

ELECTRONIC GMBH

Technical Manual TesiMod Operating Terminal BT5N LCD / BT5N VF Standard Unit

Version 1.0 issued 12th July 2000

Sütron electronic GmbH Kurze Straße 29 70794 Filderstadt Tel.: ++49 7 11 / 77 09 80

Fax: ++ 49 7 11 / 77 09 86 0 Email: support@suetron.de Internet: www.suetron.de

V1.0 12.07.2000 First Edition

This manual and the illustrations it contains are protected by copyright law. Use of this manual by third parties in a manner that is contrary to copyright terms is prohibited. No part of this document may be reproduced, translated or archived in any form or by means, electronic or photographic, or altered without the express written permission of the Sütron electronic GmbH. Acting in a manner that is contrary to these terms makes the party liable to damages.

Sütron electronic reserves the right to make changes that reflect technical advances.

Table of Contents

1	Explanation of Symbols	5
2	The Operating Terminal BT5N	5
2.1	Front View	6
2.2 2.2.1 2.2.2 2.2.3	Keyboard Editing Keys Control Keys Special Keys	7 8 9
2.2.4 2.2.4.1 2.2.4.2	Function Keys Function Key Arrangement Slide-in Identification Strips for the Function Keys	. 10
2.3 2.3.1	Rear View	
2.4.1 2.4.2 2.4.3	Mounting the Terminal Front Panel Dimensions Side View, Mounting Depth Panel Cutout	. 14 . 15
2.5.1 2.5.2 2.5.3 2.5.4 2.5.5	Pin Assignments Pin Assignment X1 Supply Voltage Pin Assignment X3 SER1 TTY / 20 mA Current Loop Pin Assignment X3 SER1 RS485 Pin Assignment X3 SER1 RS232c Pin Assignment X3 SER2 RS232c	. 18 . 19 . 20 . 21
2.6	Shielding	. 21
2.7.1 2.7.2 2.7.3 2.7.4 2.7.5 2.7.6 2.7.7	Display Display Contrast Setting Default Contrast Setting Character Attributes Font Normal Displayable Character Set Loadable Font Katakana Loadable Font Cyrillic	. 23 . 24 . 24 . 24 . 25
2.8	User-Mode Switch	. 27
2.9	Battery	. 28

2.10	Fuse
2.11	Application Memory
3	Technical Data 29
4	Declaration of Conformity 32
5	Index 34
A	Appendix A A-1
A. 1	Shielding of SubminD - Interconnections

/000-0194/ © Copyright by Sutron electronic GmbH BT5NS_grau_eng_V10.3000000QK0

TesiMod BT5N

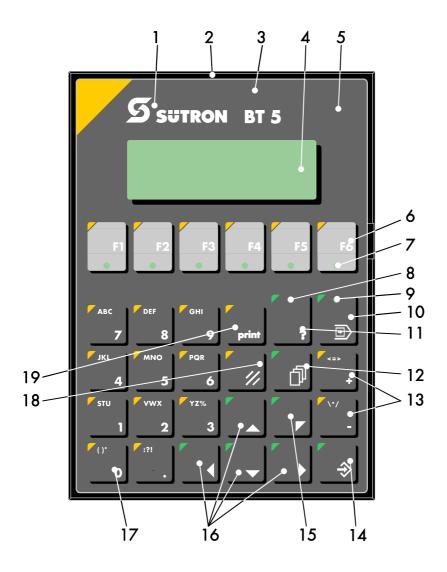
1 **Explanation of Symbols**

This manual uses the following symbols to indicate notes and hazardous situations.

Notes for the User

General Danger

Specific Danger


2 **The Operating Terminal BT5N**

The BT5N operating terminal is of small size that makes it suitable for installation wherever space is limited while being able to take advantage of all the functions provided by larger operating terminals.

The unit is fitted with function keys that can be individually labelled with slide-in identification strips.

The communication with a controller and a logging printer is carried out via separate interfaces.

2.1 Front View

- 1 Company Logo
- 2 Front Panel
- 3 Operating Terminal Type Logo
- 4 Display
- 5 Front Cover
- 6 Function Keys F1 to F6
- 7 Status-LED Function Keys
- 8 Status-LED Help
- 9 Status-LED Data Release
- 10 Special Key Data Release

- 11 Special Key Help
- 12 Control Key Page
- 13 Editing Key Plus, Minus
- 14 Special Key Enter
- 15 Key Cursor Home
- 16 Key Cursor Right, Left, Up, Down
- 17 Editing Keys 0 to 9, Alphabet
- 18 Special Key Clear
- 19 Special Key Print

2.2 Keyboard

The **BT5N** supports all important key functions in spite of the small measures. The keyboard consists of membrane keys. The stroke distance is 0.3 mm and the key area is $15 \times 15 \text{ mm}$. The key elements are covered by an embossed polyester foil against environmental influences. The Status LEDs are positioned under or above the according key element and they illuminate green. The keyboard has a lifetime of 2 million switching cycles.

In transparent mode, the keys supply a fixed start and stop code. In standard mode, the function of the keys is as defined by the user.

2.2.1 Editing Keys

()°

Key: **0 and ()** ° is used to edit data within the editor. If the system variable **Shift** or **ShiftCase** is programmed, the characters (and) and ° can be entered.

