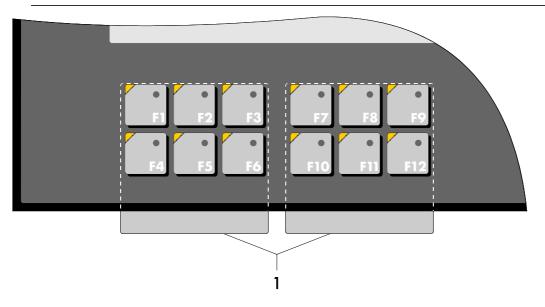
2.2.4.2 Slide-in Identification Strips for the Function Keys

The identification strips can be replaced after the terminal is dismounted. Inserting the strips from the rear of the front panel does not affect the tightness specified for the unit.

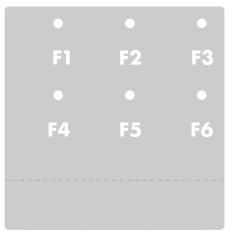
The unit is delivered with a set of identification strips.

The strips can be easily removed from the perforated sheet.

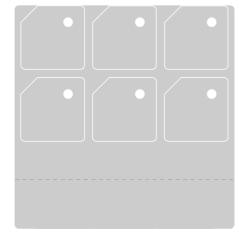
The set consists of:


- two identification strips, labelled with F1 to F12
- two blank identification strips.

Various labelling methods are recommended, depending on the number of units involved.


Suitable labelling methods for:

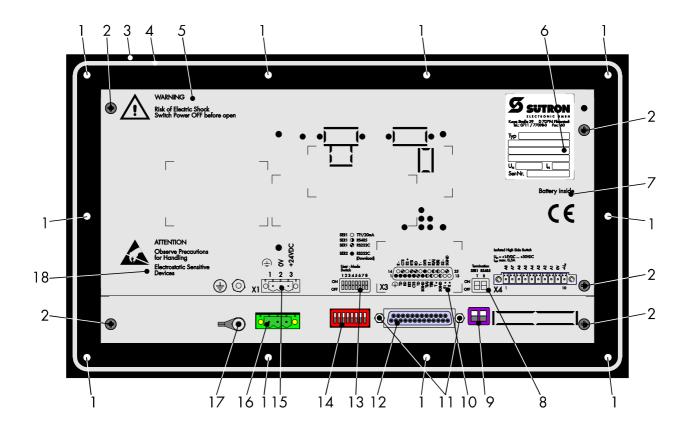
Single units, prototypes:	labelling with an indelible pen
Small batch production:	transparency with laser printing
Large batch production:	custom specific printed identification strips



1 Position of identification strips

•		
F7	F8	F9
F10	F11	F12

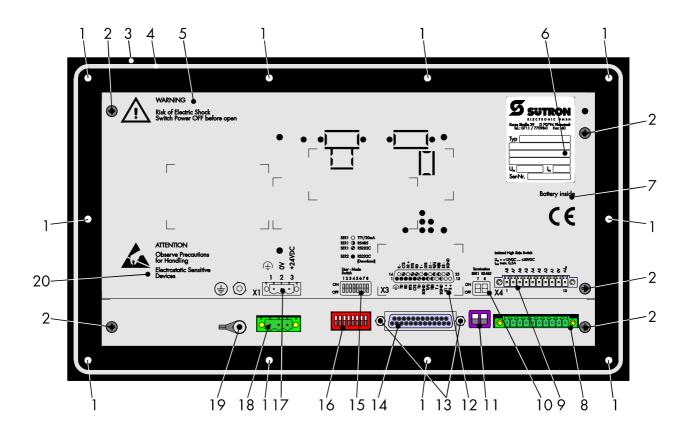
Labelled identification strips, standard


Blank identification strip

/000-1017/ © Copyright by Sütron electronic GmbH BT20NB_grau_eng_V10.300000QK0

2.3 Rear View

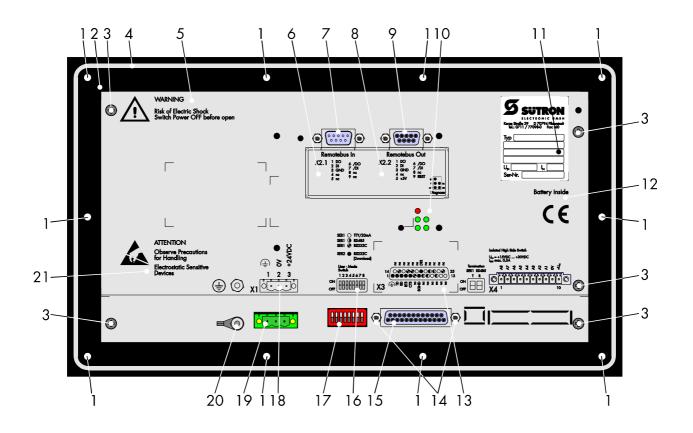
2.3.1 Standard



- 1 Mounting Bolts
- 2 Fastening Screw for Enclosure
- 3 Front Panel
- 4 Rubber Sealing
- 5 Warning
- 6 Name Plate
- 7 Battery-related information
- 8 Switch Positions Terminator Switch
- 9 Terminator Switch (X3-SER1 RS485)

- 10 Pin Assignment Female Connector X3
- 11 Fastening Bolts for Interface X3
- 12 Female Connector X3
- 13 Switch Positions User-Mode Switch
- 14 User-Mode Switch
- 15 Pin Assignment Connector X1
- 16 Connector X1 (Power Supply)
- 17 Threaded Bolt for Protective Ground
- 18 Warning

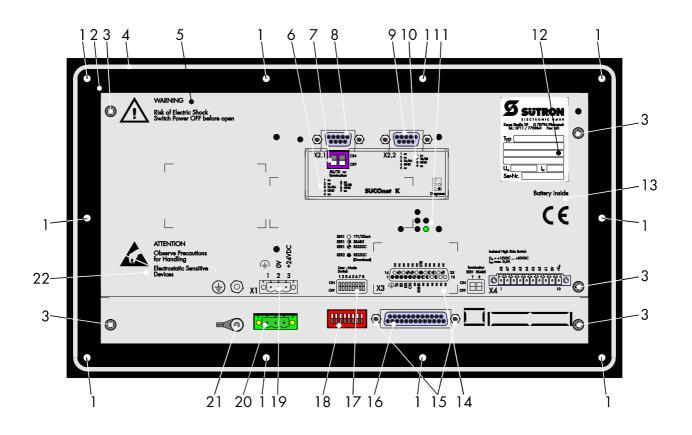
2.3.2 **Standard with Parallel Outputs**


I	1	Mounting Bolts
Gmb	2	Fastening Screw for Enclosure
<u>e</u>	3	Front Panel

- Front Panel Rubber Sealing
- 4 5 6 Warning
- Name Plate
- 7
- Battery-related information 8 Connector X4 (Parallel Outputs)
- 9 Pin Assignment Connector X4 (Parallel
- Outputs)
- /000-1017/ © Copyright by Stitron electron BT20NB_grau_eng_V10.300000QK0
 - Switch Positions Terminator Switch 10

- Terminator Switch (X3-SER1 RS485) 11
- 12 Pin Assignment Interface X3
- Fastening Bolts for Interface X3 13
- 14 Female Connector Interface X3
- 15 Switch Positions User-Mode Switch
- 16 User-Mode Switch
- 17 Pin Assignment Connector X1
- 18 Connector X1 (Power Supply)
- 19 Threaded Bolt for Protective Ground
- 20 Warning