Key: **1 and STU** is used to edit data within the editor. If the system variable **Shift** or **ShiftCase** is programmed, the characters S and T and U can be entered.

Key: **2 and VWX** is used to edit data within the editor. If the system variable **Shift** or **ShiftCase** is programmed, the characters V and W and X can be entered.

Key: **3 and YZ%** is used to edit data within the editor. If the system variable **Shift** or **ShiftCase** is programmed, the characters Y and Z and % can be entered.

Key: **4 and JKL** is used to edit data within the editor. If the system variable **Shift** or **ShiftCase** is programmed, the characters J and K and L can be entered.

Key: **5 and MNO** is used to edit data within the editor. If the system variable **Shift** or **ShiftCase** is programmed, the characters M and O can be entered.

Key: **6 and PQR** is used to edit data within the editor. If the system variable **Shift** or **ShiftCase** is programmed, the characters P and Q and R can be entered.

Key: **7 and ABC** is used to edit data within the editor. If the system variable **Shift** or **ShiftCase** is programmed, the characters A and B and C can be entered.

Key: **8 and DEF** is used to edit data within the editor. If the system variable **Shift** or **ShiftCase** is programmed, the characters D and E and F can be entered.

Key: **9 and GHI** is used to edit data within the editor. If the system variable **Shift** or **ShiftCase** is programmed, the characters G and H and I can be entered.

Key: **Decimal Point and :?!** is used to edit data within the editor. If the system variable **Shift** or **ShiftCase** is programmed, the characters : and ? and ! can be entered.

Key: **Minus and** */ can be used to enter negative values within the editor. In the increment editor, the variable value is decremented by 1. When the key is held down, the function is repeated at a rate of repetition that is automatically increased. If the system variable **Shift** or **ShiftCase** is programmed, the characters \ and * and / can be entered.

Key: **Plus and <=>** can be used to enter positive values within the editor. In the increment editor, the variable value is incremented by 1. When the key is held down, the function is repeated at a rate of repetition that is automatically increased. If the system variable **Shift** or **ShiftCase** is programmed, the characters < and = and > can be entered.

2.2.2 Control Keys

Key: **Cursor left** can be programmed to directly select I/O masks. In the editor, it moves the cursor to the left.

Key: **Cursor right** can be programmed to directly select I/O masks. In the editor, it moves the cursor to the right.

Key: **Cursor up** can be programmed to directly select I/O masks. In the editor, it moves the cursor upwards.

Key: **Cursor down** can be programmed to directly select I/O masks. In the editor, it moves the cursor downwards.

Key: **Cursor home** can be programmed to directly select I/O masks. In the editor, it moves the cursor to the position of the first input variable.

Key: **Page** is used to page through tables, recipes and messages. The functionality corresponds to the system variable "**TabPgDn**". The key allows data contents towards the bottom of the table to be viewed. The key **Page** is programmed as function key F8.

2.2.3 Special Keys

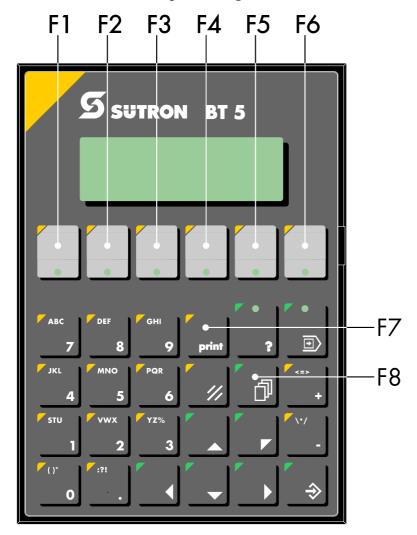
Key: **Help** always displays the current help text (online help). When the status-LED help flashes, it signals that an error message is pending. The error or system message is always displayed in plain-text.

Key: **Data Release** is used to switch from a menu into the editor. The status-LED data release lights up when the editing mode is active. When the Data Release key is pressed within the editor, the editing mode is exited.

Key: **Enter** is used to conclude data entry. When pressed while in the startup mask, the key switches into the setup mask.

Key: Clear deletes the character beneath the cursor when it is used in an editor. Deletes the selected messages from the data memory. Key: **Acknowledge** is used as an acknowledge key for the message system.

Key: **Print** can be used as a soft key to activate various print processes. The key **Print** is programmed as function key F7.

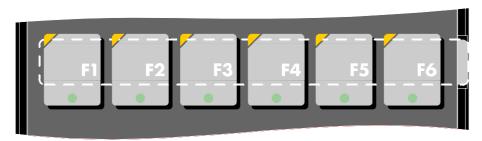


2.2.4 Function Keys

The **function keys F1 to F6** with integrated LEDs for functional feedback. The keys can be freely assigned a soft key functionality; either for menu control or to trigger a function in the controller.

2.2.4.1 Function Key Arrangement

2.2.4.2 Slide-in Identification Strips for the Function Keys


The slide-in identification strips can be replaced without having to disassemble the terminal. One blank slide-in identification strip and one labelled with F1 through F6 are supplied. Various labelling methods are recommended, depending on the number of terminals involved.

Suitable labelling methods for:

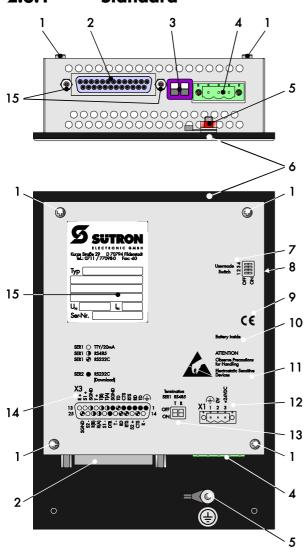
custom-made terminals,

prototypes: labelling with an indelible pen small number of terminals: transparency with laser printing

large number of terminals: identification strips printed according to customer's needs

Position of the slide-in identification strip in the BT5N

blank slide-in identification strip



labelled slide-in identification strip, standard

2.3 Rear View

2.3.1 Standard

- 1 Fastening Screw for Enclosure
- Female Connector X3 (TTY/RS485/RS232c)
- 3 Terminator Switch (X3-SER1 RS485)
- 4 Connector X1 (Power Supply)
- 5 Threaded Bolt for Protective Ground
- 6 Front Panel
- 7 Switch Positions User-Mode Switch
- 8 User-Mode Switch at the Side of the Unit
- 9 CE Mark
- 10 Battery-related information

- 11 Warning
- 12 Pin Assignment Connector X1
- 13 Switch Positions Terminator Switch
- 14 Pin Assignment Female Connector X3
- 15 Name Plate

/000-0194/ © Copyright by Sütron electronic GmbH BT5NS_grau_eng_V10.3000000QK0

TesiMod BT5N

2.4 Mounting the Terminal

The rear panel mounting is suitable for easy and sealed installation in places where the rear side of the unit is accessible. The unit is particularly suitable for mounting in control cabinets with a mounting wall plate thickness of approximately 1 to 14 mm.

The front panel permits sealed installation of the operating terminal in accordance with the IP65 degree of protection (at the front). At the rear side of the front panel a circumferencial sealing is attached. All parts for mounting the unit are given with the spare parts set.

Special care needs to be taken during installation to maintain this high degree of protection. The unit is inserted from the front through the panel cutout and screwed to the mounting wall from the rear. The seal must be positioned evenly and the fastening elements tightened uniformly.

When installing the unit, keep a minimum space of 30 mm around the unit for adequate air circulation.

The tightness between the front panel and the mounting surface depends on the care during installation.

Mounting and maintenance may only be performed by qualified and authorized personnel!

Front Panel Dimensions 168.0 x 120.0 x 4.0 mm (H x W x D) Panel Cutout 160 x 112 mm (H x W)

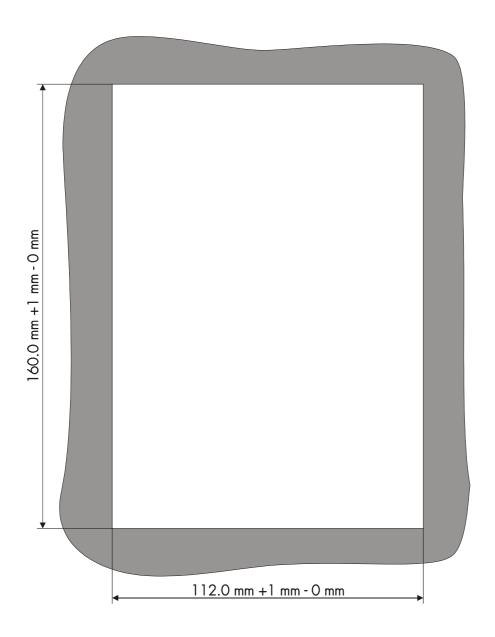


2.4.1 Front Panel Dimensions

2.4.2 Side View, Mounting Depth

// 000-0194/ © Copyright by Surron electronic GmbH BTSNS_grau_eng_V10.30000000QK0 C 7 1

Front Panel


Foam Rubber Seal

Mounting Surface Thickness 1 bis 14 mm

- 4 Threaded Pin DIN 914 M4 x 35
- 5 Mounting Clamp

2.4.3 Panel Cutout

2.5 Pin Assignments

The unit is fitted with the following connectors:

The connector X3 combines several interface standards within one physical connector. The connector is divided into two channels. The channel for communication (SER1) is divided from the channel for upload/download/logging printer/scanner (SER2). The channels can operate independent of each other.

The channel of communication (SER1) can handle - specified by protocol - only one of the three interface standards.

Connector X1	24 VDC	Supply Voltage
Connector X2 / SER1 Connector X2 / SER1 Connector X2 / SER1	TTY / 20 mA RS232c RS485	Communication Communication Communication
Connector X2 / SER2	RS232c	Upload/Download/Logging Printer/Scanner

2.5.1 Pin Assignment X1 Supply Voltage

The supply voltage is connected via the connector X1.

The unit is equipped with a reverse voltage protection. If the poling is wrong, the unit doesn't operate.

This unit confirms to the safety class I. For safe operation it is necessary to use safety extra-low voltage (SELV) in accordance with DIN EN 61131 for the supply voltage.

Connector in the terminal: 3-pin male connector strip Phoenix COMBICON MSTBV 2,5/3-GF

Pin	Designation	Function
1	(I)	Signal Ground
2	0 V	Supply Voltage 0 V
3	24 VDC	Supply Voltage 24 VDC

The supply voltage is connected via a plug-in 3-pin female connector strip. The cable is secured in the female connector strip by means of screw terminals. Cables with fine wires with a cross-section of up to 2.5mm² can be used. The female connector strip is secured in position by means of a screw-type locking.