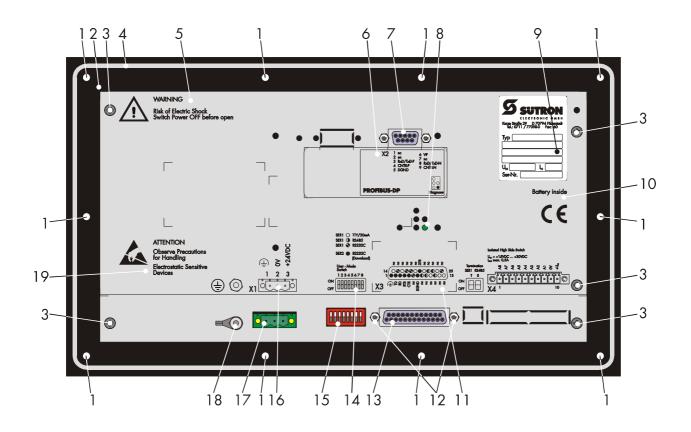
2.3.3 InterBus



- 1 Mounting Bolts
- 2 Front Panel
- 3 Fastening Screw for Enclosure
- 4 Rubber Sealing
- 5 Warning
- 6 Pin Assignment Interface X2.1 (Remotebus In)
- 7 Male Connector Interface X2.1 (Remotebus In)
- 8 Pin Assignment Interface X2.2 (Remotebus Out)
- 9 Female Connector Interface X2.2 (Remotebus Out)
- 10 Diagnosis LEDs

- 11 Name Plate
- 12 Battery-related information
- 13 Pin Assignment Interface X3 (SER2-RS232c)
- 14 Fastening Bolts for Interface X3
- 15 Female Connector Interface X3 (SER2-RS232c)
- 16 Switch Positions User-Mode Switch
- 17 User-Mode Switch
- 18 Pin Assignment Connector X1
- 19 Connector X1 (Power Supply)
- 20 Threaded Bolt for Protective Ground
- 21 Warning

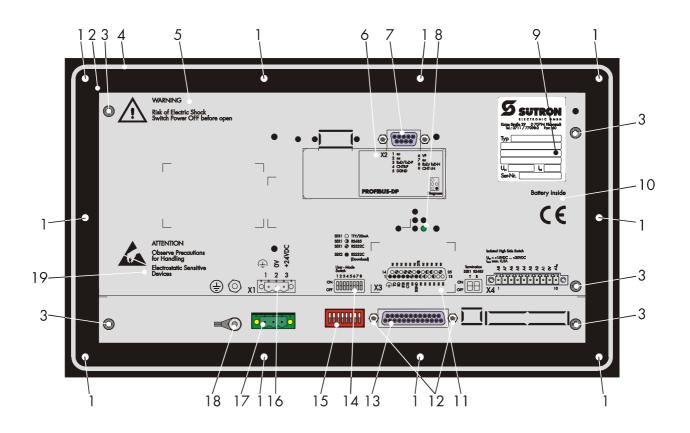
2.3.4 **SUCOnet K**



- Mounting Bolts 1
- 2 Front Panel
- 3 Fastening Screw for Enclosure
- /000-1017/ © Copyright by Sütron electronic GmbH BT20NB_grau_eng_V10.300000QK0 4 Rubber Sealing
 - 5 Warning
 - 6 Pin Assignment Interface X2.1 (SUCOnet K)
 - 7 Terminator Switch Interface X2.1 (SUCOnet K)
 - 8 Female Connector Interface X2.1 (SUCOnet K)
 - 9 Female Connector Interface X2.2 (SUCOnet K)
 - 10 Pin Assignment Interface X2.2 (SUCOnet K)
 - 11 **Diagnosis** LED

- Name Plate 12
- 13 Battery-related information
- 14 Pin Assignment Interface X3 (SER2-RS232c)
- Fastening Bolts for Interface X3 15
- Female Connector Interface X3 (SER2-16 RS232c)
- Switch Positions User-Mode Switch 17
- User-Mode Switch 18
- 19 Pin Assignment Connector X1
- 20 Connector X1 (Power Supply)
- 21 Threaded Bolt for Protective Ground
- 22 Warning

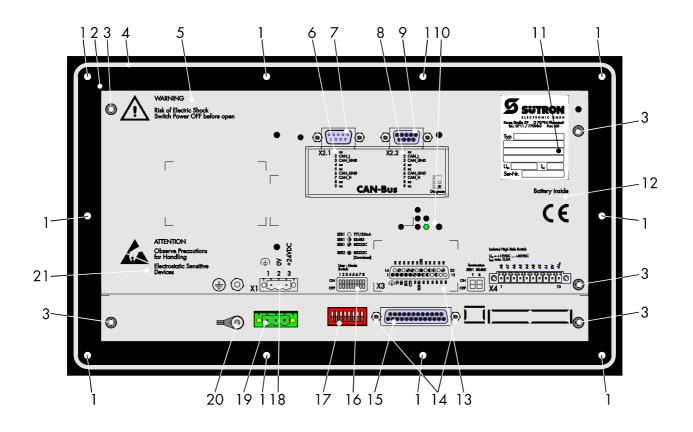
2.3.5 PROFIBUS-DP



- 1 Mounting Bolts
- 2 Front Panel
- 3 Fastening Screw for Enclosure
- 4 Rubber Sealing
- 5 Warning
- 6 Pin Assignment Interface X2 (PROFIBUS-DP)
- 7 Female Connector Interface X2 (PROFIBUS-DP)
- 8 Diagnosis LED
- 9 Name Plate
- 10 Battery-related information

- 11 Pin Assignment Interface X3 (SER2-RS232c)
- 12 Fastening Bolts for Interface X3
- Female Connector Interface X3 (SER2-RS232c)
- 14 Switch Positions User-Mode Switch
- 15 User-Mode Switch
- 16 Pin Assignment Connector X1
- 17 Connector X1 (Power Supply)
- 18 Threaded Bolt for Protective Ground
- 19 Warning

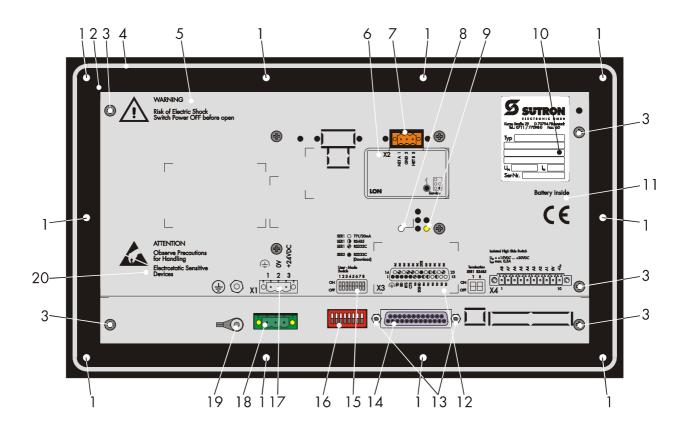
2.3.6 MPI



- /000-1017/ © Copyright by Sütron electronic GmbH BT20NB_grau_eng_V10.300000QK0 Mounting Bolts 1
 - 2 Front Panel
 - 3 Fastening Screw for Enclosure
 - Rubber Sealing
 - 4 5 6 7 8 Warning
 - Pin Assignment Interface X2 (MPI)
 - Female Connector Interface X2 (MPI)
 - **Diagnosis** LED
 - 9 Name Plate
 - 10 Battery-related information

- Pin Assignment Interface X3 (SER2-RS232c) 11
- 12 Fastening Bolts for Interface X3
- Female Connector Interface X3 (SER2-13 RS232c)
- 14 Switch Positions User-Mode Switch
- 15 User-Mode Switch
- Pin Assignment Connector X1 16
- Connector X1 (Power Supply) 17
- Threaded Bolt for Protective Ground 18
- 19 Warning