The female connector strip of the type Phoenix COMBICON MSTB 2.5/3-STF is supplied.

Hazardous voltages can exist inside electrical installations that can pose a danger to humans. Coming in contact with live parts may result in **electric shock!**

Please note with respect to pin assignment:

If shielded connecting cables are used for the supply voltage, the shield should be connected to pin 1.

Threaded bolt for protective grounding

A separate ground conductor must be provided for the ground screw in each case. The minimum cross-section of the ground conductor must be 1.5 mm² and the length as short as possible. Compliance with this information increases the operational safety.

2.5.2 Pin Assignment X3 SER1 TTY / 20 mA Current Loop

TTY / 20 mA current loop, passive

Pin	Designation	Channel	Function
10	T+	SER1	Transmit Data, Positive Polarity
13	R+	SER1	Receive Data, Positive Polarity
14	R-	SER1	Receive Data, Negative Polarity
19	T-	SER1	Transmit Data, Negative Polarity

TTY / 20 mA current loop, active

Pin	Designation	Channel	Function
10	T+	SER1	Transmit Data, Positive Polarity
12	S1+	SER1	Power Source 2, Positive Polarity
13	R+	SER1	Receive Data, Positive Polarity
14	R-	SER1	Receive Data, Negative Polarity
16	S2+	SER1	Power Source 1, Positive Polarity
19	T-	SER1	Transmit Data, Negative Polarity
21	S1-	SER1	Power Sink 1, Negative Polarity
24	S2-	SER1	Power Sink 2, Negative Polarity

Termination:

When using the channel SER1 as current loop the terminator switches for RS485 must be switches for RS485 must be <a href="mailto:switch

The interface can be connected as either an active or passive current loop depending on the wiring. The transmit line and the receive line are provided with separate 20mA power sources. The compliance voltage is approximately 24 VDC.

The maximum baud rate is 19200Bd. The maximum cable length depends on the baud rate and rate of transmission errors.

For longer cable lengths, the 20mA power supply should be fed by the transmitting unit. This can decrease crosstalk on the signal lines considerably.

In idle state (signal logical 1) a current loop of 20 mA can be measured on the cable.

Signal logical 1 - Current flow 20mA
Signal logical 0 - Current flow is interrupted

A shielded cable with twisted pair wires (cable type LiYCY-TP) and a minimum cross section of 0.08 mm² must be used. The maximum cable length is 100 m.

Connect the cable shield to the metal hoods of the connectors over as large a surface as possible! Please refer to appendix A.

2.5.3 Pin Assignment X3 SER1 RS485

The interface RS485 is suitable for point-to-point connections and multipoint connections.

Termination for point-to-point connection:

For operation with point-to-point connection the **termination** must <u>always</u> be activated.

Termination for multipoint connection:

For operation with multipoint connections only the **termination** at the cable end must be activated.

The signals of the interface are electrically isolated.

The configuration of the hardware can be adapted to different systems. The associated wires are marked with "A" and "B". Some descriptions refer to the pins with "+" and "-", where the following applies: A = + and B = -. The voltage levels comply with the standards and are defined as follows:

Signal logical 1 -
$$U_A - U_B \le -0.3 \text{ V}$$
 i.e. $(U_A \le U_B)$
Signal logical 0 - $U_A - U_B \ge +0.3 \text{ V}$ i.e. $(U_A \le U_B)$

Pin	Designation	Channel	Function
8	T(A)	SER1	Transmit Data Channel A
9	T(B)	SER1	Transmit Data Channel B
11	SGND	SER1	Signal Ground
22	RD(A)	SER1	Receive Data Channel A
23	RD(B)	SER1	Receive Data Channel B

A shielded cable with twisted pair wires (cable type LiYCY-TP) and a minimum cross section of 0.34 mm² (for 400 m) must be used. The maximum cable length is 400 m.

Connect the cable shield to the metal hoods of the connectors over as large a surface as possible! Please refer to appendix A.

2.5.4 Pin Assignment X3 SER1 RS232c

Interface for communication with controller.

Pin	Designation	Channel	Function
6	TD	SER1	Transmit Data
15	CTS	SER1	Clear To Send
17	RTS	SER1	Request To Send
18	RD	SER1	Receive Data
25	SGND	SER1	Signal Ground

A shielded cable with stranding in layers (cable type LiYCY) and with a minimum cross-section of 0.25 mm² must be used. The maximum cable length is 15 m.

Connect the cable shield to the metal hoods of the connectors over as large a surface as possible! Please refer to appendix A.

2.5.5 Pin Assignment X3 SER2 RS232c

Interface for download, upload, logging printer and scanner.

Pin	Designation	Channel	Function
1	(I)	SER2	Low-noise Earth
2	TD	SER2	Transmit Data
3	RD	SER2	Receive Data
4	RTS	SER2	Request to Send
5	CTS	SER2	Clear To Send
7	SGND	SER2	Signal Ground
20	DTR	SER2	Data Terminal Ready

A shielded cable with stranding in layers (cable type LiYCY) and with a minimum cross-section of 0.25 mm² must be used. The maximum cable length is 15 m.