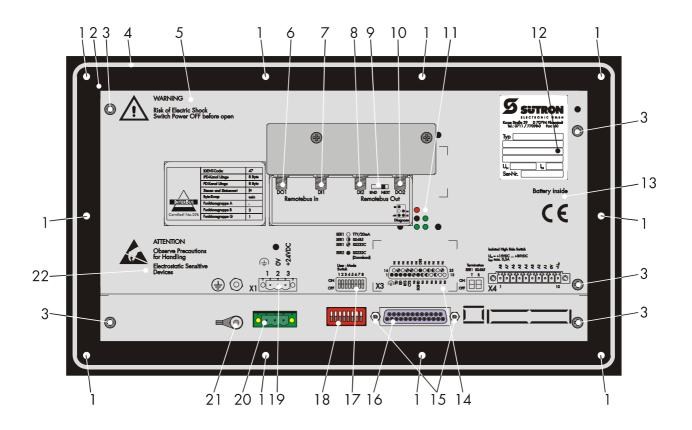
2.3.7 CAN-Bus



- 1 Mounting Bolts
- 2 Front Panel
- 3 Fastening Screw for Enclosure
- 4 Rubber Sealing
- 5 Warning
- 6 Pin Assignment Interface X2.1 (CAN-Bus)
- 7 Male Connector Interface X2.1 (CAN-Bus)
- 8 Pin Assignment Interface X2.2 (CAN-Bus)
- 9 Female Connector Interface X2.2 (CAN-Bus)
- 10 Diagnosis LED
- 11 Name Plate

- 12 Battery-related information
- 13 Pin Assignment Interface X3 (SER2-RS232c)
- 14 Fastening Bolts for Interface X3
- 15 Female Connector Interface X3 (SER2-RS232c)
- 16 Switch Positions User-Mode Switch
- 17 User-Mode Switch
- 18 Pin Assignment Connector X1
- 19 Connector X1 (Power Supply)
- 20 Threaded Bolt for Protective Ground
- 21 Warning

2.3.8 **LON-Bus**


_Ξ 1	Mounting Bolts
----------------	----------------

- 2 Front Panel
- 3 Fastening Screw for Enclosure
- 4 Rubber Sealing
- Warning
- 5 6 Pin Assignment Interface X2 (LON)
- 7 Male Connector Interface X2 (LON)
- 8 Service Switch (LON)
- 9 Diagnosis LED
- /000-1017/ © Copyright by Stitron electronic Gmbl BT20NB_grau_eng_V10.300000QK0 10 Name Plate
 - 11 Battery-related information

- Pin Assignment Interface X3 (SER2-RS232c) 12
- 13 Fastening Bolts for Interface X3
- 14 Female Connector Interface X3 (SER2-RS232c)
- Switch Positions User-Mode Switch 15
- 16 User-Mode Switch
- Pin Assignment Connector X1 17
- 18 Connector X1 (Power Supply)
- 19 Threaded Bolt for Protective Ground
- 20 Warning

2.3.8 InterBus Optical Fibre

- 1 Mounting Bolts
- 2 Front Panel
- 3 Fastening Screw for Enclosure
- 4 Rubber Sealing
- 5 Warning
- 6 Fibre Optical Interface DO1 (Remotebus In)
- 7 Fibre Optical Interface DI1 (Remotebus In)
- 8 Fibre Optical Interface DI2 (Remotebus Out)
- 9 Terminator Switch (InterBus)
- 10 Fibre Optical Interface DO2 (Remotebus Out)
- 11 Diagnosis LEDs
- 12 Name Plate

- 13 Battery-related information
- 14 Pin Assignment Interface X3 (SER2-RS232c)
- 15 Fastening Bolts for Interface X3
- 16 Female Connector Interface X3 (SER2-RS232c)
- 17 Switch Positions User-Mode Switch
- 18 User-Mode Switch
- 19 Pin Assignment Connector X1
- 20 Connector X1 (Power Supply)
- 21 Threaded Bolt for Protective Ground
- 22 Warning

2.4 Mounting the Terminal

The rear panel mounting is suitable for easy and sealed installation in places where the rear side of the unit is accessible. The unit is particularly suitable for mounting in control cabinets with a mounting wall plate thickness of approximately 1 to 10 mm.

The front panel permits sealed installation of the operating terminal in accordance with the IP65 degree of protection (at the front). At the rear side of the front panel a circumferencial sealing is attached. All parts for mounting the unit are given with the spare parts set.

Special care needs to be taken during installation to maintain this high degree of protection. The operating terminal is inserted from the front through the panel cutout and screwed to the mounting wall from the rear. The seal must be positioned evenly and the hexagonal nuts tightened uniformly.

When installing the terminal, keep a minimum space of 30 mm around the terminal for adequate air circulation.

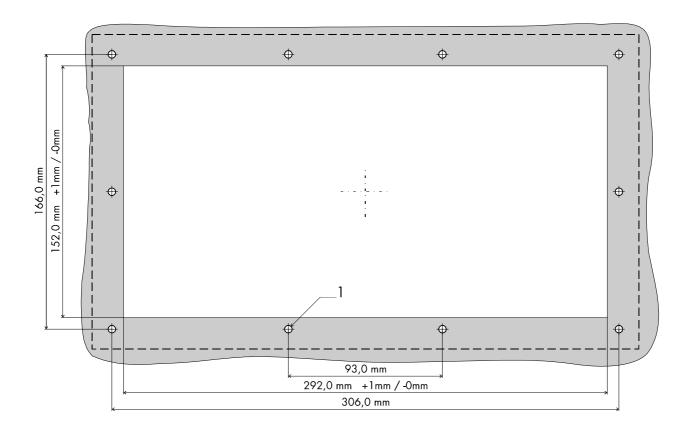
The tightness between the front panel and the mounting surface depends on the care during installation.

Mounting and maintenance may only be performed by qualified and authorized personnel!

Front Panel Dimensions	190.0 x 330.0 x 3.0 mm	(H x W x D)
Panel Cutout	152 x 292 mm	(H x W)



2.4.1 Front Panel Dimensions



2.4.2 Side View, Mounting Depth

2.4.3 Panel Cutout

1 10 Holes with a Diameter of 4.5 mm

2.5 Pin Assignments

The operating terminal is fitted as standard terminal or as bus terminal:

The connector X3 combines several interface standards within one physical connector. The connector is divided into two channels. The channel for communication (SER1) is divided from the channel for upload/download/logging printer/scanner (SER2). The channels can operate independent of each other.

The channel of communication (SER1) can handle - specified by protocol - only one of the three interface standards.

Standard terminal:

Connector X1	24 VDC	Supply Voltage
Connector X3 SER1	TTY / 20 mA	Communication
Connector X3 SER1	RS232c	Communication
Connector X3 SER1	RS485	Communication
Connector X3 SER2	RS232c	Upload/Download/Logging Printer/Scanner
Connector X4	Parallel Outputs	Influencing Inputs of PLC

The parallel outputs are suitable for direct access on inputs of PLCs.

Bus terminal:

Connector X1	24 VDC	Supply Voltage
Connector X3 SER2	RS232c	Upload/Download/Logging Printer/Scanner
Connector X2.1 / X2.2	InterBus	Communication
Connector X2.1 / X2.2	SUCOnet K	Communication
Connector X2	PROFIBUS-DP	Communication
Connector X2	MPI	Communication
Connector X2.1 / X2.2	CAN-Bus	Communication
Connector X2	LON	Communication
Connector DO1 / DI1	InterBus	
and DO2 / DI2	Optical Fibre	Communication

2.5.1 Pin Assignment X1 Supply Voltage

The supply voltage is connected via the connector X1.

The unit is equipped with a reverse voltage protection. If the poling is wrong, the unit doesn't operate.

This unit confirms to the safety class I. For safe operation it is necessary to use safety extra-low voltage (SELV) in accordance with DIN EN 61131 for the supply voltage.

Connector in the terminal: 3-pin male connector strip Phoenix COMBICON MSTBV 2,5/3-GF

Pin	Designation	Function
1	(-) I	Signal Ground
2	0 V	Supply Voltage 0 V
3	24 VDC	Supply Voltage 24 VDC

The supply voltage is connected via a plug-in 3-pin female connector strip. The cable is secured in the female connector strip by means of screw terminals. Cables with fine wires with a cross-section of up to 2.5mm² can be used. The female connector strip is secured in position by means of a screw-type locking.

The female connector strip of the type Phoenix COMBICON MSTB 2.5/3-STF is supplied.

Hazardous voltages can exist inside electrical installations that can pose a danger to humans. Coming in contact with live parts may result in **electric shock!**

Please note with respect to pin assignment:

If shielded connecting cables are used for the supply voltage, the shield should be connected to pin 1.

Threaded bolt for protective grounding

A separate ground conductor must be provided for the ground screw in each case. The minimum cross-section of the ground conductor must be 1.5 mm^2 and the length as short as possible. Compliance with this information increases the operational safety.

2.5.2 Pin Assignment X2.1 / X2.2 InterBus

The unit can be fitted with the bus interfaces X2.1 and X2.2 for connection to the InterBus instead of the standard interfaces TTY / 20 mA and RS422 / RS485. The InterBus connection is certified under the number 076. The connectors are of the 9-pin Submin D female and male connector strip type.

Connector in the terminal: 9-pin SubminD male connector strip for Remotebus In

Assignment:	
-------------	--

Pin	Designation	Function
1	DO	Data Out
2	DI	Data In
3	GND	Signal Ground
4	nc	not connected
5	nc	not connected
6	/DO	Data Out Reverse
7	/DI	Data In Reverse
8	nc	not connected
9	nc	not connected

Connector in the terminal: 9-pin SubminD female connector strip for Remotebus Out

Assignment:

-۲	5		
	Pin	Designation	Function
	1	DO	Data Out
	2	DI	Data In
	3	GND	Signal Ground
	4	nc	not connected
	5	+5 V	Power Supply +5 VDC
	6	/DO	Data Out Reverse
	7	/DI	Data In Reverse
	8	nc	not connected
	9	RBST	Remote Bus Status

A shielded cable with twisted pairs (Cable type LiYCY-TP) is used. The maximum cable length depends on the usage within the InterBus topology.

2.5.3 Pin Assignment X2.1 / X2.2 SUCOnet K

To integrate the unit into a network topology of the SUCOnet K it can be equipped with the special interfaces for SUCOnet K interfacing. The connectors are 9-pin SubminD female connectors. The pinning of either connectors is identical.

Termination:

Activate the **termination** of the physically first (master) and last station in the network <u>at all times</u>. The termination of the stations located in between remains inactivated. To activate the termination, the termination switch RD/TD must be set to **ON**.

Connectors in the operating terminal: 9-pin SubminD female connector strips

Pin	Designation	Function
1	nc	not connected
2	nc	not connected
3	TA/RA	Transmit- / Receive Channel A
4	GND	Signal Ground
5	nc	not connected
6	nc	not connected
7	TB/RB	Transmit- / Receive Channel B
8	GND	Signal Ground
9	nc	not connected

A shielded cable with twisted pair wires (cable type LiYCY-TP) must be used.

The maximum cable length depends on the data transmission rate that is used.

For a transmission rate of 187.5 kbps the maximum cable length is 600 m, for a transmission rate of 375 kbps a cable length of 300 m should not be exceeded. If longer cable length are required, repeaters must be used for signal conditioning. Self-controlled repeaters may be used for this process.

2.5.4 Pin Assignment X2 PROFIBUS-DP

To integrate the unit into a network of the PROFIBUS-DP it can be equipped with the special interface for PROFIBUS-DP connection instead of the standard interfaces TTY / 20 mA and RS422 / RS485. A 9-pin SubminD female connector strip is used as a connector.

Connector on the operating terminal: 9-pin SubminD female connector strip

Assignment:

Pin	Designation	Function
1	nc	not connected
2	nc	not connected
3	RxD/TxD-P	Transmit / Receive Data Plus
4	CNTR-P	Control Signal Repeater Plus
5	DGND	Data Transmission Potential
6	VP	Power Supply of the Matching Resistors Plus
7	nc	not connected
8	RxD/TxD-N	Transmit / Receive Data Minus
9	CNTR-N	Control Signal Repeater Minus

Principally, all cable types specified in EN 50170 as cable type A can be used. This allows the following cable lengths (depending on the baud rate):

Baud Rate (bps)	Cable Length (m)
9 600	1200
19 200	1200
93 750	1200
187 500	1000
500 000	400
1 500 000	200
12 000 000	100

2.5.5 Pin Assignment X2 MPI

To integrate the unit into a network of the Siemens MPI Bus it can be equipped with the special interface for Siemens MPI connection instead of the standard interfaces TTY / 20 mA and RS422 / RS485. A 9-pin SubminD female connector strip is used as a connector.

The Termination of the bus cable is in the connector.

Termination for point-to-point connection:

For operation with point-to-point connection the termination must <u>always</u> be activated.

Termination for multipoint connection:

For operation with multipoint connections only the termination at the cable end must be activated.

Termination for spur lines:

For spur lines the termination must always be deactivated.

Connector on the operating terminal: 9-pin SubminD female connector strip

Assignment:

Pin	Designation	Function
1	nc	not connected
2	nc	not connected
3	RxD/TxD-P	Transmit / Receive Data Plus
4	CNTR-P	Control Signal Repeater Plus
5	DGND	Data Transmission Potential
6	VP	Power Supply of the Matching Resistors Plus
7	nc	not connected
8	RxD/TxD-N	Transmit / Receive Data Minus
9	CNTR-N	Control Signal Repeater Minus

Principally, all cable with the following parameters can be used:

- Loop resistance 110 Ohm/km
- Effective capacitance 30 nF/km
- Surge impedance 150 Ohm

The maximum length of a segment must be less than 50 meters. In the "Installation Manual S7-400, M7-400, C79000-G7000-C400-01" of Siemens you can gather more information about installation.

2.5.6 Pin Assignment X2.1 / X2.2 CAN-Bus

To integrate the unit into a network topology of the CAN bus it can be equipped with the special interfaces X2.1 and X2.2 for CAN Bus. The CAN bus is stated as a high-speed-bus according to ISO-DIS 11898.

Connector: 9-pin SubminD male connector strip X2.1

Designation	Function
nc	not connected
CAN_L	CAN_L bus line (dominant LOW)
CAN_GND	CAN Ground
nc	not connected
nc	not connected
CAN_GND	CAN Ground
CAN_H	CAN_H bus line (dominant HIGH)
nc	not connected
nc	not connected.
	nc CAN_L CAN_GND nc nc CAN_GND CAN_H nc

Connector: 9-pin SubminD female connector strip X2.2

Pin	Bezeichnung	Funktion
1	nc	not connected
2	CAN_L	CAN_L bus line (dominant LOW)
3	CAN_GND	CAN Ground
4	nc	not connected
5	nc	not connected
6	CAN GND	CAN Ground
7	CAN_H	CAN_H bus line (dominant HIGH)
8	nc	not connected
9	nc	not connected

All signals of X2.1 to X2.2 are interconnected. The connecting cable has to be connected to all pins including the reserved ones. The intention is, that there shall be no interruption of any of the wires in the bus cable, assuming a possible future specification of the use of the reserved pins.