Connect the cable shield to the metal hoods of the connectors over as large a surface as possible! Please refer to appendix A.

2.6 Shielding

The shield must be connected to the metal hoods of the connector housings at both ends and over as large a surface as possible. It should be noted that a potential equalization line with a minimum cross-section equal to 10 times that of the shield may be necessary as a result of the grounding on both sides.

2.7 Display

The display in the **BT5N** operating terminal is a 4-line LCD Module with a width of 20 characters. The version with the VF Module is fitted with a 4-line display with a width of 20 characters too. The characters are displayed by a matrix of 5 x 7 dots. The LCD Module has a yellow-green LED backlighting. The VF Module is luminescent. The operating terminal has an optimum viewing angle of approximately 90° . The contrast of the display is kept constant over the entire temperature range. The default contrast can be set online by means of a system variable.

The displayable character set is shown by the display as the standard character set. Depending on type of LCD module the character set Cyrillic or Katakana is available, too. The VF module only supports loading the character set Katakana. Additionally you can use the character attribute *Flashing*.

Displays for the BT5N (LCD/VF) at a glance:

	BT5N (LCD)	<u>BT5N (VF)</u>
Type:	LCD Module	VF Module
Resolution:	4 x 20 Dots	4 x 20 Dots
Backlight:	LED backlit	Luminescent
Lifetime LCD/VF:	100000 h	50000 h
Lifetime Backlight:	100000 h	_
Lines:	4	4
Characters/Line:	20	20
Character Matrix:	5 x 7 Dots + Cursor	5 x 7 Dots + Cursor
Character Height:	4.3 mm	4.7 mm
Illumination Color:	_	Blue-green
Background Color:	Yellow-green	_
Visible Front Cutout:	23 mm x 74 mm (H x W)	23 mm x 74 mm (H x W)

If the display is damaged, do not swallow or breathe in the liquids or gases being emitted and avoid direct contact with skin.

Danger of Poisoning! Could Result in Burns!

2.7.1 Display Contrast Setting

The contrast for the display can be adjusted by means of the software. This requires the system variable **LCDContrast** to be set up in an I/O mask of the application. The value can then be modified using any editor that can handle integer numbers.

The limit values for the brightness must be set to

Lower level: -25 Upper level: +70

The values that apply for the VF Module brightness settings are as follows:

Input Value	Brightness Level	Brightness
<1	2	50%
1	1	25%
2	2	50%
3	3	75%
4	4	100%
>4	2	50%

If this variable is not defined in the menus or the value is out of the range of values, the default setting (value 25) will be loaded when the system is initialized.

The system variable can be stated in any I/O-mask of the application!

2.7.2 Default Contrast Setting

If the contrast of the display should be such that the masks are no longer legible, the default contrast setting can be restored using the user mode switch.

Position of the switch to restore the contrast:

S1	ON
S2	OFF
S3	OFF
S4	ON

This switch position coincides with "activating download by hardware". The contrast will be reset before the warning is displayed. The warning will be displayed in a legible manner.

How to setup the default contrast:

- Switch off the operating terminal
- Set the DIP-switches to the above decribed switch positions
- Switch on the operating terminal
- Upon display of a warning, switch off the operating terminal
- Set the switch S4 to the OFF-position
- Switch on the terminal again.

The application description is not lost.

2.7.3 Character Attributes

By preselecting an attribute, all characters can be displayed as follows:

- normal
- flashing

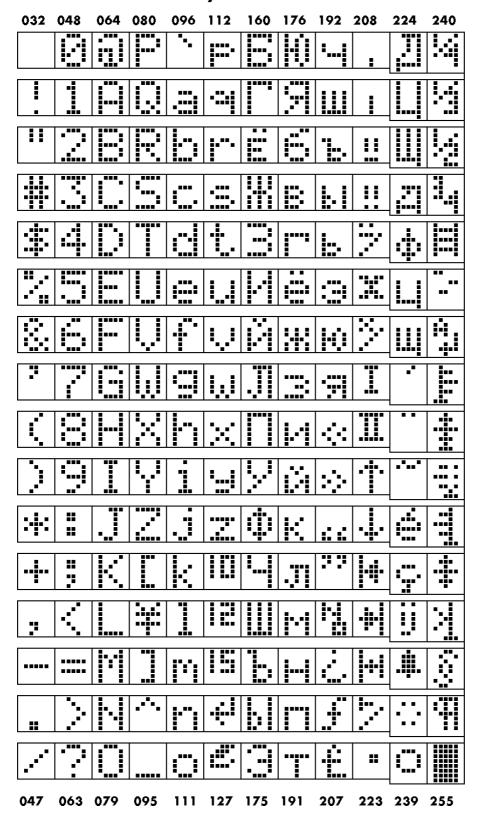
2.7.4 Font Normal

öü\↑↓Φ↑↓→+!"#\$%&'()* +,-./0123456789:;<=> ?@ABCDEFGHIJKLMNOPQR STUVWXYZ[\]^_\abcdef 9hijklmnopanstuvuxyz {|}++üäÄöööi。「」、・ヲァィゥ ±ォャュョッニアイウエオカキクケコサシス セソタチッテトナニヌネナムヒフヘホマミム