A shielded cable with twisted pair wires (cabe type LiYCY-TP) must be used. The CAN bus must be terminated with resistors on both ends of the cable structure.

/000-1017/ © Copyright by Sütron electronic GmbH BT20NB_grau_eng_V10.3000000QK0

2.5.7 Pin Assignment X2 LON-Bus

To integrate the unit as a node into a network topology of the LON bus it can be equipped with the special interface X2 for LON.

Connector: 3-pin male connector strip SLA 3/180B 32 SN OR as X2

Pin	Designation	Function
1	Net A	Net A
2	GND	Signal Ground
3	Net B	Net B

On the rear side of the appliance you are given a service LED a service switch.

The service LED indicates the status of the LON node by different flashing patterns:

1 s ON, then 2 s OFF, at last permanent ON
 FLASHING in times of 1 s
 FLASHING ONCE, at last permanent OFF
 LON node without application software
 LON node without communication relation
 LON node is working correct

The service switch is used to send out a special network management telegram to distribute the neuron ID-code. The neuron ID-code can be used to address the LON node while installation.

A shielded cable with twisted pair wires (cable type LiYCY-TP) must be used.

2.5.7 Pin Assignment InterBus Optical Fibre

To integrate the unit into a network topology of the InterBus optical fibre device net it can be equipped with the special interfaces for InterBus Optical Fibre. The optical fibre interface is stated as F-SMA type 905.

The connectors for the optical fibres are DO1 and DI1 for Remotebus In and DO2 and DI2 for Remotebus Out.

The connection must conform to "Technical Guideline For Optical Transmission".

For the optical transmission a dielectrical fibre with refractive index profile, likely a polymer fibre with a diameter of 980 μ m of the core and 1000 μ m of the coating. The connector of the type F-SMA is according to the specifications of IEC 874-2 respectively DIN 47258.

The permitted distance between two subscribers of the optical fibre device bus is 1 through 5 m.

Infrared light can **damage the retina of the eye**! Never look into the open end of the optical fibre! Secure the open ends of the optical fibres and the plugs with caps! Always wear safety glasses!

The transmitter and receiver units may get unusable by dirt. For transportation, storage and when a unit is not in use, place caps on the plug terminals.

2.5.8 Pin Assignment X3 SER1 TTY / 20 mA Current Loop

TTY / 20 mA current loop, passive

Pin	Designation	Channel	Function
10	T+	SER1	Transmit Data, Positive Polarity
13	R+	SER1	Receive Data, Positive Polarity
14	R-	SER1	Receive Data, Negative Polarity
19	T-	SER1	Transmit Data, Negative Polarity

TTY / 20 mA current loop, active

Pin	Designation	Channel	Function
10	T+	SER1	Transmit Data, Positive Polarity
12	S1+	SER1	Power Source 2, Positive Polarity
13	R+	SER1	Receive Data, Positive Polarity
14	R-	SER1	Receive Data, Negative Polarity
16	S2+	SER1	Power Source 1, Positive Polarity
19	Т-	SER1	Transmit Data, Negative Polarity
21	S1-	SER1	Power Sink 1, Negative Polarity
24	S2-	SER1	Power Sink 2, Negative Polarity

Termination:

When using the channel SER1 as current loop the terminator switches for RS485 must be <u>switched</u> <u>OFF</u>!

The interface can be connected as either an active or passive current loop depending on the wiring. The transmit line and the receive line are provided with separate 20mA power sources. The compliance voltage is approximately 24 VDC.

The maximum baud rate is 19200Bd. The maximum cable length depends on the baud rate and rate of transmission errors.

For longer cable lengths, the 20mA power supply should be fed by the transmitting unit. This can decrease crosstalk on the signal lines considerably.

In idle state (signal logical 1) a current loop of 20 mA can be measured on the cable.

Signal logical 1	-	Current flow 20mA
Signal logical 0	-	Current flow is interrupted

A shielded cable with twisted pair wires (cable type LiYCY-TP) and a minimum cross section of 0.08 mm² must be used. The maximum cable length is 100 m.

Connect the cable shield to the metal hoods of the connectors over as large a surface as possible! Please refer to appendix A.

2.5.9 Pin Assignment X3 SER1 RS485

The interface RS485 is suitable for point-to-point connections and multipoint connections.

Termination for point-to-point connection:

For operation with point-to-point connection the termination must <u>always</u> be activated.

Termination for multipoint connection:

For operation with multipoint connections only the termination at the cable end must be activated.

The signals of the interface are electrically isolated.

The configuration of the hardware can be adapted to different systems. The associated wires are marked with "A" and "B". Some descriptions refer to the pins with "+" and "-", where the following applies: A = + and B = -. The voltage levels comply with the standards and are defined as follows:

Signal logical 1	-	$U_{A} - U_{B} \le -0.3 \text{ V}$ i.e. $(U_{A} \le U_{B})$
Signal logical 0	-	$U_{A} - U_{B} >= +0.3 \text{ V i.e. } (U_{A} > U_{B})$

Pin	Designation	Channel	Function
8	T(A)	SER1	Transmit Data Channel A
9	T(B)	SER1	Transmit Data Channel B
11	SGND	SER1	Signal Ground
22	RD(A)	SER1	Receive Data Channel A
23	RD(B)	SER1	Receive Data Channel B

A shielded cable with twisted pair wires (cable type LiYCY-TP) and a minimum cross section of 0.34 mm² (for 400 m) must be used. The maximum cable length is 400 m.

Connect the cable shield to the metal hoods of the connectors over as large a surface as possible! Please refer to appendix A.

2.5.10 Pin Assignment X3 SER1 RS232c

Interface for communication with controller.

Pin	Designation	Channel	Function
6	TD	SER1	Transmit Data
15	CTS	SER1	Clear To Send
17	RTS	SER1	Request To Send
18	RD	SER1	Receive Data
25	SGND	SER1	Signal Ground

A shielded cable with stranding in layers (cable type LiYCY) and with a minimum cross-section of 0.25 mm^2 must be used. The maximum cable length is 15 m.

R

Connect the cable shield to the metal hoods of the connectors over as large a surface as possible! Please refer to appendix A.

2.5.11 Pin Assignment X3 SER2 RS232c

Interface for download, upload, logging printer and scanner.

Pin	Designation	Channel	Function
1	(-li-	SER2	Low-noise Earth
2	TD	SER2	Transmit Data
3	RD	SER2	Receive Data
4	RTS	SER2	Request to Send
5	CTS	SER2	Clear To Send
7	SGND	SER2	Signal Ground
20	DTR	SER2	Data Terminal Ready

A shielded cable with stranding in layers (cable type LiYCY) and with a minimum cross-section of 0.25 mm^2 must be used. The maximum cable length is 15 m.

Connect the cable shield to the metal hoods of the connectors over as large a surface as possible! Please refer to appendix A.

2.5.12 Pin Assignment X4 Parallel Outputs

Open-collector-outputs, which switch the positive potential, are used as parallel outputs. These outputs are suitable for direct control of PLC inputs. The outputs can be activated by means of function keys or the controller. The assignment of these functions is carried out in the programming software. The parallel outputs are designed for use in standard mode only.