ΧΕΦ135ΫΝ**Ν≣**ワン^{λο} αββεμσ ρασ" j× ΦΦΛΟραθ∞Ωü÷που Υπα÷**Ξ**

2.7.5 Displayable Character Set

0	32		64	@	96	•	128		160	192	224	
1	33	į	65	A	97 a	a	129	ü	161	193	225	В
2	34	-	66	В	98	ь	130		162	194	226	
3	35	#	67	С	99 (C	131		163	195	227	
4	36	\$	68	D	100	d	132	ä	164	196	228	
5	37	%	69	E	101	e	133		165	197	229	
6	38	&	70	F		f	134		166	198	230	
7	39	•	71	G	103	g	135		167	199	231	
8	40	•	72	H			136		168	200	232	
9	41)	73	Ι			137		169	201	233	
10	42	±	74	J			138		170	202	234	
11	43	+	75	K	107		139		171	203	235	
12	44		76	L			140		172	204	236	
13	45	_	77	H	109	n.	141		173	205	237	ø
14	46		78	N			142	Ä	174	206	238	
15	47	/	79	0		0	143		175	207	239	
16	48	0	80	\mathbf{P}	112	P	144		176	208	240	
17	49	1	81	Q		q	145		177	209	241	
18	50	2	82	R			146		178	210	242	
19	51	3	83	S			147		179	211	243	
20	52	4	84	T	116			ö	180	212	244	
21	53	5	85	U			149		181	213	245	
22	54	6	86	V			150		182	214		÷
23	55	7	87	Ū			151		183	215	247	
24 ↑	56	8	88	X			152		184	216	248	0
25 ↓	57	9	89	Y		y	153		185	217	249	
26 →	58	:	90	Z		Z		Ü	186	218	250	
27 ←	59	;	91	[155		187	219	251	
28	60	<	92	\	124		156		188	220	252	
29	61	=	93]		}	157		189	221	253	
30	62	>	94	Ā	126		158		190	222	254	
31	63	?	95		127		159		191	223	255	


2.7.6 Loadable Font Katakana

032	048	064	080	096	112	160	1 <i>7</i> 6	192	208	224	240
				*•	::: •		••••	<u> </u>	₩.		
i				-===	-==	:::		;	<u></u> ;		
H					! "-	i.	•	ij	j::i		
			:	: <u></u> .	·		:		===	:::.	::-::
:::				:":	╬.	٠.		! -	-		:::
				::::	11	#		;			
			l,,i	•	i.,:	:					-
					i,,i	·;;:		:::			!!!
	:***:		1:	i							
٠.			:**:			•••	·•	•••	! .!		
<u>\</u> }			<u> **</u> 								
		Ï	1	-			<u></u> .:-::-	<u> </u>		••	
<u>)</u>			'n		<u></u>		· -*** -***				
) } *					<u>=</u>						
 } * +			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1 .3 k:]]]	::::::::::::::::::::::::::::::::::::::					
\						;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;					
\							7 7 7 7 2 7 7				

2.7.7 Loadable Font Cyrillic

2.8 User-Mode Switch

The user-mode switch is placed at the side of the unit.

User-Mode Switch 4 Switch Positions

S1	S2	S3	S4	Function
I	Х	1	-	Standard-Mode with PLC (delivery state)
I	Χ	I	-	Standard-Mode without PLC
-	-	1	1	Transparent-Mode with start and stop code of the keys
-	1	-	I	Transparent-Mode without stop code of the keys
I		1	I	Activate download (deletes application memory) und default contrast setting
	-	I	I	Activate upload

Legend of above table:

I = Switch position ON

- = Switch position OFF

X = Switch position irrelevant

2.9 Battery

A built-in lithium battery buffers the data in the CMOS-RAM memory and also supplies the real-time clock with power. The battery provides a lifetime of at least 5 years, even under unfavourable operating conditions.

If the battery is drained the system message "change battery" is generated. We recommend to change the battery at maintenance in a interval of 4 years. A new battery is supported by Sütron electronic or the sales representative of your country.

When the message "change battery" is recognized too late, for example real-time clock stopped or displays wrong date, it is possible that the data in the CMOS-RAM is lost. Therefore you have to check the data (changeable passwords, parameters in the system variables, data set of the recipes and the entries in the message system).

Replacing the battery:

The battery can be replaced while the operating voltage is connected to ensure that the message data and time setting are not lost. Mind the safety instructions!

- Remove the fastening screws of the enclosure and remove the enclosure
- Replace the cable fastener, which is used to hold the battery
- Plug off the connector of the battery cable and replace the battery
- Plug on the connector of the new battery
- Place the new battery onto the plastic carrier on the printed circuit board and fasten it with a new cable fastener
- Place the enclosure on the rear side of the unit
- Fasten the screws of the enclosure properly

Changing the battery may only be performed by qualified and authorized personnel!

Sewage and refuse displosal:

Dispose only drained batteries into the collection box of the community or of the local dealer. The battery is stated as drained when the message "change battery" appears on the display of the appliance. To prevent short circuitry in the collection boxes insulate the poles of each battery with insulation tape or put each single battery into a plastic bag.

Do not put lithium batteries in fire or heat them above 100° C and do not recharge them. **Danger of Explosion!**

Do not open lithium batteries. Danger of Poisoning!

Hazardous voltages can exist inside electrical installations that can pose a danger to humans. Coming in contact with live parts may result in **electric shock!**

Electrostatic discharges can damage electronic components! ESD protective measures must be observed!

2.10 Fuse

A semiconductor fuse is used to prevent damage to the operating terminal. Once the fuse has been activated, the device must be disconnected from the supply voltage to allow the semiconductor fuse to regenerate. With an ambient temperature of 20 °C, the regeneration takes about 20 seconds. The higher the ambient temperature, the longer the regeneration period.

The semiconductor fuse is not designed to be replaced.

2.11 Application Memory

The unit is equipped with a 256 KByte flash memory an application memory.

After switching on the unit the size of the application memory is displayed. This memory area is available to store the user application, the loadable protocol driver, the fonts and the recipe data.

3 Technical Data

Keyboard a Total of 30 Keys, Membrane with Tactile Feedback, 2 Million Switch

Cycles Divided into

6 Control Keys

6 Function Keys with LEDs and Slide-in Identification Strips

2 Special Keys with LED3 Special Keys without LED

13 Editing Keys

LCD Display Backlit LCD Module / Luminescent VF Module, 4 Lines with 20 Charac-

ters Each,

Display Area 23 x 74 mm (H x W)

with Glare Suppression for Increased Contrast

Lifetime LCD: 100000 h Lifetime Backlight: 100000 h Lifetime VF: 50000 h

Interface X3 Variable Baud Rates and Data Formats

SER1 TTY / 20 mA, galvanical isolated Communication SER1 RS485, galvanical isolated Communication SER1 RS232c, galvanical isolated Communication

SER2 RS232c, not galvanical isolated Download/Upload/Scanner/

Logging Printer

Protocols

Standard ABB CS31

ABB T200 AEG KS-Functions AEG Modbus Allen Bradley

Bosch BUEP19/BUEP19E

DIN-Meßbus Slave, DIN-Meßbus Gateway

GE Fanuc SNP IDEC Micro3 Jetter PASE / PCOM5 OMRON Host-Link

OMRON Host-Link OMRON NT-Link Klaschka YCOM/C

Moeller SUCOM 1 (PS306/316) Moeller SUCOM 1 (PS4-201) Mitsubishi FX-Series and A-Series Siemens Sinec L1 Master Link Siemens 3964R/RK512 Siemens S5 PG (AS511)

Siemens S7 PPI Siemens S7 MPI (HMI-Host Adaptor)

Protocols

Field Bus none

Central Unit Z84-CPU, 10 MHz, Watchdog Timer, Real-Time Clock, Programmable

Interface Parameters, Temperature Compensation of the Display, Adjustment of Brightness/Contrast, Battery Monitoring, User Mode Switch

Memory 256 KByte Flash Memory, Application Memory

256 KByte Flash Memory, Firmware

128 KByte stat. CMOS-RAM, Battery-Backed

Connection System Plug-in Type, via SubminD Connector Strips

Supply Voltage 24 V Direct Voltage, Residual Ripple Max. 10%,

SELV in accordance to DIN EN 61131

Minimum Voltage 19.2 V

Maximum Voltage 30.2 V

Typ. Power Consumption <0.3 A

Peak Current (10 ms) <0.5 A

Connected Load ~10 W

Fuse Semiconductor Fuse

Reverse

Voltage Protection Protection Diode

Noise Immunity EC Electromagnetic Compatibility Directive 89/336/EEC

EN 50082-2

EN 55011 Limit Class B

EN 55022 EN 61000-4-2 EN 61000-4-3 EN 61000-4-4 EN 61000-4-5 EN 61000-4-6

Environmental Test Operating Temperature 0°C to 50°C

Storage Temperature -20°C to 70°C

Relative Humidity for:

Operation max. 75% annual average Storage max. 75% annual average

Non-condensing

Degrees of Protection EN 60529 Mechanical Degrees of Protection

Front: IP65 Rear: IP20

Front Panel Aluminum, black anodized with affixed polyester cover, polyäthylen

foam seal around rear of front panel 168.0 x 120.0 x 4.0 mm (H x W x D)

Panel Cutout 160 x 112 mm (H x W)

Mounting Depth 40 mm without Connector

Enclosure Zinc-Coated Steel Plate

Total Weight approx. 500 g

4 **Declaration of Conformity**

EG - Konformitätserklärung

Seriennummer: BT5N/101100

Dokument - Nr./

Monat. Jahr:

CE-BT5N.101_98/06.1999

Der Unterzeichner, der den nachstehenden Hersteller vertritt

Hersteller:

ELECTRONIC GMBH

Anschrift:

SÜTRON ELECTRONIC GMBH

Telefon 0711/77098-0 Telefax 0711/77098-60

Kurze Straße 29 D-70794 Filderstadt (Bonlanden)

oder der den vom Hersteller nachstehend benannten Bevollmächtigten vertritt, der innerhalb der Gemeinschaft (oder des EWR) niedergelassen ist (falls zutreffend)

Bevollmächtigter:	Siegfried Buck		 	
Anschrift:	Kurze Straße 29	D-70794 Filderstadt		

erklärt hiermit, daß das Produkt

Pro	oduktkennzeichnung:	Tesimod Bedienterminal BT5N/101100
		

in Übereinstimmung mit den Bestimmungen der nachstehenden EG-Richtlinie(n) (einschließlich aller zutreffenden Änderungen)

Referenz-Nr.	89 / 336 / EWG
Titel	Richtlinie des Rates zur Angleichung der Rechtsvorschriften der Mitgliedsstaaten
	über die elektromagnetische Verträglichkeit

und daß die Normen und/oder technischen Spezifikationen, die auf der Umseite in Bezug genommen sind, zur Anwendung gelangt sind.