Technical Data:	
Input voltage	15 through 30 VDC
Output Current	max. 0.5 A for each output
Delay	30 to 50 ms

Connector in the operating terminal: 10-pin plug connector with screwed connection

Pin	Designation	Function
1	A8	Output 1
2	A7	Output 2
3	A6	Output 3
4	A5	Output 4
5	A4	Output 5
6	A3	Output 6
7	A2	Output 7
8	A1	Output 8
9	0V	Negative Potential
10	$+U_{IN}$	Positive Potential

2.6 Shielding

The shield must be connected to the metal hoods of the connector housings at both ends and over as large a surface as possible. It should be noted that a potential equalization line with a minimum cross-section equal to 10 times that of the shield may be necessary as a result of the grounding on both sides.

/000-1017/ © Copyright by Sütron electronic GmbH BT20NB_grau_eng_V10.300000QK0

2.7 Display

The display in the **BT20N** consists of a backlit LCD module with full graphics capability.

The drift of contrast of the display is compensated over the full temperature range. The operating terminal has an optimum viewing angle of approximately 90°.

In the operating mode standard mode the default contrast can be adjusted at operating time by means of a system variable.

The display is capable of displaying either the extended ASCII character set (semi graphics) with the font normal and zoom, and of displaying full graphics.

Display for the BT20N at a glance:

Type:	LCD Module
Resolution:	240 x 128 Dots
Backlight:	CFL
Lifetime LCD:	50000 h
Lifetime CFL:	10000 h
Lines (Font Normal):	16
Characters/Line (Font Normal):	40
Dot Size:	0.49 mm x 0.49 mm
Dot Colour:	Black
Character of Font Normal:	6 x 8 Dots
Character of Font Zoom:	12 x 16 Dots
Background Colour:	White
Visible Front Cutout (H x W):	72 mm x 131 mm

If the display is damaged, do not swallow or breathe in the liquids or gases being emitted and avoid direct contact with skin. **Danger of Poisoning! Could Result in Burns!**

2.7.1 Display Contrast Setting

The contrast for the display can be adjusted by means of the software. This requires the system variable **LCDContrast** to be set up in an I/O mask of the application. The value can then be modified using any editor that can handle integer numbers.

The limit values for the brightness must be set to

Lower level: -25 Upper level: +70

If this variable is not defined in the menus or the value is out of the range of values, the default setting (value 25) will be loaded when the system is initialized.

The system variable can be stated in any I/O-mask of the application!

2.7.2 Default Contrast Setting

If the contrast or brightness of the display should be such that the masks are no longer legible, the default contrast / brightness setting can be restored using the user mode switch.

Position of the switch to restore the contrast:

S1	ON
S2	OFF
S3	OFF
S4	ON

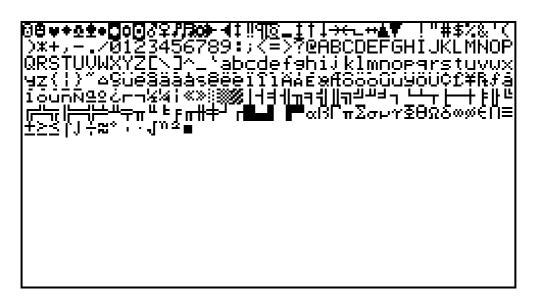
This switch position coincides with "activating download by hardware". The contrast will be reset before the warning is displayed. The warning will be displayed in a legible manner. How to setup the default contrast / brightness:

- Switch off the unit
- Set the DIP-switches to the above decribed switch positions
- Switch on the unit
- Upon display of a warning, switch off the unit
- Set the switch S4 to the OFF-position
- Switch on the unit again.

The application data is not lost.

2.7.3 Character Attributes

By preselecting an attribute, any characters can be displayed as follows:

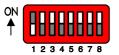

- normal
- flashing
- underlined
- inverse

and in any combination.

/000-1017/ © Copyright by Sütron electronic GmbH BT20NB_grau_eng_V10.300000QK0

2.7.4 Font Normal

2.7.5 Font Zoom



2.7.6	ļ	ASCII C	haracter	Set	Table				
000		032	064	e	096 `	128 Ç	160 á	192 ^L	224 α
001	€		065	Ā	097 a		161 í	193 ±	225 ß
002	8		066	B	098 b	-	162 ó	194 т	226 r
003	. ب	035 4	# 067	С	099 с	131 â	163 ú	195 -	227 Π
004	٠	036 \$	5 068	D	100 d		164 ñ	196 –	228 Σ
005	۰.		: 069	Ε	101 e		165 Ñ	197 🕇	229 σ
006	ŧ		£ 070	F	102 f	134 å	166 °	198	230 µ
007	•	001	' 071	G	103 g		167 º	199	231 τ
008	•		(072	Н	104 h		168 č	200 L	232 Q
009	0		> 073	I	105 i		169 -	201 F	233 O
010			* 074	J	106 j		170 -	202 11	234 Ω
011	ď		+ 075	ĸ	107 k		171 %	203 I	235 δ
012	ę	044	. 076	L	108 1		172 %	204 ¦	236 w
013	ľ		- 077	M	109 m		173 i	205 =	237 ø
014	ũ	046	. 078	Ň	110 n		174 «	206 #	238 E
015	×		/ 079	0	111 0		175 »	207 ± 208 ⊥	239 N
016 017	¥.			P	112 p		176 177 178	200	240 ≡ 241 ±
017	ŧ		L 081 2 082	Q R	113 q 114 r		178	209 ∓ 210 π	241 ± 242 ≥
019			3 083	л S	114 r 115 s	-	179	210 H 211 H	242 <u>∠</u> 243 <u>∠</u>
	Ϋ́		4 084	ъ Т	115 s 116 t		180	211 212 E	243 <u>-</u> 244 ſ
021	ĥ		5 085	Û	117 u		181 =	212 - 213 F	245 J
022	•		5 0 86	Ŭ	118 v		182	214 Π	246 ÷
023	Ŧ		7 087	Ň	119 w		183 n	215	247 %
024	Ť		3 088	x	120 x	152 ÿ	184 1	216 +	248 º
025	į.		7 089	Ŷ	121 y		185	217 J	249 ·
	→		. 090	Z	122 z		186 İİ	218 г	250 ·
027	÷		; 091	Γ	123 <	155 ¢	ה 187	219 🛓	251 √
028	L		6 092	\mathbf{N}	124 ¦	156 £	188 ^{ij}	220 🕳	252 "
029	++	061 :	= 093	1	125 >	157¥	189 ^{II}	221 🚺	253 ²
030			> 094	^	126 ~	130 16	190 J	222	254
031	•	063 (? 095	_	127 ۵	159 f	ר 191	223 🗖	255

2.8 User-Mode Switch

The user-mode switch is placed at the rear side of the unit. The switch levers can be accessed by using a pen or a small screwdriver.

The switches S5 to S8 can be used by the operator as needed. The switch positions are stored at initialization time and afterwards they can be overtaken to the controller.

S1	S2	S3	S 4	S5	S6	S7	S8	Function
Ι	Х	-	-	Х	Х	Х	Х	Standard-Mode with PLC (delivery state)
Ι	Х	Ι	-	Х	Х	Х	Х	Standard-Mode without PLC
-	Ι	-	-	Х	Х	Х	х	Transparent-Mode with start and stop code of the keys
-	-	-	Ι	Х	Х	Х	Х	Transparent-Mode without stop code of the keys
I	-	-	I	х	Х	Х	Х	Activate download (deletes application memory) und default contrast setting
I	-	Ι	Ι	Х	Х	Х	Х	Activate upload

Legend of above table:

- I = Switch position ON
- = Switch position OFF
- X = Switch position irrelevant

2.9 Battery

A built-in lithium battery buffers the data in the CMOS-RAM memory and also supplies the real-time clock with power. The battery provides a lifetime of at least 5 years, even under unfavourable operating conditions.

If the battery is drained the system message "change battery" is generated. We recommend to change the battery at maintenance in an interval of 4 years. A new battery is supported by Sütron electronic or the sales representative of your country.

When the message "change battery" is recognized too late, for example real-time clock stopped or displays wrong date, it is possible that the data in the CMOS-RAM is lost. Therefore you have to check the data (changeable passwords, parameters in the system variables, data set of the recipes and the entries in the message system).

Replacing the battery:

The battery can be replaced while the operating voltage is connected to ensure that the message data and time setting are not lost. Mind the safety instructions!

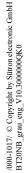
- Remove the mounting bolts of the field bus connectors (if available)
- Remove the fastening screws of the enclosure and remove the enclosure
- Replace the cable fastener, which is used to hold the battery
- Plug off the connector of the battery cable and replace the battery
- Plug on the connector of the new battery
- Place the new battery onto the plastic carrier on the printed circuit board and fasten it with a new cable fastener
- Place the enclosure on the rear side of the unit
- At first fasten the bolts of the field bus connectors (if available) and at last fasten the screws of the enclosure properly

Changing the battery may only be performed by qualified and authorized personnel!

Sewage and refuse displosal:

Dispose only drained batteries into the collection box of the community or of the local dealer. The battery is stated as drained when the message "change battery" appears on the display of the appliance. To prevent short circuitry in the collection boxes insulate the poles of each battery with insulation tape or put each single battery into a plastic bag.

Do not put lithium batteries in fire or heat them above 100° C and do not recharge them. **Danger of Explosion!**


Do not open lithium batteries. Danger of Poisoning!

Hazardous voltages can exist inside electrical installations that can pose a danger to humans. Coming in contact with live parts may result in **electric shock!**

Electrostatic discharges can damage electronic components! ESD protective measures must be observed!

2.10 Fuse

A semiconductor fuse is used to prevent damage to the operating terminal. Once the fuse has been activated, the device must be disconnected from the supply voltage to allow the semiconductor fuse to regenerate. With an ambient temperature of 20 °C, the regeneration takes about 20 seconds. The higher the ambient temperature, the longer the regeneration period. The semiconductor fuse is not designed to be replaced.

2.11 Application Memory

The unit is equipped with either a 256 KByte or 768 KByte flash memory an application memory. After switching on the unit the size of the application memory is displayed. This memory area is available to store the user application, the loadable protocol driver, the fonts and the recipe data.

2.12 Diagnosis LEDs

The diagnosis LEDs are placed on the rear side of the units with field bus interfaces. The LEDs indicate the status of the bus system.

2.12.1 InterBus

Arrangement of the diagnosis LEDs:

Indications:

Description	Color	Status	Indication
+5 V	Green	ON	Voltage Monitor
RC	Green	ON	Remote Bus Check
BA	Green	ON	Bus Active
RD	Red	ON	Remote Bus Disabled

2.12.2 SUCOnet K

Arrangement of the diagnosis LED:

00 Ο

Indications:

Color	Status	Indication
Red	ON	Communication Error

2.12.3 PROFIBUS-DP

Arrangement of the diagnosis LED:

Indications:

Color	Status	Indication
Green	ON	Communication Active

2.12.4 MPI

Arrangement of the diagnosis LED:

Indications:

Color	Status	Indication
Green	Flashing	Terminal has the Token

2.12.5 CAN

Arrangement of the diagnosis LED:

Indications:

Color	Status	Indication
Green	OFF	Terminal Disconnected from the Bus
Green	ON	Communication Active
Green	Flashing	Sporadic Bus Error

/000-1017/ © Copyright by Stitron electronic GmbH BT20NB_grau_eng_V10.300000QK0

2.12.6 LON

Arrangement of the diagnosis LED:

Indications:

Color	Status	Indication
Yellow	OFF	Neuron Chip has an Application and is Configured
Yellow	ON	Neuron Chip has no Application
Yellow	Flashing Slowly	Neuron Chip has an Application, but is not Configured
Yellow	Flashing Once	Neuron Chip is Reset

2.12.7 InterBus Optical Fibre

Arrangement of the diagnosis LEDs:

Indications:

Description	Color	Status	Indication
+5 V	Green	ON	Voltage Monitor
RC	Green	ON	Remote Bus Check
BA	Green	ON	Bus Active
RD	Red	ON	Remote Bus Disabled

3 Technical Data

Keyboard	A Total of 34 Keys, Mechanical with Tactile Feedback, 1 Million Switch Cycles Divided into 5 Control Keys 12 Function Keys with LED and Slide-in Identification Strips 2 Special Keys without LED 2 Special Keys with LED 13 Editing Keys		
Display	LCD Module with CFL-Illumination, 240 Characters Each, Display Area 131 x72 m Lifetime LCD: 50.000 h Lifetime CFL: 10.000 h		
Display Screen	Glare Suppression for Increased Contrast		
Interface X3	Variable Baud Rates and Data Formats SER1 TTY/20 mA SER1 RS485 SER1 RS232c SER2 RS232c, not Galvanical Isolated	Communication Communication Communication Download/Upload/Scanner/ Logging Printer	
Interface X4	8 Parallel Outputs 24 VDC / 0,5 A, Short 0	Circuit Proof	
Options	 X2.1/X2.2 InterBus X2.1/X2.2 SUCOnet K X2 PROFIBUS-DP X2 MPI X2.1/X2.2 CAN-Bus X2 LON DO1/DI1/ InterBus DO2/DI2 Optical Fibre 	Communication Communication Communication Communication Communication Communication	

Protocolls	
Standard	ABB CS31
	ABB T200 AEG KS-Functions
	AEG Modbus
	Allen Bradley
	Bosch BUEP19/BUEP19E
	DIN-Messbus Slave, DIN-Messbus Gateway GE Fanuc SNP
	IDEC Micro3
	Jetter PASE / PCOM5
	OMRON Host-Link OMRON NT-Link
	Klaschka YCOM/C
	Moeller SUCOM 1 (PS306/316)
	Moeller SUCOM 1 (PS4-201) Mitsubishi FX-Series and A-Series
	Siemens Sinec L1 Master
	Siemens 3964R/RK512
	Siemens S5 PG (AS511) Siemens S7 PPI
Protocolls	
Field Bus	CAN/CANopen InterBus
	LON
	Moeller SUCOnet K
	PROFIBUS-DP Siemens S7 MPI
Central Unit	TMPZ84C015, 10 MHz, Watchdog-Timer, Real-Time Clock, Program-
	mable Interface Parameters, Temperature Compensation of the Display,
	Adjustment of Contrast, Battery Monitoring, User-Mode Switch
Memory	256 / 768 KByte Flash Memory, Application Memory
Ş	256 KByte Flash Memory, Firmware
	128 KByte stat. CMOS-RAM, Battery Backed
Connection System	Plug-in Type, via SubminD Female/Male Connector Strip
Supply Voltage	24 V Direct Voltage, Residual Ripple Max. 10%,
Supply Club	SELV in Accordance to DIN EN 61131
	Minimum Voltage 19,2 V
	Maximum Voltage 30,2 V
	Typ. Power Consumption 0,7 A
	Peak Current (10 ms)3,0 A
Connected Load	~20 W
Fuse	Semiconductor Fuse