Die letzten beiden Ziffern des Jahres in dem die CE-Kennzeichnung angebracht wurde: (nur einzutragen, wenn die Übereinstimmung mit den Bestimmungen der Niederspannungsrichtlinie 73/23/EWG erklärt wird)

Aussteller:

Ort , Datum :

Filderstadt, 01.06.99

Unterschrift:

ried Buck , Geschäftsführer

(Name und Funktion der vom Hersteller oder von seinem Bevollmächtigten zur Unterschrift berechtigten Person)

Die Sicherheitshinweise der mitgelieferten Produktdokumentation sind zu beachten

EG-Konformitätserklärung

Seriennummer: BT5N/101100

Dokument - Nr./

Monat. Jahr: CE-BT5N.101_98/06.1999

Bezugnahme auf Normen und/oder technische Spezifikationen oder Teile von diesen die für diese Konformitätserklärung zur Anwendung gelangt sind :

- harmonisierte Normen :

Referenznummer	Ausgabedatum	Titel	Teile (1)
DIN EN 55011	12.98	Funkstörungen bei ISM-Geräten	
DIN EN 50082-2	02.96	EMV-Störfestigkeit Industriebereich	2
DIN EN 61000-4-2	1996	EMV-Störfestigkeit ESD	2
DIN EN 61000-4-3	08.97	EMV-Störf. Hf-elektromagn. Felder	3
DIN EN 61000-4-4	1996	EMV-Störfestigkeit Burst	4
DIN EN 61000-4-5	1996	EMV-Störfestigkeit Surge	5
DIN EN 61000-4-6	04.97	EMV-Störf. leitungsgef. Störgr.	6
DIN EN 55022	05.99	Funkstörungen bei ITE-Geräte	
		3	

- oder andere Normen und/oder technische Spezifikationen:

Referenznummer	Ausgabedatum	Titel	Teile (1)

- andere Technische Lösungen, deren Details in den technischen Unterlagen oder in der technischen Dokumentation enthalten sind :
- Andere in Bezug genommene Dokumente oder Informationen, die von den anzuwendenden EG-Richtlinien gefordert werden :

Prüfbericht: 86137-1-BCD, PNR52

Wo zutreffend, müssen die angewandten Teile oder Abschnitte der Norm oder der technischen Spezifikation in Bezug genommen werden.

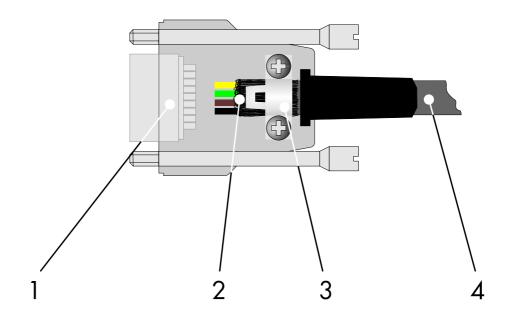
SÜTRON ELECTRONIC GMBH KUrze Straße 29 Telefax V711/77098-60 Geschäftsführer: Amtsgericht Nürtingen Geschäftsführer: Siegfried Buck HRB - Nr. 981

D-70794 Filderstadt (Bonlanden)

Seite 2

Cursor right 8 Cursor up 8 Data Release 9 Decimal Point 8

Enter 9 Help 9 Minus 8


5 Index	
A Application Memory 29 B	Page 9 Plus 8 Print 9 Keyboard 7
Battery 28	M
C Character Attributes 24 Control Keys 8	Mounting Depth 15 Mounting the Terminal 13 P
Declaration of Conformity 32 Default Contrast Setting 23 Degree of protection 13 Display 22 Display Contrast Setting 23	Panel Cutout 16 Pin Assignment X1 Supply Voltage 18 X3 SER1 RS232c 21 X3 SER1 RS485 20 X3 SER1 TTY / 20 mA Current Loop 19 X3 SER2 RS232c 21
E	R
Editing Keys 7 Explanation of Symbols 5	Rear View Standard 12
F	\mathbf{S}
Font Cyrillic 26 Displayable 24 Katakana 25 Normal 24	Shielding 21 Side View 15 Slide-in Identification Strips 11 Special Keys 9
Front Panel Dimensions 14 Front View 6	T
Function Key Arrangement 10 Function Keys 10 Fuse 29	Technical Data 29 U
K	User-Mode Switch 27
Key Acknowledge 9 Clear 9 Cursor down 8 Cursor home 9 Cursor left 8	

Appendix A

A Appendix A

A.1 Shielding of SubminD - Interconnections

- 1 SubminD Connector
- 2 Shield
- 3 Cord Grip
- 4 Cable

The shield must be pushed back tubularly.

By fastening the cable with the cord grip you have to ensure an electrical contact of the shield to the housing over an area as wide as possible and an appropriate strain relief.