Reverse Voltage Protection	Protection Diode			
Noise Immunity	EC Electromagnetic Compa EN 50081-1 Tabelle A1 EN 50082-2 EN 55011 Limit Class B EN 55022 EN61000-4-2 EN61000-4-3 EN61000-4-4 EN61000-4-5 EN61000-4-6	atibility Directive 89/336/EEC		
Environmental Test	Operating Temperature Storage Temperature Relative Humidity for: Operation Storage Non-condensing	0°C to 50°C -25°C to 60°C max. 75% Annual Average max. 75% Annual Average		
Degrees of Protection	EN 60529 Mechanical Degrees of Protection Front: IP54 Rear: IP20			
Front Panel	Aluminium, Black Anodized with Affixed Polyester Cover, Circumferen- tial Sealing on Rear Side of Front Panel 190.0 x 330.0 x 3.0 mm (H x W x D)			
Panel Cutout	152.0 x 292.0 mm (H x W)			
Mounting Depth	60 mm without Connector			
Enclosure	Zinc-Coated Steel Plate			
Total Weight	Approx. 1560 g			

4 Declaration of Conformity

EG - Konformitätserklärung

Seriennummer : BT20N/10XXXX

Dokument - Nr./ Monat. Jahr :

CE-BT20N.10X_99/05.1999

Der Unterzeichner, der den nachstehenden Hersteller vertritt

Hersteller :			
Anschrift :	SÜTRON ELECTRONIC GMBH Kurze Straße 29 D-70794 Filderstadt (Bonlanden)	Telefon 0711/77098-0 Telefax 0711/77098-60	

oder den vom Hersteller nachstehend benannten Bevollmächtigten vertritt, der innerhalb der Gemeinschaft (oder des EWR) niedergelassen ist (falls zutreffend)

Bevollmächtigter:	Siegfried Buck	
Anschrift:	Kurze Straße 29	D-70794 Filderstadt

erklärt hiermit, daß das Produkt

Produktkennzeichnung : Tesimod-Bedienterminal BT20N/10XXXX

in Übereinstimmung mit den Bestimmungen der nachstehenden EG-Richtlinie(n) (einschließlich aller zutreffenden Änderungen)

Referenz-Nr.	89 / 336 / EWG				
Titel	Richtlinie des Rates zur Angleichung der Rechtsvorschriften der Mitgliedsstaaten				
über die elektromagnetische Verträglichkeit					

und daß die Normen und/oder technischen Spezifikationen, die auf der Umseite in Bezug genommen sind, zur Anwendung gelangt sind.

Die letzten beiden Ziffern des Jahres in dem die CE-Kennzeichnung angebracht wurde: (nur einzutragen, wenn die Übereinstimmung mit den Bestimmungen der Niederspannungsrichtlinie 73/23/EWG erklärt wird)

Aussteller :

Ort, Datum:

Filderstadt , 07.05.99

Unterschrift:

Inda egfried Buck , Geschäftsführer

(Name und Funktion der vom Hersteller oder von seinem Bevollmächtigten zur Unterschrift berechtigten Person)

Die Sicherheitshinweise der mitgelieferten Produktdokumentation sind zu beachten .

50

EG-Konformitätserklärung

Seriennummer : BT20N/10XXXX

Dokument - Nr./ Monat. Jahr :

CE-BT20N.10X_99/05.1999

Bezugnahme auf Normen und/oder technische Spezifikationen oder Teile von diesen die für diese Konformitätserklärung zur Anwendung gelangt sind :

- harmonisierte Normen :

Referenznummer	Ausgabedatum	Titel	Teile (1)
DIN EN 55011	10.97	Funkstörungen bei ISM-Geräten	
DIN EN 50081-1 Tab. A1	01.92	EMV-Störaussendung Wohnbereich	1
DIN EN 50082-2	02.96	EMV-Störfestigkeit Industriebereich	2
DIN EN 61000-4-2	1995	EMV-Störfestigkeit ESD	2
DIN EN 61000-4-3	08.97	EMV-Störf. Hf-elektromagn. Felder	3
DIN EN 61000-4-4	1995	EMV-Störfestigkeit Burst	4
DIN EN 61000-4-5	1995	EMV-Störfestigkeit Surge	5
DIN EN 61000-4-6	04.97	EMV-Störf. leitungsgef. Störgr.	6
DIN EN 55022	05.95	Funkstörungen bei ITE-Geräte	

- oder andere Normen und/oder technische Spezifikationen:

Referenznummer	Ausgabedatum	Titel	Те

- andere Technische Lösungen, deren Details in den technischen Unterlagen oder in der technischen Dokumentation enthalten sind :

- Andere in Bezug genommene Dokumente oder Informationen, die von den anzuwendenden EG-Richtlinien gefordert werden :

Prüfbericht :

86227-1-BCD, PNR70_1-3

(1) Wo zutreffend, müssen die angewandten Teile oder Abschnitte der Norm oder der technischen Spezifikation in Bezug genommen werden.

1	SÜTRON ELECTRONIC GMBH Kurze Straße 29 D-70794 Filderstadt (Bonlanden)	 0711/77098-0 0711/77098-60	Geschäftsführer: Siegfried Buck Frank Mohn	Amtsgericht Nürtingen HRB - Nr. 981

Seite 2

5 Index

A

Application Memory 44 ASCII Character Set Table 41

B

Battery 43

С

Character Attributes 39 Control Keys 8

D

Declaration of Conformity 50 Default Contrast Setting 39 Degree of Protection 21 Diagnosis LEDs 44 CAN 45 InterBus 44 InterBus Optical Fibre 46 LON 46 MPI 45 PROFIBUS-DP 45 SUCOnet K 44 Display 38 Display Contrast Setting 39

E

Editing Keys 7 Explanation of Symbols 5

F

Font Normal 40 Zoom 40 Front Panel Dimensions 22 Front View 6 Function Key Arrangement 10 Function Keys 9 Fuse 44

K

Key Clear 9 Cursor Down 8 Cursor Home 8 Cursor Left 8 Cursor Right 8 Cursor Up 8 Data Release 9 Decimal Point 8 Enter 9 F1 to F16 9 Help 9 Minus 8 Plus 8 Keyboard 7

Μ

Mounting Depth 23 Mounting the Terminal 21

P

Panel Cutout 24 Pin Assignment InterBus Optical Fibre 33 X1 Supply Voltage 26 X2 LON-Bus 32 X2 MPI 30 X2 PROFIBUS-DP 29 X2.1 / X2.2 CAN-Bus 31 X2.1 / X2.2 InterBus 27 X2.1 / X2.2 SUCOnet K 28 X3 SER1 RS232c 36 X3 SER1 RS485 35 X3 SER1 TTY / 20 mA Current Loop 34 X3 SER2 RS232c 36 X4 Parallel Outputs 37

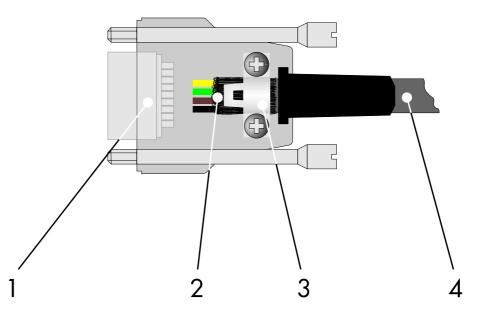
R

Rear View CAN-Bus 18 InterBus 14 InterBus Optical Fibre 20 LON-Bus 19 MPI 17 PROFIBUS-DP 16 Standard 12 Standard with Parallel Outputs 13 SUCOnet K 15

S

Shielding 37 Side View 23 Slide-in Identification Strips 10 Special Keys 9

Т


Technical Data 47 U User-Mode Switch 42

Appendix A

A Appendix A

A.1 Shielding of SubminD - Interconnections

- 1 SubminD Connector
- 2 Shield
- 3 Cord Grip
- 4 Cable

The shield must be pushed back tubularly.

By fastening the cable with the cord grip you have to ensure an electrical contact of the shield to the housing over an area as wide as possible and an appropriate strain relief.

/000-9183/ © Copyright by Stitron electronic GmbH Appendix A.300000QK0

